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Markov Processes, What are They?

Unless one is clairvoyant, the only temporally evolving processes which are tractable are
those whose future behavior can be predicted on the basis of data which is available at the
time when the prediction is being made. Of course, in general, the behavior of even such
an evolution will be impossible to predict. For example, if, in order to make a prediction,
one has to know the detailed history of everything that has happened during the entire
history of the entire universe, ones chance of making a prediction may be a practical, if not
a theoretical, impossibility. For this reason, one tries to study evolutions mathematically
with models in which most of the distant past can be ignored when making predictions
about the future. In fact, many mathematical models of evolutions have the property that,
for the purpose of predicting the future, the past becomes irrelevant as soon as one knows
the present, in which case the evolution is said to be a Markov process, the topic at hand.

The components of a Markov process are its state space S and its transition rule T .
Mathematically, S is just some non-empty set, which in applications will encode all the
possible states in which the evolving system can find itself, and T : S −→ S is a function
from S into itself which gives the transition rule. More precisely, if now the system is in
state x, it will be next1 in state T (x), from which it will go to T 2(x) = T (T (x)), etc.
To give a sense of the sort of reasoning required to construct a Markov process, consider
a (classical) physical particle whose motion is governed by Newton’s equation ~F = m~a
(“force equals mass times acceleration”). At least in theory, Newton’s equation says that,
assuming one knows the mass of the particle and the force field ~F which acts on it, one can
predict where the particle will be in the future as soon as one knows what its position and
velocity are now. On the other hand, knowing only its present position is not sufficient by
itself. Thus, even though one may care about nothing but its position, in order to produce
a Markov process for a particle evolving according to Newton’s equation, it is necessary to
adopt the attitude that the state of the particle consists of its position and velocity, not
just its position alone. Of course, in that velocity is the derivative of position, the two are
so inextricably intertwined that one might be tempted to concentrate on position on the
grounds that one will be able to compute the velocity whenever necessary. However, this
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1Here we are thinking of time being discrete. Thus, “next” means after one unit of time has passed.
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tack destroys the Markov property. Namely, there is no way of computing the velocity of
a particle “now” if all ones knows knows is its position “now.” For this reason, physicists
consider the state of a particle to be composite of its position and velocity, and the resulting
state space R6 = R3 × R3 (three coordinates for position and three for velocity) they call
the phase space of the particle.

The same point may be clearer in the following example. Suppose that one has an
evolution on a state space S which proceeds according to the rule that if the present state
is xn and the preceding state was xn−1, then the next state will be xn+1 = T (xn−1, xn).
This is not a Markov process. On the other hand, it can be “Markovized.” Indeed, replace
the original state space by Ŝ = S× S, the set of ordered pairs (x, y) with x and y from S,
and define T̂

(
(x, y)

)
=
(
y, T (x, y)

)
. It is then an easy matter to check that if the original

system was in state x−1 at time −1 and state x0 and time 0, then its state at time n ≥ 1
will be xn, the second component of the pair (xn−1, xn) = T̂n

(
(x−1, x0)

)
.

The moral to be drawn from these examples is that the presence or absence of Markov
property is in the eye of the beholder. That is, a change of venue (i.e., state space) can
make the Markov property appear in circumstances where it was not originally apparent.
In fact, by taking the state space sufficiently large, any evolution can be forced to be
Markov. On the other hand, the more complicated the state space, the less useful is the
Markov property. Thus, in practice, what one seeks is the “simplest” state space on which
ones evolution possesses the Markov property.

Stochastic Markov Processes

Roughly speaking, Markov processes fall into one of two categories. Those in the first
category are “deterministic” in the sense that their state space is sufficiently detailed that
the individual states give complete and unambiguous information. Both the examples given
above are deterministic. The mathematical analysis of deterministic, Markov processes has
a proud history going back to Newton and includes major contributions by such luminaries
as P. Chebyshev, A. Markov, A. Lyapounov, H. Poincaré, and J. Moser. The second
category of Markov processes, and the one on which the rest of this article will concentrate,
are “probabilistic” or “stochastic” Markov processes. To understand where and why these
processes arise, consider the problem of describing the state of all the gas molecules in a
room. Each liter of gas contains approximately Avogrado’s number, 6.02214199× 1023, of
molecules. Thus, even a small room will contain something on the order of 1026 molecules.
Moreover, because, by Newton’s laws of motion, the state of each individual molecule will
lie in its individual phase space, the state of the entire system of molecules will have to
specify the positions and velocities of all 1026 molecules. Stated mathematically, the state
space of the system will be R6×1026

, on which any sort serious analysis is too daunting to
contemplate.

When confronted with a problem which is intractable as presented, the time-honored
procedure of choice is to reformulate the problem in a way which makes it more tractable.
In the case just described, the reformulation was made by G.W. Gibbs and L. Boltzmann,
the fathers of statistical mechanics. Namely, they abandoned any hope of saying exactly
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where all the molecules will be and reconciled themselves to settling for a description of
the statistics of the molecules. That is, instead of asking exactly where all the molecules
would be, they asked what would be probability of finding a molecule in various regions
of phase space. From this point of view, the state of the system will not be an element
of R6×1026

but of M1(R6), the space probability distributions on the individual phase
space R6. Of course, Gibbs and Boltzmann’s reformulation only changes the problem,
it does not solve it. Indeed, although Newton’s equation determines how the system
of molecules evolves and therefore how their distribution will evolve, the use Newton’s
equation would remove the advantage which Boltzmann and Gibbs hoped to gain via
their reformulation. Thus, they had to come up with an alternative way of describing
the transition rule which governs the evolution of the distribution of the system as a
Markov process on M1(R6). The description proposed by Boltzmann is given by the
famous Boltzmann equation. Unfortunately, Boltzmann’s equation is itself so complicated
that it is only recently that substantial progress has been made toward understanding it
in any generality. On the other hand, Gibbs and Boltzmann’s idea of studying Markov
processes on the space of probability distributions is seminal and has proved itself to be
both ubiquitous and powerful.

The abstract setting for a stochastic Markov process starts with a non-empty set S,
the deterministic state space, and the associated space M1(S) of probability distributions
on S. The easiest and most commonly studied stochastic Markov processes are those for
which the transition rule T : M1(S) −→ M1(S) is a linear (more correctly, an affine)
function. To be definite, suppose S is a finite set. Then M1(S) is the set of all functions
µ on S which assign each x ∈ S a number2 µ({x}) ∈ [0, 1] (the probability of {x} under
µ) in such a way that

∑
x∈S µ({x}) = 1. Clearly, if µ and ν are in M1(S) and θ ∈ [0, 1],

then the convex combination θµ + (1 − θ)ν is again an element of M1(S). Sets with this
property are said to be affine (as distinguished from linear, which refers to sets which
are closed under all linear, not just convex, combinations), and a function on an affine
set is said to be affine if it commutes with affine combinations. Thus, for M1(S), the
transition rule T is affine if T

(
θµ + (1− θ)ν

)
= θT (µ) + (1− θ)T (ν). Because S is finite,

one can dissect such transition rules in the following way. First, for each x ∈ S, let δx

denote the element of M1(S) which assigns 1 to {x} (and therefore 0 to S \ {x}). Next,
set P(x, · ) = T (δx). That is, P(x, · ) is the element of M1(S) to which T takes δx, and
so P(x, {y}) =

[
T (δx)

]
({y}). Because, for any µ ∈ M1(S) which is not equal to δx,

µ = µ({x})δx +
(
1− µ({x})

)
µx, where µx ∈ M1(S) is determined so that µx({y}) equals(

1− µ({x})
)−1

µ({y}) or 0 depending on whether y 6= x or y = x, the affine property of T

means that T (µ) = µ({x})P(x, · ) +
(
1− µ({x})

)
T (µx). Hence, after pealing off one x at

a time, one concludes that

(*) T (µ) =
∑
x∈S

µ({x})P(x, · )

2The use of µ({x}) instead of µ(x) here is a little pedantic. However, one must remember that prob-

abilities are assigned to events (i.e., subsets of the sample space), and that {x} is the event that “x

occurred.”
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when T is affine.

Probabilistic Interpretation

The representation of T given by (*) admits an intuitively pleasing probabilistic inter-
pretation. Namely, P(x, {y}) can be thought of as the probability that the system will next
be in the state y given that is now in state x. With this interpretation in mind, probabilists
call x ∈ S 7−→ P(x, · ) ∈ M1(S) a transition probability on the state space S. The terminol-
ogy here is confusing. From the point of view adopted earlier, one might, and should, have
thought that M1(S) is the state space. However, the probabilistic interpretation is most
easily appreciated if one thinks of S as the state space and x ∈ S P(x, · ) ∈ M1(S) as a
random transition rule. To complete this picture, probabilists introduce random variables
to represent the random points in S visited. More precisely, again assume that S is finite,
and suppose that µ ∈ M1(S) describes the initial distribution of process under considera-
tion. Then probabilists construct a sequence {Xn : n ≥ 0} of random variables, called a
Markov chain, in such a way that, for any n ≥ 0,

Prob
(
X0 = x0, . . . , Xn = xn

)
= µ({x0})P(x0, {x1}) · · ·P(xn−1, {xn}).

In words, this says that the right hand side above is the probability that the chain with
initial distribution µ starts at x0 and then goes on to visit, successively, the points x1

through xn.
To see that the probabilistic interpretation is completely consistent in the deterministic

case, observe that a deterministic Markov process can be formulated as a stochastic Markov
process. Namely, if T is the transition rule for the deterministic process, take P(x, · ) =
δT (x), and check, that with probability 1, the stochastic Markov chain with transition
probability x  P(x, · ) follows the same path as the deterministic one with transition
rule T . That is, with probability 1, Xn = Tn(X0) for all n ≥ 1.

Ergodic Theory of Markov Chains

Continue in the setting of the preceding section. One of the phenomena predicted by
Gibbs in connection with his and Boltzmann’s study of gases was that, no matter what the
initial distribution of the gas, after a long time the gas should equilibrate in the sense that
it will achieve a stationary distribution (i.e., a distribution which does not change with
time) which does not depend on how it was distributed initially. Ones experience with the
behavior of gases makes his prediction entirely plausible: place an opened bottle of perfume
in the corner of a room, wait an hour, and confirm that the perfume will have become more
or less equidistributed throughout the room. Be that as it may, his prediction, which goes
by the name of Gibb’s ergodic hypothesis, has been mathematically verified for only one
physically realistic model. Nonetheless, as will be explained next, ergodicity is relatively
easy to verify for most stochastic Markov processes on a finite state space.

To develop some intuition for what ergodicity means and why it might hold for a
stochastic Markov process on a finite state space S, it is best to first know how to recognize
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when a µ ∈ M1(S) is stationary. But if µ is stationary, then it is left unchanged as the
system evolves, and, in terms of the transition probability, this means that

(1) µ({y}) =
∑
x∈S

µ({y})P(x, {y}) for all y ∈ S.

Now suppose that S = {1, 2}, and consider the problem of finding a solution to (1). That
is, we to find want µ ∈ M1({1, 2}) so that

(*)
µ({1}) = µ({1})P(1, {1}) + µ({2})P(2, {1})
µ({2}) = µ({1})P(1, {2}) + µ({2})P(2, {2}).

At first sight, there appear to be too many conditions on µ: not only must it satisfy the
two equations in (*), it also has to satisfy µ({1}) + µ({2}) = 1 as well as being non-
negative. Even if one ignores the non-negativity, one suspects that three linear equations
are just too many for a pair of numbers to satisfy. On the other hand, after a little
manipulation, one sees (remember that P(1, · ) and P(2, · ) are probability distributions)
that both the equation in (*) are equivalent to µ({1})P(1, {2}) = µ({2})P(2, {1}). Hence
the two equations in (*) are equivalent, and so there are really only two equations to be
satisfied: µ({1})P(1, {2}) = µ({2})P(2, {1}) and µ({1}) + µ({2}) = 1. There are two
cases to be considered. The first case is when the chain never moves, or, equivalently,
P(1, {2}) = 0 = P(2, {1}). In this case there are two solutions, namely, δ1 and δ2, which
is exactly what one should expect for a chain which never moves. In the second case, the
one corresponding to a chain which can move, either P(1, {2}) > 0 or P(2, {1}) > 0. In
both these cases, one can easily check that the one and only solution to (*) is given by

µ({1}) =
P(2, {1})

P(1, {2}) + P(2, {1})
and µ({2}) =

P(1, {2})
P(1, {2}) + P(2, {1})

.

Continuing in the setting of the preceding, we want to examine when Gibb’s ergodic
hypothesis holds. Obviously, at the very least, ergodicity requires that there be only
one stationary µ, otherwise we could start the chain with one of them as initial distri-
bution, in which case it would never get to the other. Thus, we need to assume that
P(1, {2}) + P(2, {1}) > 0, and, to simplify matters, we will assume more. Namely,
we now assume that m ≡ m1 + m2 > 0, where m1 = min{P (1, {1}), P (2, {1})} and
m2 = min{P (1, {2}), P (2, {2})}, and, under this assumption we (following Doeblin) will
show that, for any ν ∈ M1({1, 2})

(2) ‖νP− µ‖ ≤ (1−m)‖ν − µ‖,

where νP ∈ M1({1, 2}) is determined by

νP({y}) ≡
2∑

x=1

ν({x}))P(x, {y})
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and, for any pair ν1, ν2 ∈ M1({1, 2}), ‖ν2 − ν1‖ ≡
∑2

x=1 |ν2({x})− ν({x})|. To prove (2),
first observe that, because µ is stationary, µ = µP, and therefore, since

∑2
x=1

(
ν({x}) −

µ({x})
)

= 1− 1 = 0,

νP({y})− µ({y}) =
2∑

x=1

(
ν({x})− µ({x})

)
P(x, {y})

=
2∑

x=1

(
ν({x})− µ({x})

)(
P(x, {y})−my

)
.

Next, take the absolute value of both sides, remember that the absolute value of a sum of
numbers is dominated by the sum of their absolute values, and arrive at

‖νP− µ‖ ≤
2∑

y=1

(
2∑

x=1

|ν({x})− µ({x})|
(
P(x, {y})−my

))

=
2∑

x=1

(
2∑

y=1

|ν({x})− µ({x})|
(
P(x, {y})−my

))
= (1−m)‖ν − µ‖.

Given (2), it becomes an easy matter to check ergodicity. Indeed, νP is the distribution
of the chain at time 1 when it is started with initial distribution ν. Similarly, its distribution
at time 2 will be νP2 = (νP)P, and so ‖νP2 − µ‖ ≤ (1−m)‖νP− µ‖ ≤ (1−m)2‖ν − µ‖.
Proceeding by induction, one sees that distribution νPn = (νPn−1)P at time n will satisfy
‖νPn − µ‖ ≤ (1−m)n‖ν − µ‖. Hence, because m > 0, this implies that ‖νPn − µ‖ tends
to 0 exponentially fast, which means that the chain possesses an extremely strong form of
ergodicity.

Other Directions

In this article we have discussed only the most elementary examples of Markov pro-
cesses. In particular, in order to avoid technical difficulties, all our considerations have
been about processes for which the time parameter is discrete. As soon as one moves into
the realm of processes with a continuous time parameter, the theory becomes much more
technically involved. However, the price which one has to pay in technicalities is amply re-
warded by the richness of the continuous time theory. To wit, Brownian motion (a.k.a. the
Wiener process) is a continuous parameter Markov process which makes an appearance in
a surprising, and ever growing, number of places: harmonic analysis in pure mathematics,
filtering and separation of signal from noise in electrical engineering, the kinetic theory of
gases in physics, the price fluctuations on the stock market in economics, etc. Thus, for
the sake of the curious, here is a very brief and enormously inadequate list of places where
one can learn more about Markov processes.
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