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Preface 

Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We 
think the basis for a better arithmetic has long been available, but its versatility has 
hardly been appreciated, and it has not yet been integrated into the mainstream of 
mathematics. We refer to the system commonly called 'Clifford Algebra', though 
we prefer the name 'Geometric Algebm' suggested by Clifford himself. 

Many distinct algebraic systems have been adapted or developed to express 
geometric relations and describe geometric structures. Especially notable are those 
algebras which have been used for this purpose in physics, in particular, the system 
of complex numbers, the quatemions, matrix algebra, vector, tensor and spinor 
algebras and the algebra of differential forms. Each of these geometric algebras has 
some significant advantage over the others in certain applications, so no one of 
them provides an adequate algebraic structure for all purposes of geometry and 
physics. At the same time, the algebras overlap considerably, so they provide several 
different mathematical representations for individual geometrical or physical ideas. 
Consequently, it is not uncommon for mathematicians and physicists to employ 
two or more different geometric algebras in a single problem, with considerable 
time required to translate expressions from one representation to another. This 
state of affairs is hardly satisfactory. A unified theory of the physical world calls 
for a unified mathematical language to help develop and express it. Geometry too 
seems to be a unified corpus of ideas, so one can hope to develop a single Geometric 
Algebra capable of expressing the full range of geometrical ideas in all their richness 
and subtlety. Any system claiming the title Geometric Algebm ought to perform at 
least as well as anyone of the special geometric algebras mentioned above in any 
particular application. The purpose of this book is to show how such a system can 
be fashioned from Clifford Algebra. 

Although Clifford Algebra is known to many mathematicians and physiCists, 
its applications have been limited to a fairly narrow range. Its mathematical range 
is greatly extended in this book by considering the algebra from a new point of 
view and developing a system of definitions and algebraic identities to make it an 
efficient and versatile computational tool. Some of the more well·known mathe
matical applications of Clifford Algebra which are adequately treated in the litera
ture are not mentioned in this book. Instead, the book is devoted to developing 

vii 



viii Preface 

an efficient Geometric Calculus which can provide a unified account of the mathe
matics needed in theoretical physics. 

Although every feature of Geometric Calculus has been developed with an eye 
to the needs of physics, the physical applications are too extensive to be treated in 
this book. Only one rather esoteric application is considered in detail for its mathe
matical interest, namely the Petrov classification of curvature tensors (see Section 
3-9). However, a broad range of mathematical applications of Geometric Calculus 
are worked out, from linear and multilinear algebra to differential geometry and Ue 
groups. Of course, such mathematical applications have, in turn, many applications 
to physics. 

To present the extensive physical applications of Geometric Calculus systema
tically, a series of books complementing the present volume has been planned. The 
first two books in the series are to be entitled New Foundations for ClassiCilI 
Mechanics (NFl) and New Foundations for Mathematical Physics (NFII). The 
preparation of both these books is well underway. NFl presents a full account of 
classical mechanics in the language of Geometric Calculus. Since Geometric Algebra 
smoothly integrates quatemions with the conventional vector algebra, it makes the 
full power of both systems available together for the first time. Thus, NFl can take 
full advantage of quatemions in the treatment of rotations and rotational dynamics 
as well as other topics. Although NFl is designed fOT use as a textbook at the under
graduate level, it handles a number of topics which are usually regarded as more 
advanced, because Geometric Algebra makes their treatment feasible at this level. 
NFl provides a detailed introduction to Geometric Algebra, including a discussion 
of its historical development and geometric rationale as well as many diagrams and 
elementary examples. Such considerations are essential for understanding why 
Geometric Calculus is an ideal language for physics, but they are not broached in 
the present book, which is devoted to an abstract mathematical treatment of the 
Calculus. 

The book NFII applies Geometric Calculus to the formulation and development 
of classical field theory, special relativity and non-relativistic quantum mechanics. 
Most notable is the unified mathematical method it provides for the various 
branches of physics. Subsequent books will extend the applications of Geometric 
Calculus to relativistically invariant treatments of electrodynamics, quantum theory 
and gravitation along the lines already set down in the book Space-Time Algebra 
[HI] and various articles ([H2-I2], [S2-5]). 

We have no doubt that our treatment of Geometric Calculus can be improved 
in many ways. We have witnessed significant improvements in repeated rewrites, 
extending as far back as twenty years for some parts. We are still experimenting 
with some of the notation and nomenclature. Some of our proofs are admittedly 
sketchy. And we have left many loose ends of other kinds, some of them beginnings 
for further research. But on the whole we are quite pleased with the serviceability 
of the' Calculus as it stands. It is our fondest wish that others will find it useful and 
worthy of refinement. 

This book is intended to serve as a reference for mathematicians and physicists 
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who would like to use Geometric Calculus in their research and teaching. No prior 
knowledge of Clifford Algebra is presumed. However, the reader is presumed to 
have a good background in linear algebra, and later in differential geometry and 
then Lie groups when these subjects are takeri up. A balanced account of these 
subjects is not attempted. The main objective is to develop the apparatus and tech
niques needed to handle these subjects efficiently and completely with Geometric 
Calculus alone. The effectiveness of the Calculus is illustrated by detailed treatments 
of a number of special topics. 

Our long-range aim is to see Geometric Calculus established as a unified system 
for handling linear and multilinear algebra, multivariable calculus, complex variable 
theory, differential geometry and other subjects with geometric content. Mathe
maticians sympathetic with this aim might like to use this book as text conjointly 
with a conventional text on anyone of the subjects just mentioned. There are no 
formal exercises in the book, but students will be amply exercised by filling in 
details of the proofs and examples and by making comparisons with standard texts. 
We welcome and encourage comparisons of Geometric Calculus with conventional 
systems in every detail. In our experience, no other activity is quite so efficient for 
developing insight into the structure of mathematics. 

Over the last two decades the senior author (D. Hestenes) has been continuously 
concerned with the development of Geometric Calculus, both as a mathematical 
system and as a language for physical science. He has been assisted over the major 
portion of this book by the second author (G. Sobczyk), and they often worked 
so closely together that it is difficult to separate the contributions of one from 
those of the other. In his doctoral dissertation Dr. Sobczyk developed the theory 
of simplicial derivatives as the basis for new formulations of differential and adjoint 
outermorphisms. This made it possible for the first time to formulate the theory of 
induced transformations on manifolds and actually carry out explicit computations 
without reference to coordinates. As a postdoctoral research fellow supported by 
the Polish Academy of Science during 1973-74, he made many refmements in thjl 
coordinate-free formulation of differential geometry. 

Credit should be given to Robert Hecht-Nielsen for contributing to the proof of 
the inverse function theorem in Section 7-6 and to Alan Jones and Robert Rowley 
for improving the accuracy of the text. The senior author must accept blame for 
any deficiencies in the exposition, as he assumed responsibility for writing the 
entire manuscript. 

Our debt is greatest to those unnamed and, in large part, unknown, whose living 
thoughts have journeyed to inform every page of this book. To them our deepest 
gratitude and respect. 

DA VIn HESTENES 
Arizona State University 

GARRET SOBCZYK 
University of Wroclaw 



Introduction 

Mathematics is an organism for whose vital strength the 
indissoluble union of its parts is a necessary condition. 

HILBERT 

In his famous survey of mathematical ideas, Elementary Mathematics {rom an 
Advanced Standpoint, Felix Klein championed 'the fusion of arithmetic with 
geometry' as a major unifying principle of mathematics. Promoting the principle 
with unsurpassed insight, he illuminated themes from the grea~er part of nineteenth 
century mathematical thought to reveal them as strands in a single mathematical 
fabric. So many themes had developed in the hands of independent investigators 
each with its own vocabulary and symbolism, and concepts are so difficult to 
separate from their specific representations by symbols, that Klein's monolithic 
perspective of mathematics was and still is difficult to assimilate from his books 
despite his inspired presentation. 

The picture of mathematics that emerges from Klein's book does not so much 
resemble the unified perspective that he had achieved in his own mind as a pre
carious journey from bridge to bridge over cracks and crevasses of mathematical 
thought. For he was limited, in his ability to express his conceptions by the hetero
geneous mathematical formalisms of his age. To adequately represent Klein's 
vision of mathematics as a seamless whole and make his hard-eamed insights com
mon property of the mathematical community, the diverse symbolic systems of 
mathematics must be modified, coordinated and ultimately united in a single 
mathematical language. Klein organized arithmetic, algebra and analysis with 
geometrical themes. The fusion to which he aspired can truly be completed only 
by the development of a universal calculus of geometric thought. 

Klein's seminal analysis of the structure and history of mathematics brings to 
light two major processes by which mathematics grows and becomes organized. 
They may be aptly referred to as the algebraic and the geometric. The classification 
intended here is slightly different from Klein's but quite in accord with the evidence 
he presents. The one emphasizes algebraic structure while the other emphasizes 
geometric interpretation. Klein's analysis shows one process alternately dominating 
the other in the historical development of mathematics. But there is no necessary 
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xii Introduction 

reason that the two processes should operate in mutual exclusion. Indeed, each 
process is undoubtedly grounded in one of two great capacities of the human 
mind: the capacity for language and the capacity for spatial perception. From 
the psychological point of view, then, the fusion of algebra with geometry is so 
fundamental that one could well say, 'Geometry without algebra is dumb! Algebra 
without geometry is blind!' 

The interplay between algebraic and geometric processes in the evolution of 
the real numbers has reached a generally satisfactory climax. It is safe to say that 
the notation for the real number system and its algebra is one thing which all 
mathematicians understand and accept. But the coordination of algebraic and 
geometric processes in the development of 'higher mathematics' has left something 
to be desired; indeed, it seems that at times the two processes have worked at 
cross-purposes. 

The fact that the real number system was flrst extended to the system of com
plex numbers by an algebraic process requiring that every quadratic equation has a 
root has become an historical commonplace. But as Klein has testifled (and nobody 
was in a better position to observe), the great flourishing of complex analysis in 
the nineteenth century was fundamentally a geometric process founded on the 
familiar correspondence of complex numbers with points in a plane. And here lies 
a subtlety which has been consistently overlooked in the construction of mathe
matical systems. The geometrical interpretation of complex numbers associates real 
numbers with a particular direction (the real axis), and this can be distinguished 
from the interpretation of real numbers as scalars (numbers without direction). This 
basic distinction is seldom maintained in mathematical work, perhaps because the 
geometric interpretation is regarded as only incidental to the concept of number. 
But there is a deeper reason, pregnant with implications, namely, that the geometric 
concept of direction is not adequately represented by the conventional algebraic 
concept of number. 

The possibility of representing directions by complex numbers is, of course, 
limited to spaces of two dimensions, and the algebraic representation of direction 
for spaces of higher dimension requires the formal concept of vector. But the 
geometric status of complex numbers is confounded by the common practice of 
working with vector spaces over the complex numbers. It will not be necessary 
to go into the purely algebraic motivation for this practice. The fact of interest 
here is that complex vector spaces have not one but several distinct geometrical 
interpretations, as can be determined by examining how they are used in practice. 
One can distinguish three fundamentally different geometrical roles tacitly assigned 
to the unit imaginary i = vCl, namely, 

(1) the generator of rotations in a plane, 
(2) the generator of duality transformations, 
(3) the indicator of an indeflnite metric. 

Confusion is difflcult to avoid when i is required to perform more than one of these 
roles in a single system. Wr rse ~·et, in physics all three possibilities are sometimes 
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realized in a single theory confounded with problems of physical interpretation. A 
specific example is discussed in [H9]. The multiplicity of geometric interpretations 
for imaginary numbers shows that conventional mathematical formalisms are pro
foundly deficient in their tacit assumption that there is a unique 'imaginary unit'. 
Therefore, in the interest of fidelity to geometric interpretation, the convention 
that complex numbers are scalars should be abandoned in favor of a mathematical 
system with many roots of minus one, a system in which each basic geometric 
distinction has a unique algebraic representation. Geometric Algebra has this 
property. 

Geometric Algebra is best regarded as a geometric extension of the real number 
system to provide a complete algebraic representation of the geometric notions of 
direction and magnitude. To be sure, the extension is formally algebraic in that it 
is completely characterized by a set of algebraic axioms, however, the choice of 
the axioms is governed by geometric considerations. This may be contrasted with 
the traditional algebraic extension of real to complex numbers made solely for 
algebraic reasons. For geometric reasons, then, we develop Geometric Algebra over 
the field of the real numbers. It might be thought that developing the algebra over 
the complex numbers would produce a more powerful mathematical system. We 
contend, however, that it would merely cast the system in a different form with 
the danger of confounding geometric distinctions. In support of our contention, 
Sections 4-7 and 7-4 of the text show how complex variable theory can be formu
lated with the algebra over the reals. It will be seen that this formulation generalizes 
readily to higher dimensions in a way not contemplated in the theory of many 
complex variables, and it obliterates artificial distinctions between complex variable 
theory and real variable theory. 

Having given our reasons, we shall henceforth identify the scalars with the real 
numbers without question. Now let us discuss the contents of this book in relation 
to our objectives. 

Our general objective is to develop a comprehensive language for efficiently 
expressing and exploiting the full range of geometric concepts in mathematics. 
The grammar of this language is Clifford Algebra over the reals. But there is much 
more to a language than a grammar. To enhance the computational efficiency of 
the language and prepare it for immediate application to a wide range of problems, 
we develop an extensive system of secondary concepts, definitions and algebraic 
identities. We call this purely algebraic part of the language Geometric Algebra. 
We use the term Geometric Calculus for the extension of the language to include 
concepts of analysis, especially differential and integral calculus on manifolds. 
Again, to make Geometric Calculus an efficient and versatile language, we develop 
an extensive system of concepts and theorems. 

Chapter 1 establishes the fundamentals of Geometric Algebra. Section 1-1 
provides the backbone of the subject, and its results are used as a matter of course 
throughout the book. The rest of the chapter is concerned with algebraic applica
tions, primarily to the structure of vector spaces, properties of matrices and the 
theory of determinants. 



xiv Introduction 

Chapter 2 introduces a concept of vector derivative unique to Geometric Algebra 
because of its algebraic properties. This differential operator makes possible a 
completely coordinate-free differential calculus, and the whole subject can be 
regarded as an elaboration of its properties. Its most important general application 
is to the invariant definition and analysis of the differential and adjoint functions, 
fundamental concepts in the general theory of functions. These concepts are used 
repeatedly'and extended in the rest of the book. The concepts of differential and 
adjoint are, of course, not new, but Geometric Calculus provides a new way of 
handling them systematically. 

Chapter 3 applies Geometric Calculus to the simplest general class of geometric 
functions, the linear transformations. The emphasis is on detennining canonical 
forms without resorting to matrices or coordinates. As a general tool Section 3-1 
develops the important concept of outermorphism, the extension of a linear trans
formation from a vector space to its entire Geometric Algebra where many of its 
properties are most readily studied. Section 3-2 gives a new proof of the Cayley
Hamilton theorm, exhibiting it simply as the result of applying a general differential 
identity to the special class of linear functions. Probably the most useful results in 
the chapter are the spinor representations of isometries, fully developed in Sections 
3-5 and 3-8. These marvelous representations have generated much of the past 
interest in Clifford Algebra. Here their utility is greatly enhanced by integrating 
them into a comprehensive approach to linear algebra instead of obtaining them by 
a specialized technique. 

Chapter 4 develops the complete apparatus needed for a coordinate-free treat
ment of differential calculus on manifolds, including the transformations from one 
manifold to another. This makes it possible to calculate such things as the Jacobian 
of a tr:msformation without introducing coordinates, as shown explicitly by the 
computations in Section 4-6. In Chapter 5 the calculus is applied to a variety of 
topics in differential geometry. The approach features a new quantity, the shape 
tensor, from which the curvature tensor can be computed without a connexion. An 
alternative approach to differential geometry is developed in Chapter 6. Cartan's 
calculus of differential forms is shown to be a special case of Geometric Calculus. 

Chaper 7 develops a theory of integration based on a concept of directed measure 
to take full advantage of the geometric product. A number of new results are 
obtained, including a generalization of Cauchy's integral formula to n-dimensional 
spaces and an explicit integral formula for the inverse of a transformation. 

Chapter 8 applies Geometric Calculus to the theory of Lie Groups and Lie 
Algebras. The theory is not developed very far, but the foundations are established, 
and the unique perspective which the Calculus brings to the whole subject is made 
apparent. 
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Chapter 1 

Geometric Algebra 

This chapter defines Geometric Algebra by a set of axioms and develops a system of 
definitions and identities to make it a versatile and efficient computational tool. 
These results are used repeatedly in subsequent chapters. Many results are obtained 
in the form of algebraic identities, but they are seldom presented as theorems, 
because we wish to emphasize the techniques for generating them, to show how a 
great variety of useful identities can be generated by a few simple techniques. For 
example, Section 1-4 shows how easily geometric algebra generates the system of 
identities making up the theory of determinants. Thus we can see the theory of 
determinants as only part of a more comprehensive algebraic system. 

Clifford Algebra can be introduced in a number of different ways (see [Ch] , 
[Po], [Hu] for standard accounts). We have chosen an unconventional approach 
for several reasons. Most important, our axioms in Section 1 have been chosen to 
maximize the system's computational power. It will be noted that they include all 
the axioms of elementary scalar algebra except commutative multiplication, and it 
will be found that the breakdown of commutivity has an important geometrical 
meaning. Only a few additional axioms are needed, including a factoring axiom which 
generalizes and exploits the factoring concept familiar from elementary algebra. 

The axiomatic approach separates algebraic structure from geometric interpreta
tion. A strict separation increases the versatility of the system because a particular 
algebraic quantity or equation can be given more than one geometric interpretation. 
Unfortunately, this separation makes it hard for a novice to see any motivation for 
the algebraic gymnastics in Section 1-1. A few preliminary remarks about geometric 
interpretation may help the reader negotiate Section 1-1 until the algebra is supplied 
with a full interpretation in Section 1-2. 

The building blocks of geometric algebra are the k-blades, where k is a positive 
integer called the grade of a given blade. The I-blades are familiar as vectors. Since a 
nonzero vector determines a unique one-dimensional vector space or line, it may be 
regarded as representing the line. Similarly, each 2-blade represents a plane, and 
each k-blade represents a k-dimensional space. The geometric product relates blades 
of different grade apd so describes relations among the spaces they represent. In 
fact, all directional relations among linear spaces can be represented by this product. 
For example, if the product of two I-blades is commutative, then both vectors 
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represent the same line, but if the product is anticommutative, the vectors represent 
perpendicular lines. 

From the geometric product many other kinds of products can be formed. Of 
these, the inner and outer products are most important geometrically, because they 
are, respectively, the grade-lowering and the grade-raising operations in geometric 
algebra. Inner and outer products are the primary operations of multilinear algebra, 
including the theory of determinants, so we develop their properties at length in 
Section 1-1. 

Since we introduce inner and outer products as secondary concepts defined 
in terms of the single geometric product, our approach differs significantly from 
standard expositions of multilinear algebra (for example, [BoJ, [GrJ and [Wh]). 
The main advantage of our approach is that inner and outer products are integrated 
into a more general and versatile algebraic system from the beginning. But there 
are computational advantages as well. First, reduction of inner and outer products 
to a single product reduces the number of axioms needed to establish multilinear 
algebra. Second, the derivation of identities involving inner and outer products 
is simplified and systematized by exploiting the associativity of the geometric 
product. 

One other feature of our formulation of geometric algebra deserves some ex
planation. We define an infinite dimensional algebra at the outset and from it 
obtain all finite dimensional geometric algebras as subalgebras. We have two reasons 
for adopting this approach. First, we wish to emphasize that our general results 
and methods are truly coordinaie-free, requiring no reference to a basis or the 
dimensionality of the algebra. As shown in Section 1-2, this also enables us to 
define any finite dimensional algebra in the same simple way that we define its 
subalgebras. Section 1-2 shows that in a finite dimensional algebra the inner product 
is related to the outer product by duality. Conventional approaches to multilinear 
algebra (such as [Bo J) use this relation to define the inner product in terms of the 
outer product, but this restricts them to finite dimensional spaces because only 
then is duality well defined. The procedure becomes especially awkward when 
spaces of different dimension are compared. Therefore, we think it is important to 
define the inner product without reference to duality, as we have done. 

Our second reason for defining an infinite dimensional geometric algebra is 
that it is essential to our treatment of manifolds in Chapter 4. Actually, we are 
not so much concerned with an algebra of infinite dimension as with algebras 
of unspecified dimension. The dimension of an algebra is important chiefly in 
connexion with the question of closure arising when elements are to be expanded 
in a basis. Since our method avoids such expansi:>ns, questions of closure and 
dimension are generally irrelevant to our considerations. The question of closure 
for finite dimensional algebras is treated in Section 1-2 separate from the general 
axioms in Section 1-1. For the purposes of this book, it was not necessary to 
examine the interesting question of closure for the infinite dimensional algebra. 
Some recent articles on infinite dimensional Clifford Algebras are listed among the 
References. 
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1-1. Axioms, Definitions and Identities 

This section presents a convenient set of axioms for geometric algebra. In terms of 
the fundamental geometric product, several other products of special geometric and 
algebraic significance are defined, namely, the inner and outer products, the scalar 
product, and the commutator. A comprehensive set of basic identities is established, 
identities which are needed for efficient application of the algebra to almost any 
problem. The axioms, definitions and results of this section will be used repeatedly 
throughout the rest of this book. 

We define geometric algebra by a set of axioms which enable us to carry out 
proofs and computations without reference to basis in the algebra. For the sake of 
simplicity and ease of application, we have not attempted to eliminate all redun
dancy from the axioms. 

An element of the Geometric Algebra ~ will be called a multivector. We assume 
that I'.§ is algebraically closed, that is, that the sum or product of any pair of multi
vectors is a unique multivector. The geometric sum and product of multivectors 
A, B, C, ... have the following properties: 

Addition is commutative; 

A+B=B+A. 

Addition and multiplication are associative; 

(A + B) + C = A + (B + C); 

(AB)C = A (BC). 

Multiplication is distributive with respect to addition; 

A(B + C) =AB + AC, 

(B + C)A =BA + CA. 

There exist unique additive and multiplicative identities 0 and 1; 

A +O=A, 

lA =A. 

Every multivector A has a unique additive inverse -A; 

A +(-A)=O. 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

Geometric algebra is set apart from other associatve algebras by a few additional 
axioms which classify multivectors into different types or, as we shall say, grades. * 
We assume that any multivector A can be written as the sum 

" A ={A}o +(A), +(A)2 + ... = L(A),. 
r 

(1.9) 

* We have chosen the word 'grade' over the terms 'degree' and 'dimension', which have fre
quently been used in the literature kg. in [HI] and [Whj). to avoid possible confusion with 
other widely understood meanings of those terms. 
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The quantity (A), is called the r-vector part of A. If A = (A), for some positive 
integer r, then A is said to be homogeneous of grade r and will be caned an r-vector. 
The terms scalar, vector, bivector, trivector, ... are often used as alternatives to the 
terms O-vector, I-vector, 2-vector, 3-vector, ... respectively. 

The grade operator <. .. ), enjoys the properties 

(A + B), = (A), + (B)" 

(M), = X(A), = (A),X, in = (X)o, 

«A),), = (A),. 

(1.10) 

(1.1 1) 

(1.12) 

Axioms (1.10) and (I.1 I) imply that the space f§' of all r-vectors is a linear sub
space of f§, and, indeed, that f§ itself is a linear space. Axiom (I.1 1) also implies 
that the scalars compose a commutative subalgebra of f§. Without further ado, we 
assume that the space t§O of an scalars is identical with the set of real numbers. As 
argued elsewhere in this book, we regard any wider definition of the scalars (for 
example as the complex numbers) to !>e entirely unnecessary and, indeed, inimical 
to the purposes of geometric algebra. 

Equation (1.12) exhibits the characteristic property of a projection operator, 
so (A), can be regarded as the projection of A into the space f§'. Actually, (1.12) 
need not be regarded as an axiom, because it can be derived with the help of our 
remaining axioms which fix the relations among multivectors of different grade. 

Multiplication of vectors is related to scalars by the assumption that the 'square' 
of any nonzero vector a is equal to the square of a unique positive scalar lal called 
the magnitude of a, that is 

aa = a 2 = (a2 }o = lal l > o. (1.13) 

The multiplicative relation of vectors to r-vectors is specified by assuming 
that, for any integer r > 0, an r-vector can be expressed as a sum of r-blades. A 
multivector A, is called an r-blade or a simple r-vector if and only if it can be 
factored into a product of r anticommuting vectors aI, a'l, ... , a" that is 

(l.14a) 

where 

(1.l4b) 

forj, k= 1,2, ... ,r,andj :l=k. 
As a fmal axiom, we assume that for every nonzero r-blade A,. there exists 

a nonzero vector a in f§ such that A,.a is an (r + I)-blade. This guarantees the 
existence of nontrivial blades of every fmite grade. In fact, it implies that each f§r 
and, of course, an of f§ is a linear space of infinite dimension. This leads ultimately 
to delicate questions of convergence for homogeneous multivectors with infinite 
grade. But we will not be concerned with such questions in this book. 
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Many consequences of the above axioms can be obtained by well-known argu
ments, so we need not dwell on them here. Instead, we emphasize arguments and 
results which are especially significant in geometric algebra. 

As a rule, we use Greek letters a, {3, A, /J., ... to denote scalars, lower case Latin 
letters a, b, C, U, v, x, ... to denote vectors and capital letters A, B, C, U, V, X, ... 
to denote other multivectors. 

To avoid needless repetition, we specify at once that in this section we use Ar, 
B, and Ct to denote multivectors of homogeneous grades r, sand t respectively. On 
the other hand, we write ak for the kth member of the set of vectors ai, a2, ... , ar . 
In this latter case, the subscripts are indices with no relation to grade. If we wish 
to indicate unambiguously that a subscript specifies grade, we mark it with an 
overbar. Thus, we have the two notations 

Ai= (A}r (1.15) 

for the projection of A into ~r. Each notation has its own merits, and we have 
not succeeded in devising a single notation that is satisfactory in every way. The 
adoption of two notations seems to be justified, because the grade operator is used 
so frequently in geometric calculus. Also the scalar grade operator is sufficiently 
distinctive to merit the special notation 

(A) = (A}o =Acj. (1.16) 

In algebraic computations it is often desirable to reorder the factors in a product. 
As a general aid to this activity it is convenient to introduce the operation of 
reversion defined by the equations 

(AB)t = Bt At, 

(A +B)t =At +Bt, 

(At)= (A), 

at =a wherea=(a}l. 

It follows immediately that the reverse of a product of vectors is 

(ala2 ... ar)t =ar .. · a2al. 

This justifies the name 'reverse'. 

(1.17a) 

(1.17b) 

O.17c) 

(1.17d) 

(1.18) 

If the vectors in (l.I8) anticommute, then, using (l.l4b) to reorder the vectors 
on the right side of (l.18), we easily prove that 

(At}r = (A): = (_l)r(r-l)/2(A}r. (1.19) 

Although we have only indicated the proof for simple r-vectors, the result (1.19) 
obtains for arbitrary multivectors by virtue of the linearity of the grade operator. 
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Of course, the associative axiom (I .3) was also used in the proof. Hereafter, we will 
usually omit mention of such familiar uses of the axioms. 

Using (I .17a), we get as immediate corollaries of (1.19), the relations 

<AB>, = (_1)'(,-1)/2(8t At>" 

<A,Bs>, = wI A,>, = (_l),(,-1)/2<B,A,>" 

<AB,C>, = (ctB,At>" 

<A,B,Ct> q = (_l)f (CtB,A,> q' 

(1.20a) 

(1.20b) 

(1.20c) 

(1.20d) 

where E = ! (q 2 + r2 + S2 + t2 - q - r - S - t). These relations suffice to show how 
reordering of r-vector parts is most easily accomplished. 

We define the inner product of homogeneous multivectors by 

A,·Bs=<A,B,>,,_s" ifr,s>O, 

A, . B, = 0, if r = 0 or s = O. 

The inner product of arbitrary multivectors is then defined by 

A . B = L A;: . B = LA' Br = L L A;: . Bs. , s , s 

(1.21a) 

(1.21b) 

(I.2Ic) 

The equivalence of the three expressions on the right side of (l.2Ic) is an obvious 
consequence of (I. 1 0) and the distributivity of the geometric product. 

In a similar way, we define the outer product of homogeneous multivectors by 

A, AB, = <A,B,>,+,. (I.22a) 

Note that, in contrast to the special treatment given to scalars in (l.21b), we allow 
(l.22a) to yield 

A,AX=XAA,=M, ifA=(A). (1.22b) 

The outer product of arbitrary multivectors is defined by 

A AB = LA;:AB = LA ABs = L LA;: ABi. (1.22c) 
, s , , 

According to (1.2la), if 0 < r ...;; s, then AT . Bs is an (s - r)-vector, so inner 
multiplication of B, by A, 'lowers the grade' of B, by r units. In order to be consis
tent with (l.27a) and other equations below, multiplication by a scalar is treated 
in (1.2Ib) as a trivial exception to this rule. However, (1.22a) says that, without 
exception, outer multiplication by an r-vector 'raises grade' by r units. The outer 
and inner products are the grade raising and lowering operations in Geometric 
Algebra. For this reason, we must be thoroughly familiar with their properties if we 
wish to apply Geometric Algebra effectively. 
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The general algebraic properties of inner and outer products are straightforward 
consequences of our definitions and the axioms of geometric algebra. Like the 
geometric product, the inner and outer products are not commutative. However, 
by using (1.19) on the right side of (1.20a), we find, for homogeneous multivectors, 
the reordering rules 

Ar ' B, = (_l)r(,-l)B,' A, for r~s, 

Ar I\B, = (-lY'B,I\Ar. 

Distributivity of the geometric product implies the distributive rules 

A . (B + C) = A . B + A . C, 

A I\(B+C)=A I\B+A I\C. 

The outer product is associative; 

A 1\ (B I\C) = (A I\B)I\C. 

(1.23a) 

(1.23b) 

(1.24a) 

(1.24b) 

(1.25a) 

The inner product is not associative, but homogeneous multivectors obey the rules 

Ar . (B, . Ct ) = (Ar I\B,) . Ct for r + s ~ t and r, s > 0, 

Ar . (B, . Ct ) = (Ar . B,) . Ct for r + t ~ s. 

(1.25b) 

(1.25c) 

Equations (1.25a, b, c) are consequences of the associativity of the geometric 
product, but we delay the proof until we have established another general property 
of the product. 

Using (1.23b) and (1.25a) it is easy to establish the useful fact that the outer 
product is antisymmetric under an interchange of any pair of vectors, that is, for 
vectors a and b, 

a I\A I\b I\B = -b I\A I\a I\B. (1.26a) 

This immediately gives the useful result 

al\A l\al\B=O (1.26b) 

for any A andB. 
At this point it is convenient to introduce explicitly the convention that, if there 

is ambiguity, indicated inner and outer products should be performed before an 
adjacent geometric product. Thus 

(A I\B)C=A I\BC=I=A I\(BC), 

(A 'B)C=A . BC=I=A . (BC). 
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This convention eliminates an appreciable number of parentheses, especially in 
complicated expressions. Other parentheses can be eliminated by the convention 
that outer products have 'preference' over inner products, so 

A . (B I\. C) = A . B I\. C '* (A . B) I\. C, 

but we use this convection much less often than the previous one. 
The inner and outer products are united by the geometric product. This is 

evident in the fundamental formulas for the product of a vector with an r-vector: 

a· A, = (aA,>,-l =! (aA, - (-1)' A,a), 

a I\. A, = (aA,>,+ 1 =! (aA, + (-1)' A,a). 

aA, = a· A, + a I\. A, = (aA,>,-l + (aA,>,+ 1. 

(I.27a) 

(1.27b) 

(1.28) 

It will be understood that the grade operator results in Zero when its index is 
negative. This convention makes (1.27a) meaningful when r = O. 

Clearly any two of the three equations (1.27a, b), (I .28) imply the third. Equa
tions (1.27a, b) reduce inner and outer products to the geometric product, and they 
will shortly be established. But first, we use the fact that the sign of (-1)' depends 
only on the evenness or oddness of r to get somewhat more general formulas. 

We say that a multivector A+ is even if <.4+>, = 0 for all odd values of r. Similarly, 
A _ is said to be odd if <.4 _>, = 0 for even r. Clearly any multivector A can be 
written as the sum of an even part A+ and an odd part A _; 

A =A+ +A_. 

By virtue of the distributive rule, (1.2 7a, b) implies 

a ·A+ = !(aA+ - A+a), 

a I\.A+ =! (aA+ + A+a), 

The sum of these expressions gives the generalization of (1.28); for any A. 

aA =a·A +aI\.A. 

(1.29) 

(1.30a) 

(1.30b) 

(1.30c) 

(1.30d) 

(1.31) 

Turning now to a proof of (I.27a), we first consider the case r = 1. For vectors a 
and b, the distributive rule gives 



Geometric Algebra 

Since a + b is a vector, we have, from (1.13), 

• ab + ba = la + bl1 - lal2 - Ib11 , 

which is a clearly a scalar. Since also (ab) = (ba), we have established 

a· b = (ab) =! (ab + 00), 

9 

(1.32) 

which is identical to (I.27a) when Ar = b = (b) 1 • Note that (1.32) implies that 
a· b = 0 if and only if ab = -ba. If a . b = 0, we say that the two vectors a and b 
are orthogonal. 

We can proceed now to a proof of (1.27a, b) in general by establishing the 
valuable vector identity 

r 
a·(ala2 .. · ar)= I (-I)k+la.ak(al ... ak ... ar), 

k=l 
(1.33) 

where the inverted circumflex means the kth vector is omitted from the product. 
Identity (1.33) holds for any choice of vectors. One instructive way to prove (1.33) 
is to notice that (1.32) can be written in the form ab = 2a. b - 00 and used to 
reverse the order of factors in a vector product. Applying this trick r successive 
times, we move the vector a from left to right in the product 

This gives (1.33) if 

r 
=2 I (-I)k+la.akal ... ak ... ar+(-I)'alal ... a,a. 

k=l 

a . (alal ... ar) =! (001 ••. ar - (-Iyal ... a,a). (1.34) 

This is true by virtue of (1.30) since, as we shall shortly see, the product alal ... ar 
is an even (odd) multivector if r is even (odd). But for the moment we simply 
notice that, for a simple r-vector Ar = alal ... ar factored in accordance with 
axiom (1.14), (1.34) is equivalent to (1.27a). Moreover, in this case (1.14) also 
implies that each term on the right side of (1.33) is an (r -I)-vector. Thus we 
have proved (1.27a) for simple r-vectors. The generalization to arbitrary r-vectors 
is trivial. 

To prove (1.27b), we continue to use the factorization Ar = a 1 a2 ... ar. Because 
of (1.13), 
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So (1.33) can now be written 

r 
= L a· aka"kIAr' 

k=l 

Substituting this in (1.28) we get 

a I\Ar = aAr - a· Ar = bAr, 

Chapter 1 

(I.35) 

where b = a- ~; = 1 a . aka"kl . This expression for b implies that b . ak = 0 so, by 
(1.32), bak = -akb. Thus, the factorability axiom (1.14) has been satisfied by the 
last term in (1.35), so that term is an (r+ I)-vector. This completes our proof of 
(1.27b) for simple r-vectors. 

We are now in a position to prove the fundamental formula 

ArBs = (ArBs}lr_ sl + (ArBs}lr_sl+2 + ... + (ArBs}r+s 

m 
= L (ArBs)lr_ sl + 2k' 

(1.36) 

k=O 

where m = !<r+s - Ir- sl). We can prove (1.36) for simple Ar by using the fac
torization (I .14) of Ar into anticommuting vectors and applying (I .28) r times. The 
idea should be clear from examining the simplest case. For A2 = al l\a2 = ala2 
ands;;;' 2, 

where 

A 2 • Bs = (A2 BS)IS _ 21 = a1 . (a2 . Bs), 

(A2BS)S = a1 1\ (a2 . Bs) + al . (a2 I\Bs), 

(I.37a) 

(I.37b) 

(I.37c) 

(1.37d) 

Equation (l.36) shows that, in general, the product of homogeneous multi
vectors is not homogeneous. The first and last terms on the right side of (1.36) will 
be identified as AT . Bs and AT 1\ Bs respectively. The other terms are of intermediate 
grade differing from Ir- sl and r + s by some multiple of two. It follows that the 
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product of even multivectors is always even. Therefore the set of all even multi
vectors is a subalgebra of f§, naturally called the even subalgebra of f§. On the 
other hand, it is obvious that the set of odd multivectors is not closed under 
multiplication. 

The preceding discussion makes it clear that the product a,al ... a, is even if 
r is even, because each successive pair of vectors a,al, a3a4, ... , a,_la, is even 
and their product is even. One more vector in the product will then make the result 
odd. This is the argument we promised to complete the proof of (1.33). 

We are now justified in pointing out that a very useful formula can be obtained 
from the (r-I)-vector part of (1.33), which, by virtue of the distributive rule, can 
be written 

, 
a· (a,al ... a,>, = I (_I)k+la . ak (a, ... ilk··. a,>,-l· 

k=l 

But (a,a2 ... a,>, =a, l\a2 1\ .. . 1\ a" so 

, 
a·(a,l\all\· . . 1\ a,) = I (-I)k+l a . aka , 1\ ... l\ilkl\ ... l\a,. (1.38) 

k=l 

The special case 

(1.39) 

generalizes a well-known formula; in fact the formulas for inner and outer products 
given here include generalizations of all the formulas in the vector algebra of 
Gibbs. All that will be developed in detail in the sequel to this book entitled New 
Foundations for Oassical Mechanics. 

A valuable generalization of (1.38) is the formula 

B,· (al 1\ ... I\an ) =B,· (al 1\ ... I\a,)a,+ll\ .. . 1\ an -

. I . E(h .. . jn)B, . (ail 1\ . . . I\ai,) 
11<···<lr 

(1.40) 

where Br is an r-vector of grade r"; n, eachh is a distinct positive integer not greater 
than 11, j,+ 1 < ... < jn as well as j I < ... < j" and the 'permutation symbol' 
E(jl ... jn) has the value 1 (or -I) if (jl ... jn) is an even (or odd) permutation 
of (I, 2, ... ,11). The number of terms in the expansion is (n, which is the number 
of ways B, can be 'dotted' with r vectors from a collection of n vectors. Note that 
if ak . B, = 0, any coefficient 'containing' the kth vector ak will vanish; there can be 
n - r such vectors if B, is simple, in which case the expansion has at most one 
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nonvanishing term. Equation (1.40) can be proved by using (1.25b) and iterating 
with (1.38), but it will be established later as a by-product of our systematic study 
of bases in Section 3. 

Returning to some unfinished business, we easily supply the promised proofs of 
(1.25a) and (1.25b). Using (1.36) to evaluate each side of 

<A,(B,Ct»r+,+t = {(A,B,)Ct),+,+t, 

we have a proof of (1.25a) for homogeneous multivectors. Similarly, we prove 
(1.25b) by using (1.36) to evaluate 

<A,(B,Ct»(t _ ,) -r = «A,B,)Ct)t - (,+,)' 

This wraps up the loose ends we left dangling earlier. 
To our arsenal of formulas, we can add one more group of identities of general 

applicability: 

a· (A,B) =a· A,B + (-I)'A,a. B. 

= a I\A,B - (-1)' A,a I\B, 

a 1\ (A,B) = a I\A,B - (-1)' A,a· B 

= a· A,B + (-1)' A,a I\B. 

(1.41a) 

(1.41b) 

(l.41c) 

(l.4Id) 

We can prove any of these identities, for example (1.41 a), by using (1.27) and (1.36) 
as follows: 

a . (A,B,) =; (aA,B, - (-1)'+' A,B,a) 

=! (aA,B, - (-I)' AraB,) + (-I)'; (AraB, - (- I)'A,B,a) 

=a·A,B, + (-I)'A,a.B,. 

The identities (1.4la, b, c, d) are useful as they stand, but we can project out of 
them a number of convenient identities involving inner and outer products alone. 
For example, from (I .41 a) we get 

a . (A, I\B,) = (a.· A,) I\B, + (_I)' A, 1\ (a· B,), (1.42) 

and from (I .4ld) we get 

a 1\ (A,· B,) = (a ·Ar) 'B, + (_1)' A, . (a I\B,), fors ~r> 1. (1.43) 

The identity (1.42) should be compared with (I.33). 
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The inner and outer products along with their identities suffice to express and 
exploit all possible relations among vectors of a given set. But to deal with more 
general multivectors, it is convenient to have the scalar product defined by 

A ... B == (AB). 

From (1.36) and (1.21a) we see that 

A;: ... B;: = A, . B;: = B;: • A;: if r * O. 

(1.44) 

(1.45a) 

(1.45b) 

The restriction r * 0 in (1.45b) is necessary only because the inner product of 
scalars was assumed to vanish in (1.21 b). Of course, 

Ao ·Bo =AoBo = (A)(B). 

From (1.45), the axioms of geometric algebra lead immediately to the expansion of 
any scalar product in terms of homogeneous parts, that is 

A ·B= LA;: ·B= LA, ·B;: = (A) (B) + LA,,·B,.. 
r r r 

Moreover, the scalar product is seen to be symmetric and linear, that is 

A'" B = (AB)= (BA) =B ·A, 

A • (erR + pc) = aA • B + {i4 • C, 

where ex and {3 are scalars. And, referring to (I.20a), we see that 

A·B=At·Bt. 

(1.46) 

(1.47a) 

(1.47b) 

(l.48) 

Our scalar product is 'positive definite', that is, we can associate with any 
multivector A a unique positive scalar magnitude IA I defined by 

IAll =At • A = L IA,I2 ;;;. 0, (J .49) 
r 

where IA I = 0 if and only if A = O. It suffices to establish (1.49) for simple r-vectors. 
Using (1.18) and the axiom (1.13) we get the general formula 

(J .50) 

From this we see immediately that 

AJ Ar = IArl' ;;;. 0 if Ar is simple. (1.51) 
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We note that, in general, 

(1.52a) 

and 

IABI = IAI IBI if A tA = IAll. (1.52b) 

In addition, the distributive axiom leads immediately to the 'law of cosines' 

(1.53a) 

where an 'angle' between multivectors (denoted by LAB) can be defmed by writing 

At .B 
cos LAB = --. (1.53b) 

IAIIBI 

This angle has a simple geometric interpretation if A and Bare k-blades; it reduces 
to the so-called 'dihedral angle' between intersecting planes if A and B are non
conunuting 2-blades. Unfortunately, we will not have the occasion to examine the 
sundry geometrical interpretations of (1.53a, b) in more detail. 

An important consequence of (1.51) is the fact that every nonzero r-blade Ar 
has an inverse 

(1.54) 

Division by an r-blade is, of course, equivalent to successive division by r vectors. 
The possibility of division by vectors greatly expedites algebraic manipulation. 
Division cannot be defmed for either the inner or outer product alone. It requires 
the full geometric product. This is one of the reasons for regarding the geometric 
product as more fundamental than either the inner or outer product. 

Sometimes it is convenient to employ the commutator product, which we defme 
by 

A X B = ! (AB - BA). (1.55) 

It is easily established that this product is anticonunutative 

AXB=-BXA, (1.56a) 

linear 

(aA + 13B) X C = aA X C + I3B X C, (1.56b) 

and, instead of being associative, satisfies the so-called 'Jacobi identity' 

A X (B X C) + B X (C X A) + C X (A X B) = O. (1.56c) 

In addition, the conunutatoris related to the geometric product by 

A X (BC)={A X B)C + B{A X C). (1.57) 
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The commutator of a vector a with any multivector A can be expressed as inner 
and outer products with the even and odd parts of A; from (1.30) we get 

The commutator of this with another vector b is then 

b X (a X A) = b A (a· A+) + b . (a AA_). 

With the help of (1.S7) or the Jacobi identity we fmd the expressions 

(b A a) X A = b . (a AA) - a . (b AA) 

= b A (a· A) - a A (b· A) 

=ba·A-A·ba 

= ba AA - A Aba = (ba) X A. 

To prove the equivalence of (1.6Oc) to (1.6Od), it is easiest to begin with 

bAa =b(A·a +A Aa) = (b·A + b AA)a. 

(1.58) 

(1.59) 

(1.6Oa) 

(1.6Ob) 

(1.6Oc) 

(1.6Od) 

Taking A = c to be a vector in (1.6Oa) we get the Jacobi identity for vectors in 
terms of inner and outer products; 

a ·(b Ac)+b· (c Aa)+c ·(aAb) =0. (1.61) 

We seldom use the commutator product unless one of the factors is a bivector. 
To show that the commutator with a bivector is especially useful, we note that 
(1.37) along with (1.23) imply for a bivector B and r =1= 1, 

BA, = B· A, + (BA,), + BAA" 

A,B = B· A, - (BA,), + BAA,. 

So the symmetric part of the product BA, is 

! (BA, + A,B) = B . A, + B A A, if r =1= 1, 

while the antisymmetric part is 

B X A, = (BA,),. 

Thus we have quite generally 

BA =B·A +BXA +BAA, 

(1.62a) 

(I.62b) 

(1.63) 

if B = (B)2 and (A)l = o. The exclusion of vectors from (1.62a) and (1.63) is 
necessary because, by (1.58), 

B X a =!(Ba - aB) =B· a. (1.64) 

Equations (1.64) and (1.63) should be compared with (I.27a) and (1.31). 
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It is important to note that (I.62b) says that the commutator with a bivector 
preserves grade. So we immediately get from (I .57), for B = (B}2, 

B X (A. C) = (B X A) . C + A . (B X C), 

B X (A A C) = (B X A) A C + A A (B X C). 

Iteration of (I .66) leads to the expansion formula for vectors ak, 

B X (al A ... A a,) = (B X ad A a2 A ... Aa, + 

(I.65) 

(I.66) 

+ al A(B X a2)Aa3 A ... Aa, + ... +al A ... Aa,_l A(B X a,) 

, 
= I {-I)k+l{B.ak) Aal A ... ilk ... Aa,. 

k=l 
(1.67) 

Equation (1.62b) implies that the space of bivectors is closed under the com
mutator product. It follows that under the commutator product the bivectors 
make up a lie algebra, which is, as is well-known and easy to show with geometric 
algebra, the lie algebra of rotations in Euclidean space. The so-called structure 
equations for this lie algebra can be written in the form 

(a A b) X (c A 0) = b . ca Ad - b· do A c + a· db A c - a· cb Ad 

= a A (b . c A d) - b A (a . c A 0), (1.68) 

where a, b, c, d are any vectors. Equation (I.68) is easily derived by using (1.39) in 
(I .6Oa). Putting d = b in (1.68), we find that 

(a A b) X (c A b) = (a A b A c) . b. (l.69) 

This relation has many applications; for example, the 'law of sines' in spherical 
trigonometry follows from it almost trivially. 

1.2. Vector Spaces, Pseudoscalars and Projections 

In this section we show that every n-dimensional vector space sin detennines 
a unique geometric algebra ~(sln) which can be interpreted as an algebra of 
subspaces of sin. Projection operators are dermed in terms of the geometric 
product and their properties are derived without resorting to a basis. Standard 
concepts of linear algebra such as 'direct sum', 'intersection' and 'factor space' 
are characterized by relations in geometric algebra, making it easier to describe 
relations among subspaces and work out their implications. The result is an effi
cient calculus for, among other things, formulating and proving the theorems of 
projective geometry. 
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Every nonzero n-blade A determines a unique n-dimensional vector space JiI" 
consisting of all vectors a which satisfy the equation 

aAA =0. (2.1) 

Hence it is appropriate to call dn the vector space of A. 
Conversely, every n-dimensional vector space dn uniquely determines two unit 

n-blades ±I. The n-blade formed by outer multiplication of any set of n vectors 
alo ... , a" in dn is proportional to I, that is 

(2.2) 

and the scalar A vanishes if and only if the ak are linearly dependent. Any nonzero 
scalar multiple of I is called a pseudoscalar of JiI" . Assignment of an orientation to 
JiI" is equivalent to associating a unique unit n-blade I with JiI,,; in that case, we 
say that I is the tangent or the direction of JiI". Thus JiI" and I are 'equivalent' in 
the sense that specification of either uniquely determines the other. 

The asserted equivalence of JiI" and I will now be established. Since A = IA II 
is simple, it can be factored into an outer product of n vectors: 

It follows by (1.26b) that 

ak AA =0, 

(2.3) 

(2.4) 

so each of the ak is in JiI". Furthermore, the ak are linearly independent; for 
supposing one of them, say a", can be expressed as a linear combination of the 
others, we substitute 

,,-1 

an = I OIkak 
k=l 

into (2.3), whence 

,,-1 
A = I OIkal A ... Aan-l Aak =0, 

k=l 

because, by (1.26b), each term in the sum vanishes. But this contradicts the assump
tion that A "* O. Hence the ak compose a basis for Jiln. 

To show that every a satisfying (2.1) is in Jiln, we use (1.28) to get 

aA =a·A. 

Since A has a multiplicative inverse, 

a = a . AA -I = a . A -I A. 

(2.5) 

(2.6) 
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The proof is completed by showing that the right side of (2.6) can be expressed as 
an expansion of a in terms of the ak. If the ak are orthogonal then A = al a2 ... a". 
A-I = a;l ... a'll ail. so using (1.33) to expand a . A-I, and anticommutativity to 
reorder the products, we obtain 

n 
a = La. t1klak' 

k=l 
(2.7) 

Though (2.7) suffices for present purposes, it is worth mentioning that the expan
sion with nonorthogonal ak is obtained in the next section.) 

The proof that A determines dn uniquely is now complete. In essence, by 
reversing the above argument it can be proved that d" determines I, the main 
point being to show that all n-vectors generated by multiplication of vectors in d" 
are scalar proportional. 'This last fact is established in the course of the general 
considerations below. 

Incidentally, we have proved in the course of our discussion that n vectors 
al. a2 •... , a" are linearly independent if and only ifal A a2 A ... A a" =#= O. 

The pseudoscalar A of d" facilitates the decomposition of any vector b into 
components in and orthogonal to d" ; thus, 

b=bAA-' =(b.A+bAA)A-I , 

so 

b = bit + bI , (2.8a) 

where 

bll =PA(b)=b.AA-I (2.8b) 

and 

bi =P~(b) =b AAA-' . (2.8c) 

It is readily verified that bltA = blt·A or bit AA = 0 so bit is in d", and b1A = 
b 1 AA or b l' A = 0 so b is orthogonal to every vector in d". 

The important thing about (2.8) is that it shows how orthogonal projections 
can be expressed in terms of geometric multiplication and addition; this makes it 
possible to derive the properties of projections by elementary algebraic computa
tion. The representation (2.8b) for the orthogonal projection PA(b) of b into d" 
should be compared with 1:p.e matrix representation of a projection which is usually 
employed for computations .. The matrix representation requires a choice of some 
basis in d", while (2.8b) is independent of any such choice. The matrix representa
tion is more unwieldy because- the simple concept of an r-vector is absent from 
matrix algebra. It should be noted further that the function P~ (b), called the 
orthogonal rejection of b from d", is defined algebraically by (2.8c) without 
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reference to any 'enveloping' vector space in which .91" is embedded. Such an 
enveloping space is required for the matrix representation of ~ (b) as the projection 
of b into the 'orthogonal complement' of .91", though for many purposes it is as 
irrelevant as the choice of vector basis. 

By multiplication and addition the vectors of .91" generate a subalgebra ~(.9I,,) 
of the complete Geometric Algebra called the Geometric Algebra of .91". In view of 
the 'equivalence' of .91" with A, ~(.9I,,) can with equal justice be called the 
geometric algebra of A and denoted by ~(A). It is not difficult to show that ~(A) 
is a 2" -dimensional linear space which is closed under the geometric product. From 
any set of n linearly independent vectors spanning dn = ~I(A) we can form <";) 
linearly independent r-blades by taking the outer product of each combination 
of r different vectors selected from the given set. It is not difficult to prove that 
these r-blades compose a basis for the space ~'(A) of all r-vectors in ~(A). The 
properties of a basis for ~'(A) are developed in detail in the next section. Thus 
~'(A) is a linear subspace of ~(A) with dimension <:). The dimension of ~(A) 
is therefore given by 

" " dim ~(A) = L dim ~'(A) = L (~) = 2". 
,=0 ,=0 

We can give each blade in ~(A) a geometric interpretation, and this determines 
a geometric interpretation for the whole of ~(A). Just as the n-bladeA determines 
the vector space .91" = ~I(A), so each nonzero r-blade A, in ~'(A) determines a 
unique oriented vector space .91, = ~I (A,), consisting of all vectors a which satisfy 
the equation a 1\ A, = O. Indeed, .91, is a subspace of .91". Thus, every nonzero 
r-blade in ~r(A) determines a unique oriented r-dimensional subspace of .91" = 
~ I (A). Conversely, each oriented r-dimensional subspace .91, of .91" determines 
a unique unit r-blade I" 'the direction' of .91,. This one-to-one correspondence 
between oriented subspaces and unit blades makes it possible to describe every 
relation between subspaces by an algebraic relation or equation for the corre
sponding blades. For example, the fact that.9l, = ~I(I,) is a subspace of .91" = 
~I (I) is expressed algebraically by the fact that the direction I, is a factor of the 
unit n-blade I, that is, there exists a unique unit (n - r)-blade I" _, such that 

I,I,,-r =1. 

This can be solved for I,,-r =i;I. The subspace .9I,,-r = £§1(I,,_r)is(disregarding 
orientation) often called the orthogonal complement of.9lr (with respect to .91,,). 
Thus, orthogonal complements are easily represented or determined by a factoriza
tion of the pseudoscalar. With this example as an illustration, we assert that £§(.9I,,) 
can be interpreted as an algebra of directions in .91", because it completely charac
terizes the so-called 'lattice of subspaces of .91" '. We elaborate on this theme 
throughout the rest of the chapter. 

A word about nomenclature is in order. Because we always use the word 'vector' 
to refer to a one-vector in geometric algebra, we fmd it convenient to distinguish 
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between the terms 'vector space' and 'linear space'. We use the word 'linear space' 
in the usual sense, and, as usual, we take a vector space always to be a linear space, 
but more, we always assume that the elements of a vector space have the multiplica
tive properties of a one-vector in Geometric Algebra. 

The expression (2.8b) for the projection of a vector into d n can be generalized 
to an algebraic expression for the orthogonal projection P A (B) of any multi vector B 
into r§(dn); specifically, 

PA(B):(B'A) 'A-I :A-I .(A 'B) 

=PI..B) = (B' 1) . fl = fl . (I' B) = (_l)n(n -1)/'2 (B·1) . I, (2.9a) 

where A-I = IA 1-1 Jt = (_I)n(n -1)/21 A I-I I. Unfortunately, Eqn. (2.9a) gives 
P«B» = 0 and P«B)n) = 0 because of the convention (1.21b), but of course the 
projection operator should have the properties 

P«(JJ» = (B), 

P«B)n) = (B)n . AA-1 • 

(2.9b) 

(2.9c) 

To ensure this, we can stipulate that (2.9a) does not apply to scalars or pseudo
scalars and postulate (2.9b, c) separately. Or, whenever we use (2.9a), we can 
disregard the exceptional convention (1.21b) and require that (1.21 a) define the 
inner product 'even for zero grades, in which case (2.9b, c) follow from (2.9a). 
Desirable as this convention is when we work with (2.9a), it cannot be adopted 
universally without complicating many other formulas such as (l-1.28) and (l-1.41). 

Now let us consider the properties of (2.9a) in more detail. If B is a simple 
9-vector, then B· A is simple, so it is factorable into a product of 1 n - 91 vectors 
when 9 #= n, that is B· A = CIC2 ... Cls- n I; moreover, if s > n, then Ck . A = 0 for 
each vector factor Ck ; but if 9 < n, then Ck A A = 0 for each Ck. Hence 

(2.lOa) 

and 

(2. lOb) 

Equation (2.10b) differs from (2.9a) only in the absence ofa 'dot', but that differ
ence makes it much easier to use. For example, the right side of (2.10b) makes it 
obvious that 

(2.11) 

It is usually convenient to take (2.1 I) as the 'defining property' of r§(A). To 
show that it is equivalent to the definition of r§(A) as the algebra generated by 
vectors in d n , it is necessary to prove the assertion that 

PA(B)=B iffBisin ~(A)*. (2.12) 

• 'iff' means 'if and only if'. 



Geometric Algebra 21 

This assertion has already been proved for one-vectors in connection with (2.8). 
The proof for a simple s-vector can be accomplished by factoring it into a product 
of vectors as shown in the argument following Eqn. (2.9). Then only linearity is 
needed to complete the proof for an arbitrary multivector. 

The projection operator defined by (2.9) has the following general properties in 
addition to those already mentioned. 

P(aB + fC) = aP(B) + (jP(C). 

P(<B)r) = (P(B}>r. 

P(P(B» = PCB). 

P(C 1\ B) =P(C) I\P(B). 

P(BC) = BP(C) if P(B) = B. 

(2.13a) 

(2.13b) 

(2.13c) 

(2.13d) 

(2.13e) 

The abbreviation P = PAis convenient when a single projection is of interest. It will 
be noted that. because of (2.13b). (2.13e) includes the important special case 

P(B'C)=B'P(C) ifP(B)=B. (2.13f) 

but. in general.P(B· C) *P(B) ·P(C). 
In general, the relation between two different projection operators, say P A and 

PB' is quite complicated. though it is algebraically determined by (2.9). However, 
the relation has a simple form in two important special cases. If 

BA =BI\A. 

then we have the operator equations· 

PBA =PB +PA • 

PsPA =PAPB = O. 

(2.14a) 

(2.14b) 

(2.14c) 

• In (2.14c) and (2.ISc) we have followed the common convention of indicating a composite 
linear function by juxtaposition; thus (2.14c) is equivalent to 

Unfortunately this convention increases the risk of confusing symbols which denote functions 
with symbols which denote multivectoIS. because the geometric product is also indicated by 
juxtaposition. The problem is even more serious when the value of a function is represented by 
the same symbol as the function itself, a practice which is common and convenient if not 
absolutely necessary in application to physics. However the resulting simplification of equations 
seems to be worth the risk, and we will often rely on the context in which an equation is 
presented to remove any ambiguity in its meaning. Thus, only the context tells us that (2.14c) 
is not to be interpreted as the equation 
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But if 

then 

BA = B . A and grade B "grade A, 

PBA =PA -PB, 

PaPA =PAPB =PB· 

Chapter 1 

(2.15a) 

(2.15b) 

(2.15c) 

It will be noted that C§(B) is a subalgebra of C§(A) if and only if (2.1 Sa) is satisfied. 
Also it should be understood that the projection operators P A' PB are well defmed 
only for simple multivectors A, B. 

Now let us say a few words about the proofs of the projection properties. 
Properties (2.13a, b) are obvious consequences of the linearity of the inner product 
and, in fact, were used in the argument leading from (2.9) to (2.10). A simple 
variation of that argument also proves (2.13c). Let us prove (2.13d) for Cr = 
(Or and B, = (B),. If, + a > n, then the left side of (2.13d) vanishes by (2.1Oa), 
while the right side vanishes because of (2.12) and (2.10a). If, + s" n, then, with 
the help of (2.10b), (l.25b) and (1.23b), we have 

P(Cr A B,)A = (Cr A B,} . A 

=Cr ·(B,· A) = Cr . (P(B,) ·A) 

= [CrAP(B,)] ·A = (-l)rs[P(B,)ACr ] ·A 

=(-I)rI[P(B,)AP(Cr)] ·A =P(Cr ) AP(B,)A. 

The proof of (2.13e) will be given presently, after the duality of inner and outer 
products has been explained. The simple proofs of (2.14) and (2.15) will be omitted, 
as they involve no new ideas. 

We call the In - ai-vector Bi . A the dual of Bi by the n-blode A, because it can 
be regarded as an algebraic formulation of the duality concept in geometry. Often 
the word 'dual' is used when the direction but not the magnitude and orientation 
of A is specified. Ordinarily, the notion of duality by A is applied only to elements 
of C§(A), but the more general notion used here ties up duality with orthogonal 
projections. Thus, the right side of (2.9a) says that, except for a possible difference 
in sign, the projection into C§(A) is equal to the 'double dual' by the pseudoscalar 
A. If B is any multivector in C§(A), then (2.12) guarantees that the dual of B is 
simplyBA. 

From (l.41b, d) we get the valuable relations 

(a.B)A =aA(BA) ifaAA =0, 

(a AB)A = a . (BA) if a AA = O. 

(2.16a) 

(2.16b) 
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These relations hold even if B is not in ~(A). As a special case of (2.16), we have 

(a.B)·A=al\(B·A) ifaI\A=O, 

(a 1\ B) . A = a . (B, A) if a I\A = O. 

(2.17a) 

(2.17b) 

In accordance with the definition of dual .in the last paragraph, (2.17) may be 
interpreted as expressing the duality of inner and outer products with respect to A. 
In (2.17a), the dual of the inner product is equal to the outer product of the dual. 
Of course, by virtue of (2.11), Eqns. (2.16) and (2.17) are identical if B is in ~(A), 
in which case (2.16) is the better expression of duality. It should be noted that the 
duality of inner and outer products is independent of the scale and orientation 
ofA. 

By iterating (2.16) it is easy to establish the more general 'duality relations' 

C,' BiA = C; 1\ (BiA) for r';;;: s, 

C; I\BiA = C;' (BiA) for r';;;: Is - nl, 

(2.18a) 

(2.18b) 

where C;;A = C, . A. r ~ n and A = An. The restrictions on grade in (2.18) arise from 
using (l.25b) in the proof. 

We now prove that 

P(aB) = aP(B) if P(a) = a. (2.19) 

The more general result (2.l3e) is easily obtained from this by iteration and lin
earity. Since, by (2.10a), (P(B'Pr = P«(JJ)r) vanishes if r > n, it suffices to prove 
(2.19) under the assumption that (JJ)r = 0 for r > n, in which case we can use 
(2.10b) along with (2.16). Thus, 

P(a· B)A = (a .B)·A = a 1\ (B .A) =a 1\ [P(B)A] =a .P(B)A. 

From (2.13d) we see immediately that P(a 1\ B) = a 1\ P(B), so (2.19) can be 
established by using 

P(aB) =P(a· B +a I\B} =P(a· B) +P(a 1\ B). 

To describe properties of vector spaces it is common to introduce set relations 
and operations such as inclusion, intersection and addition. However, since every 
vector space is determined by a pseudoscalar, the properties of vector spaces 
can alternatively be described as algebraic properties of their pseudoscalars. This 
approach admits a more detailed description of vector spaces, because the Geometric 
Algebra has more structure than the set language. Furthermore, it has considerable 
computational advantages, because, as will be shown in chapter 3, alI linear vector 
functions can be expressed in terms of geometric algebra. To translate the 'set 
language' into Geometric Algebra, we give a small dictionary. 
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A vector space ~ = C§I (B) is a subspace of d = C§I (A) if and only if its 
pseudoscalar B is a factor of A; that is, 

~CdiffBA =B' A,gradeB < grade A. (2.20) 

This is a fairly obvious consequence of our previous results, particularly (2.11). Of 
course, we assume that A and B are simple here. That the equation BA = B . A says 
that B is a factor of A is clear by solving the equation; thus, 

A =BJrI'A =BA'=BAA'. 

The factor A I = Jrl . A orthogonal to B is obviously unique. However, there are 
other factorizations of A of the form A = B A C '* BC, where C is not uniquely 
determined by B and A, though C is simple and grade C = grade A I = grade A -
grade B. Such a factorization is equivalent to the decomposition of a vector space 
into a direct sum of subspaces, as expressed by 

(2.21) 

The outer product describes more than the direct sum, because it relates orienta
tions of the spaces. So we can interpret (2.~1) as specifying an oriented direct sum 
of oriented vector spaces. 

If C is a common factor ofmoximum grade of blades A and B, then 

<AB>max = (A' C) A «(;1. B) =A' AB', (2.22) 

where {AB}max denotes the part of AB with maximum grade, and A I, B' are 
blades satisfying A = A I A C, B = C-I A B'. Furthermore, the vector space C§I (C) is 
the intersection of vector spaces .JlI = C§I (A) and ~ = C§I (B); 

(2.23) 

The sum d u.~ of vector spaces js related to the product AD by 

d U ~ = C§I (C A (AB}max) = d n ~ + C§I (<AB}max), (2.24) 

If A and B have no common factor, then C = 0 and {AB}max =A I\B, so (2.24) 
reduces to 

(2.25) 

Thus, a ·nonvanishing outer product of blades describes the direct sum of non
intersecting vector spaces. Unfortunately, when blades have a nonvanishing common 
factor C, that factor cannot be computed from products of A and B alone, so the 
intersection of vector spaces (2.23) cannot be determined without additional 
information needed to compute the common factor. We shall see what info~tion 
is needed below. 
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The correspondence between operations of set theory and geometric algebra can 
be made more direct by introducing a new operation defined in terms of inner and 
outer products. It will be convenient to introduce the notation 

(2.26) 

for the dual of a multivector A in ~ (I), where I is a unit n-vector. The double dual 
is then 

(2.27) 

Now we can define the meet A V B of multivectors A and B in ~(I) by 

A VB == (A "11) . I = (-l'f(n -1)/2(A "11)-. (2.28) 

Multiplication by rt gives 

(A V B)- =...1 "B. (2.29) 

This exhibits the meet as the dual of the outer product. It is, of course, a disguised 
form for the duality between inner and outer products which we noted earlier. 
Indeed, if grade (A "B) 0;;;; n, then (2.18b) implies 

(A "B)' I =...1 . (iiI) =...1 . (Bfil) =...1. B. 

Hence (2.29) reduces to 

A VB =...1. B =A . fiB if grade (A "B) o;;;;n. (2.30) 

Of course, A " B = 0 if grade (A " B) > n, so the meet vanishes if (2.30) is not 
satisfied. With this proviso, we could define the meet by (2.30) instead of (2.28). 

From the associativity and the anticommutivity (1.23b) of the outer product it 
follows that the meet is associative and anticommutative with 

AVB=(_l)(n-r}(n-s)BVA (2.31) 

if rand s are the grades of blades A andB. Also, from (2.26) we have 

...1' I= (Art)I =A =IrtA =IA 

so from (2.30) we obtain 

AVI=IVA=A. (2.32) 

Now, a geometrical interpretation for the meet is determined by choosing I to 
be the pseudoscalar for 

(2.33) 
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So from (2.24) we have 

C A (AB}max = C<AB}max = 'lIf, 

where A is a scale factor to be chosen for our convenience. With this choice for I, 
if A andB have a common factor, then their duals do not; hence, 

".+ k -- k - -<AB}max =vu'/B}max =(-1) <AB}max =(-1) A AB, 

where k is an integer. Now we choose >.. so that 

which can be solved for 

C=A ABI=A VB. 

Therefore, 

(2.34) 

when (2.33) is satisfied. It should be noted that A V B specifies an orientation for 
d () fJI which depends on the orientation of fJI u d as well as the orientations 
of d and fJI. The relation among these orientations is completely determined 
by (2.30). 

The meet was introduced originally by Doublet et al. [Do] as part of a formalism 
that is completely equivalent to geometric algebra as we have used it here. Rota and 
Stein [RoJ have shown that the formalism is 'ideally suited to proving theorems in 
projective geometry', and the reader is referred to their article for an account of 
this applicatioR. 

For the last entry in our dictionary, let us see how to formulate the notion of a 
factor space in terms of Geometric Algebra. First, note that if a k-blade B is a factor 
of a (k + l)-blade C, then the set of all vectors a satisfying the equation a AB = Cis 
a k-plane with tangent (or pseudosca1ar) B; the k-plane is located a distance d = 
a A BIrI = CB-I from the origin. If fJI = C§I (B) is a subspace of d = C§I (A), 
then the set of all such k-planes in d IS the factor space dlPA. Clearly dlPA is 
isomorphic to the set of all (k+ I)-vectors in '§'k+ l(A) with a common k-factor B; 
that is, 

(2.35) 

The right side of the isomorphism (2.35) is not only easier to handle algebraically, 
but it is often more apropos in applications than the factor space. 
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1-3. Frames and Matrices 

It is cornmon practice to defme a vector as an ordered set of scalars and develop 
matrix algebra as a system for manipulating' such sets. In contrast, geometric 
algebra puts vectors and scalars on an equal footing and makes a definite algebraic 
distinction between vectors and ordered sets of scalars. With the geometric product 
it is easier to base matrix algebra on manipulations with ordered sets of vectors 
instead of scalars. 

This section shows how geometric algebra simplifies and systemizes the funda
mental procedures for finding orthogonal and reciprocal sets of vectors, as well as 
solving vector equations for scalar coefficients, of which Cramer's rule is a special 
case. The construction of a basis for fmite dimensional geometric algebras is also 
carried out. 

The last topiC of the section is the construction of an inverse for a nonsingular 
matrix. The construction requires that a matrix be regarded as a set of inner pro
ducts of vectors, which is always possible. This is one of many examples which 
show, we think, that matrix algebra is best developed ab initio from a multilinear 
algebra of vectors. 

We say that a set of vectors II I, 112. • • • • lin is a frame if and only if An = II I A 
112 A ... A lin :F- O. With the complete Geometric Algebra and the identities of 
Section 1 at our disposal, we fmd that the condition An :F- 0 is usually easier to use 
than the eqUivalent condition that the ak be linearly independent. Manipulations 
with a frame can be simplified by orthogonalization or by introducing a reciprocal 
frame, so we discuss these procedures fust. 

A given frame alt 112, •••• an can be systematically orthogonalized by con
structing the 'graded sequence' of multivectors 

Ao = I, 

from which we obtain the frame of vectors 

Ck =AZ-IAk. k= 1, ... ,no (3.2) 

The ck are obviously orthogonal, because (3.2) expresses each ck as the dual by 
Ak of the pseudoscalar Ak _ 1 of the vector space spanned by the preceding k-1 
vectors. Using (1.51), we fmd that 

(3.3) 

which gives a factorization of Ak into a product of orthogonal vectors. The Ck can 
be used as they are in (3.2) or, by iterating with (1.25b) and (1.38) or using (1.40), 
they can be expressed as a linear combination of the ak. For k > 1, we fmd 

ck =At -CAk = (ak-l A ... Aad· (al A ... Aak) 

k 
= 1: (_1)k - i(lIk -1 A ... A Ill) . (al A ... ili ... A IIk)lIi. (3.4) 

i= 1 
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The coefficients on the right side of (3.4) are determinants and their properties 
will be discussed in more detail in the next section. In particular, we will show how 
to express the deterrninan t in terms of the inner products a, . ak. which is especially 
desirable when the inner products are given at the beginning of a problem. 

The result (3.4) is identical to that obtained by the so-called 'Gram-8chrnidt 
orthogonalization process', but it is in a more compact and perspicuous form. 

When one desires to work directly with a given frame ai' al • ...• an of non
orthogonal vectors, it is convenient to introduce the reciprocal frame a l , •..• an, 
specified by the equations 

(3.5) 

where i, k = I, ... ,n, and [)t, the Kronecker delta, has the value 1 if i = k and the 
value 0 if i "* k. Geometric Algebra makes it especially easy to solve equation (3.5) 
for the at in terms of the a,. Note that 

(3.6) 

So, because of (l.26b) and (2.16b) 

[)t =a,A [(-ll- l al A ... ilk ... AanJA;1 

= aj . [(_l)k -I(al A ... ilk ... Aan)A;1 J. 

Hence 

(3.7) 

satisfies (3.5). The frames {ak} and {ak} are sometimes said to be dual to one 
another, because, as (3.7) shows, ak is the dual of an (n - I)-vector composed of 
the a,. Equation (3.7) is the most useful expression for the ak , but if desired we can 
get explicit expressions for the ak as linear combinations of the ak in the same way 
that we arrived at (3.4). Thus, according to (1.54) and (l.51), 

-l_~_ anA ... Aal 
A - t -n AnAn (aIA ... Aan)(anA ... Aal)' 

so we get from (3.7), 

ak = (_l)k -I (al A ... ilk ... A an) . (an A .... A ad 
(al A .. . Aan) . (an A ... Aad 

~ k+i (al A ... ilk .. . Aan)· (an A ... il; ... A ada; = L (-I) 
;=1 (aIA ... Aan)·(anA ... Aal) 

(3.8) 
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Whlle we are on the subject of frames, we may as well show how to construct a 
basis and its reciprocal for the complete Geometric Algebra ~(An) from a basis 
for ~I (An). But the mere existence of a ~sis for ~(An) is all that we shall ever 
appeal to in the rest of the book, so the details of the following construction may 
be passed over without loss. 

From a frame {ak} with pseudoscalar An = a 1 1\ ... 1\ an, a basis for the space 
of r-vectors ~r(An) can be constructed by outer multiplication, namely, the simple 
r-blades 

akl I\akl 1\ ... I\akr, 0 <kl < ... <kr os;;;n. (3.9) 

A dual basis can be constructed from the dual frame {ak }, namely 

r/ll\ail 1\ ... I\r/r, O<il < . .. <iros;;;n. (3.10) 

Each such r-vector is the dual of an (n - r)-vector, specifically 

(3.11) 

where 0 < ir + 1 < ... <in OS;;; n, and all the j's are distinct integers. Equation (3.11) 
can be proved by using (2.11), (1.2Sb) and (1.38) as follows: 

r/'An = r/I(al 1\ .. . 1\ an) = (-I)1t -1 al 1\ . .. ait .. . 1\~/n 

ail 1\ r/IAn = r/2 . [ait . An] = (-I)it -1 (_1)12- 2 al 1\ . .. ait ... ah . . . l\al1l 

(3.12) 

Division of(3.12) by An gives (3.11), since 

r/r 1\ . . . 1\ r/I = (_l)r(r-l}/2ail 1\ ... A air = (-1)'(-1) l:~=1 i ail 1\ . . . I\r/r. (3.13) 

The inner product of (3.9) with (3.10) can be evaluated with the help of (3.11); 
thus 

(akr 1\ ... 1\ akl ) . (all 1\ .. . 1\ air) 

_ ( )l:[=1 (ft- 1) 1\ 1\ -I 
- -1 ak ... ak 1\ a, 1\ ... l\a7· An 

r I Ir+ I n 

(3.14) 
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If, = n, (3.14) gives ('" " ... " al )(al " ... "an) = I, SO 

An =an " ... "al =A;I. 

Chapter 1 

(3.15) 

The projection of an ,-vector B, into ~(An) can be expanded in a basis in 
~'(An). For 1 ",,, n, 

P(B,) = (B, . An)A;1 = L B, . (air" ... "ail )ail " ... "ai,. (3.16) 
il < ... </r 

This can be used to supply the promised proof of (1.40). Multiplying (3.16) by An 
to get 

B,· An = L B, . (ai," .. . "ail )(al1 " ... "air) ·An , 
il < ... </r 

and substituting (3.12), we get (1.40) with the following expression for the per
mutation symbol: 

(j. . )=(_1)1;[=1 (It-i) 
fl·· .In , (3.17) 

which holds for il < ... <i, andi,+1 < ... <in. 
As an application of (3.16), recall that we have shown that any,-dimensional 

subspace fJI, of the vector space .9In = ~I(An) is uniquely determined by speci
fying an ,-blade B,. ExpandingB, in terms of a basis as in (3.16), we have 

B, = L ~,. ... 11 ail " ... " aI,.. 
II < ... <I, 

The ratios of the coefficients ~, ... t. = B, . (air" ... " ail) are independent of the 
magnitude of B,; they are called the Pliicke, coordinates of the space fJI, = ~I (B,) 
in the mathematical literature. Since B, is simple, the ~, ... il cannot be chosen 
freely, being constrained by the condition that BtB, = IB,12. For example, for 
n = 4, , = 2, we have Bt "B, = 0 which, when expressed as a condition on the 
coefficients, becomes 

We have no need for PlUcker coordinates, because geometric algebra enables us to 
characterize the ,-blade B, directly by its algebraic p'roperties without reference to 
coordinates. 

To get a compact notation for a basis in ~(An), we represent sets of indicies by 
a single capital letter. We write 

(3.18a) 



Geometric Algebra 31 

whereik = k or O. If we delete elements for whichik = 0, anyone of the base blades 
(3.9) can be written in the form 

(3.18b) 

For the case when all the ik vanish, we take aJ = a(O, ... , 0) = 1. For the corre
sponding reciprocal blades we have the indices in opposite order; 

(3.18c) 

Evidently (3.14) can now be written in the form 

aK * rr' = {jfc (3.19) 

The projection (2.9) of any multivector B into ~(An) can now be written 

P(B) = I B * rr' a J = L B * a /. 
J J 

(3.20) 

Use of the scalar product in (3.20) (instead of the inner product as in (3.16» is 
essential to pick out (fJ), when a J is an r-vector. 

Perhaps the most basic problem in linear algebra is to solve a vector equation of 
the form 

(3.21) 

for the scalar coefficients (3k. A unique solution exists if Bn = b l A ... A bn *' 0, 
which, we repeat, is the most felicitous way of expressing that the bk are linearly 
independent. The solution is easily effected by outer-multiplying equation (3.21) 
on the left by b l /\ ... /\ bk -I and on the right by bk+1 /\ ... /\ bn and noting 
that, by (l.26b), all terms on the right but one vanish leaving 

b I /\ .•. /\ bk -I /\ a /\ bk + 1 /\ ... /\ bn = pk b I /\ •.. /\ bn. 

Dividing by b l /\ ••• /\ bn ;;/= 0, we get pk as the ratio of proportional or, better, 
codirectional n-blades: 

pk = bl /\ .. . /\bk_l/\a /\bk+I/\ ... /\bn . 
b l /\ ••• /\ bn 

(3.22) 

Division is well-defined in (3.22) since numerator and denominator commute. 
The appropriate way to get a defmite real number from the right side of (3.22) 
is determined by the form in which our information is given. We consider one 
common way below. 

Instead of the vector Eqn. (3.21), we might have been given the system of n 
linear scalar equations in n unknowns f/' : 

<i = b~pk, i, k = 1, ... ,n. (3.23) 
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In (3.23) and often hereafter we use the convention that summation over all values 
of repeated pairs of upper and lower indices is understood. 

We can reformulate (3.23) as a vector equation of the form (3.21) by intro
ducing any frame of vectors a .. ... , an and writing 

(3.24) 

The solution of (3.23) is then given by (3.22), but we would like the answer in 
terms of the scalars oJ and b~ given in (3.23). To accomplish this, we note that, 
because of (3.5), multiplication of (3.24) gives us back the scalars; thus, 

ai=ai.a, (3.25a) 

(3.25b) 

Now, in the same way that we rationalize the denominator of a scalar fraction, we 
can 'scalarize' the denominator of (3.22) by multiplying numerator and denomi
nator by the n-vector an 1\ ... 1\ a l . Noting that the product of any pair of the 
n-vectors is a scalar, we get from (3.22), 

k _ (b I 1\ . .. 1\ bk -1 1\ a 1\ bk + 1 1\ ... 1\ bn ) . (an 1\ ... 1\ a l ) 

p - (b l 1\ ... I\bn) . (an 1\ ... I\a l ) • 
(3.26) 

This result is the well-known Cramer's Rule for the solution of a set of simultane
ous linear equations. Equation (3.26) expresses pk as a ratio of determinants, and 
we shall see in the next section how, using (3.25), these determinants can be 
evaluated in terms of the original scalars. 

An n X n matrix ~ together with a frame of vectors {ak} with pseudoscalar 
An = al 1\ ... 1\ an determines a linear transformation [of .s;/n = ~ I (An) into 
.s;/n; 

(3.27a) 

Conversely, the linear transformation [of a frame {ak} with dual {tit} determines 
the matrix 

(3.27b) 

If m is the largest grade of nonvanishing multivectors formed by outer multiplica
ti!>n of the bk , then [(or~) is said to have rank m. If the bk are in ~I (An), then 
11 is said to be a matrix representation of [. It follows that [is a linear ~ran~forma
tion of .9In to an m-dimensional subspace !!Am = ~1(Bm). A frame {b ll , bl2 , ••• , 

bim } dual to {bi!' ... ~ bim } can be defined as before. 
We say that [(or bp is nonsingular if and only if Bn == b l 1\ .. . 1\ bn = [(ad 1\ 

... 1\ [(an ) * o. If [is nonsingular, it has an inverse 

(3.28a) 
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with associated matrix 

(3.28b) 

The problem of fmding ,I from f is equivalent to the problem of finding the 
frame {bi} dual to given {bk }. Equation (3.7) gives the solution immediately. 

bi = (-I); -1 (b l 1\ ... h; .. . 1\ bn)An(An)-1 B;I 

i 1 (bl 1\ .. . h; ... I\bn) ·An 
=(-1)- , 

An ·Bn 

where An = A;I . Substitution of (3.29) into (3 .28b) gives 

; (b I 1\ ... 1\ b; -1 1\ aj 1\ b; + 1 1\ ... 1\ bn) . An 
a.= ~------~~--~--~------------
I An. Bn 

From this one can identify the 'classical adjugate matrix' 

(3.29) 

(3.30) 

(3.31) 

The quantity AnBn is the determinant of f (or bj); it will be discussed in the next 
section. Of course (3.30) is just a form of Cramer s rule (3.26). 

1-4. Alternating Forms and Detenninants 

Alternating forms play a prominent role in many modern mathematical works. 
But when Geometric Algebra is used, alternating forms are much less important, 
because all their properties are merely simple special cases of the results in Section 
1-1. Thus, many computations with forms are more easily carried out by using 
Geometric Algebra directly. In this section we briefly discuss a typical version of 
the 'algebra of forms' primarily to show how it can be translated into Geometric 
Algebra. 

A determinant can be regarded as a special kind of alternating form. Indeed, a 
determinant is nothing more nor less than the scalar product of two blades. So we 
get even the more complicated expansion theorems for determinants immediately 
from our previous work. 

A scalar-valued function of r vector variables is said to be an alternating r-form 
(or just an 'r-form', for short) if it is skew-symmetric and linear in each argument. 
Section 2-3 will provide a simple proof that any r-form a, = a,(al. a2 • ...• a,) can 
be written in the form 

a, = At . (al I\a2 1\ .. . 1\ a,) 

where A t is a unique r-vector. 

(4.1) 
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From (4.1) all the properties of r-forms are obvious consequences of the proper
ties of inner and outer products already established. So it should be quite sufficient 
to list some of them: 

a,. is a linear function of each vector argument ak. 

a,. vanishes if two arguments are equal. 

a,. changes sign if any two arguments are interchanged. 

a,. vanishes if any argument is zero. 

a,. vanishes if the arguments are linearly dependent. 

(4.2a) 

(4.2b) 

(4.2c) 

(4.2d) 

(4.2e) 

We now explain how fundamentals of the 'algebra of forms' which has recently 
become popular with mathematicians can easily be formulated in terms of geometric 
algebra.· By virtue of (4.1), the sum of r-forms a,. and J3,. is an r-form 

a,. + 13, =At . (al " ... "a,) + Bt . (al " ... "a,) 

(4.3) 

The 'exterior product' of a,. with an s-form P, = Bt . (b I " ... " b,) is defmed to 
be the (r + s)-form 

(4.4) 

It follows from our results in Section 1 that the exterior product of forms is asso
ciative, distributive and satisfies 

a,. " 13s = (-1)"13, "a,.. (4.5) 

An (r - 1 )-form a,. -1' called the 'contraction' of a,. by the vector b, is obtained by 
fIXing the first argument of a,. at the value b; thus 

a,.-1 = ar-l (a2,'" ,ar) =A; . (b "a2 " ... "ar) 

= (At· b) . (a2 " ... " ar) = (b .Ar)t . (a2 " ... " ar). (4.6) 

This shows that a,.-1 is uniquely determined by the (r-l)-vector b· A r • Alterna
tively, a,. -1 can be regarded as the 'interior product' of a,. with the I-form PI = 
b . al . The 'interior product' of an r-form with an s-form can be defmed (for r > s) 
to be the (r - s)-form 

P, . a,. = (Bs ' Ar)t . (a8 +1 " ... "ar)· (4.7) 

* In Section 6-4 we discuss differential forms. 
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'This much should suffice to show how to make translations from the 'language of 
forms' to Geometric Algebra. It should also be clear that within the language of 
geometric algebra the notions of interior and exterior products of forms are quite 
superfluous; they are supplanted by the more versatile inner and outer products 
of multivectors. 

An r-form a,. = At . (b 1 1\ ... 1\ b,) is said to be simple if A, is simple. A deter
minant of rank r is a simple r-form. Since A, is simple, it can be factored into a 
product of vectors, A, = a I 1\ al 1\ ... 1\ a" and the determinant a,. takes the form 

a,. = (a, 1\ ... 1\ ad, (b I 1\ ... 1\ b,). (4.8) 

The aj are called 'row vectors' and the bk 'column vectors' of the determinant a,.. 
Of course a determinant has all the properties (4.2a) to (4.2e) enumerated above 

for a general r-form, but it has additional properties because it is simple. Thus, by 
(lASb) and (l.19), 

(a,I\ ... I\al)·(b l I\ ... I\b,)=(b,I\ ... I\bd·(al I\ ... I\a,), (4.9) 

which shows that the value of a determinant is unaffected by an interchange of 
rows and columns. Moreover, using (l.23b), (1.25b) and (1.38), we obtain 

'+1 a,. = (-1)1 (a, 1\ ... aj ... 1\ ad, [aj . (b I 1\ .. . 1\ b,)] 

'This is the familiar expansion of a determinant by the jth row. To get a more 
general formula, use (1.23b) repeatedly to write A, in the form 

(4.11a) 

where 

(4.11b) 

and all the ki are distinct positive integers not exceeding n such that kl < ... < ks• 
kg + 1 < ... < k,. Using (l.2Sb) and then (1.40) and (3.17), we obtain 

'This is the so-called 'Laplace expansion' of a determinant by the rows kl> k1 • 

...• kg. 
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Successive application of the expansions (4.10) or (4.11) shows that 0,. = (a, " 
· .. "al) . (b , " ... " b,) is completely determined by the matrix of inner products 
at· bl' Accordingly, 0,. is called the determinant 0/ the 11IIltrix at· bi' 

The determinant of the linear transformation/ defmed by (3.27) is defmed to be 
the same as the determinant of its associated matrix b{. = al . bk ; thus, 

det/= det b{. = (eI' " ... " al ) • (b , " ... " bn) 

(4.12) 

The important thing to note here is that An = a I " ... "an, An = A;;' , and Bn are 
all pseudoscalars of the same vector space .PIn: hence they are scalar multiples of 
one another, so it is permissible to remove the dot denoting inner product in (4.12); 
also, An conunutes with Bn, SO division is unambi~ous1y expressed by the usual 
notation used in scalar .algebra. The value of det bfc is completely independent of 
the choice of frame {a/ } in .PIn. We prove this implicitly in Chapter 3 by giving a 
manifestly frame-free defmition of det/and showing that it is equivalent to (4.12). 

Multiplying (4.12) by An' we get 

(4.13) 

If / is followed by a linear transformation g, the pseudoscalar Bn is mapped into 

(4.14) 

Substituting (4.13) into (4.14), we obtain, for the composite transformationgfthe 
well-known result 

detgf= (detg) (det!). (4.15) 

The derivation of (4.15) from (4.12) depends crucially on the relation An . Bn = 
AnBn . This relation holds only because An and Bn are pseudoscalars of the same 
space, and so does not apply to all determinants. However, we can derive a gener
alization of (4.12) which has universal validity. To any pair of r-vectors Ar = al " 
· .. "ar• Br = b l " ••. "br, we can associate a nonvanishing n-vector En = el " 

· .. "en with the properties 

(4.16) 

This is eqUivalent to assuming that the aj and bk are elements of the vector space 
8 n = C§ I (En) spanned by the frame {ek} and its dual {ek }. It follows inune
diately from (2.12) and (3.16) that 

A J . Br = (ar " ... " ad' (b I " ... " br) 

= .L AJ . (ek,,, ... " ekl )(ekl " ... " ek,) . Br· (4.17) 
kl < ... < k, 
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This expansion of a determinant is sometimes called Lagrange's Identity. It is, of 
course, just the familiar expansion of a scalar product in terms of coordinates. 

The conventional notion of a determinant refers implicitly to a unit n-vector I. 
In this case, a convenient notation for the determinant formed by vectors a" ... , 
an is 

(4.18) 

where it is understood that all vectors are elements of the vector space r§1 (/). 
A unimodular basis for r§1 (/) is defined by the property [el ... en] = 1, or 
equivalently. 

so 

Vectors ak adjugate to the vectors ak are dermed by 

ak = (_1)k+l al A ... ak ... A anfl , 

(4.19) 

(4.20) 

(4.21) 

For a unimodular basis, then, the ad jugate vectors make up the dual basis as it was 
dermed earlier, and 

(4.22) 

The determinant of a set of vectors is equivalent to the determinant of a matrix, 
that is, 

The determinant 

(4.24) 

is called the adjugate of [al " . an]; it is the determinant of the (n - 1) X (n - 1) 
minors of the matrix aJ' ik , as shown by 

af' ek = ek . af = [al ... aJ -1 ekaJ+l ... an] 

= (_I)J+l(al A ... al'" Aan)· (fl· ek) 

= (-I)/+k(a, A ... af ... Aan) . (in A ... ik .. . Ai, ). (4.25) 

With this preparation, we can follow Rota and Stein [Ro] to derive wi,th great ease 
the classical identities for compound determinants collected by Turnbull [Tu]. 
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A compound detenninant is a determinant whose elements are minors of another 
determinant. The simplest compound determinant is the adjugate, whose value can 
be related to the original determinant in the following way: 

[al ... an] [al ... an] =al 1\ ... I\anftlan 1\ ... I\al 

= (a I 1\ ... 1\ an -I) . (an . (an 1\ ... 1\ a d) 

= [al ... an] (al I\ ... I\an-l)·(an_1 I\ ... I\al) 

(4.26) 

Hence Cauchy's identity 

[ - -]-r ]n-I al ... an - Lal ••• an . (4.27) 

For further calculations, it is more useful in the form 

- 1\ 1\ - - [ ] n -11 al . .. an - al'" an . (4.28) 

Then 

(al 1\ ... I\an)an 1\ ..• 1\ as +1 = a1 1\ .. . 1\ as [al ... an]n-of 

= [al'" an]n-1/an 1\ ... I\as+1, 

so 

(4.29) 

Dotting this with an arbitrary s-blade b1 /\ ... /\ bs, we obtain Bazin's identity 

(hi 1\ ... I\bs)· (as 1\ ... 1\ ad = [al ... anP-1 [bl ... bsas+1 ... an]. (4.30) 

To describe r X r minors, we introduce r-bladesAJ defmed by 

(4.31) 

where i I < i2 < ... < ir· The set of indices can be put in lexical order so J has the 
integer values J = 1, 2, ... ,N = (:). A set of ad jugate r-blades is defmed by 

A- (1)i1 + ... +ir+r r 1\ i1 i1 1\ J = - ~an ... ir '" iJ . .. ai, (4.32) 

so that 

(4.33) 
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From (4.29) applied to (4.32) we obtain 

- A A - - [ ],-IA ai, ... fiji - al'" an I' (4.34) 

The matrix of r X r determinants of the matrix al' ek is, by (4.32) and (4.34), 

AI' Ex = (ail A ... Aal)' (ek, A ... Aek) 

= [el ... ekl-l aft ek l + l' .. ek,_1 al,ek,+ l' .. en]' (4.35) 

Again using (4.32) and (4.34), we obtain Jacobi's identity 

(ek l A ... Aek) . (ai, A ... Aaft) = [al ... any- 1 AI" Ex 

= [al ... an],-1 [al ... a/l _l ekl aft +1'" ai,-1 ek,ai,+l ... an] 
_ ,-1 - ! :r -
-[al ... an ] (eIA ... ekl···ek,···Aen)· 

( A i1 . ~ A) ( 1)};j U, + k,) . \an ... 1,'" "It ... a I - • (4.36) 

This relates minors of a determinant to complementary minors of its adjugate. 
The generalization of Cauchy's identity to r X r minors is most easily accom

plished by regarding the A I as vectors in a new vector space of dimension N = (~) 
with determinant [AI", AN]' Then, with this ambiguity in notation, from (4.33) 
we derive 

- - - - N 
[AI'" AN] [AI'" AN] = (AI'" AN)' (AN A ... AA I) = [al'" an] (4.37) 

in the same way that we·derived (4.26). Now, from (4.31) and (4.32) we see that 
there are n - r of the vectors ak in AI for r of them in A I' hence 

[AI'" ANY = [AI'" AN]n-,. 

Combining this with (4.37), we obtain Sylvester's identity 
(n-I) 

[AI" . AN] = [al'" an] ,-I , 

and 
_ _ _ (n;l) 

[AI ... AN]-[al ... an] . 

For r = n - I, Sylvester's identity reduces to Cauchy's identity. 
Now using Lagrange's identity we obtain 

[al'" an]'=(A I A ... AA,)·(A,A ... AAI) 

.. L . (fll A ... AAs)·(Ei,A ... AEil)· 
'I < '2 < ... < Is 

(4.38) 

(4.39) 

(4.40) 

·(Eil A ... A Eis) . (As A ... AAd. (4.41) 
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On the other hand, using Sylvesters identity and the Laplace expansion, we obtain 

[at ... an] r,.: l) = (At A ... AAN)· (EN A ... AEd 

=I(A t A ... AAs)·(E;rA ... AE;t)· 

(E;s+1 A ... A EiN) . (AN A ... AAs+d· 

Comparing this with (4.41) and equating corresponding coefficients of (A I A ... /\ 
As) . (E;s A ... A Eil ), we obtain Franke's identity 

r,.:l)-s - -
[al ... an] (At A ... AAs)· (Eis A ... AEil) 

= (As+l A ... AAN)· (EiN A ... AEis+l) (4.42) 

relating complementary minors of the compound determinants. 
If we repeat the steps in t!!e derivation of Franke's identity with the EJ and EJ 

replaced by r-blades BJ and BJ formed in the same way from a set of vectors b l , 

... , bn , we obtain Picquet:r identity 

(n-I) (n-I) 
[at ... an] r-l -"[bl ... bn ] r -s(AtA ... AAs).(Bi"A ... ABil) 

(4.43) 

Finally, from (4.39) and (4.40), we obtain Reiss's identity 

(n - 1 ) (n - I) __ 
[al ... an] r-l [bl ... bn ] r =(AIA ... AAN)·(BNA ... ABd. (4.44) 

The theory of permanents can be incorporated into the present formalism in a 
simple and elegant way. Suppose that lis a blade of grade 2n, and let {B I, ... , Bn} 
be a set of n bivectors in r§2 (J); we define the permanent of this set by 

(4.45) 

According to this definition, a permanent is just a determinant built out of bivectors 
instead of vectors. To relate it to the conventional definition, we choose a set of n 
orthogonal 2-blades Ek so that 

(4.46) 

Furthermore, we assume that each of the Bk lies in the n-dimensional subspace 
of r§2 (J) spanned by the Ek. Then 

[BI ... Bn] = (EJ A ... AEt> . (B t A ... ABn) = perm (E/ . Bk )· (4.47) 
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Thus [B I ... Bn] is the permanent of the n X n matrix of scalars E! . Bk . The 
properties of permanents now follow from the properties of inner and outer pro
ducts as did the properties of determinants. Note, for example, from (4.47) that 
the permanent is symmetric under interchange of rows and columns, because the 
outer product of bivectors is symmetric. For this reason, the terms in the 'Laplace 
expansion' 

[BI ... Bn] = «E! A ... AEh· BI)· (B2 A ... ABn) 

= f. Ek- BI(E!A ... Ek · •. AEh·(B2 A ... ABn) (4.48) 
k=l 

do not alternate in sign as in the corresponding expansion with vectors. 

1-5. Geometric Algebras of Pseudo-Euclidean Spaces 

Recall axiom (1.13) which requires that the square of any nonzero vector be a 
positive scalar. Let us refer to it as the 'Euclidean axiom'. The Euclidean axiom 
is independent of other axioms of Geometric Algebra, and for some purposes, 
especially for applications to space-time physics, it is more convenient to adopt 
the axiom (let us call it the 'pseudo-Euclidean axiom') which. specifies merely that 
the square of a vector is a scalar. 

The pseudo-Euclidean axiom allows vectors to have positive, negative or zero 
square, so at first sight it appears to admit a more general mathematical system 
than the Euclidean axiom. But actually it is merely different. Both axioms require 
that the square of a vector be a defInite scalar. In Section 3-7 we show that any 
metrical properties represented by using the pseudo-Euclidean axiom can be repre
sented with the Euclidean axiom as well. So the difference is primarily a matter of 
convenience and this depends on which applications are of interest. 

Our above formulation of the pseudo-Euclidean axiom is incomplete. It must 
be supplemented by axioms asserting the existence of vectors with positive and 
negative square and specifying their relation to vectors with zero square. We do this 
below for finite dimensional spaces. 

This section discusses certain consequences of the pseudo-Euclidean axiom 
necessary for applications of geometric algebra to spacetime physics. Except where 
otherwise indicated, we assume the Euclidean axiom in the rest of this book for 
the sake of simplicity. But those few results which depend on this assumption 
can easily be recognized and, in the light of this section, altered to fit the pseudo
Euclidean case. 

Many of the important formulas for inner and outer products established in 
Section 1 depend on the fact that the square of a vector is a scalar, but none require 
that the scalar be positive, so they remain valid in the pseudo-Euclidean case. Only 
our proof of (1.27b) would need to be revised if the pseudo-Euclidean axiom were 
adopted at the beginning. 
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The only results in Section 1-1 which are peculiar to the Euclidean axiom are 
consequences of the theorem that (A t A) == At '" A is a positive scalar if A * O. 
In the pseudo-Euclidean case we derme the magnitude of A to be the positive 
scalar 

(5.1) 

where I At", A I is the absolute value of the scalar At", A. We say that A is singular 
or null if IAI =0 when A *0. 

An n-blade A = (A)n can be factored into a product of vectors, A =alal ... an, 

so that 

(5.2) 

Therefore, a blade is null if and only if it has a null vector for a factor. If p of the 
vectors in (5.2) have positive square and q = n - p of them have negative square, 
then A is said to be a blade with signllture (p, q). In this case, A obviously has an 
inverse 

(5.3) 

Of course a null blade has no inverse. 
The Geometric Algebra of a nonsingular blade can be defined and analyzed by 

the method of Section 1-2, so we can run through the highlights quickly here, to 
bring out special features of the pseudo-Euclidean case. 

If A is a blade with signature (p, q), then the set of all vectors a satisfying the 
equation 

a I\A = 0 (5.4) 

constitute a (p + q)-dirnensional vector space .9Ip. q with signllture (p, q) and 
pseudoscalar A. Any basis of .9Ip. q composed of factors of A will include p vectors 
with positive square and q vectors with negative square. If p and q are not zero, 
then .9Ip. q contains null vectors, but the null vectors cannot be factors of A. 

The geometric algebra of A or of .9Ip,q is denoted by 

(5.5) 

and called a Oifford Algebra or a Geometric Algebra of signllture (p, q). The 
elements of ~(.9Ip,q) are commonly called Oifford numbers, but we will stick 
with the geometrical term multivector. As in the Euclidean case, the projection of 
any multivector B into ~(A) is given by 

(5.6) 
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The development of bases and reciprocal bases for .JJIp,q = ~l(A) and ~(A) 
and the computation of a matrix inverse carried out in Section 1-3 apply to the 
pseudo-Euclidean as well as the Euclidean cases, because they require only that the 
pseudoscalar be nonsingular. 
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Differentiation 

Geometric Calculus is primarily concerned with the theory and techniques for 
differentiating and integrating geometric functions, that is, functions whose domain 
and range are subsets of the Universal Geometric Algebra r§. This chapter deals 
with the differentiation of functions defined on linear subspaces of r§. Differentia· 
tion can be defmed on more general subsets of r§ called manifolds, and this will be 
considered in Chapter 4. But in the interest of simplicity, it is best to study calculus 
on linear spaces first. Calculus on more general manifolds involves differential 
geometry . 

. This chapter develops the general properties of differentiation by multivectors 
and enough special properties to make applications routine. The results of this 
chapter are used extensively throughout the rest .of the book. Section 2·1 has 
particularly wide application to physics. As shown in [H 11 , it includes the results 
of standard vector analysis and generalizes them to apply to spacetime. The results 
of Sections 2·2 and 2·3 will be applied to the study of linear transformations in 
Chapter 3. 

2-1. Differentiation by Vectors 

We saw in Chapter 1 that Geometric Algebra makes it possible to divide by vectors. 
Besides its obvious algebraic convenience, this feature provides a boon to analysis 
- it permits a unique theory of differentiation by vectors. Concepts of gradient, 
divergence and curl, which are developed separately in vector analysis, are reduced 
to a single concept of vector derivative in Geometric Calculus. As we shall see, 
the vector derivative can be decomposed into divergence and curl, but each of 
these is, so to speak, only 'half' the derivative. The geometric product alone unites 
divergence and curl, indeed, reduces all differential operators to a single concept 
of differentiation. 

This section defines the vector derivative and develops its basic properties. 
Chapter 4 extends the theory to vector manifolds, and Chapter 7 determines the 
relation of differentiation to integration. 

We begin by noting that standard definitions of continuity and scalar differentia· 
tion apply to geometric functions, because the scalar product defined in Section 

44 
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1-1 detennines a unique 'distance' IA - BI between any two elements A and 
B in ~. The derivative of a (multivector valued) function F = F(f) of a scalar 
parameter T is expressed by 

a1'F(T) = aF(T) = lim F(T + aT) - F(T) 
~ A1'-O aT 

(1.1) 

or, suppressing the argument, by a1'F = aF/~. Leibnitz's notation dF/dT or aF/aT 
emphasizes the defmition of derivative as the limit of a difference quotient. It 
will be seen that differentiation by a general multivector cannot be defined by a 
difference quotient, so Leibnitz's notation is appropriate only for scalar variables. 

Now let F = F(x) be a (multivector valued) functiondefmed on an n-dimensional 
vector space .9In = ~1(1) with unit pseudoscalar I. For a vector a in .9In , the 
derivative of F in the direction a, or briefly, the a-derivative of F at x is given 
by 

a. aF(,x) == aF(x + Ta) I = lim F(x + Ta) - F(x) 
aT 1'=0 1'-0 T ' 

(1.2) 

provided this limit exists. The function F is said to be continuously differentiable 
at x if for each fIXed a, a· aF(y) exists and is a continuous function ofy for each 
y in a neighborhood of x. It can be proved that if F is defined and continuously 
differentiable at x, then, for fIXed x, the function a . aF(x) is a linear function 
of a. In this case we write 

f(x. a) = Fa(x) == a· aF(x) , (1.3a) 

or, suppressing the argument, 

f= f(a) = Fa ==a· aF. (l.3b) 

This function f of two variables x and a is called the first differential or just the 
differential of F. 

Geometric Algebra provides the apparatus necessary to define the derivative 
with respect to a vector. The derivative (by x) of the function F = F(x) will be 
denoted by axF(x) or, more simply, by aF, where differentiation of F by its 
argument is understood. The differential operator ax can be defmed by assuming 
that it possesses the algebraic properties of a vector in .9In = f§l (I) and that 
the inner product a· ax of ax with a vector a in .91 n is equal to the a-derivative 
operator defmed by (1.2). 

Let us fonnulate the basic algebraic properties of ax explicitly. Recall that the 
condition that a vector x be an element of ~l (I) can be expressed by the equations 
I Ax = 0 and Ix = I· x. Similarly, irrespective of the functions on which it operates, 
the derivative by x has the properties 

I A ax = 0, 

lax = I· ax. 
(l.4a) 

(1.4b) 
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Equivalently, like any other vector in f§ I (I), the derivative has the properties 

ax = p(ax ) = I akak • ax (1.5) 
k 

where, in accordance with (1-3.16) and (1-3.20), P = PI is the projection operator 
for f§ (I), and the right side is an expansion of ax in terms of a basis {ak } spanning 
f'§ I (I). The expansion (1.5) in a basis separates the algebraic properties of ax from 
its differential properties; the algebraic properties reside in the vectors ak, while 
the ak • ax are scalar differential operators. This separation has the defect of 
depending on the choice of basis {at}, whereas the combination of algebraic and 
differential properties possessed by ax is independent of any such choice. 

It should be noted that, though each term on the right of (1.5) can be defmed 
as the limit of a difference quotient, the sum of terms composing ax cannot be so 
expressed. A defmition of ax directly in terms of a limit which makes no reference 
to the directional derivative will be . given in Chapter 7, but that defmition employs 
an integral and so might be regarded as less elementary than the one presented here. 

We can defme the differential of F = F(x) in terms of a = ax by using (I -1.32) 
to write 

(1.6) 

wbere the overdots are meant to indicate that only F is to be differentiated when 
it is desired to regard a also as a function of x. Equation (1.6) explains why we 
used the notation a . a in the defmition (1.2) for the directional derivative, for 
once the derivative ax by a vector has been dermed, a· ax can indeed be regarded 
as the inner product of the vector a with ax. It is important to note that (1.6) 
dermes the differential E(b) for all vectors b, and not just elements of f'§1 (I) as 
presumed in (I .2). Of course, from (1.5) it follows that 

a· ax =p(a). ax. (1.7) 

and p(a) is indeed in f§l (I). Inserting this in (I .6), we have 

E(a) = E(p(a», (1.8) 

which shows that, thoughE(a) is dermed for all vectors a, it vanishes if p(a) = O. 
It should be mentioned that the operator a· a preserves grade, that is 

a· a<F),.=(a· aF),.. (1.9) 

This is a consequence of axioms (1-1.10) and (1-1.11) applied to the definition 
(I.2). Since (1.9) is similar to the grade-preserving property of scalar multiplication 
expressed by (l-1.11), we say that a· a is a scalardifferentiJll operator. 

The differential has four other general properties, besides (1.8) and (l.9), which 
can be derived from its definition (1.2) in terms of a limit. First we have linearity: 

E(a +b) =E(a) + E(b), 

E().a) = ""E(a). 

(1.10a) 

(1.10b) 
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Of course, the linearity property (LlO) is a trivial consequence of (1.6) and the 
linearity of the inner product. But (1.6) requires that aF be well defmed, which 
is equivalent to the requirement that F be continuously differentiable. Later on it 
will be convenient to allow aF to be singular but well defmed in the sense of dis
tribution theory [GS]. But we do not wish to consider exceptions to the linearity 
of the differential at this time. Henceforth, unless otherwise stated, we tacitly 
assume that any required differentiations are well defmed. 

Two other general properties of the differential are the familiar rules for the 
differentials of the sum and product of functions F = F(x) and G = G(x); we have 

a· a(F + G) = a· aF + a· aG, 

a· a(FG) = (a . aF)G + F(a . aG), 

or, using the underbar notation for differentials, 

F+G =E+q, 

FG =EG+Fq. 

(l.lla) 

(1.l2a) 

(l.llb) 

(1.l2b) 

The proofs of (1.11) and (1.12) are standard, so they need not be reproduced here. 
Of course, the noncommutativity of the geometric product plays no essential role 
in the proof since a' a is by (1.9) a scalar operator. 

The remaining general property of differentials concerns composite functions. 
Let x' = [(x) be a function defmed on .9In = r§1 (I) with values in some vector 
space.9l~ = r§1 (I). To determine the differential of the composite function 

F(x) = G(f(x», 

we use (1.2) and the usual 'Taylor expansion' 

T2 
f(x + Ta) = [(x) + Ta· a[(x) + 2! (a· a)2[(x) + ... 

Thus, 

a· axG(f(x» = af'G(f(x + Ta» If' =0 

= af'G(f(x) + T[(a» If'=o = [(a) . ax'G(x') lx' ={(x)' 

(1.13) 

Since composite functions are evaluated at corresponding points, it is safe to 
suppress the point of evaluation. So, we write 

a· aF= a· 3xG(f(x» = [(a). OG, 

or, equivalently, 

E(a) = q([(a», 

which, in completely unambiguous notation, is written 

E(x, a)= q(f(x),[(x, a». 

(1.14a) 

(1.I4b) 

(1.14c) 
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The fundamental result (1.14) is called the chllin rule. In words, it says that the 
differential of a composite {unction is the composite of differentials. The most 
significant feature of (1.14) is that, in contrast to other formulations of the chain 
rule, no coordinates or matrices were used in its derivation. Nor will they be needed 
for its application. 

There is another version of the chain rule for scalar functions. If T = T(X) is a 
scalar-valued function, then 

(1.15) 

The proof of (1.15) differs from that of (1.14) only in the use of (1.1) instead 
of (1.2) in the fust step of the argument. In the next section we shall see (1.14) 
and (1.1 5) as special cases of a more general chain rule. 

In consonance with (1.3), the second differential of the function F = F(x) is 
defmed by 

(1.16a) 

or, suppressing the argument, 

Fob =b· aa· at. (1J6b) 

From the defmition (1.2) of the differential as a limit, we can derive the so-called 
integrability condition: 

(1.17) 

Other properties of the second differential obviously obtain from our discussion 
of the first differential. To sum up, the second differential is a symmetric bilinear 
function of its differential arguments. 

As in the scalar differential calculus, it is necessary to appeal to the definition of 
the differential in terms of a limit to evaluate only a few elementary functions. 
Differentials of more complex functions can then be determined from the simpler 
ones by using the linearity of the differential, the product rule and the chain rule. 
The one elementary result we need is the differential of the identity {unction 
F(x)=x. 

(1.18) 

The left equality of (1.18) follows immediately from (1.8) and (1.2). To get the 
right equality, note that for base vectors ak, we have 

ak· aX=p(ak)=ak· 

So, using (1.5), we have 

ax(x· a) = L akak . ax(x . a) = L akak . a = p(a), 
k k 

as desired. 
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From (I .18) and (l.5), we get the operator identity 

ax =p(ax) = aaa· ax· 
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(1.19) 

We can use this to obtain the derivative of a function immediately from its dif
ferential; thus, 

(1.20a) 

Introducing the notation Q for the derivative with respect to the differential argu
ment of E, we can write (1.20a) in the useful compact form 

(1.20b) 

The general properties of the derivative can now be obtained easily from the 
properties of the differential, we have only to take due account of the vector 
character of the derivative. 

The derivative does not have the grade preserving property (1.9) of the dif
ferential. But, according to (1-1.31), the vector property of a = ax allows us to 
write 

(1.2Ia) 

If F = rP(x} is scalar valued, then, according to (1-1.27a), a . ~ = 0, and (1.2la) 
reduces to 

(1.2Ib) 

which will be recognized as the vector valued function usually called the gradient 
of~. We call a· F the divergence of F and a AF the curl of F. This terminology 
is fully in accord with standard nomenclature in vector and tensor analysis. 

It is of the utmost Significance that (1.21) displays divergence and curl as distinct 
parts of a single more general operator, which we have identified as THE VECTOR 
DERIVATIVE. The fundamental significance of a = ax is conclusively established 
in Olapter 7, where it is shown that, in contrast to other kinds of derivative, ax 
has a definite inverse, and this leads to many results, of which the generalized 
Cauchy's integral formula is perhaps the most important. 

Using (1.20b) and the distributive rule, we easily establish from (l.llb) that 
the derivative of a sum is a sum of derivatives: 

a(F+ G) = aF+ aGo 

From (1.12b) we get the product rule in the form 

a(FG) = .QE.G + ~Fq. 

(1.22) 

(1.23) 

The underbars on the right side of (I.23) can be regarded as instructions as to 
which function is to be differentiated, quite apart from their connexion with 
differentials. In the first term, the instructions can be given in the usual way by 
using parentheses, thus,.QE.G = (aF)G. But parentheses cannot be used in the 
second term by writing, for example, F(aG), because the product of F with a is 
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noncornmutative. The quantity P;'f! is just the derivative of the function dermed 
by the product FG with F regarded as a constant; explicitly. 

P;'f! = ay(F(x)G(y» Iy=x' 

We sometimes use overdots instead of underbars to designate quantities to be 
differentiated. especially when we are using differentials for something else. Thus. 
instead of (1.23). we may write 

a(FG) = aFG + ilFG. (1.24a) 

A3 a rule. we use the usual convention that a differentiates only quantities to its 
right; thus. 

FaG=FMl. =FaG. 
When it is necessary to indicate that a differentiates quantities to the left or both 
to the left and the right. we use overdots or underbars. For example. 

(1.Z4b) 

is another form of the product rule. 
To get the most perspicuous form of the chain rule we define the adjoint of a 

function. We have seen that the differential tea) of a vector valued function x' = 
f(x) is a vector valued linear function of its differential argument a. We define the 
adjoint of tby the equation 

{(a') == 91.' a' = at· a'. (1.25a) 

More explicitly. this is written 

{(x. a') == aol(x. a) . a' = axt(x) . a'. (l.25b) 

To establish the equality on the right of (l.25), we applied (1.19) to the definition 
of the differential. 

like the differential. the adjoint {(a') is obviously a vector-valued linear function 
of a'. Thus. because of the linearity of the inner product. we have from the defini
tion (1.25). 

{(a' + b') = {(a') + {(b'). 

((all') = ri/(a'). 
Application of (1.19) to (1.25) yields 

p(/(a'» = lea'). 
so the range of 1 is .fJI" = f§1 (I). From (1.25) it is also clear that 

((a') = aa!J..a). a' = 1(11 (a'». 

(1.26a) 

(1.26b) 

(1.27a) 

(1.27b) 

where p' is the projection into the range of t. namely • .fJI~ = f§1 (/'). Combining 
(l.27a. b). we get -

ptP'(a') = lea'). (1.27c) 
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for all a'. This should be compared with 

F[p(a) = [(a), 

the corresponding relation satisfied by the differential/. 

51 

(1.27d) 

Applying (1.19) to (1.l4a) and using (1.25), we now get the chain rule for 
the derivative: If F(x) = G(f(x», then 

3xF(x) = 1C3x ')G{x'). (1.28a) 

Thus, the 'change of variables' from x to x' = f{x) induces the adjoint linear trans
formation of the derivative 3x ' to 

(1.28b) 

If we differentiate the function F = F(x) twice, we have, using (1.19) and the 
defmition (1.16) of the second differential, 

3;F{x) = 3b3aFab = (3b ·3a + 3b 1\ 3a)Fab. 

Because of the integrability condition (1.17), we have 

3x 1\ 3xF{x) = 3b 1\ 3aFab = -3b 1\ 3aFab = O. 

Hence, the operator identity 

3x 1\ 3x = 0 (1.29) 

expresses the integrability condition for the vector derivative. Conversely, from 
(l.29) we can derive the differential form of the integrability condition (1.17); 
using (1-4.10) and (1.16), we have 

(a 1\ b) . (31\ 3)F = Fba - Fab = O. (1.30) 

Because of integrability, the second derivative is a scalar differential operator, 

(1.31) 

This operator is called the Lapillcian. 
In computations, of course, we will frequently need the derivatives of elementary 

functions. The most commonly used derivatives besides (1.18) are assembled in 
the following table, where 3 = 3x and obvious singularities at x = 0 are understood 
to be excluded. 

31xl 2 = ax2 = 2P(x) = 2x, (1.32) 
31\x=0, (1.33) 
ax = 3· x = n, (1.34) 
31xlk = klxlk - 2x , (1.35) 

(X) n-k 
3 Ixlk = 1Xik' (1.36) 

310glxl = 1~2 =x-1 • (1.37) 
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If A = P(A) = <.4),., 

a(x.A)=A. ax=rA, 

a(x AA) = A A ax = (n - r).4, 

Mx = 2: tikAak = (-1 y<n - 2r)A. 
k 
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(1.38) 

(1.39) 

(1.40) 

Let us briefly comment on how the results in this table can be established. 
Equation (1.32) follows from (1.18) by the product rule. Equation (1.33) follows 
from (1.32) by the integrability condition (1.29). Equation (1.34) follows from 
(1.33), (1.5), (1.18) and (1-3.5); thus, 

a· x = 2: ak . (ak' ax) = 2: ric· ak = n. 
k k 

Equations (1.35), (1.36) and (1.37) are obtained by using the 'scalar chain rule' 
(Ll5). 

An instructive way to establish (1.38) is to first reformulate it by supposing that 
A is a r-blade, so that division by A introduces, according to (l-2.10b), the projec
tion operator as follows: 

(1.41a) 

But the difference between (1.41a) and (1.34) is no more than a matter of nota-. 
tion, for, by virtue of (1.4) and (1.5), (1.34) can be written 

ax =r1Iax =PI(a)x = ap[(x) = n. 

The projection operator PA in (1.41a) serves merely to limit the domain of x to 
an r-dimensional subspace of .;;In = rs1 (I). The validity of (1.38) for non-simple 
A follows from the simple case by the distributive rule as usual. Equation (1.39) 
can be proved in a similar way, by noticing that for simple A, Eqn. (l-2.l6b) helps 
us put it in the form 

(1.41b) 

The projection operator PIA 'confmes' the variable x to the tn - r)-dimensional 
subspace of .;;In = rs1 (I) with pseudoscalar fA = f· A. Finally, (l.40) can be 
obtained by combining (1.38) and (1.39), or by differentiating the expression 
Ax = (-lY<xA - 2x. A) obtained from (1.1.27a). 

Since the derivative has the algebraic properties of a vector, we get a large 
assortment of 'differential identities' by replacing some vector by a in any of 
the algebraic identities in Section I-I and taking due account of the rule for dif· 
ferentiating a product. For example, let a = a(x), b = b(x), c = c(x) be vector-valued 
functions. From the identity (1-1.39), we get 

b . (a A a) = b· a a - a iz· b, (1.42) 
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whence 

o(a· b) = a· ob + b . aa - a· (0 A b) - b . (0 A a). (1.43) 

Using (1-1.39) differently, we get 

[a,b] =o·(aAb)-bo·a+ao·b, (1.44) 

where 

[a, b] == a· ob - b· aa (1.45) 

is a conventional notation for the so-called Lie bracket. Dotting (1.42) with c, we 
get 

(c A b) . (0 A a) = b . ita· c - c· ita· b 

= b· o(a· c) - c· o(a· b) + [c, b] . a. 

Similarly, from the Jacobi identity (1-1.61), we get 

a· (oAb)=b. (aAa)+a. (aAb) 

= (a A 0) . b + a . ob - a 0 . b 

and 

o . (a A b) = il . (a A b) - 6 . (3 Ail) 

= (b A 0)' a +a· (0 A b) - (0 A 0)' b - b· (0 Ao). 

From (1-1.60c, d) we get generalizations of (1.42) and (1.47): 

A X (0 A b) = A . ab - a6 . A 

=A A ob - a6 AA. 

(1.46) 

(1.47) 

(1.48) 

(1.49) 

This is especially useful when 0 A b = 0, and shows that 0 Ax = 0 was the essential 
condition leading to the result in (1.38) and (139). 

As our last example of a differential identity, we differentiate the outer product 
of homogeneous multivector functions A = (A,) = A(x) and B = (JJ)6 = B(x). Using 
(1-1.23b) to re-order factors, we have 

A A 3 I\D= (-W a A(A 1\ B) 

=A AaAB+(-l)'(oAA)AB 
=A A a AB + (_1)'+6(,+1)B A a AA. (1.50) 

2-2. Multivector Derivatives, Differentials and Adjoints 

Section 2-1 was concerned with differentiating functions of scalar and vector vari
ables. This section deals with the more general theory of differentiating functions 
of any multivector variable. We will run through the theory quickly, merely stating 
the results, and omitting many details which were covered in the preceding section. 
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The multivector derivative emerges as the central concept of geometric calculus. 
It characterizes the local properties of geometric functions. The derivative associates 
with every continuously differentiable function two auxiliary functions, the dif· 
ferential and the adjoint, which can be interpreted as linear approximations to the 
function at each ·point'. In Section 2·1, the adjoint was defmed only for vector· 
valued functions, whereas the differential was not so restricted. In this section, the 
differential and adjoint are given a universal significance. The multivector derivative 
makes the adjoint easy to define and use. Consequently, the adjoint assumes a 
conceptual and computational status comparable to that of the differential. 

I.et F = F(X) be a function.defmed on the Geometric Algebra f§(l) with unit 
pseudoscalar I = ill" and let Jl(A) = (A . I) . It be the projection of a given multi· 
vector A into f§(l). The A-derivative of F at X is defined by 

(2.1) 

When this quantity is to be regarded as a linear function of A, we call it the dif
ferential of F (at X) and employ any of the notations 

E=E(A)=E(X, A)=FA(X)=A • aF. (2.2) 

From the defmition (2.1) it follows that the differential has the following general 
properties: 

E(A) = E(P(A», 

A • a<F>, = (A • aF>, = (E(A»,., 

E(A + B) = E(A) + E(B), 

E(M)= ~(A) if~= <~). 

(2.3) 

(2.4) 

(25) 

(2.6) 

If G = G(X) like F = F(X) is defmed on f§(l), we have the sum and product rules 

A~· a(F+G)=A • of+A. aG, 

A • a(FG) = (A • aF)G + F(A • aG)o 

(2.7) 

(2.8) 

If x' = f()() is a function defmed on f§(l) with values in f§(/'), where I' = ([')", 
then the differential of the composite function F(X) = G(f(X» is given by the 
chllin rule 

A .aF=A • axG(f"(.X»=1(A). aG, 

or, equivalently 

E(A) = g([(A». 

The second differential of F = F(X), defmed by 

FAB =FAB()()=B. M. ai, 
satisfies the integrability condition 

FAB(X) = FBA (X). 

(2.9) 

(2.10) 

(2.11) 

(2.12) 
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The derivative a = ax with respect to a variable X in f§(l) has the general 
algebraic properties of a multivector in f§(l); specifically 

aX=p(ax)= LaJaJ * ax, 
J 

where {aJ} is a basis for f§(l) as defined by (1-3.18). Moreover, 

where 

ax = La(X)" , 

a(X), = (ax), = L (aJ),(aJ), * ax 
J 

(2.13) 

(2.14a) 

(2.14b) 

is the derivative with respect to a variable X; = (X), in f§r(l). Often we will write 
(2.14) in the more succinct form 

(2.15) 

The A -derivative can be obtained from the derivative by taking the scalar product 
of A with a; thus, 

A * a = LA; * a = LA * at = LA;. ai. (2.16) , , , 
Conversely, the derivative can be obtained from the differential by using the 
identity 

This enables us to write 

aF= axF(X) = aAE(X, A)= ~E. 

We are now prepared to define the adjoint of F = F(X) by 

F =F(A')= ~E *A' = aF *A'. 

This implies immediately that 

B * F(A) = E(B) *A, 

(2.17) 

(2.18) 

(2.19a) 

(2.19b) 

an expression that is commonly used to define the adjoint of a linear function 
E. The adjoint has the properties 

P(F(A» = F(A), 

<P(A», = 2.iE * A = atF * A, 
F(A + B) = F(A) + F(B), 

F(AA)=AF(A) ifA=()'). 

(2.20) 

(2.21) 

(2.22) 

(2.23) 
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The derivative obeys the sum and product rules 

a,(F + G) = a,F + a,G, 
a,(FG) = arFG + arFG, 

FarG = FarG + FarG. 

Chapter 2 

(2.24) 

(2.25a) 

(2.25b) 

If F(X) = G(X') and x' = [(X), then the transformation of the derivative induced 
by the change of variables X -+ X: is given by 

af = (ax>r = J«oX'>r) = 1«1)' 
and the chain rule for the derivative can be written 

ofF = arG(j) = 1<a1)G. 

(2.26a) 

(2.26b) 

Note that the dot on the right side of (2.26b) indicates the variable to be differen
tiated more directly than the prime does on the right of(2.26a). More important, 
note that, because of (2.15), Or can be replaced by 0 in (2.24), (2.25) and (2.26). 

Throughout the above discussion of derivative, differential and adjoint, we 
have dealt with a function F = F(X) defined for X = l:~ = oXr in CS(I!. But a glance 
at the results shows that they all obtain if F = F(X) is defined for X = Xi in CSr(l). 
Indeed, we have already studied the special case of a vector variable X = Xi = x in 
Section 2-1. The essential assumption in our discussion is that our functions be 
defined on a linear space, so the above results can be adapted quite readily to 
functions defined on any linear subspace of CS(!). The most general set on which 
differentiation can be defined is called a manifold. In later chapters we examine 
vector manifolds in considerable detail. 

Now that we have completed our summary of the general features of multi
vector differentiation, some commentary is in order. We have shown that every 
continuously -differentiable function F = F(X) determines two linear functions 
for each value of X, the differential E = E(X. A) and the adjoint F = F(X. A'). 
We have adopted the underbar-overbar notations for differential and adjoint to 
emphasize that these functions are of comparable and complementary significance. 
This is reflected in their respective definitions (2.2) and (2.19a). Indeed, from the 
definitions it is clear that they are are the only two linear functions that can be 
formed from F using the derivative 0 and the scalar product. The key role of the 
multivector derivative is obvious. Besides providing us with simple coordinate-free 
definitions of the differential and adjoint functions, it greatly aids manipulations 
with these functions, as our formulation of the chain rule already shows. 

We should examine the relation of our formalism to the usual notions of scalar 
differential calculus. Let X = X(T) be a multivector valued function of a scalar 
variable T. or, as we shall say a curve. For such a function our general multivector 
derivative reduces exactly to the usual scalar derivative. Since the argument of 
X(T) is a scalar, we have (OT}rX = 0 for r of 0, so (2.14) gives us 

dX 
OT X = (OT}X = dr' (2.27a) 



Differentiation 

The differential of x = x(r) is 

dX 
X(A) = A * ax= Aa X= A-. 
- • T dr 
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(2.27b) 

Thus, for scalar variables, the differential differs from the derivative only by a 
multiplicative factor. The adjoint of X = X(r) is 

X(A) = aTx * A = (~) * A. (2.27c) 

The chain rule applied to F = F(X(r» becomes 

dF - (dX) dr = X(3 T )F(r) = dr * axF(X). (2.27d) 

If X = x(r) is scalar valued, then only a = (.4), the scalar part of A, contributes to 
(2.27c), and the adjoint reduces to X(a) = a dx/dr. The chain rule (2.27d) can then 
be written in the usual form for a change of scalar variables: dF/dr = dx/dr dF/dx. 
Thus, in the scalar differential calculus, differentials and adjoints ·are identical, 
and they differ trivially from derivatives. Clearly, the single concept of a derivative 
in elementary differential calculus is generalized to three distinct but related 
concepts by Geometric Calculus. 

We have assembled a list of basic multivector derivatives needed in applications. 
In the following list we assume that X = F(X) is the identity function on some 
linear subspace of f§(J) with dimension d, and we use the notation ~ to denote 
the projection 'of a multivector A into that subspace. Also, obvious singularities at 
X = 0 are understood to be excluded. 

A*axx=axX*A=A, 
A * axxt = axxt *A =At, 
axX=d, 

ax IXI 2 = 2Xt, 

A * a x xl' = Axk - 1 + xAxI' - 2 + ... + xl' - 1 A, 
ax IXl k = klXlk - 2xt, 

xt 
ax log IXI = IXI 2 ' 

A * ax {IXlk X} = IXlk {A + k A ~:\": X }, 

ax {IXlkX} = IXlk {d +k ~;~ }. 

(2.28a) 

(2.28b) 

(2.29) 

(2.30) 

(2.31 ) 

(2.32) 

(2.33) 

(2.34 ) 

(2.35) 

We omit proofs of these formulas, because they are essentially the same as proofs 
of corresponding formulas in the preceding section. 
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If X = I;;=OX, is defmed on the whole of f§(l), and we write a = ax, then 
(2.28a) and ~2.29) can be written 

A • ax= aX.A =p(A), 

A • a,x = a,x • A = P(A,), 

a,x = ax, = a,x, = (~) , 

ax = f (~) = 2". 

For P(A) = A we have, in addition, the general result, 

ajA;:Xi = I (a!},A;:(aJ), = r~A;:, 
J 

" ajAX = aAXi = I r~" 
r=O 

where the scalar coefficients r~ are given by 

(2.36a) 

(2.36b) 

(2.37a) 

(2.37b) 

(2.38a) 

(2.38b) 

(2.38c) 

with K == ! (r + s - Ir - sl) and the convention that (J) == 0 if j > i. The formulas 
(2.38a) and (2.38c) can be proved by frrst using (1-1.20) to get 

K 
aiA;:Xi= I (-I),,- kai(X,iA'),.+s_2k, 

k=O 

and then establishing the result 

ai(xA,}m = (A,ai}mX = (;) (~=; )A; c5;!s _ 2k. (2.39) 

Here the indicies on the Kroenecker delta are understood to be nonnegative integers 
and, of course, the result vanishes unless m = r + s - 2k. Two important special 
cases of (2.39) are 

a-x A A - = A- A a-x = A-(n - r) 
s r.r s s r, (2.40) 

aiX· A;: =A,· aiX= 

(: ) A, if 0 < s ...;; r 

(n - r) A - if 0 < r ...;; s s - r r 

(2.41) 
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It suffices to prove (2.39) for a unit r-blade A, = ala2 ... a, factored into a product 
of r orthogonal unit vectors. Choosing an orthononnal basis including these vectors, 
we can write the left side of (2.39) in the fonn 

= I aia . .. ahai1 (allah. ... a/sala2 ... a,>m· 
il < ... <is 

The indicated sum is now easily perfonned. Each nonzero tenn is identical to the 
others, so all we need to do is count them. For m = r + s - 2k, a tenn is zero 
unless ail ah ... ai, has exactly k vectors in common with a 1 a2 ... a" and there 
are (k) (~= ~) distinct ways this can happen, which gives the coefficient on the 
right side of (2.39). Note that, for A, simple, we can write 

aiX§ == a;(XiAr)Arl , 

= aiXi AA,Ar ' + ai(X§A,>,+s_2Ar l + 

+ ... + ai(XiAr},r_ s, +2A, 1 + aiXi· ArArl , (2.42a) 

which, by (2.37a) and (2.39), is tennwise equivalent to the combinatorial identity 

2-3. Factorization and Simplicial Derivatives 

In this section we explore an important relation between the theory of functions 
of several vector variables and the theory of functions of a single multivector 
variable. This leads us to the concept of simplicial derivative, and, as we shall see 
in Chapter 3, results which are very useful in the theory oflinear functions. 

The question arises as to when a multivector derivative can be factored into a 
product of derivatives. To answer this question, we apply the chain rule (2.26) 
to the function of two variables G(A A B); thus, 

aAG(A AB)= aA(A AB). auGu(A AB) 

= 3Aq(A AB, A AB). (3.1 a) 

By the way, it should be noted that use of the differential notation is a convenient 
way to indicate unambiguously the point at which a derivative is evaluated, for 
example 



60 CIulpter 2 

Now, using the product rule (2.25) and the notation (2.11) for the second differ
ential, we get from (3.1 a), 

aB aAG(A 1\ B) = aB aA(A I\il) * auGU(A I\B) + 

(3.1b) 

Equations (3.la, b) are actually more general than they appear, for no property 
of the outer product was used to get them, so they remain valid if A 1\ B is replaced 
by some more general function [(A, B). 

Suppose G is defined on I'§r(f), so 

G(X) = G( (X}r)· (3.2a) 

Then, if A = (A)g in (3.1), we must have B = <B),._ g, and we can use (1-l.2Sb), 
(2.36) and (2.41) to evaluate the derivatives: 

aA~I\B)*aX=aAA' (B' ax)=B' ax, 

aBaA(AI\B)*aX=aBB' ax= ( r ) ax· r- s 

So (3.1a, b) assume the forms 

aA G(A 1\ B) = B· auGu(A 1\ B), (3.2b) 

aBaAG(AI\B)= (r~s)auGu(AI\B)+ 

+ (_I)s(r- g)A' avB' auGUv(A I\B). (3.2c) 

Consider a linear multivector function L = L(X). Using linearity, we can evaluate 
the first and second differentials of L; thus, 

L. =Lu(X) = U * axL(X) =L(U * axX) = L(U), 

Luv(X)=O. 

(3.3a) 

(3.3b) 

Clearly, a function is linear if and only if it is identical to its own differential. More· 
over, its second differential vanishes. Hence, for a linear function, (3.2c), relieved of 
the restriction (3.2a), assumes the simple form 

(3.4) 

This is the 'factorization theorem' for the derivative of a linear function. Of course, 
aiL = aL if L satisfies (3.2a). 
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If we use (3.4) to 'factor out' the derivative ofa vector, we get 

aB aalL(al AB) = raiL. 

Repeating the process r times we get the complete factorization 

ar •.. a2 a l L(al A ... Aar)=r! aiL 
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= ar A ... A a2 A alL(al A ... Aar), (3.5) 

where we have adopted the abbreviation ak = aak' We have also expressed in (3.5) 
that all multivector parts of ar •.. a2 a l except <ar ... a2 al >, = ar A ... A a2 A al 
give zero when they operate on L because of the skew symmetry of the argument 
of L. 

The result (3.5) suggests that we defme the simplicwl varitJble 

a(r)==al A .. . Aar, 

and defme the simplicwl derivative 

a(r) == (r!rl aar A ... A aa2 A aal . 

Then (3.5) can be written 

a(r)L(a(r» = aiL. 

(3.6a) 

(3.6b) 

(3.6c) 

Thus, for linear functions the r-vector derivative is equivalent to the simplicial 
derivative. Therefore, we can use results from the preceding section to evaluate 
simplicial derivatives. For example, we fmd that 

a(r)Q(r) '" aiXi = (~) (3.7a) 

and 

(3.7b) 

An important general result is the following factorizatwn theorem for simplicial 
derivatives, which is an easy consequence of (3.4): 

(r+s) 
s a(r+s)L(a(r+s» = a(r) A a(s)L(a(r) A a(s» 

= a(r) a(s)L(a(r) A a(s»' (3.8) 

Note that the skew symmetry of the argument in (3.8) ensures that a(r) a(s) = 
a(r) A a(s) when operating on L, and, because of (3.6c), this implies that aB aA = 
aB A aA in (3.4). Let Fr = Fr(al> a2, ... ,ar) be a linear function of r vector 
variables. According to (3.3a), the linearity of Fr can be expressed by 

ak . akFr = Fr. k = 1, 2, ... , r, (3.9) 
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where ak differentiates the kth argument of Fr. From Fr we can obtain a new 
function 

1 
Gr = ,(al " ... "ar) . (ar " ... " al )Fr = a(r) . a(r)Fr. r. (3.10) 

The function Gr = Gr(al, ... , ar) is obviously skewsymmetric in its arguments. 
Moreover, if Fr is already skewsymmetric, then Gr is identical with Fr; that is, 

(3.11) 

This can be proved by using (1-1.25b) and (1-1.38) along with skew-symmetry and 
(3.9) as follows: 

(al " ... "ar)· (ar ,,· .. " adFr 

= (al " ... "ar-l)· [ar · (ar " ... " ild]Fr 

r 

= 2: (_l)r-k(al " . .. "ar-d·(ilr" ... ~k . .. "ill)ar· akFr 
k= 1 

= r(al " ... "ar_ d· (Or-I" ... " adar · orFr 

= ... = r!al . ola2 . il2 ... ar- ilrFr = r!Fr. 

Thus, the operator a(r) . O(r) is the skew-symmetrizer of an r-linear function. 
Let IX, = a,(a1, ... , ar) be an alternating linear r-form as defined in Section 

1-4. The simplicial derivative of a,. results in an r-vector 

At == O(r)a,.. (3.12) 

So, according to the results of the preceding paragraph, 

a, = (a 1 "a2 " ... " ar) . A r (3.13) 

This establishes the 'canonical form' for a,., which we had assumed in Section 1-4. 
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Linear and Multilinear Functions 

This chapter shows the advantages of developing the theory of linear and multi
linear functions on fmite dimensional spaces with Geometric Calculus. The theory 
is sufficiently well developed here to be readily applied to most problems of linear 
algebra. 

Many recent books develop a major part of linear algebra by general 'operator 
techniques' which are independent of matrix representations. These operator 
techniques have become fairly standard, and they fit perfectly into the present 
formalism, so it will be unnecessary to discuss them here, and we can use well
known results of such techniques without proof. 

General operator techniques are often impotent or awkward in specific computa
tions. In such cases, matrix algebra is usually employed. But matrix algebra has 
the drawback of requiring a specific choice of frames, which frequently is quite 
irrelevant to the problem at hand. Moreover, the method of matrices is so tailored 
to the theory of linear functions that it is not readily applied to the representation 
of multilinear or nonlinear functions. These defects can be removed if matrix 
calculus is supplanted by Geometric Calculus as the principal computational tool in 
the theory of linear functions. 

In this chapter we show explicitly that many common applications of matrix 
algebra are better performed by Geometric Algebra. However, we do not mean to 
suggest that matrix algebra should be eliminated altogether; we propose only that 
it should be subordinated to Geometric Algebra. In some problems, initial data 
appears naturally in a matrix format, so matrices can hardly be avoided. But we 
have already shown in Section 1-3 how matrices can be handled efficiently within 
the purview of Geometric Algebra. 

Comparison of the theory of vector functions with the theory of scalar functions 
helps explain the utility of Geometric Algebra. In the theory of scalar-valued 
functions of a scalar variable, the elementary operations of addition and multiplica
tion naturally playa special role, because they are essential to the very definition 
of the scalars. With these two fundamental operations the most important scalar 
functions are constructed, notably the polynomials and functions defined by 
infmite series. In contrast, multiplication of vectors is not ordinarily defined in 
treatments of vector functions, but scalar multiplication is, so it is necessary to deal 
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with sets of scalars (matrices) to construct even the simplest functions. However, in 
Geometric Algebra multiplication is as much a part of the notion of vector as is 
addition. As in the scalar algebra, which is a subalgebra of Geometric Algebra, the 
most basic vector functions can be constructed by addition and multiplication of 
vectors, in particular, and of multivectors, in general. 

Obviously the most general linear function of a vector variable which can be 
constructed by multiplication alone is f(a) = AaB where A and B are any multi
vectors. If we use addition as well, then we can construct 

(0.1) 

In fact, every linear transformation can be expressed in this form. This will be 
obvious after we have examined some important special cases, so we will not bother 
with a proof until we consider a more general theorem in Section 3-9. It will 
become evident also that a matrix representation of a linear transformation can be 
regarded as a special case of (0.1). 

Many different selections of Ak and Bk in (0.1) determine the same function 
f(a). The classical eigenvalue problem can be interpreted as the problem of fmding 
the simplest selection. But we shall see that there are often easier and more trans
parent ways to make the 'canonical selection' than the usual method of forming 
the 'secular determinant' and solving the characteristic polynomial at once. Indeed, 
with Geometric Algebra it is often possible to write down the canonical form for a 
linear transformation immediately from initial data. 

In the first three sections of this chapter, we use Geometric Algebra to develop 
general methods for characterizing linear functions which are valuable supplements 
to standard operator techniques. Our approach to linear functions is multilinear 
from the beginning, of course! The geometric product itself is multilinear; hence 
it is linear in each of its factors. It is impossible to develop the linear theory in
dependently of the multilinear theory. Even matrix algebra is fundamentally 
multilinear, for the matrix product is a linear function of each matrix. The only 
question is how best to integrate the'linear and multilinear theories. The answer 
promoted here is 'By employing the geometric product from the beginning'. 

In Sections 3-4, 5, and 6, we construct various canonical forms for linear trans
formations and carry out the necessary computations without using matrices. Few 
of our results are new in the sense that equivalent results carmot be found in the 
literature. What is new is the fact that here, for the first time, powerful results 
which have long languished in the anterooms of mathematics have been admitted 
to the dignified place they deserve in the august chambers of linear algebra. For 
example, the canonical forms for orthogonal transformations developed in Section 
3-5 are so simple and so useful that an efficient theory of linear transformations 
ought to make them readily available. This is possible only if the geometric product 
is an integral part of the theory. Representations of orthogonal transformations 
by Clifford numbers equivalent to ours can be found in references [Ch], [Po], 
[Hu] and [Ri], but, being only indirectly related to the standard apparatus of 
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linear algebra, their practical value has been severely limited. An elementary but 
detailed treatment of the canonical forms for orthogonal transformations along with 
applications to physics will be given in the sequel to this book, New Foundations 
for Classical Mechanics. 

The fact that our treatment of linear algebra employs the Euclidean inner 
product x • y from the beginning requires some justification, because it is at vari· 
ance with recent mathematical practice. Modern expositions of linear algebra 
usually try to push the subject as far as possible without an inner product. To do 
this they exploit the concept of dual space. The dual space SiI: of a vector space 
Siln is the space of I-forms on Siln , that is, the space of all linear mappings of Siln 
into the scalars. The space SiI: is isomorphic to Siln , but this isomorphism is 
not unique unless Siln is endowed with a specific metric or inner product. It 
might appear, therefore, that by a premature introduction of the inner product 
our method sacrifices a significant degree of flexibility and generality. On the 
contrary, we hold that delay it. introducing an inner product merely complicates 
the development of linear algebra unnecessarily. 

In Section 2-3 we proved that in Geometric Algebra every I-form a(x) can be 
expressed with the inner product by a(x) = a . x. In writing a . x we have tacitly 
committed ourselves to admitting the existence of a set of orthogonal unit vectors, 
while the form a(x) makes no such commitment. But this costs us nothing, because 
we have not specified which vectors are the units, and we are not required to do so 
any sooner than other approaches. Defining forms without an inner product is like 
defming the real numbers without distinguishing a unit element. Specification of 
the unit scalar determines a scale for the real numbers; a scale is essential if the 
distributive rule is to be used to reduce multiplication to repeated addition. To 
describe relations among real numbers which are independent of scale, no one is so 
foolish as to ask for a number system without a unit element; one simply uses 
ratios or replaces specific numerals by less specific letters. The unit element is 
essential to the very notion of real number and is indispensible in computations. 
We regard an inner product as no less essential to the notion of a vector and equally 
indispensible in computations. 

There is no way to carry out computations in linear algebra without utilizing an 
inner product in one form or another, whatever name it is given. We use the inner 
product explicitly to construct and compose linear transformations. Matrix algebra 
implicitly utilizes the inner product when summing over indices in the composition 
of matrices. The significant issue is not when to introduce the inner product, but 
how to do it in the most efficient way. 

Use of the Euclidean inner product in computations and construction of 
functions by no means commits us to a Euclidean metric. Indeed, as we show 
in Section 3-7, the Euclidean inner product helps us achieve a unified theory 
of bilinear forms and isometries. Every bilinear form can be obtained from the 
Euclidean inner product by a linear transformation. This helps us to find and 
represent isometries of a given bilinear form by using the canonical forms for 
linear transformations already constructed from the (Euclidean) geometric product. 
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And, of course, it greatly facilitates comparison of one class of isometries with 
another. 

For certain purposes it is desirable to work directly with nonEuclidean metrics 
without relating them to a Euclidean metric. The Lorentz metric, for example, is 
used in spacetime physics, because it has a direct physical significance. Section 3-8 
uses pseudo-Euclidean Geometric Algebra to characterize the orthogonal group 
of spaces- with any signature. It introduces a new and simpler definition of spinor 
and develops canonical forms for Lorentz transformations, for which important 
physical applications can be found in references [H7-l0]. 

In Section 3-9 we begin the study of general linear multivector functions. We 
consider in detail the classification of linear bivector functions (called biforms) on 
bivector spaces of any signature, including the so-called Petrov classification of the 
Weyl conformal tensor. Another generalization of linear algebra is considered in 
Section 3-10, where multilinear functions are discussed. 

3-1. tinear Transformations and Outennorphisms 

This section develops the general properties of outermorphisms, exploiting, in 
particular, the simplicial derivative. The general study of linear transformations is 
greatly simplified by introdUcing outermorphisms at the outset. Many properties of 
a linear transformation are most easily ascertained or expressed by its corresponding 
outermorphism. The determinant of a transformation is an example. It can, of 
course, be expressed as a simple function of a matrix representation of the trans
formation. But other significant properties of a transformation are not so easily 
expressed by matrices, because they involve minors of the transfonnation matrix 
and seem so complicated that they are hardly ever used. The outermorphism 
provides a means of representing and analyzing such properties. The theory also 
produces a useful expression for the inverse of a nonsingular linear transformation 
without using matrices. Many other applications of outermorphisms appear in 
subsequent sections. 

We use the term linear transformation exclusively to refer to a vector-valued 
function of a vector variable, especially to distinguish it from other kinds of linear 
multivector functions. If f is a linear transformation defined on an n-dimensional 
vector space .sdn , then 

[(a) = a' axf(x) = f(a· axx) = f(a) (1.1) 

for every element a of .sdn. Thus a linear transformationf=~) is eqUivalent to its 
own differential f= f(x) on d n . But we saw in Section 2-1 thatfis defined on all 
vectors, those vectors orthogonal to .sdn being in its null space. SO f automatically 
defines an extension of fto the space ~1 of all vectors. -

Because of (1.1), the composite gf of linear transformations g and f is given 
directly by the chain rule (2-1.14); thus, 

gf(a) =g(f(a» = f(a) . ago (1.2) 
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If f is a linear transformation of .91,. to .91 n, then the transformation 1" obtained 
by an ,-fold composition of fwith itself can be written 

1" = f· 01"-1 = 1"-1 . of, wheret =f. (1.3) 

In matrix algebra, the composite of linear transformations is computed by 
summing over indices of associated matrices. Instead, (1.2) shows that the com
posite of linear transformations can be computed without introducing coordinates 
by using the directional derivative; of course, this can be reduced to matrix com
position should the need arise, but the use of matrices is often quite uncalled for, 
as we shall see. 

The linear transformation f = f(a) induces a linear mappingf(A) of every multi
vector A in r§(.9I,.) , which we call the outermorphism of f-: or the differential 
outermorphism off when we want to distinguish it from the adjoint outermorphism 
dermed later. The outermorphism 1 is dermed by 

(I.4a) 

f(AiI) = 1«A» = (A), (1.4b) 

l(A,) =Af· o(r)f(r) = A • o(r/(r) for, > 0, (I.4c) 

where O(r) is the simplicial derivative defined by (2-3.6b) and 

(1.5) 

ActuallY,l(A) is well dermed by (1.4) for any A. The operator A • O(r) in (1.4c) 
projects A into r§r(.9I,.). Hence, 

l(P(A» = l(A), (1.6) 

where P(A) is the projection of A into r§(.9I,.). 
From (1.4c), it follows immediately, by virtue of (2-3.11), that 

(1.7a) 

Differentiating this by A * 0(,) = (sl)-1 A * (0, 1\ ... 1\ 02 1\ 01) and B * O(r- s) = 
«r - S)!)-l B * (or 1\ .. . 1\ 0r+2 1\ o.r+ d for s";' r, we establish the more general 
relation, 

l(A 1\ B) = l(A) 1\1(B), (1.7b) 

which holds for any pair of multivectors A and B. 
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It follows from (1.7) that an outermorphism is grade-preserving, that is, 

[«.4)r) = <[(A»r· (1.8) 

Moreover, 

(1.9) 

It also follows from (1.7) and (1.2) that the outermorphism of a composite trans
formation equals the composite of the outermorphisms. Thus the composition of 
outermorphisms is given directly by the general chain rule (2-2.10) for multivector 
functions. 

The fundamental property (1.7) explains our choice of the term 'outermor
phism', for it shows that the outer product relation is 'preserved' by the mapping. 
However, there is no corresponding 'innermorphism', and we shall see that the 
inner product is not generally 'preserved' by an outermorphism. 

Since the extension of a linear transformation to its differential outermorphism 
is unique and always well dermed, we always denote it by the simple underbar 
notation we use for differentials. The differential [(a) can be distinguished from its 
extension to an outermorphism[(A) by the appearance of a vector in its argument. 

If the linear transformation -[ dermed on d n has values in an m-dimensional 
vector space .91;", then the differential outermorphism of [maps ~(dn) into 
r§ (.91;"). This can be expressed by the equation 

p' ([(A» = [(A), (1.l0) 

where p' is the projection operator for r§(d;"). The adjoint lea) of [maps .91;" 
into d n , and its extension to an outermorphism[(A) maps ~(d;") into r§(dn). 
In fact, f(A) is exactly the adjoint of the outermorphism [(A), as defined for 
multivector functions by (2·2.19). We can define[(A) immediately by (2-2.19), or 
we can derme it directly in terms of [by writing, in parallel with (1.4), 

t(A) = t (f A;;) = f f(A;;), 

f«.4» = (.4), 

t(A;;) == o(r/(r) . A, = o(r/(r) • A for T > O. 

(Ula) 

(Utb) 

(Utc) 

We will refer to t(A) as the adjoint outermorphism of [, because it is the outer
morphism of the adjoint of [. 

It is easily proved that 

[(P(A» = P(]'(A» = t(A), 

f(A AD) = t(A) A [(B), 

and, of course, that tis grade-preserving as well. 

(1.12) 

(1.13) 
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Although the inner product is not, in general, preserved by the differential and 
adjoint outermorphisms, it does provide important general relations between them, 
namely 

Ai·l(B;) = lr[(Ai) . Bi] for r EO;s, 

[(Ai) 'Bi=llAi-{(Bi)] forr~s. 

(1.14a) 

(1.14b) 

The order of factors in (1.14) can be reversed by using (1.9). For the important 
special case r = s, both (1.14a) and (1.l4b) reduce to 

Ai ·l(Bi) = [(Ai) 'Bi, 

which, of course, is just a special case of the general relation (2-2.19b). 
We can prove (1.14a) as follows 

A, -t(B,) =A,· 3(1I)[(a(,» 'B, 

= 3(11_ r)[(a(lI_ r) 1\ A,) . B,I 

= 3(11_ ,){[(a(8 _ r» I\[(A,)} . B, 

= 3(8_r)[(a(,_r»' ([(Ar) 'B,) 

= l([(A,) . B,), 

(1.15) 

where we have used (1.11), (2-3.2b), (1.7) and (I-1.2Sb). To prove (1.14b), we use 
(1-1.40) and note that, because of the skew symmetry of [(,), all the (~) terms of 
the expansion are identical to one another, so 

[(A,) . B, = Ar . 3(r)l(r) . B,I 

= (~)A, . 3(r)B,I . ([r-,+11\ . . . 1\1,)/.1\ ... 1\[,_, 

= Ar . (3(,) 1\ 3(, _ s»Br . 1(,)I(r _ s) 

= Ar . (f(B,) 1\ 3(r _ r»/(r _II) 

= [A, ·f(Bs)] . 3(r-s)l('-II) = [(Ar ·f(Bs». 
A linear transformation [ of .9In to .91~ is said to be nonsinguia, if I(l) "* 0, 

where I = (J)n is the unit pseudoscalar of .9In . Now, -

and 
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where t is the unit pseudoscalar for d~. Hence, I is nonsingular if and only if the 
quantity 

3 (n )f(n) = If £(I) = 1<t)tt (1.16) 

does not vanish. 
The determinant of I is a scalar quantity denoted by det if) and defined by 

the equation 

[(I) = t det if). 

Using (1.16), we fmd also that 

[(/) = f det if). 

(1.17a) 

(1.17b) 

The sign of the determinant depends on the relative orientations assigned to f and 
t; this will be arbitrary unless fixed by some other transformation. For example, 
we can take t = /if d~ = d n . In this case, we have from (1.16) and (1.17), 

det (f) = 3(n)f(n) = 3(n)· I(n) = fi £(I) = fi[(I), (1.18) 

and, as will be seen in the next section, det (f) is identical to the determinant of the 
matrix off. In general, we have 

(1.19) 

The quantity 3(n)f(n) is a generalization of det (f). The determinant describes 
only induced changes of relative scale and orientation of a pseudoscalar, while 
3(n )f(n) describes the relative change of direction as well, as (1.16) shows. 

For a nonsingular transformation the differential and adjoint outermorphisms 
are related by duality. Specifically, if A is a multivector in f§(dn ) = f§(I) and 
A' is in f§(d~) = f§(/), then 

A = 1<A ') iff £(AI) = A '[(I) = A't det (f), 

A I = I(A) iff [(A 't) = A1<t) = AI det (f). 

These results follow from (1.14) and (1.17). For example, 

[(fA) = fJ./l(A '» = [(f· 1<A '» 
= £(I) ·A' = !..(I)A' =tA' det (f). 

(1.20a) 

(1.20b) 

We can solve (I .20b) to get an expression for the inverse I-I of the differential 
outermorphism in terms of its adjoint, namely, -

jilA't)/-1 
rl(A') = [(A'/) []tt)]-I = ..:...\-,--~-
- det (f) 

(I.21a) 
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Of course, for vector arguments (1.21) yields the inverse of the linear transforma
tion I. This result is more general than the expression for I-I which we got from 
the matrix of lin Section 1-3. In a similar way, we get from (1.20a), 

rl(A) = [[(J)]-I[(Al) = (t det (f»-I[(Al). (1.21b) 

3-2_ Characteristic MuitivectolS and the Cayley-Hamilton Theorem 

The trace and the determinant of a matrix play an important role in matrix algebra, 
because they are properties of a linear transformation which are independent of its 
matrix representation. They are only the simplest examples of a set of intrinsic 
properties of a linear transformation which are represented in this section by 
charrlcteri3tic multivectors. 

We expect that important applications for characteristic multivectors can be 
found above and beyond what is presented in this section. But the value of these 
quantities is defmitely established here by relating them to the 'characteristic 
polynomial' . 

The proof of the celebrated Cayley-Hamilton theorem presented in this section 
differs from other proofs in the literature in that it does not appeal to any other 
result of linear algebra. It does not even use the notion of an e.igenvector or require 
any prior knowledge of the characteristic polynomial. Of course, it is the Geometric 
Calculus that makes the proof so elementary. 

Let I be a linear transformation of .91" to (JIm. We call the simplicial derivatives 
a(,)/(,) of the r-blades I(r) = I(al ) A l(a7.) A ... A I(a,) the charrlcteristic multi
vectors of I. As established in Section 2-3, since I is linear, we can replace the 
simplicial derivative by a multivector derivative iD our definition of the charac
teristic multivectors; thus 

(2.1) 

But simplicial derivatives will be most convenient for our purposes in this section. 
The a(,)/(r) obviously describe intrinsic properties of I, but they can be related to 
well-known quantities in matrix theory by expressing them in terms of frames. 
Using (1.1), (2-1.5), and (l-3.27a), we find immediately that, if {ak} is a frame in 
.91" with image {bk = I(ak)} in (JIm' then 

a/= akl(ak) = ak bk . (2.2) 

The scalar part of (2.2) is called the trace of I(or of the matrix ai . bk); 

a· 1= Tr (f)= Tr(ai. bk). (2.3) 

Generalizing the derivation of (2.2), we easily fmd. from the definitions (l.S) 
and (2-3.6b), that 

(2.4) 
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where the sum over repeated indices is restricted by the condition 0 < i 1 < ... < 
i,.e;;; n. We may choose the dimension m of film to be the rank of I; it is clear, then, 
from (2.4) that a(m)/(m) '* 0, while a(r)/(r) = 0 for r > m. For the case r = n, (2.4) 
becomes 

a(n)/(n) = an A ... A a1 b 1 A ... A bn = AnBn . 

The scalar part of (2.5) is the determinant of the matrix ak • bl; 

a(n)' I(n) =An. Bn = det (ak . bj); 

(2.5) 

(2.6) 

however, this quantity is equivalent to the determinant of I only if film is a sub
space of .9In , in which case a(n)f(n) = a(n)' I(n)' As was noted in the last section, 
the magnitude of the determinant of I is 

1 det if) 1 = 1 a(n)/(n) I. 

This quantity can be expressed as the determinant of a matrix by embedding .9In 
and PAm in a larger vector space 8 p and extending/to a transformation of 8p to 
8 p' But such is an example of the unnecessary complications introduced when 
linear transformations are represented by matrices. With Geometric Algebra, we can 
describe a transformation of .9In to film. completely without any reference to 
some larger vector space in which .9In and film are embedded. 

If I is the sum of two linear transformations g and h, that is, if 

I(a) = g(a) + h(a), (2.7a) 

then the characteristic multivectors of I are given by 

(2.Th) 

with the understanding that a(O)g(O) == 1. This important result can be established 
by straightforward computation: 

a(r)f(r) = a(r) (g1 + hd A (g2 + h2) A ... A (gr + hr) 

= ;, a, A ... A a1 {gl A ... Ag, + (~) gl A ... Ag,_l Ah, + 

+ (; )gl " ... "gr-2 "hr _ 1 Ahr + ... + 

+ (r ~ 1 ) g 1 A h 2 A ... A hr + hi A ... A hr } 

= a(r)g(r) + ar A a(r-l)g(r-l) Ahr + ... + a(r)h(r)' 

Let us apply (2.7) to the function 

F(a) = I(a) - M, (2.8a) 
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where A is a scalar andf= f(a) has i~ values in sin. Since a(n) and F(n) are pseudo
scalar, with the help of (2-2.40), we find 

a(n)F(n) = <a(n)F(n» = < t a(s) A a(n _s)(-Aa)(n -I) Af(l~ 
1=0 Y 

Thus, 

(2.8b) 

where a(O) * f(o) == I. As we shall see, Ct<A) is the so-called characteristic poly
nomial of the linear transformation f. 

Matrix algebra makes good use of the trace and the determinant, but without 
the help of Geometric Algebra, it is hardly able to formulate, let alone exploit, 
the other intrinsic features of a linear transformation so directly described by 
characteristic multivectors. The fact that Cf(A) given by (2.8b) is the usual charac
teristic polynomial for a linear transformation of sin into sin follows immediately 
from the fact that, by (2.6), a(n)F(n) is the determinant of the matrix of F. The 
outstanding feature of (2.8b) is that it explicitly identifies the coefficients of the 
characteristic polynomial as the scalar parts of the characteristic multivectors. Of 
course, matrix algebra reveals no such simple expression for the coefficients. That 
the expression is by no means trivial is amply demonstrated by the follOwing. 

The Cayley-Hamilton theorem states that a linear transformationffrom sin to 
sin satisfies its own characteristic equation, that is, according to (2.8b), 

n 
'\' (-I)n-Ia *~ fn-s=O L. (s) J(I) , 
1=0 

(2.9) 

where rea) = a and J' = J'(a) is the r-fold transformation defmed by (1.3). We 
prove (2.9) with the help of (2-3.2b), (1.3) and (1-1.40), by decomposing the last 
term of (2.9) into the negative of the others: 

a(n) • f(n)r(a) = a a(n)f(n) = a· a(n)f(n) 

= a(n -1)f(n -1) A (a· at) = a(n -1) . [fen -1) Af(a)] 

= a(n-l)· f(n-1)f(a)-(n - I)a(n-I) ·(f1 A ... Afn-2 At)fn_1 

= a(n -I)" f(n-1)f - (an-I A a(n -2» . (f(n-2) Aj)fn-I 

= a(n-I)· f(n-l)f - a(n-2)· f(n-2)f· an-lfn-I + 
+ (an-2 A a(n-3» . (f(n-3) At)fn-2 . an-tfn-l 

= 
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This exhibits the Cayley-Hamilton theorem as no more than a differential identity 
in the 'vector analysis' of linear functions. 

Of course, if [(a) = M, we have, from (2.9), 

n 
Cf(A) == L (_~)n -s a(s) * f(s) = O. (2.10) 

s=O 

Thus, the real roots of the characteristic equation are eigenvalues of [. Note that 
(2.10) was obtained without using determinants. 

The coefficients of the characteristic polynomial can be expressed in terms of 
the traces Tr if) = a· f' of the r-fold transformation I' by using the recursion 
formula 

s 
a(S) * [{s) = + L (_1)r+l(a(s_r) *[(s-r» a·l'. 

r= 1 
(2.11) 

Our proof of (2.11) is quite similar to our proof of the Cayley-Hamilton theorem; 
thus, using (1-1.40) and (1-1.42), 

1 
a(s)' res) = S (a(s-l) A ad' ([I A[(S-1) 

1 . . 
= s {a l . [I a(s -1) . [(s -1) - [(3(1 -1) . [d A 3d . [(I -I)} 

1 = S {a· [a(l_l)' [(s-l) - (a(I_2) A a l )· ([; A[(1_2»} = ... 

= + {a· [a(s-1)' [(1-1) - a· r a(I_2)" [(1-2) + ... +(_1)'+1 a· ['}. 

Now let ~I' .•. , ~ be the roots of the characteristic polynomial (2.10); we 
will assume here that the ~ 's are real or formally complex numbers, although 
in Section 3-5 and 3-9 we will see that geometric algebra enables us to identify 
the complex numbers with multivectors and so supply them with a geometric 
interpretation. The characteristic polynomial can be written 

n 
CrC~) = n (A- At) = ~n - (~I + ... + ~)~n-l + ... + (-l)nAI ... ~. (2.12) 

k=1 

Comparing coefficients of ~k in (2.10) and (2.12) gives us the relationships 

(2.13) 

between the characteristic scalars a(k)' [(k) and the symmetric products of the 
eigenvalues off. Note also that (2.13) together with (2.11) implies 

a· f* = ~f + ... +~. (2.14) 
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We can distinguish two general approaches to the study of a linear transformation 
f. The many-point approach studies the effect of f on relations among several 
points, while the many-fold approach studies the effect of repeated applications 
of f. Clearly a(r)f(r) characterizes a single mapping of r points, while fr describes 
the r-fold mapping of a single point. To date, the many-fold approach to linear 
transformations has been systematically developed by many authors, while the 
many-point approach has hardly been recognized, probably because it has lacked 
an adequate mathematical formulation. But we have already seen that Geometric 
Calculus greatly facilitates the characterization of many-point properties. So now 
the many-point approach can be systematically developed. 

Since they deal with one and the same subject, the many-point and the many
fold approaches are certainly interrelated and to some degree equivalent. This 
is shown expressly by Eqns. (2.9) and (2.11). Nevertheless, for a given problem 
one approach may be much simpler than the other. Thus, though Eqn. (2.11) 
shows that the coefficients of the characteristic polynomial can be completely 
expressed in terms of the many-fold traces Tr if), the simpler many-point expres
sion a(r) • fer) certainly suggests that the characteristic polynomial is best studied 
by the many-point approach. 

The many-fold approach deals with the scalar part of a(r/(r) as a coefficient 
of the characteristic polynomial, however, it has no straightforward way of com
prehending the information about f contained in the nonscalar parts of a(r/(r)' 

Therefore, we expect that further study of a(r/(r) will give us new insight into the 
theory of linear transformations. 

3-3. Eigenblades ad Invariant Spaces 

This short section is intended to show how useful the differential and adjoint outer
morphisms can be in the study of invariant spaces of a linear transformation. We 
particularly wish to stress the value of the general relations (1.14) in this approach. 
Although other authors have found equivalent relations ([Bo] , [WhD, they have 
not exploited them or pointed out their usefulness. We are confident that much 
more can be achieved along the lines set down here. Of course, this simple approach 
is possible only because the essentials of Geometric Calculus have been developed 
before linear transformations are studied in detail. 

In accordance with common usage we say that a vector a is an eigenvector of the 
linear transformationfwith eigenvalue a if 

f(a) = QQ. (3.1) 

Except in Section 3-5, where a different possibility is considered, we always take 
eigenvalues to be scalar (real) quantities. 

The differential outermorphism l defined in Section 3-1 provides us with a 
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straightforward generalization of the notion of eigenvector. Let A = {A}k be a 
k-blade. We say that A is an eigenblade of f with eigenvalue ex if 

[(A) =aA. (3.2) 

This reduces to (3.1) if A is a vector (or I-blade). 
An eigenblade with nonvanishing eigenvalue determines a subspace of vectors 

which is invariant under f. The proof is easy. Recall from Section 1-2 that r;I = 
C§ 1 (A) is the space of all vectors b for which A " b = O. By (1.7) and (3.2), 

leA "b)=l(A)"l(b)=aA "l(b). 

So if ex 0:1= 0, then A " b = 0 implies A "f(b) = 0, which says that f(b) = f(b) is in 
.SJI. Using the same argument, it is easy to prove that the sum and intersection of 
invariant spaces (related to blades by (1-2.23) and (1-2.35» are themselves invariant 
spaces. 

The adjoint outermorphism Jintroduced in Section 3-1 provides a generalization 
of eigenvector complementary to (3 .2). We say that an r-blade B is a right eigenblade 
of fwith eigenvalue (3 if 

1(B) = (3B. (3.3) 

To distinguish (3.2) from (3.3), it is sometimes convenient to call the eigenblade A 
a left eigenblade. 

If a left eigenblade A is also a right eigenblade, we say that A is a proper blade, 
and call the corresponding eigenvalue a proper value. 

Suppose that the linear transformation f is defined on the vector space r;I = 
C§ 1 (I) with unit pseudoscalar I. With (1.17), it is trivial to show that if I is an 
eigenblade of f, it is also a proper blade of f with proper value equal to the deter
minant of the transformation, that is, 

l(1) = I det (f) = 1(1). (3.4) 

It follows that fmaps .91 into .91. For the sake of brevity, we suppose that (3.4) 
holds throughout this section. 

We say that an eigenblade off is irreducible under f if it cannot be factored into 
an outer product of blades which are also eigenblades of f. 

Consider the factorization 

(3.5) 

of the pseudoscalar I into irreducible eigenblades of f: AI, A 2, . • • , Am· By (1-
2.25), the factorization (3.5) corresponds exactly to the usual decomposition of a 
vector space .91 into a direct sum of invariant subspaces .911 = C§I (A I), ... , 
d m = C§1(Am). However, eigenblades are considerably more convenient to deal 
with than invariant subspaces because of their richer algebraic properties, which, 
for instance, make possible the eigenblade Eqn. (3.2). To prove our point, we show 
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below how some important theorems pertaining to invariant subspaces can be 
simply stated and proved, using eigenblades. 

Given (3.5), we can prove that the characteristic polynomial Clk(A) of [restricted 
to .9Ik = <§1(Ak) divides the characteristic polynomial of [ on .91 = <§I(l). 
To do this, we introduce the auxiliary function F(x) = [(x) - Ax. Comparing the 
expression (2.8b) for the characteristic polynomial of [with the expression (3.4) 
for the differential of the pseudoscalar, we see that 

E(J}= CICA.)I. (3.6) 

It is slightly more difficult to prove 

(3.7) 

Le., that Ak is an eigenblade of F with the eigenvalue Cfk(A). The key step in the 
proof is to show that 

Ak . 0xF(x) =.Ak . 0xF[Pk(x)] =Ak . oxPk(F[Pk(x»)) 

where Pk(x) == X· AtAk"l, so FlPk(x)] is the 'restriction of F to.9lk = I§I(Ak)'; 
after that, the proof of (3.7) is essentially the same as the proof of (3.6). Having 
established (3.6) and (3.7), the relation E(l) = E(A I ) " •.. "[(Am) obtained from 
(I .7) immediately gives the desired factorization of the characteristic polynomial: 

(3.8) 

If [(A) = etA and1(B) = (JB, then the general Eqns. (1.14) imply immediately 
that -

(Jl(A . B) = etA . B if grade A ~ grade B, 

a}{A' B) = M' B if grade B ~ gradeA. 

(3.9a) 

(3.9b) 

A number of important results follow almost trivially from these equations. For 
instance, if A is taken to be the pseudoscalar I, then (3.9a) is seen to imply that 
for a nonsingular transformation the dual of a right eigenblade B is a left eigenblade 
B· I = BI with eigenvalue a/(J. Applying this to the factorization (3.5), we fmd the 
'dual factorization' 

I=A 1 "A 2 " • •• "Am, (3.10) 

where the Ak are right eigenblades defmed by 

Ak = (-I)"kAI " ... "Ak " . .. "Am1t (3.1 1) 

with ek = {grade Ak) (grade A I + ... + grade Ak -1). Obviously, 

Ai" Ak =6{ (3.12) 
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Further, the eigenvalue Qk of each blade Ak is equal to that of the 'dual blade' Ak, 
that is 

(3.13) 

Another easy but important consequence of (3.9) is the fact that the projection 
bll == b· AA-1 of any eigenvector b into the 'eigenspace' ~l(A) of a proper blade 
A with nonzero proper value is an eigenvector with the same eigenvalue as b. Thus, 
if [(A) = QA = l(A) and[(b) = (jb, then by (3.9), 

I(bll) = t[(b· A) . A-1 ] =.p.. 111(b· A) . A-1 ] 
Q 

(3.14) 

This property is useful in the classification of degenerate eigenvalues. 
While the present discussion is certainly incomplete, we hope it is sufficient to 

show the utility of the eigenblade concept in connection with Geometric Algebra. 

34. Symmetric and Skew-symmetric Transformations 

Any linear transformation I = I(x) = I(x) can be uniquely expressed as a sum of 
symmetric and skewsymmetric transformations; more specifically, 

I(x) = I+(x) + I-(x), 

I+(x) == !<[(x) + 1<x» = 3x(!x· I(x)), 

I-(x) == H[(x) -1<x» =!x· (31\/). 

These equations follow easily from the definitions of differential and adjoint: 

[(x) ==x· 3yl(Y) = 3yY· I(x) = I(x), 

lex) == 3yx· l(y)· 

For example, Eqn. (4.1c) is a consequence of the identity (2-1.42). 

(4.1a) 

(4.lb) 

(4.1c) 

A linear transformation I = I(x) is said to be symmetric if it satisfies the follow
ing set of equivalent conditions 

[=1 or 1_(x)=O for all x, 

X· l(y) = yo I(x) for all x andy, 

31\1= O. 

(4.2a) 

(4.2b) 

(4.2c) 

Obviously, (4.2a) follows from (4.2c) by (4.lc). Conversely, (4.2c) can be obtained 
from (4.2a) by differentiating (4.1c). The equivalence to (4.2b) can be established 
by 'dotting' (4.1c) by y, and by differentiating (4.2b). 
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By well-known methods it can be shown that a symmetric linear transformation 
[= [(x) can be given the unique 'spectral decomposition' 

(4.3a) 

where 

(4.3b) 

and Pk = Pk(x) is the projection into the space of proper vectors of [with proper 
value Otk. As explained in Section 1-2, the geometric product can be used to give 
the projections the explicit form 

(4.3c) 

where Ek = grade Ak is equal to the 'degeneracy' of the eigenvalue Otk. The 'com
pleteness' of the spectral form can be expressed by the equation 

I=A 1A 1 •• • Am =A 1 "A1 " ... "Am; (4.3d) 

this is a factorization of the unit pseudoscalar I (which determines the domain of f) 
into a product of orthogonal unit proper blades AI • ...• Am. Each proper blade 
Ak can in turn be expressed as a product of Ek orthonormal proper vectors ajk; 
that is, 

Ak = a lkalk ... a£tk. 

By (1.7), 

[(ajk) = l(ajk) = Otkajk 

implies 

(4.4a) 

(4.4b) 

(4.4c) 

On substituting (4.3c) into (4.3a), [can be written in the alternative canonical 
form 

(4.5a) 

where 

(4.5b) 

If a linear transformation CA = CA(x) is orthogonal as well as symmetric, then 
all its proper values must have unit magnitude, and (4.5a) reduces to the simple 
canonical form 

(4.6) 
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where A is a unit blade of grade e, and A-space is the space of all proper vectors 
with proper value -1. We call (4.6) a conjugation in A-space, because it generalizes 
'complex conjugation' (a reflection in the 'imaginary axis' of the complex plane). 
The decomposition (4.3) expressesfas a superposition of projections, while (4.5) 
alternatively expresses f as a superposition of conjugations. 

A symmetric linear transformation is said to be positive if all its proper values 
are positive. By choosing A in (4.6) to be the product of all Ak in (4.3) associated 
with negative proper values, one proves immediately that any symmetric linear 
transformation can be written as a commuting composite of a positive symmetric 
transformation S = S(x) and a conjugation CA = CA (x); that is 

f{x) = S(CA(x» = CA(S(x» = (-l)fAt S(x)A. (4.7) 

A linear transformationf= f(x) said to be skew (or skew-symmetric) if it satisfies 
either of the equivalent conditions 

f(x) = [(x) = -1(x) or 2f+(x) = ax· [(x) = 0, 

and 

yof(x)=-x·f(y) or x·f(x)=O forallx,y. 

As proved in Section 2-3, the skew bilinear form (4,8b) can be written 

yo f(x) =(y Ax) ·F=y ·lx· F), 

(4.8a) 

(4.8b) 

where F is a unique bivector. Since this holds for an arbitrary vector y it follows 
thatfhas the canonical form 

f(x)=x· F=x X F, (4.9) 

where x X F is the commutator product defmed in Section 1-1. According to 
(2-1.38), the derivative of (4.9) is 

af= a Af= 2F. (4.10) 

Thus a skew linear transformation is completely determined by its curl. 
Instead of characterizing a skew transformation directly, it is easier to charac

terize its curl. Every bivector F can be expressed as a sum of distinct commuting 
blades, that is, 

F=F1 +F2 + ... +Fm , 

where 

FjFk = FkFj = Fk A Fj for k oF}, 

Fi = -IFk I2 <0. 

(4.11a) 

(4.11 b) 

(4.11c) 

All properties of a bivector F are easily ascertained after it has been reduced to 
the 'orthogonal form' (4.11a). However, as we shall prove later, this orthogonal 
decomposition is not unique if distinct blades have the same magnitude. 
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Frequently a bivector is given as a sum of nonorthogonal blades. For instance, 
if the skew transformations [(ak) = ak . F of basis vectors ak are given, then 

(4.12) 

where lik = al' [(ak) is the matrix of the transformation. The chief problem is to 
compute the Fk of (4.11) from the expression for F given by (4.12). 

To solve for the Fk it is convenient to introduce multivectors Ck of grade 2k by 
the equation 

(4.13) 

where k = 1,2, ... ,m. The right side of (4.13) is obtained by substituting (4. 11 a) 
into the left. The left side of (4.13) can be evaluated from any given expression for 
F, such as (4.12). Then (4.13) can be regarded as a set of m equations to be solved 
for each Fk in terms of given Ck '5. To begin with, the squares of the Fk can be 
found as the roots of the mth order polynomial 

m L (Ci>(_}..)m-k, (4.14) 
k=O 

as is readily verified by using (4.13) to express the coefficients (Ci> in terms of the 
Fk and comparing with the factored form (Fl - }..) (pi -}..) ... (F;' - }..) of the 
polynomial. The roots ~ == Fi of (4.14) having been determined, Eqn. (4.13) can 
be replaced by a set of m linear bivector equations for the m unknowns F k ; thus, 
from (4.13) 

(4.15) 

where k = 1,2, ... ,m, and the prime on l;' is to denote that the ith term is to be 
deleted from the sum. Equation (4.15) can be solved by standard procedure if the 
~ are all distinct. If the ~ are not all distinct, the m equations are not linearly 
independent and additional properties of F are needed to determine the Fk . 

As an example, we give the solution for m = 2, the simplest nontrivial case. 

(4.16) 

Since C1 • C2 = C1 C2 for this case, and if}", '* }..1 , 

F 
(4.17) 

The corresponding expression for the blade F2 is obtained by interchanging sub· 
scripts in (4.17). It is instructive to check (4.16) and (4.17) by inserting F = Fl + F2 . 
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To demonstrate the utility of these results, let us use them to find an orthogonal 
fonn for the bivector 

F=a(b + pd) + cd, 

where Il is a scalar and a, b, c, d are mutually orthogonal vectors with a2 = c2 = 
d 2 = 1. First we calculate 

FAF= 1Jl= 2abcd, 

where (3 = IF A FI and / is a unit 4-vector (/2 = 1). Then we calculate 

(32 = (FAF)2 =4a2b2c2d2 =4b2 

and 

Q=IFI2 =1l2 +b l + 1. 

On substituting into (4.16) and (4.17), we get the desired blades in tenns of the 
given F and the parameters III and b2 • To work out the details for a numerically 
simple example, choose Q2 - (32 = 4 and Q = 3. Then (32 = 4b2 = 5 and 1-12 = j. 
So (4.16) gives us 2AI = -1 and 2Al = -2. Using this in (4.17), we obtain 

F F (1 + IJl) F{1 + IJl) 
FI = 1-1Jl = (l-r~.') (1 +1Jl) = 1-(32 

But 

IJlF = 2abcd (ab + p.ad + cd) = - 2(b 2 cd + pbc + ab) . 

So 

F 1 (3 ..[3 ) FI =--{1 +1Jl)=- ab+-cd+..[3bc--ad 
4 4 2 2· 

This factors into the fonn 

FI = i{a -..[3 c)(2b -..[3 d), 

showing explicitly that FI is a blade, as reqUired. For the other blade, we fmd 

F2 = !F(S + IJl) = i (..[3 a + c)(Sd + 2..[3 b). 

Of course, the problem of 'orthogonalizing' a bivector is equivalent to the 
problem of putting the corresponding skew transformation in canonical form. The 
polynomial (4.14) is just the characteristic polynomial (2.8b) for f(x) = x· F, and 
comparing (4.13), (4.14) and (2.8b) we conclude that 

a(2k)·f(2k)= (_l)k (Cl>= (_l)k ([~!(pc}2kJ), 
(4.18) 

a(2k+l)· f(2k+l) = 0, 
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a result which is more difficult to obtain by carrying out the differentiation directly. 
The Ak = Fl are proper values of the symmetric transformation f"; for if ak is a 
vector satisfying ak A Fk = 0, then by (4.11b) ak' ~ = 0 for i:#= t, so by using 
(4.11a) in (4.9) one shows easily that 

["(ak) = (ak' F). F= Flak' (4.19) 

Beginning with this observation, it is a simple matter to prove that every blade Fk 
can be written 

(4.20) 

where {a1,' .. , am, b ... .. , bm } is a set of orthonormal proper vectors off" with 
nonvanishing proper values. 

We now supply the promised proof that the decomposition o[ a bivector into 
orthogonal blades is not unique i[ distinct blades have the atUne magnitude with an 
argument due to Bernard Jancewicz (personal communication). In accordance with 
(4.20), for the case m = 2, the orthogonal decomposition of a bivector F can be put 
in the form 

where a = IF11 and (j = IF"I. Our proof has its clearest and most elegant form if 
we use a result proved in the next section, namely, that any rotation of the proper 
vectors ak and bk can be written in the form 

ak =Rta~ andbk =Rtb~. 
Consider a rotation specified by 

R =R 1R" = eQ1Q,,8/2 i1b,,~/2 = expU(a1 Q ,,8 +b 1b21/1)]. 

Then, 

aajb~ +(ja~b; = RtFR =FR" =FR~R~. 

This provides us with a different decomposition of F into commuting blades aa~ b ~ 
and (ja; b~ if 

in other words, if F is an eigenbivector of the rotation determined by R. More 
explicitly, this condition can be written 

aa1b1 + (ja"b2 = (aa1b 1 +(ja"b")eQ1Q,,,1 eb1b,,~ 

= (aa1 a" + (ja"b,,)(cos 8 +Ola" sin 8)(cos 1/1 + b 1b" sin 1/1). 

Expanding this last line we fmd that the condition can be satisfied for arbitrary 9 = 
1/1 if and only if a = (j. Thus, we have proved that the decomposition of a bivector 
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into orthogonal blades is not unique if any two of the blades are degenerate in the 
sense that they have the same magnitude. This nonuniqueness for degenerate blades 
is similar to the degeneracy of distinct eigenvectors with the same eigenvalues. 

The differential transformation of a bivector induced by f(a) = a· F is easily 
found from 

[(aAb) =f(a) Af(b) = (a· F)A(b· F) 

and 

(a Ab)· (FAF)=a· [2(b· F)AF] = 2(a Ab) ·FF+ 2(a· F)A(b· F). 

Thus, 

[(a A b) = ! (a A b) . (F A F) - (a A b) . FF. (4.21) 

Similarly the specific form of the differential[(a A b A c) can be ascertained from 

(aAbAc) ·(FAFAF) =(aAb)· [3FAFA(c· F)] 

=3a· [2FA(b· F)A(c· F)+FAF(bAc)· F) 

= 3! f(a) Af(b) Af(c)+3FA [(a Ab Ac) ·(FAF)] , 

the last term being obtained by noting that 

(a A b A c) . (F A F) = (a A b) . [2F A (c . F)] 

= 2a. [(b· F)A(c· F) +F(b Ac)·F] 

= 2 [(a Ab) ·Fc· F+(c Aa)·Fb· F+(b Ac) ·Fa· F]. 

Continuing in this manner, the differential and adjoint transformations of an 
. arbitrary r-vector A, are found to be 

, 
f(~,)=(-l)'1(A,)= L (_I)'-k (r-k)!C,_kA(A,·Ck) 
- k=p 

= ~A,.(F')2'+ (r~l)! FA(A,·<F,-l)2,_2)+ 

(-l)'-P(F'-P) A(A ( P + ... + 7 2(,-p)'· F )2p)' (4.22) 

where the Ck are dermed by (4.13) for k > 0, Co == 1, and p = r/2 if r is even, while 
p =!(r+ 1) ifris odd. 

The differential transformation (4.21) is a symmetric bivector function of a 
bivector variable, and the problem of solving the eigenbivector equation 

(4.23) 

is just the problem of orthogonalizing a bivector. Thus skew transformations of 
vectors correspoJ'ui to symmetric transformations of bivectors. 
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To evaluate characteristic multivectors and carry out other computations, it is 
convenient to have formulas for derivatives of skew transformations. We list some 
without proof for reference purposes. 

af AA, = F X A, + 2F AA" (4.24) 

(Ar A a)f=A, X F+ 2F AA,. (4.25) 

Ifr;;;' 2, 

af· A, =FX A, + 2F. A" (4.26) 

A,· af=A, X F+ 2F. A" (4.27) 

aA,f= 2(-1)'{..4, AF-A,· F), (4.28) 

fk+l{x) = fk(x)· F= -F· (x A ay)fk(y), (4.29) 

a· fk+l = F· (a Afk), (4.30) 

a A/*+1 = a A(fk. F) = (F· a)A/*, (4.31) 

afk + 1 = F· afk , (4.32) 

af2k = a· f2k, (4.33) 

af2k+l = a Af2k+l. (4.34) 

The above formulas can be used to evaluate derivatives of powers of fby iteration. 
The same end can be achieved more directly by eliminating inner products in favor 
of geometric products to get fk in the form 

fk(x) = -1- t (_1)' ( ~) F'xFk -,. (4.35) 
2 ,=0 

From (2-1.40), 

Sm 

axF'x = nF' - 4 L s(F')2s' 
&=0 

(4.36) 

where 8m = r if r even, or 8m = r - 1 if r odd. Applying (4.36) to (4.35) we get, for 
k>O, 

afk = ~ t (-1)' ( ~) [ s (F')2f Fk - r. 
2 r=O 8=1 

(4.37) 

the terms nF' from (4.36) having been cance11ed by virtue of the identity 

Jo(~)(-l)r=o fork>O. (4.38) 

Many other terms in (4.37) cancel, because a/* is a bivector if k is odd and a scalar 
if k is even. Thus, though (4.37) is explicit, it is unwieldy. 
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3.S. Normal and Orthogonal Transformations 

The skew symmetric part 1_ of a linear transfonnation I is quite similar to the 
imaginary part of a complex number, since it always produces a vector (possibly 
zero) orthogonal to any it operates on. If the symmetric part 1+ of I commutes with 
the skew part. then the decomposition (4.1) of lin to 1+ and/_ corresponds to the 
decomposition of a complex number into real and imaginary parts. We wish to 
show how geometric algebra enhances this correspondence and so provides insight 
into the role of complex numbers in linear algebra. 

A linear transfonnation/= 1+ + 1_ is said to be normal ifit satisfies the following 
equivalent conditions. 

I+(f-(x» = I-(f+(x», 

1[(A) = if(A). 

<[(A )[(B» = (f(A )l(B» 

(5.1a) 

(S.lb) 

(5.1c) 

for any vector x and multivectors A. B. Actually it suffices to assume that (5.1) 
holds for vectors; the general statement of (5.1) for arbitrary multivectors can 
then be proved with the help of (1.7). Equivalence of (S.1 b) and (S.1c) can be 
established by using (2-2.l9b) to get the sequence of equations ' 

<[(A )[(B» = <Alf.(B» = <A!/(B» = (f(A )l(B». 
Proof that (S.la) is equivalent to (~.lb) requires only the defmitions of 1+ andl _. 

The properties of normal tranSfonnations are easily found from the known 
properties of symmetric and skew transfonnations. As shown below, the com
mutivity (S.1a) of 1+ and 1- implies that every eigenblade of 1- is an eigenblade of 
1+. But we know that the irreducible eigenblades of 1+ are proper vectors, while, 
outside its nullspace, the irreducible blades of I_are proper bivectors. Hence the 
irreducible eigenblades of any nonnal transfonnation are proper blades of grade 1 
and 2. 

According to the results of the preceding section, for any linear transformation 
I, we can write 

n 
a A/= a A/_ = L (jkik == 2F, 

k=} 

where the i k are bivectors with the properties 

i1 = -1, i;ik = iki;, 

and 

(S.2a) 

(S.2b) 

(S.2c) 

In the sum (S.2a) at least one of the (jk must vanish if n is odd, and the nonvanish
ing tenns are identical in pairs but otherwise distinct. 
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Operating on (5.2c) with the differential of 1+ and using (5.la) we fmd imme
diately that I+(ik) is an eigenbJade of I_with eigenvalue 6;, but, if the 6i are 
distinct, onlybivectors proportional to i;have this property, so we can write 

(5.3) 

where a; is some scalar. Thus, the ik-plane is invariant under I_.t+ and/: 1+ + 1_. 
Since every symmetric transformation has a complete set of eigenvectors, 1+ must 
have an eigenvector ak in the ik plane. Again, using (5.la), we find that L{ak) is 
also an eigenvector of 1+ with the same eigenvalue as ak' It follows that every 
vector in the ik-plane is an eigenvector of 1+ with, to be consistent with (5.3) and 
(4.5a), eigenvalue ak' 

Thus, for any normal transformation I, there exists an orthonormal frame of 
vectors ak which are eigenvectors of 1+, 

and satisfying, in accordance with (5.2), 

I_(ak) : akik6k : -ikak6k' 

Combining (5.4a) and (5.4b), one obtains 

l(ak):akAk: Akak' 

1(ak): Akak: akAk, 

where 

and 

(5.4a) 

(5.4b) 

(5.5a) 

(5.5b) 

(5.6a) 

(5.6b) 

(5.6c) 

(5.7) 

The Ak with 6k "* 0 are identical in pairs but otherwise distinct. The exponential in 
(5.6a) can be defmed by a power series. 

(5.8) 
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And note that, for 16k l = 0 or 1T (i.e. for ak = Pk or ak = -Pk) the corresponding 
ik is not (and need not be) defmed. The above equations lead to the following 
'spectral decomposition' of a normal transformation: 

n () 
f<X) = L Pk(x)~k = L Pk(x)Pk e k, (S.9a) 

k=1 k 

where 

(S.9b) 

Equations (S.5) and (S.6) suggest that ~k be regarded as a 'complex eigenvalue' 
associated with eigenvector ak. Indeed, the ~k are roots of the characteristic equa
tion for [, differing from the usual complex eigenvalues of a normal transformation 
only in using the bivectors ik as roots of the equation j2 = -1 in place of the usual 
v=r which is supposed to be a scalar. But this small difference alters the notion 
of eigenvalue considerably. Thus, for Pk * 0, Eqn. (S.5a) implies that under [the 
ik-plane undergoes a homothetic traDsfonnation, every vector in the plane being 
dilated by the factor Pk and rotated 'through' an oriented angle 6 k = 16k I ik . 
Equation (S.Sb) shows tha!. the 'conjugate eigenvalue' ~l is associated with the 
'conjugate transfonnation' [, and multiplication rotates vectors of the ik-plane in 
the 'opposite direction'. 

It should be noted that, without further conditions, the equation 

f(a)=a~ (5.10) 

cannot be regarded as an 'eigenvalue equation'; for every vector a satisfies such an 
equation, as can be seen by taldng ~ = a-I [(a). The additional condition 

f(a) = Nz = a-I f(a)a (5.11) 

only implies that a is an eigenvector of [+. If }.. is to be regarded as an eigenvalue, 
some restriction must be made on its bivector part. It seems natural to require that 

t~)=1<~)· (S.12) 

However, the preceding discussion shows that any transfonnation with n orthogonal 
vectors satisfying (S.10-12) is a nonnal transformation. So it is not immediately 
obvious how best to generalize the notion of eigenvalues along the lines above to 
apply to arbitrary linear transfonnations. 

The discussion leading to the spectral fonn (5.9) for a nonnal transformation 
f provides a systematic procedure for finding the eigenvectors and 'complex eigen
values' if [ is given. for instance. in the fonn of a matrix. First, one takes the 
curl of [and frods its m orthogonal blades, for instance. by the procedure outlined 
in Section 3-4. One has then 

2m m 

a 1\[= L Pkik = 2 L P2k j2k' (S.13a) 
k=1 k=1 
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where 

f32k = f32k-l and i2k = i2k -1, (5.13b) 

Factoring i2k into a product of orthonormal vectors. 

(5.14) 

one has the 2m eigenvectors at. al • ...• a2m with complex eigenvalues Ak = 
ak + ik f3k' The ik f3k are known from (5.13a), and the a2k = a2k-l are easily 
found from 

(5.15) 

The remaining eigenvectors a2m + l' ...• an -1' an of the desired orthonormal set 
satisfy 

(5.16) 

so they can be found by well-known methods used for symmetric transformations. 
The eigenvectors of a normal transformation can also be found by relying 

primarily on the methods used for symmetric transformations. To show this, note 
that 

a 1\ [(a) - 1{a) 1\ a = 2a 1\ [+(a); (5.17) 

also note that 

(5.18a) 

where 

1{a) =I[(a) = [1{a). (5.18b) 
- - -

Comparing, one sees that the conditions (5.10-12) for a to be an eigenvector 
obtain if and only if (5.17) and (5.18a) vanish Simultaneously, that is, if and 
only if a is an eigenvector of the two symmetric transformations [+ and [ simul

. taneously. Thus, to find the eigenvectors of [, it will suffice to find the simultaneous 
eigenvectors of [+ and 1. except in the (unusual) case of 'degenerate complex 
roots' (Le. when ak = ai and f3k = f3j =1= 0 for distinct ik and ij ), when, as already 
mentioned in the discussion of skew transformations, special methods are required. 
Once the eigenvectors ak have been found, the bivector parts of the corresponding 
eigenvalues are easily found from f3kik = ak I\[(ak)' 

Geometric Algebra admits especially simple canonical forms for orthogonal 
transformations. A linear transformation R defined on a vector space d n is said to 
be orthogonal if 

(5.19a) 
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or equivalently, if 

<B (A)E (B» = <AB) (5.19b) 

for all multivectors A, B in f§(.!iI,,). Actually, it is easy to show that (5.19) holds 
in general if it is assumed only to hold for vectors. For the sake of brevity, we 
suppose here that the range of R is the same as its domain; this restriction affects 
only the interpretation and not the form of our results. 

Since an orthogonal transformation is normal, the spectral decomposition (5.9) 
obtains. However, condition (5.19a) applied to (5.5a) implies that Pk = 1 in (5.6a) 
for all k, so the n 'eigenvectors' ak of an orthogonal transformation f satisfy 

(5.20) 

To derive simple canonical forms for an orthogonal transformation, we take note 
of the algebraic properties of the eigenvectors and eigenvalues. Suppose for the 

. moment that the number of distinct eigenvectors with 'negative eigenvalues' (efJk = 
e'k ff = -I) is even. Then there is an even number 2m of eigenvectors with eigen
values efJk #: I, and they can be ordered so that, as in (5.14), 

a2k-laU =iU_I =iu =18ul-182k' 
(5.21) 

8u = 8U - 1 for k = 1, ... ,m. 

It should be noted that there is a trivial ambiguity in the pairing of eigenvectors 
with negative eigenvalues if there are more than two of them. Now, for k = I, ... , 
m andj= 1, ... ,n, 

a/iU = -i211Z1 ifj = 2k - I, 2k, 

a/iu =i2kaj ifj#:2k-I,2k. 

Hence, by (5.8), 

e -tJ U /2aj efJ2kl2 = aj efJu ifj = 2k - I, 2k, 

e -fJ2k12 flJ efJu/2 = aj ifj #: 2k - I, 2k. 

Recalling that, by (5.7), 

and using (5.23), one finds easily from (5.9) that 

~ fJu ~/2 fJI2 
R(x) = L. P2k(x)'e = e x e , 

k=O 

(5.22) 

(5.23) 

(S.24) 

(S.25a) 
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where 

P () - . .t - 8 8-1 
2k x =x"2k'2k- x , 2k 2k' (5.25b) 

m 
Po(x)=x- L Pn(x), (5.25c) 

k=1 

m 

8 = L 82k · (5.25d) 
k=l 

The exponential e8 / 2 of the m-bladed bivector ! 8 can be dermed, as usual, by a 
power series 

e8/2=. i: (!8t =e81/2e84/2 ... e82m/2. 

r=O r! 
(5.26) 

Equivalence of the left and right sides of (5.26) follows from the commutivity 
(5.24) of the factors. 

Using (5.26) in (5.25a), one can write R as the composite 

(5.27a) 

where 

(5.27b) 

is a rotation through an angle 182k 1 in the i2k-plane, that is, a rotation 'through' 
a directed angle 8n . The interpretation of Ric as a rotation in a plane is fairly 
obvious from its spectral decomposition; in any case, it is discussed in more detail 
in reference [H4]. Equation (5.27a) expresses a general rotation as a composite of 
rotations in orthogonal planes, the 'orthogonality' of the rotations being expressed 
by their commutivity, 

(5.28) 

as follows at once from (5.24). Thus the right side of (5.25a) is the canonicai form 
for a rotation as a function of the m-bladed directed angle 8. 

Our derivation of (5.25a) proves that every rotation can be put in that canonical 
form. Conversely, every bivector 8 determines a rotation by (5.25a). The right side 
of Eqn. (5.25a) generalizes Hamilton's quaternion formulation of rotations. It has 
been derived before; we first learned about it from Marcel Riesz [Rl]. However, in 
spite of its considerable advantages over the corresponding matrix representation of 
rotations, it has been little used, because it has not been integrated into a systematic 
general theory of linear transformations. The present treatment aims to rectify that 
unfortunate state of affairs. 
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Another representation of a rotation can be obtained by using the fact that the 
exponential of a simple bivector can be factored into a product of unit vectors; 
thus, 

82k/2 e =Ulk-lUlk' (5.29) 

This factorization is not unique; any pair of unit vectors in the 82k -plane separated 
by an angle! 82k will do. Substitution of (5.26) and (5.29) in (5.25a) yields 

R(x)=U2m'" U2 Ul XU I U2··· u2m =C2m ... C2C1 (X), 

where 

(5.30) 

(5.31) 

We call the linear transformation (5.31) a simple reflection. It is discussed further 
in Section 8 of reference [80J. Comparing (5.29) and (5.31) with (5.27b), it is 
clear that 

(5.32) 

So by (5.28), (5.30) gives the decomposition of a rotation into 2m simple reflec
tions which commute in pairs. 

We now consider the case of an orthogonal transformation R' = R'(x) with an 
odd number p = 2m + 1 of eigenvalues different from one. At least one of these, 
say the pth, must be negative; so all the eigenvectors ak of R' are also eigenvectors 
of the simple reflection 

Cp(x) = -arap . (5.33) 

For, by the anticommutivity of orthogonal vectors, 

and of course, 

Cp(ap) = -ap ' 

If the first 2m eigenvectors are arranged as before, it is evident that R' can be 
expressed as a commuting composite of (5.30) and (5.33). Thus 

(5.34) 

or, with up = ap' 

R'(x) = (-I)Pup ... U2UlXUIU2 ... up' (5.35) 

Obviously, (5.30) can be regarded as a special case of (5.35) if p is allowed to be 
even as well as odd. Thus, any orthogonal transformation can be expressed in the 
form (5.35), and we have proved, by the way, a theorem of Cartan's that every 
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orthogonal transformation can be expressed as a product of at most n elementary 
reflections. Also note that if the uk are orthogonal, we can take Uk = ak and R' 
reduces to a conjugation as defmed by (4.6). 

To summarize, we have shown that every orthogonal transformation R = R(x) 
can be written in the canonical form 

R(x) = (-llutxu, (5.36a) 

where 

uut = I, (5.36b) 

and 

{U)p*O but (U)k=O fork>p. (5.36c) 

If p is even, R is said to be a rotation, and if p is odd, R is said to be a reflection. 
The multivector U can always be expressed as a product of p vectors as in (5.35), 
and if p is even, U can be expressed as the exponential of a bivector as in (5.25a). 
(See Section 8 for further discussion from a more general viewpoint.) It should be 
mentioned that there are many other decompositions of U which are useful for 
various purposes. Given (5.36), it is possible to express any parametrization of an 
orthogonal transformation as some algebraic decomposition of U. 

The differential and adjoint of an orthogonal transformation can be obtained 
from (5.36) simply by multiplication. Thus, if Ar is an r-vector 

[(Ar) = (-l)'PUtArU, 

f(Ar) = (-l)rpUArUt. 

Further, if Br is an s-vector, then 

while a similar relation obviously holds for the adjoint. 

(5.37a) 

(5.37b) 

(5.38) 

If an orthogonal transformation R is given, say, in the form of a matrix, its 
canonical form (5.36a) can be found by methods already mentioned. But the 
systematic procedure is important enough to merit review. First, one computes 
the curl of R. By (5.13) and (5.21), 

m 
a I\R = 2 L i2k sin 18n I. (5.39) 

k=l 

The m orthogonal blades of! a 1\ R are precisely the non-vanishing 'imaginary 
parts' of the eigenvalues of R. Solving (5.39) for the in and 18n I, we get 

m 
e9 / 2 = n e192klin/2. (5.40) 

k=l 
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If R has no negative eigenvalues, then U = e8/ 2 andR is a rotation given by (S.36) 
with P = 2m. In any case, the number E of orthogonal eigenvectors with negative 
eigenvalues can be found immediately from the divergence ofR. For, 

n m 
a'R= L cosi82ki =2 L cosi82ki +n-2m-2E. (S.41) 

k=1 k=1 

If E *- 0, the problem of determining Uhas at least been reduced to the problem of 
rmding the eigenvectors of a symmetric transformation in the space of vectors 
orthogonal to the i2 A i4 A ... A i2m space. If a2m +1' a2m +2" ..• a2m +e are any 
set of orthonormal eigenvectors of this symmetric transformation with negative 
eigenvalues, then, of course, 

U= e8/ 2Ae =Ae e8/ 2 (S.42) 

whereA e =a2m+la2m+2'" a2m+e' AndR is given by (S.36a) withp = 2m + E. 

3-6. Canonical Forms for General linear Transformations 

The appropriate choice of a canonical form for an arbitrary linear transformation 
depends on its intended use. We do not discuss the classical Jordan form here, 
because we have not learned how to use Geometric Algebra to any decisive advan· 
tage in its formulation, though the developments in Section 3·3 are promising. 
A rather different approach was taken in our construction of the spectral form for 
a normal transformation. It was based on the separation of a transformation into 
symmetric and skew-symmetric parts. Similarly, canonical forms for any linear 
transformation 1 can be based on the relation of the eigenvectors of 1+ to the blades 
of a A I. We will not pursue this approach here, though it is clear that Geometric 
Algebra would be helpful since it provides such an economical formulation of skew 
transformations. 

For a non-normal transformation 1 the analogy of 1+ and 1- to the real and 
imaginary parts of a complex number fails because 1+ and 1- do not commute. 
However, the analogy with complex numbers is preserved by the so-called polar 
decomposition, which expresses 1 as a composite of a symmetric transformation S 
and a rotationR, that is, 

I{x) = RS(x) = ut S{x)U, (6.1) 

where U is a unitary spinor. Standard proofs of the polar decomposition are simple 
enough without appeal to Geometric Algebra. But computation of the polar decom
position is facilitated by the 'spinor representation~ of the rotation in (6.1). For 
example, let f= I(x) be a linear transformation in a two-dimensional space. Then 
(6.1) assumes the Simpler form [(x) = S(x)U2 • Since S is a symmetric transforma
tion, its curl vanishes. so 

3/={3' S)~, (6.2a) 
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from which we find 

a· S=lafl, (6.2b) 

lfl =~ =/8 
lafl ' 

(6.2c) 

It aAf 
tan8=---

a·f ' 
(6.2d) 

where I is the unit pseudoscalar and 8 is the angle of rotation. It should be men
tioned that we can choose a· s;;;. ° as in (6.2b), because a negative sign can always 
be absorbed in U2 as a rotation through an angle fT. Finally, we get the symmetric 
part off from 

Sex) = lflf(x). (6.2e) 

Unfortunately, this method is not so automatic when applied to transfonnations 
in higher dimensions. 

As a significant application of (6.2), consider the function 

f(x)=x+x.ab. 

Wefmd 

af=2+ab, 

aAb 
tan 8 = (2 + a - b)/' 

2 _. 2 + ab 
U - (4 + 4a - b + a 2 b 2 ) if, , 

(2 + a· b)x + X· ab + x· ba + a· xb 2a 
S~)-~--~--------~~----

- (4+4a-b+a 2 b2 )Yz 

(6.3a) 

(6.3b) 

(6.3c) 

(6.3d) 

(6.3e) 

In this case, the restriction to two dimensions is easily removed to get a more 
general result. 

Every linear transfonnation, hence every canonical fonn, can be expressed as a 
composite of elementary transfonnations of the types Ra and Sab defined by 

Ra(x) = -axa- I , 

Sab(X) =x +X· ab, 

(6.4) 

(6.5) 

where a and b are non-zero vectors parametrizing the transformations. The elemen
tary reflection Ra has already been discussed. The transfonnation Sab is a shear in 
the a A b-plane if a· b = 0, and if a A b = 0, Sab is a strain along a. 
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To prove that any linear transformation can be expressed as a product of types 
Ra and Sab, it is sufficient to prove that every symmetric transformation can be 
composed of strains in orthogonal directions and appeal to the polar form (6.1), 
for we have already proved that every rotation can be composed of elementary 
reflections. 

Elementary operations on rows and columns of matrices are, of course, simply 
related to Ra and Sa b. This is easily established by choosing an orthonormal frame 
of vectors ak and defining the functions 

(6.6) 

and, 

(6.7) 

Operating on the set of vectors {ak}, the reflection Pij simply permutes the ith and 
jth vector, while SU multiplies the ith vector by (1 + 0:). For fear of overdoing the 
obvious, we say no more on the subject. 

3-7. Metric Tensors and Isometries 

Every linear transformation g(y) of d n = ~1 (I) into itself determines a unique 
bilinear form 

g(x, y) = x· g(y). (7.1) 

Conversely, from the bilinear form g(x, y) we get the linear transformation 

g(y) = 3xg(x, y). (7.2) 

Thus, a bilinear form is equivalent to a linear transformation. 
A bilinear form can be regarded as an 'inner product' x • y of vectors, where 

x • y =g(x, y) = x· g(y). (7.3) 

Because of its conciseness, the notation x • y is convenient for a bilinear form which 
is used repeatedly, but g(x, y) and x . g(y) are better notations when a variety of 
forms is being considered. 

A bilinear form g(x, y) or its equivalent linear transformation g(y) is said to be a 
metric tensor if 

x • x = g(x, x) = x . g(x) (7.4) 

is regarded as determining a length Ix • Xllil for each vector x in d n. The study of 
a bilinear form g(x, y) is equivalent to the study of a 'metric' or 'metric structure' 
gon .9In . 
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A bilinear fonn or metric on d n is said to be nonsinguiar if for every x in 
d n there exists a vector y such that g(x, y) '1-= 0, that is, if the corresponding 
metric tensor g(y) is nonsingular. It is not difficult to prove that any singular 
linear transformation on d n can be expressed as the composite of a nonsingular 
transformation with a projection into a subspace of d n . So we can restrict our 
attention to nongsingular metrics without loss of generality. 

A linear transformation 1= I(x) is said to be an isometry of a metric tensor g if 
it leaves the 'inner product' (7.3) invariant, that is, if 

I(x) • 1(Y) = I(x) . gf(y) = X· g(y) = x • y, (7.Sa) 

or equivalently, if 

19f(y) = g(y). (7.5b) 

We wish to explain how Geometric Algebra can best be used to characterize the 
isometries of any given metuc tensor. Since a bilinear fonn can be uniquely ex· 
pressed as a sum of symmetric and skewsymmetric parts, we can consider each part 
separately. We discuss isometries of skew bilinear forms first. 

We already know that any skew bilinear fonn can be written x . g(y)=x· (y. G)= 
(x 1\ y) . G where G is a bivector. Therefore any isometry I of such a fonn must 
satisfy 

I(x) 1\1(y) . G = [(x I\y) . G = (x I\y) . leG) = (x I\y) . G, (7.6a) 

or, 

leG) = G. (7.6b) 

Isometries of a given skew bilinear fonn are commonly called symplectic trans· 
lonnations. The group of all such isometries is called the symplectic group. Accord· 
ing to (7.6), the symplectic group can equally well be regarded as the group of 
outennorphisms which leave a given bivector invariant. With Geometric Algebra 
at our disposal, this latter view is the simplest, because we can determine the 
structure of the group directly from its action on G in (7.6) without examining 
its effect on arbitrary vectors. To begin with, we know that G can be uniquely 
expressed as the sum of commuting blades: 

G=G1 +G1 +"'+Gm , (7.7a) 

(7.7b) 

We can assume that 

G1 -k --1 (7.7c) 
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without disturbing the structure of the symplectic group. It follows that 

m 
g2(x)=(x·G)·G= L (x' Gk)Gk=-x, 

k=l 

from which it is clear that g is nonsingular only if n = 2m, and 

g-I(X) = -g(x) = -x' G. 

Using (7.8) in connection with (7.5b), it is easy to prove that 

{d(Y) = g(y), 

Chapter 3 

(7.8) 

(7.9) 

which is to say that if {is symplectic, then so is the adjoint of {. It follows that we 
can replace (7.6) by 

[J.G) =G. 

The determinant of {can be computed directly from (7.10); consider 

<[[(G)]m)2m = <am>2m' 

Each nonvanishing term on the right side of (7.11) can be written 

Gl AG2 A ... AGm =G I G2 ••• Gm =1, 

(7.10) 

(7.11) 

(7.12) 

where I is the unit pseudoscalar of .91,. = .JJI2m . Since {is an outermorphism, the 
nonvanishing terms on the left of (7.11) can be written -

(7.13) 

Hence, 

[(l) = I. (7.14) 

Thus the determinant of a symplectic transformation must be unity . 
The results of Section 3·5 enable us to fmd those symplectic transformations 

which are orthogonal by inspection. If {is orthogonal, then, according to (5.36) 
and (5.37), (7.10) can be written as an explicit algebraic equation 

utGU= G, (7.15) 

where ut U = 1. Reflections are excluded by (7.14); this can also be proved directly 
from (7.15) by showing that (7.15) cannot be satisfied if Uis a vector. The rotation 
(7.15) can be factored into at most m rotations in orthogonal planes, as is best 
expressed by the factorization 

(7.16a) 

(7.l6b) 
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The irreducible symplectic rotations are of two types. those that leave the blades of 
G unchanged and those that map one blade of G into another. The spinors for the 
first type satisfy the equation 

UkGFk = Gj for alIi. 

which has the solution 

U = e(Jk Gk/2 
k 

(7.17a) 

(7.17b) 

Thus, the symplectic transformation f(x) = utxuk is merely a rotation in the Gk -

plane through an angle Ok' An irreducible rotation which interchanges theith and 
kth blades of G satisfies the equations 

~tGFjk = G/~k)2 = Gk • 

~tGi~k = G; if i '* i. k. 

The transformation (7.18a, b) is induced by a symplectic rotation 

~tej~k =ek , 

(7.18a) 

(7.18b) 

(7.18c) 

which rotates a unit vector ej in the Grplane into a unit vector ek in the Gk-plane. 
We can factor Gk into a product of orthogonal vectors 

(7.19a) 

where 

(7.19b) 

Using the corresponding factorization for Gj , we can write the solution to (7.18) in 
the form 

(7.20) 

Clearly (7.20) is the spinor which rotates ej into e" and ej into ek' Now the most 
general 'symplectic spinor' (7.16a) can be composed of single factors of the type 
(7 .17b) and pairs of factors of the type (7.20). 

A factorization of type (7.19) of each blade Gk of G provides us with a basis 
el, ... , ek, e;, ... , e" for .9I2m , which we call a symplectic basis. The basis 
satisfies the relations 

(7.21a) 

(7.21b) 

where, of course, x • y = x . g(y) = (x Ay) . G is the 'symplectic inner product'. 
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Our analysis of symplectic rotations shows that any symplectic basis can be 
rotated into any other symplectic basIs. Hence, any symplectic transformation can 
be expressed as the composite of a rotation and a transformation [which leaves 
a vector ek in each Gk-plane invariant. The most general such transformation 
satisfies the equations 

(7.22) 

m 
[(ei) = L (Cljjej + (3jjej), (7.23) 

j= 1 

where, the. scalars Cljj and (3jj are restricted by the condition that the relations (7.21) 
be invariant. Hence, 

[Cei) • [(ek) = {3jk = 6jk , 

[(e;) • f(ek> = L (Cljjej' eic + ei • ej~j) = -Cljk + (l(kj = 0, 
i 

and (7.23) reduces to 

f(ei) = ei + L Cljkek' where Cljk = (l(kj' 
k 

(7.24) 

Of course, x = r,kxkek + xiceic, where xic = X· eic = X· g(ek) = x 'ek, so, from 
(7.22) and (7.24), we have 

f(x) = x + L ~kx • ejek 
j,k 

=x + L ~x • ekek + L ~k(x ·ejek +x 'ekej), 
k /<k 

(725) 

where (l(k == (l(u. It is easily verified that (7.25) can be factored into a composite of 
commuting symplectic transformations 

Thus, 

A (x) =X + (l(kX 'ekek' 

fjk(x) = x + Cljk(x 'ejek + x • ekej)' 

f(x) = n fJ'-k(x) 
j < k I I 

(7.26a) 

(7.26b) 

(7.26c) 

where II indicates product. To sum up, every symplectic transformation can be 
expressed as the composite of a rotation and a transformation of the type (7.26). 

The transformation (7.26a) should be recognized as a shear in the Gk-plane. Any 
rotation in the Gk-piane can be expressed as a composite of shears, as can be proved 
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by the method used to compute the polar decomposition in Section 6. Indeed, it 
can be proved ([Ar] , p. 137) that any symplectic transformation can be obtained 
as a composite of symplectic transformations of the type 

ftz(x) = x + Q(JIl • x, (7.27) 

where a is a vector and Q is a scalar. The transformation (7.27) is called a symplectic 
transvection by Artin [ArJ. A symplectic basis can always be found which gives 
(7.27) the form (7.25). 

Our remaining considerations in this section concern symmetric bilinear forms. 
A form g(x, y) is said to be positive definite or Euclidean if g(x, x) > 0 for all x * O. 
The form g(x, y) = X· g(y) is positive defmite if and only if there exists a non
singular symmetric linear transformation h(x), such that 

g(x, y) = h(x) . heY) = X. h2(y). (7.28) 

This follows easily from the fact that since g = h2 is a symmetric function, its 
'square root' h can be found by well-known methods. 

The isometries of (7.28) are essentially the same as the isometries of X· y, namely 
the orthogonal transformations, which we have already completely characterized 
in Section 5. For to each isometry R(x) of x· y there obviously corresponds 
exactly one isometry h-1Rh of (7.28). We can regard h(x) as a mere change of 
scale or choice of units in the underlying vector space d n , and this evidently does 
not alter the structure of the isometry group. Disregarding the positive symmetric 
transformations which we have just analyzed, it is clear from (4.7) that the most 
general nonsingular metric tensor which remains to be considered has the form 

(7.29) 

where Q is a blade of grade k and Q t Q = I. The expression (7.29) is the general 
canonical form for a symmetric orthogonal linear transformation. The function 
(7.29) determines the inner product 

(7.30) 

The k-blade Q determines a k-dimensional subspace ~I(Q) of d n . Recalling 
(1-2.8), we can write 

Y=Yl +YII> (7.3la) 

where 

YII =y. QQt (7.31b) 

is the component of Y in ~I (Q), and 

(7.31c) 
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is the component of Y orthogonal to all vectors in f§l (Q). From our study of 
orthogonal transformations in Section 3-5, we know that the transformation (7.29) 
reverses the direction of vectors in f§1 (Q) and leaves vectors orthogonal to f§1 (Q) 
unchanged. Hence, 

g(y) =g(Yl) + g(YlI) = Yl - YII' 

So the inner product (7.30) can be written 

x·Y =x· (Yl- YO) =Xl' Yl - xII' YII' 

(7.32) 

(7.33) 

Clearly we can fmd at most! k linearly independent vectors with the property 
x • x < 0 and at most n - k linearly independent vectors with the property x • x > 
O. We say that (7.30) is a metric with signature (n - k, k). The metric is referred 
to as Euclidean if k = 0 or k = n, and pseudoEuclidean otherwise. 

If h is any nonsingular transformation of d n which is not an isometry of g, 
then instead of (7.5b), we have the operator equation, 

hgh =g', (7.34) 

which can be regarded as a change of metric from g to g'. We have considered such 
a change of the Euclidean metric in connection with (7.28). The important feature 
of (7.34) is that g' has the same signature as g, so nonEuclidean metrics cannot be 
obtained from Euclidean metrics by transformations of d n . This is known as 
Sylvester's Law of Inertia. We will not bother to prove it. 

Isometries of the pseudo Euclidean metric (7.30) can be characterized by the 
method we used to characterize symplectic transformations. For example, a rotation 
or reflection R(x) is an isometry of (7.30) if and only if B(Q) = ±Q. But we have 
adequately illustrated this method already, so we consider a different approach in' 
the next section. 

3-8. Isometries and SpinolS of PseudoEuclidean Spaces 

In the preceding section we saw how to characterize any metric tensor and its 
isometries with the Euclidean Geometric Algebra. In this section we take a more 
direct approach, expressing the isometries of a symmetric metric tensor with 
signature (p, q) in terms of its associated pseudoEuclidean Geometric Algebra, In 
Section 3-7 we regarded metric tensors with different signatures as different kinds 
of functions on a single vector space. Here the metric tensor is identified with the 
inner product which is regarded as part of the very notion of vector, so the study 
of metric tensors with different signatures becomes the study of different kinds of 
vector spaces. 

This section employs the nomenclature and properties of pseudoEuclidean 
Geometries Algebras developed in Section 1-5. Let dp,q = f§l(l) be a (p+q)
dimensional vector space with a nonsingular unit pseudoscalar I of signature (p, q). 
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The inner product x· y of vectors in SlIp. q defines a metric tensor on SlIp. q 
isomorphic to the metric tensor x • y defined by (7.30). A linear transformation 
f= f(x) of SlIp. q into itself, is said to be an orthogonal transformation of SlIp. q if 

f(x) ·f(y) =x· y, (8.1) 

for each x andy in .stIp• q. The orthogonal transformations of SlIp. q are, of course, 
the isometries of the inner product. The group of all orthogonal transformations 
of SlIp. q is called the orthogonal group of s;/P.q and denoted by O(SlIp. q ) or, 
more briefly, by O(p, q). 

The simplest kind of isometry is a simple reflection along some vector u: 

(8.2) 

This transformation reverses the direction of all vectors collinear with u and leaves 
the hyperplane of vectors orthogonal to u invariant. It is thus an isometry of a 
one-dimensional subspace of SlIp.~, and a simpler isometry is obviously not to be 
found. Equation (8.2) holds for u < 0 as well as u2 > 0, but a simple reflection 
along a null vector is impossible. 

Every isometry f = f(x) of SlIp. q can be expressed as a composite of at most n 
simple reflections, that is, there exist vectors Ul, U2, ... ,uk, where k ~ n, such 
that 

(8.3) 

A proof of this result for a nonsingular metric of any signature (and, by the way, 
allowing the scalars to be a finite number field) is given by Artin [Ar, pp. 129-
130]. The proof is by induction on the dimension of SlIp. q' and makes no use of 
the representation (8.2) of a simple reflection in terms of the geometric product. 
We will not reproduce it. 

The representation of reflections by the geometric product in (8.3) tells us much 
more than the fact that every isometry can be generated by reflections. Writing 
U = Uk ... U1Ul, we immediately obtain from (8.3) the general result that every 
isometry f= f(x) of SlIp. q can be expressed in the form 

(8.4) 

Multivectors which can be factored into a product of vectors are so important 
that they deserve a class name. Reviving and generalizing somewhat a term from 
Hamilton's quaternion calculus which has fallen into disuse, we call them versors. 
A versor which can be factored into a product of k vectors will be called a k-versor. 
It is convenient to define a o-versor to be a scalar. Naturally, a versor will be called 
an even(odd) versor if it is an even(odd) multivector. We have already seen the 
importance of k-blades, which are a special kind of versor. The importance of the 
general concept of versor is brought to light by Eqn. (8.4) in which, by construc
tion, the multivector U must be a nonsingular (hence invertible) versor. 
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If U is taken to be the pseudoscalar / in (8.4), then 

/xI-1 =x 

ifn =p +q is odd, and 

/Xil =-x 

OIapter3 

(8.sa) 

(8.sb) 

if n is even. 1llis is a consequence of the equation/ Ax =/x + (-1)nxI = 0 satisfied 
by every vector x in f§1 (I). Since / can be factored into a product of n orthogonal 
vectors, Eqn. (8.5) describes the isometry generated by simple reflections along n 
mutually orthogonal directions. Writink V = U/ when k is odd and using (8.sb), 
we see that for n = p + q even we can replace (8.4) by 

[(x) = VxV-1 , (8.6) 

where V is, of course, a nonsingular versor. 
Obviously U can be replaced by'a nonzero scalar multiple of Uwithout altering 

Eqn. (8.4), but, except for this ambiguity in scale and sigri., U is uniquely deter
mined by the isometry f. To prove this, suppose there are versors U and V such that 
(-1)kf(x) = UxU-1 = VxV-1 • Then y-l UxU-1 V=x or y-1Ux =xy-1 Uwhere 
y-l U is even. Comparison with (8.5) shows that V-l U "* /; since only scalars or 
pseudoscalars (if p + q is odd) can commute with every vector in f§l(I), we have 
y-l U = a or U = aV, where a is a nonzero scalar. If lUI = I VI = I, we have U= ± V. 
Hence, to every orthogonal transformation there corresponds two unique unit 
versors differing only by sign. Equation (8.3) is a special case of (8.4), because the 
factorization of a k-versor into vectors is not unique unless k .;;; 1. 

The multiplicative group of all invertible versors in f§(.9Ip , q)has been dubbed 
the Oifford group of the orthogonal group O(p, q) by Chevalley [Ch]. We call the 
multiplicative group of unit versors in f§(.9Ip , q) the versor group Vers (p, q). We 
have established that Vers (p, q) is 2: I homomorphic to O(p, q). The problem of 
describing the structure of O(p, q) and its subgroups is now reduced to an algebraic 
problem of classifying different kinds of versors. 

The subgroup of all orthogonal transformations with determinant one is called 
the special orthogonal group SO(p, q). To express the condition detf = 1 as a 
property of versors, we factor the pseudoscalar into a product of n vectors, I = 
alaZ ... an. Using (8.1) and (8.4), we evaluate the outermorphism[(I) as follows, 

[(I) = [(al aZ' .. an) = [(a 1 Aaz A .. . Aan) 

= f(al) A f(a2) A ... Af(an) = f(al )f(a2)' .. f(an) 

= (_I)nkU/U-1 • 

Since U can be expressed as a product of vectors, we ascertain from (8.5) that UI = 
/U if n is odd, and U/ = (_I)k IU if n is even. Hence 

(8.7) 
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and det f = (_l)k. So the determinant of an orthogonal transfonnation is one 
if and only if the corresponding versor is even. The multiplicative group of all 
even unit versors in C§(SlIp, q) is called the spin group of SlIp, q and denoted by 
Spin (SlIp, q) or Spin (p, q). We frequently refer to even versors as spinors, though, 
as we shall see, some spinors are not versors. 

A unit k-versor U can obviously be expressed as a product of k unit vectors. 
If p of these vector factors have positive square and the remaining (k - p) vectors 
have negative square, then U-' = (_l)k - p iJt and 

Hence (8.4) can equally well be written 

f(x) = (-I)PUxut. 

(8.8a) 

(8.8b) 

Reviving and adapting another old term which has fallen into disuse, we call an even 
versor S a rotor if 

sts = 1. (8.9a) 

A rotor is a special kind of spinor. From (8.8a) it follows that a rotor has an even 
number of distinct vector factors with positive (or negative) square. The orthogonal 
transformation f = f(x) corresponding to a rotor S is called a rotation and, according 
to (8.8b), has the fonn 

f(x) = Sxst. (8.9b) 

The group of all rotors in C§(SlIp,q) is called the rotor group of SlIp,q and denoted 
by Spin+ (p, q). By construction, Spin+ (p, q) is the group of all rotations of SlIp,q' 
Clearly, Spin+ (p, q) is a subgroup of Spin (p, q) and SO+(p, q) is the corresponding 
subgroup of SO(p, q). For spaces with Euclidean signature (0, n) or (n, 0), the spin 
group is obviously identical to the rotor group. 

Our terminology is somewhat unconventional, so a word of explanation is 
in order. Ordinarily, SO(p, q) is called the rotation group. The name 'rotation' 
has been generalized from Euclidean geometry to apply to spaces with arbitrary 
signature. In the Euclidean case a rotation has detenninant one and is continuously 
connected to the identity. These two properties are not equivalent in the pseudo
Euclidean case. We regard the 'continuity property' as most characteristic of 
rotations, and, as we shall see, this is precisely what distinguishes SO+(p, q) from 
SO(p, q). 

The identification and classification of the so-called 'classical groups' was greatly 
influenced by the representation of linear transformations by matrices. But when 
linear transformations are described instead by Geometric Algebra a different 
characterization of groups is more natural. For example, the designation of elements 
of SO(p, q) as rotations in matrix group theory was probably adopted because 
determinants are natural in matrix algebra, while the condition for rotations 
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expressed by (8.9) is not so easily expressed with matrices. For another example, 
the use of complex instead of real numbers simplifies matrix computations con
siderably, so much attention has been given to the study of the 'unitary groups' 
associated with a complex bilinear form. On the other hand, in Geometric Algebra 
a complex scalar field is uncalled for, so the unitary groups assume less significance. 
Important applications of unitary groups to physics are better based on the spin 
groups when Geometric Calculus is used. Some relations of the spin and rotor 
groups are described in [Po] . To understand the results of this section for applica
tions like those in [H9] , let us introduce some terminology of physics. Spacetime 
will be regarded as a pseudoEuclidean vector space with signature (1,3). The 
orthogonal group 0(1,3) of spacetime is called the Lorentz group. The elements 
of this group are called Lorentz trans/ormatiom. The group SO+(1, 3) is called the 
proper Lorentz group or the Lorentz Rotation group. A Lorentz transformation is 
said to be proper if it belongs to SO+(1, 3) and improper otherwise. Spin + (1, 3) is 
called the Spino! representation of the proper Lorentz group. 

Our use of the term 'spinor' in reference to elements of Spin (p, q) is unusual. 
It is justified by our unusual general definition of 'spinor', which is as follows: We 
say that an even multivector I/J in f§(SlIp, q) is a spinor of SlIp, q if for each vector 
x in SlIp, q' I/JxI/J t is also a vector. Versors satisfy this definition, so the question is, 
how much more general can I/J be? If we write I/JxI/J t = py where p is a scalar and 
x2. = y2 , it is evident that y can be obtained from x by a transformation of type 
(8.8), so we can write 

I/JxI/J t = pUxut , (8.10) 

where Uis an even versor. Solving for px, we get 

~x~t =px, 

where ~ = ut I/J. From previous considerations, we know that such an equation 
can obtain for all x only if ~ has a scalar and possibly a pseudoscalar part only. 
If p + q is odd, the pseudoscalar part must vanish, because ~ is even. If n = p + q 
is even, we write ~ = a: + (JI, where a: and {j are scalars, and use (8.5b) to get 

(a: + (Jl)x(a: + (JIt) = (a:2 - Ijt {j2 + 04J(I - jt»x = px. 

Therefore, (unless n = 2) we have a: = 0, {j = 0 or jt = (_I)(n(n+l» 121 = I. Also 
note that p = a:2 - Ijt 11'1 is always positive when rl = (-I ~ jt = -jt, that is, 
when q and p are odd. We conclude, finally, that every spinor I/J of SlIp,q can be 
written in the form 

I/J = (a + (Jl)U, (8.11) 

where U is an even versor, and f3 necessarily vanishes unless n = p + q = 4m where 
m is an integer. Thus, a spinor is always an even versor unless * n = * (p + q) is an 
integer, in which case a spinor can always be expressed as the sum of two even 
versors. 
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At fmt sight, our definition of spinor appears to be quite different from the 
conventional definition, but the two have been proved equivalent in the cases of 
physical interest (see [H2], [H6] and [H9]). Our definition has the advantages 
of simplicity in its algebraic formulation and its geometrical interpretation. Thus, 
(S.10) shows that a spinor determines an orthogonal transformation and a dilatation 
(by a factor p). 

Now let us return to the problem of classifying orthogonal transformations 
algebraically. Choose any pair of orthogonal vectors a and b such that a2 = 1 and 
b2 = -1. Every odd unit versor U can be expressed as the product of a rotor S with 
either a or b. One simply defmes S = Ua-1 if ut U = 1 or S = Ub-1 if Ut U= -1. 
If instead, U is an even unit versor satisfying uut = -1, we can write U = Sab 
where S = Ub-1a-1 is a rotor. We note that the set {±I, ±a, ±b, ±ab} is a discrete 
subgroup of the versor group, and we have shown that every element of the versor 
group is the product of a rotor and an element of this discrete subgroup. This 
reduces the problem of describing the orthogonal group to the problem of charac
terizing rotors and rotations. 

A rotor which can be expressed as the product of two unit vectors will be called 
a simple rotor, and the corresponding rotation will be called a simple rotlltion. 
Consider a simple rotor 

S=ab =a·b +a Ab. 

It determines a rotation 

R(x) =Sxst =abxba. 

(8.12a) 

(8.12b) 

Now st S = a2 b2 = I, hence ab is a rotor if and only if a2 = b2 = ± 1. The bivector 
a A b, if it is not zero, determines a plane called the plane of R or s. The simple 
rotors, and, of course, their corresponding rotations and planes are of three distinct 
types distinguished by (a A b)2 negative, positive or zero. These types are referred 
to as eUiptic, hyperbolic and parabolic respecti ,,;;1), • 

A vector in the plane of S satisfies the equation 2a A b A u = (a A b)u + u (a A b) 
= 0, or equivalently, 

. v=SuSt =S2U. (8.13) 

The transformation (S.13) is said to be a simple rotation ofu. We may assume that 
v2 = u2 = ± 1 in (8.13), so 

±S2 =vu=v.u+vAu, 

whence 

S2S-2 =(V.U)2 _(VAU)2 = 1. 

We can write S2 in the parametric form 

S2 = ei8 = L i! (i8)k = ±vu, 
k=O 

(8.14) 

(8.1S) 

(8.16) 
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where (J is a scalar and i is a bivector of the rotation plane. Then, for elliptic, 
hyperbolic and parabolic rotations respectively, we have the special forms 

S2 = cos (J + i sin (J ifi2 = -I, 

S2=cosh(J+isinh9 ifi2=1, 

S2 = I + i(J ifi2 = o. 

(8.17a) 

(8.17b) 

(8.17c) 

Comparison of (8.17) with (8.14) shows that (J is the rotation angle in the elliptic 
and hyperbolic cases. In the parabolic case we have v A u = i(J where the singular 
bivector v A u is unique, but its factors i and (J are not unless some additional 
condition is given. Note that in elliptic case a minus sign can be absorbed in the 
exponential by redefming the angle, thus, -ei8 = ei(1f+8) = eift ', but this is im
possible in the hyperbolic and parabolic cases. 

The square root of an exponential is easily computed, so, we get from (8.16) and 
(8.12a), 

(8.18) 

The exponential representation of a simple rotor shows that as (J tends to zero 
S - ±1 and, according to (8.12b), R(x) - x. Hence every simple rotation is 
cQIltinuously connected to the identity transformation. 

Now that the procedure for finding the square root of a simple rotor S is clear, 
it is easy to prove that a vector a factors S if and only if it is a nonsingular vector 
in the plane of S. We only note that, if as = st a = S-I a, then 

S =aa-IS =~1I2a-ISI12 =ab, 

where the factor of S 'conjugate' to a is b = a-I S = S-"2a-1 SII2 . 
The square root of (8.14) can be evaluated in terms of vectors u and v without 

introducing exponentials. It is easily verified that the result is 

l+vu- I I+S2 
+S= =------
- [2(1 + v· u- I )] 112 [2(1 + (82»] 112 . 

(8.19) 

This form is especially useful in physical applications of Lorentz transformations. 
For a parabolic rotation S2 = I ± v A u and (8.19) reduces to 

±S=I+!vAu-' . (8.20) 

In most applications the negative root can be ignored. 
We have found expressions for rotors and rotations as a function of angle and of 

vectors in the rotation plane. Other parametrizations of rotations are useful for 
different purposes. We mention only the Cayley [onn for a simple rotor S: 

S= I +B 
I-B' 

(8.21) 
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where B is a bivector. To relate this to (8.18), we solve for B, obtaining 

S - 1 ±ei6 / 2 - 1 a 1\ b 
B = S + 1 = ±ei6/ 2 + 1 = 1 + a· b . (8.22) 

Having analyzed simple rotors in detail, we tum to the problem of rmding a 
canonical form for a general rotor. In connection with (8.9) we determined that a 
rotor has an even number of distinct vector factors with positive (or negative) 
square. From any given factorization S = u2m ... U2UI we can obtain a factoriza
tion for the rotor S which has all vector factors with positive square to the right of 
vector factors with negative square. This can be accomplished by noting that 

ab = aba-I a = b'a, 

where b'" = b2 • By successive transformations of this kind we can achieve the 
desired order of factors. It follows that any rotor S can be factored into the form 

S = ambm .•. a2b"albl, 

where ai = bi = ± 1. We have seen that 

Sk = akbk = i~k/2 

(8.23) 

(8.24a) 

is a simple rotor. Hence, any rotor S in f§(dp, q) can be expressed as a product of 
simple rotors 

S=Sm",S"SI, (8.24b) 

where m ~!(p + q). 
We have determined that every simple rotor is continuously connected to 1 or 

-1 and is connected to both only if it is elliptic. Hence the rotor group 8pin+(p, q) 
has at most two connected pieces, and it is connected if p or q > 1. It followS that 
the rotation group 80+ (P, q) is connected. 

The factorization (8.24b) of a rotor is by no means unique. This arbitrariness can 
be used to advantage as in the follOwing theorem: Every rotation can be uniquely 
expressed as the composite of a rotation which leaves a given nonsingular vector 
invariant followed by a simple rotation in a plane containing that vector. The 
theorem may be re-expressed as an algebraic property of rotors as follows: Given 
a rotation 

f(x)=RxRt 

and a nonsingular vector u, the rotor R can be expressed as a product 

R=SU, 

where S is a simple rotor satisfying 

Su =uSt 

(8.25a) 

(8.25b) 

(8.25c) 
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and 

Uu=uu. 

Hence.! = f(x) can be expressed as the composite of rotations, 

f(x) = S(UxUt)st . 

To prove (S.2S), we determine S by writing 

v=RuRt =SuSt =S2U, 

from which we obtain 

S = (vu-1 )112 = (RuRt u-1 )1/2. 

Then we can get U from U = st R. 

Chapter 3 

(S.2Sd) 

(S.26) 

(S.27) 

We are still faced with the problem of rmding a canonical factorization of 
type (S.24b) which best characterizes a rotor and its corresponding rotation. In 
Section 3-S we proved that for spaces with Euclidean signature, every rotor S can 
be expressed as a product of commuting simple rotors, from which it follows that S 
can be expressed as the exponential of a bivector: 

S = efJ /2 . (S.2Sa) 

Adopting the notation of (S.24), we have 

(S.2Sb) 

which expresses the decomposition of bivector 8 into orthogonal blades. Since 8 
is a bivector, and the bivector space f§2(JII,,) has (V = !n(n -1) dimensions, 
(S.2Sa) shows at once that the rotation group is an! n(n -1) parameter group. 

The canonical form (S.2S) for a rotor obtains also for spaces with the so-called 
Lorentz signatures (1, q) or (q, 1), with the minor modification 

s = ±efJ /2 , (S.29) 

which is to say that a minus sign cannot always be absorbed in the exponential, a 
circumstance we have already noted in our study of simple rotor. Our derivation 
of the canonical form (S.2S) in Section 3-S works without significant change for 
the case of Lorentz signature, so we will not repeat it. A key step in the derivation 
is the decomposition of a bivector into orthogonal blades. This is always possible 
for spaces with Euclidean or Lorentz signature, but not otherwise. The problem 
of finding canonical forms for rotors of spaces with arbitrary signature is not 
completely solved. 

Our 'rotor representation' of rotations is easily related to the matrix representa
tion by introducing a basis {ak} for d p • q. From (S.9) we have 

f(ak) = Sakst =fkjai. (8.30) 
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(Sum over repeated indices.) Hence, the 'matrix elements' of the rotation are 

(8.31) 

By evaluating the quantity on the right side of (8.31), we can obtain the rotation 
matrix from a given rotor. 

The inverse problem of finding the rotor from the matrix of a rotation is solved 
by taking the derivative of f and using (8.30); 

(8.32) 

In Section 4 we discussed how to solve this eguation for S by decomposing a 1\[ 
into orthogonal blades (which we can do only for Euclidean or Lorentz signatures). 
Alternatively, for spaces of small dimension it is practical to solve (8.32) directly 
for S. For example, for n = p + q = 4, we can write S as a sum of its homogeneous 
parts, 

S=So +Sl +S4, 

and use (2-1.40) to get 

axsx = akSak = 4(So - S4). 

Hence (8.9) gives us 

af= 4(So - S4)St. 

Since sst = I, 

af(af)t = 16(So - s4i . 
Hence, 

st = ± __ a..:...if __ 
[af(af)t] 112 

(8.33) 

Since af is expressed in terms of fkj by (8.32), Eqn. (8.33) gives the rotor st 
explicitly as a function of the matrix fkj. Equation (8.33) fails when So = S4 = 0, 
or equivalently when af = O. In this case S = S2 in (8.9), which occurs for a simple 
elliptic rotation through an angle fT. 

3-9. Linear Multivector Functions 

The general theory of linear multivector functions is obviously much more complex 
than the theory of linear vector functions which occupied us in the first eight 
sections of this chapter, and much work must be done before the subject can be 
expounded with any degree of completeness. So we aim here only to suggest a 
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general approach to the subject by considering a few ideas and theorems with 
nontrivial applications. We concentrate our attention on the algebraic properties 
of multiforms. We have coined the term 'multiform' to refer to a type of linear 
function with wide applicability in mathematics. Multiforms are central to our 
theory of integration in Chapter 7. Chapter 6 shows that the Riemann curvature 
tensor is a type of multiform which we call a biform in this section. Next to the 
linear vector functions, the biforms compose the simplest significant class of 
multiforms. For these reasons, we pay special attention to the algebraic representa
tion of biforms. Among other things, we show how to fmd canonical forms for 
tractionless biforms. This provides a complete algebraic classification of curvature 
tensors for vector manifolds of four dimensions, including the so-called Petrov 
classification of spacetime manifolds, which is of interest in Einstein's geometrical 
theory of gravitation. The advantages of this simple approach to the Petrov classifi
cation will be apparent to anyone familiar with the complexities in the literature. 

Let r§ = r§(.91,,) be the Geometric Algebra of an n-dimensional vector space 
.91", and let F = F(X) be a linear function on r§ with values in r§. Recalling from 
Section 2-2 the general definitions of the differential f and the adjoint F of a 
multivector function F, we note that the linearity of F entails 

F=F -' (9.1) 

which with 

F(Y) = aX Y * F(X) (9.2) 

implies 

Y * F(X) = X * F(Y). (9.3) 

We say that F is symmetric if F = P and skewsymmetric if F = -P. We can always 
decompose F into the sum of a symmetric function F+ and a skewsymmetric 
function F _ where 

F± = !(F±P). (9.4) 

These features of linear multivector functions correspond exactly to features of 
linear vector functions which we noted earlier. To be sure, the geometric algebra 
t:§ is a linear space of dimension 2", so the algebra of linear functions on t:§ is 
isomorphic to the algebra of linear transformations on a vector space with dimen
sion 2", and it can be analyzed by the methods we have already considered. But 
that approach does not exploit the distinctive algebraic structure of t:§, and it is the 
effect of linear functions on that structure that interests us most. The effect of the 
function F on the structure of t:§ is best determined by expressing F entirely in 
terms of algebraic operations on multi vectors. We call this an algebraic representation 
of F. The problem of fmding a canonical {onn for F is the problem of finding its 
simplest algebraic representation. 
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The study of how a linear function affects the grade of a multivector, reduces 
to the study of multiforms. A linear multivector valued function F = F(X) is called 
a multiform of degree, if 

F(X) = F( (X)r)· (9.5) 

More often than not, the condition (9.5) will be met simply by specifying the space 
of ,-vectors ~r = ~r(.r;In) as the domain of F. Note that if F is scalar valued, 
then it is an 'alternaWtg form of degree ,', an ',-form'. Alternating forms were 
dermed and reduced to canonical form in Section 14. We have adopted the term 
'multiform' as an abbreviation for the phrase 'alternating form with multivector 
values' to emphasize that we are dealing with a straightforward generalization of the 
conventional concept of alternating form. 

Any linear multivector function F = F(X) on ~ can be expressed as a sum of 
multiforms by decomposing the argument into its graded parts; thus 

n 
F(X) = L Fr(X), (9.6a) 

r=O 

where 

Fr(X) = F( (X)r). (9.6b) 

Therefore, the study of linear multivector functions can be reduced to the study 
of multiforms. Because of this fact and the important applications of multiforms 
in later chapters, we concentrate on the analysis of multiforms in the balance of 
this section. But before moving on, it should be said that for many purposes the 
decomposition of a linear function into multiform parts is inappropriate. For 
example, such a decomposition will introduce unnecessary complications when the 
algebraic representation of the function is simpler than that of its multiform parts, 
and there are many functions with this property. Indeed, the best way to deal with 
a given multiform may well be to replace it by a more general function of which it 
is a part. 

Decomposition of a linear function into multiform parts is frequently inappro
priate when duality considerations are significant. This brings up a matter of great 
importance, namely, the role of 'complex numbers' in linear algebra and geometry. 
In other sections of this book we explain the advantages of interpreting 'imaginary 
numbers' as bivectors in Geometric Algebra. A little terminology will help us get 
a more general perspective on complex numbers. Let us refer to an element of the 
space ~r + ~n -, as a complex r-vector. It is easy to show that any complex 
,-vector Z can be written in the form 

Z=X+ Y/, (9.6c) 

where X = (X)" Y = (Y), and / is the unit pseudoscalar. Obviously, the scalar 
imaginary unit i of a 'conventional' m-dimensional 'complex vector space' .y can 
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always be represented as a pseudoscalar I in Geometric Algebra so that multiplica
tion of a 'real vector' in 1"" by i corresponds to the 'duality rotation' of an ,-vector 
Y into its dual YI = (Yl)n _ r.'" This requires only that n and, be selected so that 
the dimensions of 1"" and C§r are the same. As a rule, this can be done in a number 
of different ways, each one of which assigns a different geometrical interpretation 
to 1"". We suggest that some such an interpretation is implicit in every significant 
application of complex vector spaces to geometry and physics, and that much is to 
gained by making the geometrical role of the unit 'imaginary' explicit. (A detailed 
analysis of the geometrical role of complex numbers in physics is given in [H9].) 
An important example is discussed at the end of this section. Finally, to connect 
these remarks to our discussion of multiforms, let us derme a complex multiform 
of degree , to be a linear function of complex ,-vectors. This should suffice to 
indicate how the conventional theory of linear functions on complex vector spaces 
can be translated into the language of Geometric Calculus with i corresponding to 
the pseudoscalar and so assuming the geometrical role of 'duality operator'. 

Now let us get on with our study of multiforms. Some additional terminology 
will be helpful. A multiform F = F(X) is said to have grade $ if 

F(X) = (F(X»s· (9.7) 

A multiform of degree, and grade s is said to be an $, r-form. If, = " the multiform 
is said to be grade-perserving. If it maps ,-blades into ,-blades, a multiform is said to 
be blade-preserving. Obviously, every blade-preserving multiform is grade-preserving. 

According to the basic Eqn. (3-1.7), an outermorphism is a blade-preserving 
linear function. This raises the question: Is a blade-preserving multiform necessarily 
an outermorphism7 The answer is yes, except possibly when n = 2r, that is, when 
the grade of the pseudoscalar is twice the grade of the multiform. (A proof of this 
fact is given in ref. [We]. We are sure that the treatment in [We] can be simplified 
and clarified by using Geometric Algebra. but we have not had the occasion to 
work out the details.) In the exceptional case, a multiform can be expressed as 
the composite of an outermorphism and a duality. A duality is a linear mapping 
of a multivector into its dual; this is blade-preserving iff n = 2r, but it is never 
an outermorphism. 

For the systematic manipulation and classification of multiforms, it is convenient 
to derme operations we call tractions. From a multiform F(X) = F( (X}r) of degree 
" the operation of contraction determines a multiform of grade, - I defined by 

ax . F{x A Y), (9.8a) 

where x is a vector variable and Y = (Y> r -1' Our definition 'contraction' is in 
accordance with the conventional use of that term in tensor analysis. However, we 
introduce a new term for the multiform 

ax AF(x A Y). (9.8b) 

* The fact that j1 = -1 where both J2 = 1 and /1 = -1 may occur is quite unnecessary to this 
correspondence of j with I. 



Linear and Multilinear Functions 115 

We call it the protraction of F. The contraction of an s, reform is an (s - 1), (r - 1)
form, while its protraction is an (s + 1), (r - I)-form. Thus, contraction lowers both 
the degree and grade of a multiform by one unit, while protraction lowers degree 
and raises grade by one unit. We call the multiform 

OxF(x A Y) = Ox . F(x A Y) + Ox A F(x A Y) (9.8c) 

the traction of F. A multiform is said to be tractionless if its traction vanishes. The 
terms COlltractionless and protractionless are similarly defined. 

We have actually already made good use of tractions in preceding sections. 
According to our defmitions, a linear transformation is ai, I-form. In Section 3-4 
we proved that a linear transformation is symmetric if and only if it is protraction
less (see Eqns. (3-4.2a, c». In general, however, symmetic multiforms are not 
necessarily protractionless. This can be seen by examining the 2, 2-form 

F(x Ay) = !(x Ay)· (B AB)- (x Ay)· BB, (9.9) 

where x andy are vectors and B is a bivector. According to (3-4.21), this multiform 
is the outermorphism of the skewsymmetric linear transformation f(x) = x· B. 
From (9.9)it is easy to see that F(x Ay) is symmetric, but with the help of(2-1.38) 
one gets 

OxF(x Ay) = lY . (B AB)- Y • BB, 

whence the protraction is 

Ox AF(x Ay) = y • (B A B), 

which does not vanish in general. 
Although a symmetric multiform is not necessarily protractionless, a protraction

less multiform is necessarily symmetric if it is grade-perserving, that is 

Ox A F(x A Y) = 0 implies F(X) = F(X) (9.10) 

if F(X) = F( (X>r) = (F(X»r is a linear function of X. To prove this important 
theorem and for related computations it is convenient to employ the notations and 
conventions for the simplicial variable, 

and the simplicial derivative, 

1 
o(r) = -.- Or 1\ ... A 02 1\ 01, r. 
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which were introduced in Section 2-3. This enables us to give a compact form to 
the following identity which holds for an " ,-form F and ,-vector A: 

A . [a(r) AF(x{r»] = (A' a(1»' [a(r-1) AF(x(r_1) AX{l»)) -

- (A' a(2)' [a{r-2) AF(x(r_2) AX(2)] + ... + 

+ (-1)r(A . a{r-1)· [a 1 AF(XI AX{r-1)] + 

+ (-1),+1 [F(A) -F(A)]. (9.11) 

This identity can be proved by iteration. The method of proof is amply indicated 
by the case, = 2. With the help of identities (1-1.43) and (1-1.42) we have 

A . [a(2) AF(x(2)] = iA . (a2 A a 1 AF(XI AX2)] 

=i(A· a2)·(a1 AF)+ia2 A(A· (a1 AF» 

=i(A·a2 )· (a1 AF)+ia2 A[(A·at>·Fj +ia2 Aa1 (A·F) 

= (A . ( 2) . (a1 A F) - !A . (a2 A a1 )F +! a2 A alA· F, 

which agrees with (9.11) when the linearity of F is used. With (9.11) established, 
the proof of our theorem (9.10) is trivial, for if Fi,s protractionless, all the terms in 
(9.11) except the last one obviously vanish. 

ProtractionIess multiforms have other properties besides the relation to symmetry
which we have just established. If a multiform F is protractionless, then its k-fold 
contraction a{k) . F(X(k) A Y) is also protractionless, that is, 

a1 AF= 0 implies ak+l A (a{k)· F) = o. (9.l2a) 

The case k = 1 is easily proved by using the identity (1-1.42) which gives 

a2 • (a1 AF) = -a1 A (a2 • F) = a2 A (a 1 • F), 

since a2 • al F = o. The same argument gives a similar relation for any k, namely 

ak+1 . [ak A (a(k-l)· F)] = ak+1 A [ak . (a(k -1). F)] = k ak+l A (a(k)· F). 

Whence (9.12a) follows by ~duction. And from (9.12a) it follows easily that 

1 
a(k)F= k! ak •·· a2 a1F= it(k)· F (9.12b) 

if a1 AF= O. In a similar way, one proves that a1 • F= 0 implies 

(9.13a) 

and 

(9.l3b) 

These results can he used in the systematic classification of multiforms. 
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Any multiform can be decomposed into a part that is tractionless and a part 
that is not. For a linear transformation this is just the isolation of its symmetric 
traceless part. Let us see how to carry out the decomposition explicitly for the 
next case in order of complexity and importance, namely, for a 2, 2-form. We shall 
be working with 2, 2-forms so frequently that it will be convenient to adopt the 
compact name hi/onn to refer to one. As we shall see in Chapter 5, the Riemann 
curvature tensor R(a A h) is a biform. In fact it is a protractionless biform, that is, 

oa AR(a A h) = O. (9.14) 

We can analyze the algebraic properties of such biforms without reference to 
curvature or manifolds, yet the results have implications for differential geometry. 

To analyze the tractions of a biform we will need to compute vector and bivector 
derivative, so let us record the results we need from Chapter 2 for reference. Let a 
and h be vector variables and let K = (10k be an arbitrary k-vector. Then 

oaa . K = kK = K· oaa for k ;> 1, 

oaa AK= (n - k)K=K A oaa fork ;>0. 

(9.1 Sa) 

(9.1Sb) 

Now let F = F(X) be an arbitrary biform. According to (1-1.63) the (bivector) 
derivative of = oxF(X) can be decomposed into O-vector, 2-vector and 4-vector 
parts by 

of= o· F+ 0 X F+ 0 AF, (9.16) 

where 0 X F is the commutator product of 0 and F. Since F = F(X) is a linear 
function, the bivector derivative is related to vector derivatives by 

(9.17) 

Derivatives of linear bivector functions of homogeneous grade are given by 

oXX ' K= k(k ~ 1) K=K' oXX fork ;>2, (9.1 Sa) 

0XXXK=k(n-k)K=KX oXX fork;> I, (9.1Sb) 

oxX AK= (n - k)(; - k -1) K=K A oxX for k;>O. (9.1Sc) 

These equations are easily derived from (9.1Sa) and (9.15b) by using (9.17). Note 
the following special cases of (9 .ISb) and (9. 1 8c) respectively: 

0XX X a = oxX' a =(n -l)a =a' oxX, (9.19) 

a x =n(n-l) 
X 2' (9.20) 
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k a check on the consistency of the above equations it may verified that 

ax(x· K+XX K+X AK)=(axX)K. 

Chapter 3 

The decomposition of any bifonn into independent parts determined by its 
tractions is completely described by the following theorem: Any biform F = F(X) 
can be uniquely decomposed into a sum of biforms 

F= T+Fo +Fl +F2 +F3 +F4 , 

where 

all T(a A b} = 0, 

2Xa·F 
Fo(X) = n(n - I) , 

Fl (X) = X· afl with afl = 0, 
n-2 

xx (a x F) 
F 2 (X) = 2(n - 2) , 

F3(X)= (X· a) ·f3 
2 

F4 (X) = X.(!AF). 

with af3 = 0, 

(9.21) 

(9.22a) 

(9.22b) 

(9.22c) 

(9.22d) 

(9.22e) 

(9.22f) 

Thus, T is the tractionless part of F and the Fk determine the various tractions of 
F. In particular, the twofold tractions of F are the 'invariants' 

<aF)o = a· F= aFo, 

<aF)2 = a x F = aF2, 

<aF)4 = a AF= aF4 , 

while aFI = aF3 = 0. A single contraction of F gives a linear vector function 

(9.23a) 

(9.23b) 

(9.23c) 

(9.24) 

Since afl = abfl(b) = 0, the linear vector function fl = fl(b) is symmetric and 
traceless. Thus, the right side of (9.24) is the unique decomposition of a linear 
vector function f = f(b} into symmetric and skewsymmetric parts determined by 
its trace a· f = 2a . F and its curl a Af= a x F. Similarly, a single protraction of F 
produces a trivecto(valued function of a vector variable. 

all A F(a A b) = b A (a x F) + f3 (b) + b . (a A F) , 
n -2 2 

(9.25) 

where again the tractionless part f3 has been separated from the rest of the function. 
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Verification of (9.23), (9.24) and (9.25) is a simple matter of differentiation 
with the help of (9.15) and (9.18) and a little algebra. For example, to differentiate 
F4 we write it in the form 

Then 

and 

So 

F 4(a A b) = (a X b) X B = (a X B) X b + a X (b X B) 

= (a . B) A b + a A (b . B). 

all . F(a A b) = [all . (a A B)] A b - b . all(a· B) + (all . a)b . B + (b . B) . alia 

= (n - 2)b· B, 

all AF(aAb)= [all A(a· B)] Ab=2BAb. 

allF4(a Ab) =(n - 2)b· B+ 2B Ab. 

Differentiating again, we have 

To differentiate F 3 , we write 

Then 

and 

since 

Differentiating again, we have 

Differentiation of the other functions procedes in a similar way, but it is easier than 
the cases we have just considered. 
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Equation (9.21) can be regarded as a canonical form for a biform, although it 
leaves us with the problem of rmding canonical forms for the tractionIess multi
forms T, ft and f3. Of course'!t is a symmetric linear transformation, and we have 
already discussed the problem of putting it in canonical form. We shall solve the 
problem of putting T and f3 in canonical forms for an important special case later 
on. It should be realized that there are other canonical forms besides (9.21) which 
are more appropriate for some purposes. For example, according to (3-5.37), the 
differential outermorphism of an orthogonal transformation produces a biform 

F(X)= UtXU, (9.26) 

where U is a spinor satisfying Ut U = 1. Clearly (9.26) is already the simplest 
(canonical) form for such a biform, and a decomposition into parts in accordance 
with (9.21) would only introduce unnecessary complications. 

Equation (9.21) enables us to decompose any biform F into its symmetric part 
F + and its skewsymmetric part F _ ; specifically, 

(9.27a) 

and 

(9.27b) 

According to (9.10), the symmetry of T, Fo and Fl follows from the fact that they 
are protractionless, although the symmetry of Fo and FI can be verified directly; 
for example, for any bivectors A and B 

A . (B· afl) = [A . (B· a)] 11 = (A X B)· (a Afd + [B· (A· a)]fl 

implies 

A·F1(B)=B·F1(A) soFt =J\. 

The symmetry of F4 follows from 

A . [B . (a A F)] = (A A B) . (a A F) = B . [A . (3 A F)] . 

The skewsymmetry of F2 follows from the identity 

A . (B XC) = -(A XC)· B. 

Finally, the skewsymmetry of F3 can be established by using the identity 

(A A B) . a = (A A B) X a = A A (B X a) + (A X a) A B 

=A A(B· a)+(A· a)AB, 

which can be derived from (1-1.57). 
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Thus, 

A . F 3 (B) = A . [(B' 3)' f3] = [A A (B' 3)] . f3 

=-[BA(A' 3}] 'f3 +(AAB}'·(3Af3)=-3B·F3(A). 

This completes the proof of (9.27). 
Now let us turn for the moment to the general problem of rmding an appropriate 

algebraic representation for a given multiform. We aim to establish the basic theorem 
that any multiform F from f'§' to f'§ can be written in the 'algebraic form' 

F(X) = L AkXBk , (9.28) 
k 

where X = (X), the Ak and Bk are multivectors in f'§. This generalizes Eqn. (3-O.1) 
for linear transformations. We can prove (9.28) by expanding F in terms of a basis 
of blades {aJ} for f'§ and using (9.3); thus, 

F(X) = L a JaJ ... F(X) = aJIJI ... X, 
J 

where bJ = F(aJ} = ~ K (jJKaK and the (jJK are scalars. introducing multivectors 
cK = ~JaJ(jJK, we have 

(9.29) 

We have used the fact that X = (X)r to determine that only the basis vectors (aK)r 
for f'§' contribute to the sum, as is expressed on the right side of (9.29). The proof 
can be completed simply by showing that (aK), *X can be expressed in terms of 
the geometric product. To do this, we factor the blade (aK), into vectors, (aK), = 
a, A ... A a2 Aal, and apply (1·1.2Sb) r times; thus 

(aK),*X=(a, A ... Aa2 Aad' X=a,' ( .. . a2 . (al' X) .. . ). 

Then we apply (1·1.30) r times to 'remove' the dots. For example, if r is even, 
removal of the first two dots gives 

a2 . (al . X) = !a2 . (alX - Xal) = !(a2alX - a2Xai + alXa2 - Xala2)' 

It should be emphasized that the assumption X = (X), is essential to this last step, 
so our proof cannot be generalized from multiforms to establish the algebraic form 
(9.28) for arbitrary multilinear functions. 

The algebraic form (9.28) for a multiform is, of course, not unique, The problem 
of finding a canonical form for F is equivalent to finding the set of Ak and Bk 
which is simplest in some sense; for example, one could reduce the number of terms 
in the sum to a minimum, or one could require that the Ak be orthogonal blades 
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and reduce the number to a minimum. If the Ak and Bk are expanded in terms of a 
basis, then (9.28) can be written in the form 

F(X) = L aIXaKQIK, (9.30) 
I,K 

where the QJK are scalars. Substitution of (9.30) into (9.2) and use of (1-1.47a) 
shows that QIK = QKI if F is symmetric and QIK = _QKI if F is skew symmetric. 
The cxIK should not be confused with the 'matrix elements' of F, which are given 
by 

aM*F«a!V),)= L <aMal<a!V),aK)QIK 
I,K 

= L <aKaMal>' * <a!V>,QIK. 
I,K 

(9.31) 

Simplifications of the algebraic form (9.30) can be made by a change of basis to 
simplify the coefficient matrix QIK. But it should be realized that the symmetric 
part of QJK cannot always be diagonalized in this way because the metric of C§ is 
not necessarily positive defmite, since some blades may have negative square while 
others have positive square. 

The sum over all blades in (9.30) can be reduced by half to a sum over all blades 
with grade r E;;; ! n by expressing every blade with grade r > ! n as the dual of a 
(n - r)-blade. When this has been done, the coefficients QIK are complex scalars, 
so each one can be expressed in the form (9.6) with the unit pseudoscalar I playing 
the role of 'unit imaginary'. It must be remembered that some multivectors may 
not commute with comolex scalars, because they do not commute with I. As a 
reminder of this, the QJK have been placed on the right in (9.30). 

As a specific application of what we have just learned let us analyze biforms on 
C§ 2(d4 ). As a basis for the algebra C§( d 4 ) we choose the scalar 1, four linearly 
independent vectors a,. (}J = 0, 1, 2, 3) and three linearly independent bivector 
blades fk (k = 1,2,3). Any element of C§(d4 ) can be written as a linear combina
tion of these eight blades over the 'complex scalars'. In particular, it will be noted 
that the space of bivectors C§2(d4 ) is six-dimensional, but it is 'self-dual', which 
is to say that the dual of a bivector is also a bivector. It follows that ('ne can choose 
a basis of blades in '§2( d 4 ) such that three elements are duals of the other three. 
Hence the six-dimensional space over the 'real' scalars is a three-dimensional linear 
space over the 'complex scalars' spanned by the blades fk' Having established this, 
we can introduce these basis blades into (9.28) and, using the fact that! commutes 
with X, write any multiform F on '§2 (d4 ) in the form 

4 3 

F(%) =AoX + XBo + L a,.XA,. + L AXBk , (9.32) 
,.=1 k=1 

where (A,.>o + <A,.>4 = 0 = (Bk>o + (Bk>4 is required, so the first two terms are 
distinct from the other terms. Further restrictions must be placed on the multi
vectors A o, Bo, All and Bk if F(%) is to be a biform. 
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We shall prove that any biform F(X) can be put in the form 
4 3 

F(X) = X X B + L a/JXav~v/J + L fjXA'7k' (9.33a) 
",v= 1 ;, k= 1 

where B = (B)2 and the ~"v and the '7k are symmetric matrices of 'complex scalars', 
that is, 

~"IJ = ~IJ'" '7k = Ci.kj' (9.33b) 

and ~"IJ = (~"1J)0 + (~"1J)4' '7k = ('7k)o + ('7k>4 - To establish (9.33a, b) we merely 
need to ascertain the restrictions on the various terms in (9.32) required to insure 
that F(X) = <F(X»2 _ We see immediately that if the values of F(X) are to be even 
multivectors, then Ao, Bo and the Bk must be even while the J~:" must be odd_ 
Further, we see that we must require (BO>2 = - <AO>2 ==!B if the combination of 
the first two terms in (9.32) is to be a bivector. Then we can write 

AoX+XBo =XCi.+XX B, (9.34) 

where Ci. = (000 + (004 is a 'complex scalar'_ 
Turning to the next group of terms in (9.32), we observe that since A" must be 

an odd multivector and the trivectors are dual to the vectors, we can expand A" 
in terms of a vector basis; thus 

4 

A" = L a"~",,, 
,,= 1 

where the ~"V are 'complex coefficients' _ Restrictions must be placed on the 
coefficients ~"" so that 

4 

L a"XA" = L Ci."Xav~"v (9.35) 
,,=1 ",II 

is bivectorvalued_ To see what these restrictions must be, consider 

alXa2 =al(X- a2 +X !\a2) 

=al!\(X- a2)+al -(X!\a2)+al-X-a2 +a\!\X!\a2 

=a\!\(X'a2)+a2!\(X-a\)-al-a2 X +X -(a2!\a\)+X!\a\!\a2' 

From this we can conclude that only the symmetric part of the coefficient matrix 
~/JII will contribute to the bivector part of (9.35), so the skewsymmetric part of ~"" 
can be assumed to vanish, and we can write 

4 4 

L a"Xall~"v = 2 L a,,!\ (X - a")~,," - X L a,,' av~,,"- (9.36) 
",11= 1 /J,v= 1 ", II = 1 

The last term in (9.36) duplicates the term XCi. in (9.34), so the later has been 
dropped in combining (9.36) with (9.34) to get (9.33a)_ 
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T"rning now to the last group of terms in (9.32), we observe that since the Bk 
must be bivectors they can be expanded in a bivector basis, and we have 

3 3 

L IkXBk = L fjXAa,k' (9.37) 
k= 1 i, k= 1 

To determine possible restrictions on the complex coefficients a,k' consider the 
bivector identity 

II XI2 = 1II2X + 211 (X X 12) = XIII2 + 2([1 X x)/2 

= ([I . 12 + II A 12)X + ([I X 12) . X + ([I X 12) A X + 

+ II . (X X 12) - 12 . (X X II) + 11 A (X X 12) - 12 A (X X 12) + 

+/1 X (XX 12)+/2 X (XXII)' 

Only the first and the last terms in this expression have bivector values and they are 
symmetric in II and 12; the other six terms are skewsymmetric in II and 12 and 
none of them have bivector values. Hence, we can assume that CX;k = Clfcj and write 
(9.37) in the form 

3 

L fjXAa,k = 2 L f; X (X X A )a,k + X L f; . A~k' (9.38) 
i, k = 1 i, k j, k 

where we have used the fact that f; A Ik = 0 for the kind of bivector basis we have 
chosen. This completes our proof that any biform can be written in the form 
(9.33a) subject to (9.33b). 

Equation (9.33a) can be used in the classification of biforms in a number of 
different ways. For example, a biform G(X) is said to be selldual if 

G(IX) =/G(X). (9.39a) 

A biform H(X) is antiselldual if 

H(/X) = -/H(X). (9.39b) 

The algebra ~(s;/4) has the unique property that any biform F(X) defmed in it 
can be decomposed into selfdual and antiselfdual parts; 

F(X) = G(X) + H(X). (9.39c) 

Since / commutes with bivectors and anticommutes .with vectors, from (9.33a) we 
can see at once that any selfdual biform can be written in the form 

3 

G(X) = L f;Xlka,k + X X B, 
i, k= 1 

(9.40a) 
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while any antiselfdual biform can be written 

4 

H(X) = L a/lXalltJ/lII' (9.40b) 
/l,II= 1 

As we shall see, these equations yield canonical forms for the biforms when the Ik 
and the all are chosen to diagonalize the coefficient matrices 07k and tJ/l 1I in so far 
as possible. 

To relate our algebraic reduction of a biform (9.33a) to the earlier tractiQn-based 
reduction (9.21), we compute the tractions of (9.33a). For this purpose we need 
from (2-1.40) the derivatives 

aaba =-2b 

for an vector b and 

aQBa =0 

for any bivector B. In (9.40a) the self dual part of F(X) is already separated into 
symmetric and skewsymmetric parts 

and the skew part 

G_(X)=XX B 

can be identified immediately with the part F'l in (9.22). Now, 

aaljl Ab = aafj(ab - a· b) = -bfj, 

so, from (9.4a), 

From this we can conclude that G+ is tractionless if 

(9.41 a) 

(9.41b) 

(9.42) 

(9.43) 

Then we can identify G+ with the tractionless biform Tin (9.22). Thus, the class 
tractionless biforms in f§(d4 ) is equivalent to the class of selfdual, symmetric 
'traceless' biforms. 

To compute the traction of an antiselfdual biform H(X), we use 

aaa/la A b = aaa/l(ab - a . b) = - 2a/lb - ball = ball - 2a/l . b. 
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Then, from (9.4Ob) we obtain 

(9.44) 

and 

(9.45) 

Comparing this with (9.23) and (9.24), we see that if aH = 0 we can identify H 
with FI and F3 so that in (9.24a) 

II(b)=aa' H(al\b)=-2 L all ·ba,,({3I1")o, (9.46a) 
II," 

and, in (9 .24b) 

13 (b) = aaH(a 1\ b) = - 2 L all' ball ({311,,}4' (9.46b) 
II," 

Finally, we can isolate the tenn Fo in (9.23) from nonvanishing values of aG+ 
and/or aH. 

We have one task remaining to complete our classification of biforms on 
r§ 2 (Jil4), namely, to reduce the coefficient matrices Cljk and {JII" in (9.4Oa, b) 
to their simplest fonns. For an antiselfdual bifonn H(X), the traction of (9.40b) 
to (9.46a, b) reduces the problem of classifying H(X) to the problem of rmding 
canonical forms for symmetric linear transformations II (b) and 13 (b )/, a problem 
which we have discussed at length already. Consequently, we can restrict our 
attention to selfdual biforms, indeed, to tractionless bifonns alone. 

We have shown that any tractionless biform T(X) on r§2(Jil4) can be written 
in the algebraic form 

3 

T(X) = L fjXlkCljk' (9.47a) 
i. k=l 

where Cljk = (Cljk)o + (Cljk}4 = Qki and 

(9.47b) 

The rest of this section will be devoted to classifying tractionless biforms by re
ducing (9.47a). The reduction of (9.47a) depends on the metric on Jil4. It is trivial 
for a Euclidean metric on d 4 , because the coefficient matrix OJk can always be 
diagonalized in that case, so let us consider the more interesting case of a spacetime 
metric (3, 1) on Jil4. We refer to the bifonns for this case as spacetime bilorms. 
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The spacetime metric allows us to choose a basis of orthogonal vectors ao. al. 
a2. a3 such that a~ = 1 and al = -1 (k = 1, 2, 3). From these vectors we can 
construct a basis of orthonormal bivector blades: 

(9.48) 

where we have used the symbol i instead of I for the unit pseudoscalar, because 
i 2 = -1 and it is the 'imaginary unit' for the 'complex' coefficients. From (9.48) 
it follows that 

1£=1 fork=I,2,3, (9.49a) 

and 

(9.49b) 

Equations (9.49) describes special properties of the fk we need for our analysis. 
The relations (9.48) have been mentioned only to show how the properties (9.49) 
are related to the spacetime metric on .914 • 

We are now prepared to classify the tractionless spacetime bifonns into the 
so-called Petrov types I, II and III. We say that a biform is of type I if and only if 
there is a choice of the fk which diagonalizes the matrix ~k. Thus, for a type I 
biform, (9.47a) can be reduced to 

3 

T(X) =:= L AXfkCLk, 
k=l 

where 

For X = (Xh and basis bladesfk satisfying (9.49a, b), one can show that 

3 

L fkXfk =-X. 
k= 1 

(9.S0a) 

(9.S0b) 

(9.5l) 

This can be used to eliminate f3 from (9.50a), and (9 .50b) can be used to eliminate 
CL3. Thus, introducing new variables III = 2CLI + CL2 and 112 = 2CL2 + CLI, we reduce 
(9.50a) to 

2 

T(X) = L (fkXfk + i X}llk' (9.52) 
k=l 

where fj . fk = 0lk. This is the desired canonical form for type I biforms. 
The canonical form (9.52) shows that type I biforms can be classified into 

distinct subtypes in a variety of ways corresponding to distinct conditions imposed 
on the four free parameters in III and 1l2. For example, there are subtypes for 
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which (al}o = (al}O or (al}4 = (al}4 or al = aI, etc. Evidently, the simplest 
subtype is obtained by taking JJ.2 = 0, whereupon (9.52) reduces to 

(9.53) 

By using (9.51), one can easily show that the comliton III = JJ.2 gives the same 
subtype as the condition JJ.2 = o. 

In types other than I, a null bivector plays a special role. Consider the null 
bivector 

Using (9.49) it is readily verified that 

f~ =0. 

Now let h be any bivector with the properties 

h2 = 1, 

fo· h = O. 

It follows that 

foh = -hfo, 

and using (9.49), it is not difficult to show that 

h =fl + afo 

(9.54) 

(9.55a) 

(9.55b) 

(9.55c) 

(9.55d) 

(9.56) 

where a is a complex parameter. It is easy to show that two bivectors with the 
parametric form (9.56) cannot be mutually orthogonal. Therefore, any set of 
orthogonal bivectors, one of which is null, cannot contain more than two elements. 

A biform is of Petrov Type II if and only if the coefficient matrix Dtjk can be 
diagonalized by taking a null bivector fo as one of the basis elements. For this case, 
we must be able to construct a canonical form similar to (9.52) from fo and h 
instead of fl and f2 . Then, for the canonical fonn of a Type II biform we fmd 

T(X) = foXfollo + (hXt; + iX)JJ., 

(9.57) 

The term! Xal appears in (9.57) so that 
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as follows from the bivector derivatives 

axX=6 and axBX=-2, 

where B is any bivector in r§2(.f1I4). 
The canonical form (9.57) shows that the type II biforms have two major 

subtypes, one with III :#= 0 and one with III = o. Obviously (9.57) reverts to type I 
if Ilo = O. A further subclassification is obtained for Q: = 0 and Q::#= O. 

The canonical form (9.57) can be expressed in terms of the orthonormal bivector 
basis (9.48) by substituting 

This shows explicitly the off-diagonal terms which cannot be eliminated with a 
basis of type (9.45). 

Obviously, the single canonical form 

2 

T(X) = L (f,tX"lk + !Xf1)llk' (9.58) 
k=l 

with 11 . 12 = 0, suffices for both types 1 and II, the two types being distinguished 
by different conditions onti. Incidentally, withti = -1, Eqn. (9.58) is also the 
canonical form for the Euclidean .case. 

Using 10 and.r:. we can construct one other tractionless symmetric biform, 
namely 

(9.59) 

This is the canonical form for a biform of Petrov type III. The condition IJ = 0 
prevents this from being diagonalized. This completes the classification of biforms. 
It can be shown that a linear combination of types II and III does not result in a 
new type of biform. 

A conventional approach to the classification of tractionless spacetime biforms is 
based on the eigenvalue problem 

T(f) = "to./, (9.60) 

where I is a bivector and the eigenvalue "to. is a complex scalar. The biform T is said 
to be of Petrov Type I if the eigenbivectors span the entire three-dimensional (com
plex) space r§2( .f1I4); it is of Type II if the eigenbivectors span a two-dimensional 
space and of Type III if they span only a one-dimensional space. This classification 
is equivalent to the one introduced above. 

The canonical forms (9.52), (9.57) and (9.59) which we found for the three 
Petrov types provide us with the solution to the eigenvalue problem. We can easily 
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read off the eigenvectors and eigenvalues simply by inserting the fk into the canoni
cal forms and using the properties (9.49) and (9.55) to evaluate the results. The 
results are summarized in the table below. 

Petrov Type Canonical Form Eigenbivectors Eigenvalues 

(/IXII +!X)~I + Ii ~I = j (2~1 - ~2 ) 
+ (/2 X12 +! )~2 12 ~2 = i<2~2 - ~d 

fa ~3 = -j~1 +~2) 
II (/;X~ +! X)~I + 10 = II + ill ~o = -i~1 

+ 10Xlo~0 
I; =/1 + Afo ~I = 1~1 

III (/oX~ + ~Xlo)~ 10 = II + il2 ~=O 

The method of algebraic forms exployed here considerably extends and en
hances the algebraic machinery available for the study of linear transformations 
beyond the classical eigenvalue-eigenvector problem. This is particularly evident 
in the explicit canonical form given to each Petrov type, as exhibited in the above 
table. In contrast, the solution of the eigenvalue problem for a biform of type II 
or III does not completely reveal the algebraic structure of the biform. Sobczyk 
[S2-5] has further extended and developed the method of algebraic forms to show 
the existence of a principal correlation between a symmetric selfdual biform (9.47), 
and a symmetric antiselfdual biform (9.40b), a result undetected and unappreciated 
in the conventional approaches. 

Our approach to the Petrov classification with Geometric Calculus should be 
compared with that of Synge [Sy] , who uses conventional mathematical devices. 
Synge introduces complex numbers formally, because he sees that it simplifies the 
problem. He does not discover that the geometrical basis for this simplication is 
the self-duality of the space of bivectors, or that his unit imaginary has assumed the 
geometrical role of the unit pseudoscalar. Moreover, to achieve his simplification 
of this particular problem, he is obliged to drastically revise the formalism he uses 
for other geometrical applications. In contrast, we have seen that the appropriate 
complex numbers arise automatically when Geometric Calculus is used, and with a 
clear geometrical interpretation. No special methods are called for in this case, and, 
as will be seen in subsequent chapters, the same formalism applies as well to any 
geometrical problem. 

3-10. Tensors 

This section explains how the conventional theory of tensors can be efficiently 
integrated into Geometric Calculus. A nomenclature is recommended to maintain 
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contact with conventional terminology and yet suggest how special features of 
Geometric Calculus can be exploited to simplify and extend the tensor theory. 
However, no aspects of the theory will be developed here in much detail. The main 
concern is to establish tensor algebra as the generalization to functions of several 
variables of conceptions and techniques of linear algebra developed in preceding 
sections of this chapter. 

To anyone with much sophistication in linear algebra, most of this section will 
appear quite trivial. But these trivial things must be mentioned, because they are 
useful, indeed, they are essential in many applications, and we are afraid that even 
some of our sophisticated friends will overlook them. 

A geometric function of r variables T = T(A I, A 1, .•• ,Ar) is said to be r-Iinear 
if it is a linear function of each argument. We say that T is a tensor of degree r 
(on .SIIn ) if each variable is restricted to some vector space .SIIn . In the more general 
case that each variao1e is dermed on a Geometric Algebra t'§(.SIIn ), we say that T 
is an extensor of degree r (on t'§( .SIIn». The multiforms dermed and discussed in 
Section 3-9 are extensors of degree one. 

If the values of a tensor T = T(a I, a2, ... , ar ) on .SIIn are s-vectors in t'§S(.SIIn ), 

we say that T has grade s and rank s + r. A tensor of grade zero is called a multilinear 
form. The tensor T determines a multilinear form T of degree (or rank) r + s defined 
by 

T(alo al,' .. , ar +s) = (ar+ 1 " ... " ar+s) . T(al> ... , ar)' 

Conversely, T determines T by the equation 

T(al,"" ar) = (S!)-I ab " ... " 3b T(al,"" ar, b l , ... , bs) s I 

= aBE * T(al," . ,ar)· 

(lO.la) 

(to.lb) 

In this sense, T and T are equivalent representations of a tensor of rank r + s. 
Note that for r, s = 1, T is a linear transformation and T is its associated bilinear 
form. This important relation in linear algebra has thus been generalized to the 
relation (to.lb) in multilinear algebra by using the simplicial derivative defined in 
Chapter 2. 

We must confess that we are not completely satisfied with our terminology for 
multilinear functions. We have endeavored to use conventional terminology as 
much as possible, to help readers identify familiar concepts in our unconventional 
formalism. Besides, we do not wish to contribute to the unnecessary proliferation 
of mathematical terminology, which we think is already a serious problem. How
ever, the theory of multilinear functions has developed along so many independent 
lines, each with its ')wn terminology, that it is impossible to developed a unified 
theory without tampering with some terms in wide use. Furthermore, the structure 
of Geometric Algebra suggests new ways for developing and organizing tensor 
theory, which must be reflected in any appropriate terminology. These things 
considered, it seems best at the present time not to commit ourselves too heavily 
to any particular nomenclature. 
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We have actually abstained from using some terminology we prefer. For example, 
we would prefer to use the term ,.form for any multilinear form of degree r. But 
the term ,.form is so widely used in modem literature to refer to an alte111llting 
,.form,* that we have stuck to that sense throughout this book. We have bowed to 
convention also in our choice of the words 'multiform' and 'extensor' to indicate 
direct generalizations of the standard concepts of alternating forms and tensors. 

Our concept of tensor is somewhat more general than the usual one, because 
we allow the value of a tensor to be a multivector of mixed grade. This enables us 
to handle concepts beyond the competence of conventional tensor analysis. Since 
our tensors can have spinor values, our formalism can reproduce the results of 
conventional spinor analysis. Spinors play· a crucial role in modem theoretical 
physics, and to deal with them several 'spinor analysis' formalisms have been 
developed. These formalisms are similar to tensor analysis but not integrated with it, 
and they rely on 'spinor coordinates' which are difficult to interpret geometrically. 
In contrast, the present formalism fully integrates tensors with spinors and provides 
coordinate-free methods for dealing with spinor tensors. However, as this subject is 
of rather esoteric interest, we will not develop details here. We are more interested 
just now in seeing how to handle conventional tensor theory. 

The Geometric Algebra permits us to construct new tensors from given ones in 
three bulc ways, namely, by addition, multiplication and contraction. The sum of 
tensors S and T, 

(l0.2) 

is obviously a tensor if and only if S and T have the same degree and the same 
arguments. The geometric product 

(l03) 

without restrictions on the arguments, is a tensor of degree q + r. Owing to the 
noncommutivity of the geometric product S . T, S 1\ T, and S X T generally yield 
different tensors of degree q + r. 

The contraction of a tensor T of degree r is a tensor of degree r - 2 dermed by 

(l0.4) 

To be more specific, we may say that the tensor (10.4) is the contraction of T 
in the jth and kth places. It is often convenient to form the traction of a tensor T 
(in the kth place) dermed by 

(lO.5) 

But note that this can be obtained from the tensor of degree r + 1 dermed by 
the product ar + 1 T(a 1, ••• , ar) by contracting the variables ak and ar + 1. The 

• Defmed in Section 1-4. 
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defmition (10.5) generalizes the defmition of traction we gave for multivectors in 
Section 3-9. Following our practice in Section 3-9, we should refer to the tensor 

(10.6) 

as the contraction of T in the kth plllce. We see little danger of confusion in refer
ring to both (10.4) and (10.6) as contractions, so we will not bother to coin a new 
word to distinguish them. 

As a simple illustration of tensor manipulations, consider the composition of 
bilinear forms a(a, b) and T(a. b) to get another bilinear form 

p(a, b)== au . avT(a. u)a(v, b) = T(a. av)o(v. b). (10.7) 

The bilinear forms determine the tensors of degree I, 

R(a) = abP(a, b), S(a) = abo(a, b), T(a) = abT(a, b). (10.8) 

So by differentiating (10.7), we get 

R(a) = T(a, ab)S(b) = T(a)' abS(b) = S(T(a». (10.9) 

This is just the expression for composing linear transformations noted in Section 
3-1. 

To relate our theory to the conventional covariant formulation of tensor analysis, 
we restrict our considerations to tensors with scalar values, that is, to multilinear 
forms. Subject to this restriction, the product (10.3) is just the conventional tensor 
product. The covariant components of a rank 3 tensor T(a, b, c) with respect to a 
frame {ak} for .9In are the quantities 

Tilk == T(aj, ai' ak)' 

The contravarillnt components of T are 

Ttik == T(ai, ai, ak), 

where {ak} is the reciprocal frame. The quantities 

Tf == T(ai, ai, ak) 

(lO.lOa) 

(l0.10b) 

(lO.lOc) 

are called mixed components. This suffices to show how the components of any 
tensor can be determined. Arbitrary values of l' are expressed in terms of com
ponents by 

(10.11) 

where a; = at . a, IJj = al' b, 1k = ak . c are, respectively, the 'covariant components' 
of vectors a, b, c, while ti, pi, i' are the 'contravariant components' . 
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The components of a contraction of T{a, b, c) are 

(l0.12) 

where we have used the 'summation convention' as well as the fact that ab = 
akak . ab and ak . abb = ak· Thus, it is clear that our definition of contraction 
(l0.4) conforms to the conventional one in tensor analysis. When formula (10.7) is 
expressed in terms of tensor components we get 

(10.13) 

the familiar rule for 'multiplying' matrices. 
Let us determine how different tensor components are related. Any frame {ak} 

for .s;/n is related to the frame {ak} by a linear transformation/with components 
~ = ai . f!..ak); thus, -

(l0.14a) 

The reciprocal frames are related by the adjoint transformation; 

ai = l(a'i) = ~a'k . (l0.14b) 

The mixed components 

{t' == T{a'i, a'i, ak) (lO.IS) 

of the tensor .r(a, b, c) with respect to the frame {ail are therefore related to 
components TZ with respect to {ak} by the equations 

Tg r, = T(t, ai, [(ar» = T([(a'i), [(a'i) , [(ar» 
. . . . p'q' = t,,1q T{a'P, a'q, a;) = t,,1q Tr' . (l0.16) 

(The rather awkward use of primes here conforms with common practice in the 
literature.) This is the conventional rule for transforming components in tensor 
analysis. 

In conventional covariant formulations of tensor analysis, tensors are defined by 
specifying their components with respect to some frames and assuming a trans
formation law of the form (10.16) for the components. But, as we have seen, 
the transformation law for tensor components obtains as an elementary theorem 
if tensors as defined as multilinear functions. Let us call these two different (but 
equivalent) definitions of tensors respectively the covariant and the intrinsic defini
tions. It seems obvious to us that the intrinsic defmition is superior to the covariant 
one, because it specifies the essential linearity of tensors directly, without reference 
to an arbitrary frame. Yet the covariant definition is the one adopted in most 
physics, engineering and applied mathematics texts. Historical accident aside, the 



Linear and Multilinear Functions 135 

main reason for this practice is probably the lack of a method for perfonning 
computations with tensors without using indices. As we have shown how Geometric 
Calculus corrects this deficiency and provides other advantages, there are no re
maining objections to the intrinsic definition. 

Another point deserves clarification. Covariant tensor analysis makes it difficult 
to distinguish between a tensor's behavior under transformations and its linear 
properties. A distinction between active and passive transformations is commonly 
made. It is important to note that the covariant formalism itself provides no means 
to represent this distinction. The equations for both types of transformation are 
identical, and the distinction is made only in the interpretation of the equations. 
Textbooks are littered with evidence of muddles that arise from this practice. In 
contrast, the intrinsic approach avoids the problem completely. The transformation 
Eqns. (10.16) necessarily describe a passive transformation, in consequence of their 
derivation from the linear properties of a tensor. Thus, the passive transformations 
in covariant formulations merely express the fact that tensors are linear functions, 
whereas the intrinsic formulation expresses the fact directly without reference to 
transformations. 

The transformation of a tensor induced by a linear transformation f of its 
domain .9In into another vector space .91~ is called an active transformation. 
Consider a rank two tensor 1(a, b) defined on .9In . A tensor 1'(a', b') on d~ is 
determined by the linear substitution 

(10.17) 

This transformation of 1 into l' is said to be covariant in the first place (or argu
ment) and contravariant in the second place. In a similar way, the transformation 
of any tensor of grade zero is determined by specifying a substitution of covariant 
or contravariant type for each of its arguments. We wish to emphasize that such 
an assignment of transformation behavior to a tensor is quite independent of the 
specification of the tensor as a multilinear function. Indeed, the transformation 
(10.17) makes sense even if 1(a, b) is not a linear function. It is true that when 
tensors arise in physics and geometry, their transformation behaviors are usually 
determined automatically by their functions in the theory. This is probably why 
the fact that active and passive transformations describe distinct and independent 
properties of tensors is so often overlooked. 

The main problem of tensor algebra is the classification of tensors by deter
mining their canonical forms. We have already found canonical forms in preceding 
sections for alternating r-forms, for linear transformations and for some of the 
simpler multiforms of degree two. These special cases were complicated enough 
to show that a complete analysis of tensor canonical forms is too much to aim 
for here. But some general remarks will help put the problem in perspective. As we 
have explained for the special cases treated earlier, we understand the canonical 
form of a tensor to be the algebraic representation of the tensor which is simplest 
in some prescribed sense. And by 'algebraic representation' we mean, of course, a 
quantity composed only of multivectors combined by geometric sums and products. 
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One of the most important ways to classify a tensor T(alo til, ... , a,) is to 
decompose it into a swn of tensors with distinct symmetries in their arguments and 
then determine canonical fonns for each of these. Without fully determining the 
classical solution to this problem, we would like to make some observations on the 
approach with Geometric Algebra. A3 determined by (2-3.10), the completely 
skewsymmetric part of T is easily obtained by operating on T with the skew
symmetrizer, and the result is a multiform of degree r, which can be put in canonical 
form by the method described in Section 3-9. By setting all the arguments of T 
equal, we get a homogeneous [unction of degree r 

H,(a) = T(a, a, ... , a). (10.18) 

Expressing the vector a as a function of its components Qk relative to a fIXed frame 
in Siln , we see that H,(a) = H(QI' Ql, •.. ,an) is a homogeneous polynomial of 
degree r in the n scalar variables Qk' This connects tensor theory to the classical 
theory of polynomials, and it justifies our choice of the word 'degree' for the 
number of tensor arguments. Now, by differentiating H,(a) we get the symmetric 
tensor 

(10.19) 

This is easily seen to be the completely symmetric part of T. Other techniques of 
Geometric Calculus employed in this book are useful in tensor analysis, but we have 
said enough to establish a perspective on the subject. 
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Calculus on Vector Manifolds 

The modern approach to calculus on manifolds, as typified by ref. [La], begins 
with the general notion of a topological space, from which spaces of increasing 
complexity are built up by introducing a succession of structures such as differen· 
tiable maps, fiber bundles, differential forms, connections and metrics. Without 
disputing that there are good reasons for this approach, we wish to point out 
that it has some serious practical drawbacks. To begin with, each of the successive 
structures entails new assumptions, vocabulary and techniques which are difficult 
to formulate without duplicating, overlapping or modifying features of the struc
ture to which it is added. Hence, the mathematical system "tends to become in
creasingly redundant as it is built up. With care the redundancy can be minimized, 
but we doubt that it can be eliminated altogether, because a complex structure 
may admit to a formulation which is simpler than any which can be developed 
by building it up from standard structures. For example, standard formulations 
of linear and multilinear algebra as independent subjects reveal considerable 
redundancy when combined, redundancy which we claim to have eliminated 
in the preceding chapters by developing both subjects within the single corpus 
of Geometric Algebra. 

Another drawback of the 'build-up approach' is that it defers proof of the most 
comprehensive theorems until each layer of the necessary mathematical apparatus 
has been successively constructed and analyzed in detail. The time required to 
master these details is so considerable that most physicists and applied mathe
maticians remain ignorant of many potentially useful results. 

The issue we are raising can be set in a somewhat simpler context. It is certainly 
important to study the build-up of the real numbers from simpler structures. But 
few would dispute that, for applications at least, it is best to begin with a formula
tion of the real numbers as a single mathematical structure. Similarly, to establish 
the main results of differential and integral calculus on manifolds as quickly and 
easily as possible, it is necessary to forego the 'build-up approach' ~nd construct 
at the outset a single compact mathematical structure from which all the desired 
results can be obtained without further assumptions. That is our objective in this 
chapter and those that follow. 

Geometric Algebra supplies all the algebraic structure we need to derme vector 
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manifolds and develop a complete differential and integral calculus without intro
ducing coordinates. It reduces the development of calculus almost completely to 
the study of a single differential operator, which we interpret as the dervilltive 
by a point in the manifold. From this derivative all other important differential 
operators (such as divergence and curl, exterior and covariant derivatives) can be 
obtained by simple algebraic operations. Besides the derivative, the key role of 
pseudoscalars and the closely related projection into the tangent algebra are unique 
features of Geometric Calculus. The discovery and exploitation of their properties 
throughout this chapter culminates in contributions to differential geometry in 
the chapter following. 

The points of a vector manifold are vectors in the (infUlite dimensional) Geo
metric Algebra which possesses an inner product. It might be thought, therefore, 
that our treatment of manifolds is limited to submanifolds of Euclidean space 
with an inherited Riemann structure. However, in developing the general theory 
we make no specific embedding assumptions, so no particuiar metrical structure 
is implied. Indeed, we deal with nonRiemanniam manifolds in Chapter 5. As 
explained in earlier chapters, we can use the inner produce as a grade-lowering 
operation without committing ourselves to a particular metric. 

Whether or not every manifold can be represented as a vector manifold and 
so characterized by Geometric Calculus we leave as an open question (thOUgh we 
are convinced that the answer is in the affirmative). Generality is not our main 
interest here. Rather, with as little formal apparatus as pOSSible, we aim to develop 
as much of manifold theory as is likely to be useful to physicists and applied 
mathematicians. The present chapter is concerned only with local properties of 
manifolds, but we think that it can contribute to improvements in the global 
theory in connection with the integration theory in Chapter 7. 

This chapter has two main parts. The first four sections develop the properties of 
manifolds and the differential calculus of fields as far as possible without reference 
to differential geometry. Most of the results obtained are needed for efficient 
application of geometric calculus. The last three sections are concerned with the 
induced transformations of the calculus of fields from one manifold to another. 
Section 4-5 works out the general theory, but we especially want to direct attention 
to the examples worked out in Section 4-6. Conventional formulations must 
introduce coordinates and employ matrices to carry out computations, whereas 
our treatment is completely coordinate-free. The advantages of Geometric Calculus 
are most clearly revealed by comparing the way the alternative methods handle 
details of computations. 

Section 4-7 shows that Geometric Calculus possesses the well-known virtues 
of complex function theory for describing conformal transformations of the plane. 
Of course, classical complex analysis is limited to two dimensions, whereas the 
present formalism applies to any fmite dimensional manifold; indeed, it fully 
integrates complex analysis and real analysis into a single subject. 
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4-1. Vector Manifolds 

A (differentiable) manifold is a set on which differential calculus can be carried out. 
Ordinarily an m-dimensional manifold At is defmed by assuming that it can be 
locally parametrized by a set of (scalar) coordinates. The coordinates determine 
an invertible mapping of At into Euclidean m-space 8m . Calculus on At is then 
developed by mapping quantities into 8 m where the operations of calculus, being 
well-defined, can be carried out and the results mapped back to At. In recent 
years, exterior differential forms have been widely employed to express calculus 
on manifolds in coordinate-free form (see, for instance, [La]). However, the 
resulting calculus is only nominally coordinate-free, for it is often necessary to 
introduce coordinates to carry out computations. Moreover, the calculus of dif
ferential forms is not sufficiently general to embrace all the important quantities 
defmed on manifolds, so it must be supplemented by other mathematical structures 
such as tensors and fiber bundles. 

In the usual approach to manifolds, coordinates supply the algebraic structure 
needed to support calculus. Being scalar quantities, coordinates submit to the 
algebraic operations of subtraction and division which are presupposed in the 
defmition of a derivative as the limit of a difference quotient. But the necessary 
algebraic structure can be imposed on an abstract manifold more directly by 
assuming that its points are vectors, so points can be added and multiplied accord
ing to the rules of Geometric Algebra. Indeed, the employment of coordinates in 
the usual defmition of a manifold can be regarded as an indirect means of assigning 
properties of vectors to the points of a manifold. As we will show, a fully developed 
coordinate-free differential calculus on vector manifolds can be achieved with only 
minor modifications and extensions of the apparatus developed in Section 2-1. 

A vector manifold At is a set of vectors called points of At with certain prop
erties to be described presently. If x and yare points of At, then the vector x - y 
is said to be a chord of At, more specifically, thc chord from y to x. The limit of 

a sequence of chords defines a tangent vector. A vector a(x) is said to be tangent 
to a point x in At if there is a curve {X(T); 0 < T < e} in At extending from the 
point x(O) = x such that 

a(x)=a· 3x==dx(T) I = lim X(T)-X . (1.1) 
dT T=O T-O T 

If the chords of a curve are not null vectors, the curve can be parametrized by the 
magnitUdes of its chords, a = aCT) == IX(T) - xl, so 

da dx I I da - dx dx 
a = dT dU' a =dT' a = da = Idxl' (1.2) 

The set d(x) of all vectors tangent to .Jf at x is called the tangent space at x. At 
each interior point x of .Jf, the tangent space d(x) is an m-dimensional vector 
space, and .Jf is said to be an m-dimensional manifold. 

In the manner described in Section 1-2, the tangent space d(x) at an interior 
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point generates a unique Geometric Algebra which we call the tangent algebra of 
j{ at x and denote by <§(x) == <§(,s;I(x». We assume that ,s;I(x) is nonsingular 
in the algebraic sense that it possesses a unit pseudoscalar I =.I(x), which we call 
the (unit) pseudo scalar of At at x. This allows for the possibility that ,s;I(x) is 
pseudo-Euclidean as defined in Section 1-5. 

The unit pseudoscalar I = I(x) is an m-blade valued function defmed on the 
manifold At. We wish to show how convenient it is to describe At by specifying 
the properties of the pseudo scalar function. We assume that I = I(x) is defined 
at every point of At. We say that At is continuous if 1= I(x) is a continuous 
function at every point x. A continuous pseudoscalar function I = I(x) on At is 
said to assign an orientation to At. There are two possible orientations correspond
ing to the two possible orientations ±J of a unit blade. A continuous manifold At is 
said to be orientable if its pseudoscalar function I = l(x) is single-valued, and 
nonorientable if I = I(x) is double-valued. We will be concerned only with orientable 
manifolds. . 

We say that a manifold At is differentiable if its pseudo scalar 1= I(x) is dif
ferentiable (in the sense specified below) at each point of vIt. We say that vIt is 
smooth if 1= I(x) has derivatives of all orders. Although discontinuities of a mani
fold can be efficiently described as discontinuities of its pseudoscalar, we are 
concerned only with smooth manifolds in this book. To minimize repetition, we 
lay. down the assumption of smoothness at once; we will repeat it only occasionally 
as a reminder. 

A vector a = a(x) associated with an interior point x of vIt is a tangent vector 
at x if and only if 

a AI = a(x) A/(x) = O. (1.3) 

According to Section 1-2, therefore, at an interior point the pseudo scalar I = I(x) 
uniquely determines the tangent space ,s;I(x) and the tangent algebra<§(x) = 
<§(,s;I(x» = <§(/(x». At a boundary point of At, every tangent vector satisfies 
(1.3), but some vectors which satisfy (1.3) are not tangent vectors in the sense of 
(1.1). Thus, at a boundary point x the tangent space ,s;I(x) is a subset of <§1 (/(x ». 
In this book we will be primarily concerned with the local properties of a manifold 
in neighborhoods of interior points, so we regard (1.1) and (1.3) as equivalent 
defming properties of a tangent vector unless otherwise stated. 

The set of all linear combinations of all chords of a vector manifold At is a 
linear vector space which we call the embedding space of At and denote by vii. 
The Geometric Algebra <§(vii) is called the embedding algebra of At. The tangent 
algebra <§(x) at each point x of At is obviously a subalgebra of <§(.ii). 

To describe a manifold At we often employ vectors in vii which are not tangent 
vectors of At. Indeed, we did this in our fust definition (1.1). However, our 
characterization of local properties of vIt will be completely indifferent to the 
dimension of jij, which could be infmite though the dimension of vIt be finite. 
Determination of the possible dimension of Jl from given conditions on the 
structure of A is called an embedding problem. For example, for the class of all 
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manifolds with intrinsic geometries which are equivalent in some sense, we have 
the embedding problem of determining the minimum dimension for the embedding 
space of a manifold in the class. Embedding problems will not be studied in this 
book, but the apparatus we develop should be quite helpful in such studies. 

According to Section 1-2, the pseudoscalar I(x) determines the projection 
p(x, A) of any multivector A into the tangent algebra t§(x) = t§(/(x»; specifically, 

p(x, A) = [A . I(x)] . rl (x). (1.4a) 

We usually suppress the argument x and write 

P(A) = (A . I) . rl = rl . (I, A). (1.4b) 

We do not repeat here the qualifications mentioned in connexion with Eqn. (1-2.9) 
which are necessary for (1.4) to provide the projections of scalars and m-vectors. If 
A = A(x) is a function on vIt, then we write (l.4b) with the understanding that at 
each point x the value of the function at x is projected into t§ (x), that is, P(A) = 
p(x, A (x». A function A = A(x} is said to be tangent to vIt atx if p(x, A (x» = A(x), 
that is if A(x) is in t§(x). If the function A = A(x) is tangent to vIt at every point, 
we call it a field on vIt and write P(A) = A. The functional relation of the embed
ding algebra to the tangent algebras can be expressed by writing P[ t§(J()] = t§(x). 

The sum of fields A and Bon vIt is the field A + B with valuesA(x) + B(x) in 
t§(x) at each x of vIt. Similarly the product AB is the field·with values A (x)B(x) 
in t§(x). The set of all fields on vIt is therefore an algebra, which we call the 
tangent algebra of vIt and, with further abuse of our notation for Geometric 
Algebras, denote by t§(vIt). 

In Section 2-1 we developed the concepts of vector derivative, differential and 
adjoint on a linear vector manifold. With only minor modifications, which we 
discuss shortly, the powerful results which we established there are valid on any 
smooth vector manifold, and we will have many occasions to use them. We freely 
apply the nomenclature, notations and results of Section 2-1 to any vector mani
fold without repeating the explanations, qualifications and arguments made there. 

For most of the results of Section 2-1 to hold on any smooth manifold vIt, it 
is only necessary to generalize the definition (2-1.2) of the directional derivative 
as follows: Let F = F(x) be a multivector valued function on vIt, and let a = a(x) 
be the tangent vector defined by (1.1). The derivative of F in the direction a is 
defmed by 

a· of=a(x),oxF(X)=dF(X(T))1 = lim F(X(T»-F(x). (l.S) 
dT T=O T-+O T 

This defmition differs from (2-1.2) in not assuming that vIt is a linear space. As 
before, we usually call a· of the directional derivative when a is a specific vector, 
but when a· of is to be regarded as a linear function of a we call it the differentilll 
of F and employ the notations 

£(a) =Fa =a· of. (1.6a) 



142 Chapter 4 

Unless otherwise stated, we assume a = a(x) is a vector function defmed on all 
of vIt, so the differential is a linear function of a(x) at each point x. When we 
wish to focus attention on the function at a particular point x, we may use one 
of the notations 

E(x. a(x» = Fa(x). (1.6b) 

and speak of the differential of F at x. 
Although we develop the notion of differential before it, the central concept 

in our formulation of differential calculus on manifolds is the derivative with 
respect to a point on a manifold, denoted by the differential operator a = ax. 
The operator a = ax is defined in terms of (1.5) in a manner described in Section 
2-1. We will use all the properties of the vector derivative a established in Section 
2-1, but just now we recall only the fundamental fact that a has the algebraic 
properties of a vector field, that is, 

(1.7) 

It is most convenient to defme every other differential operator on vIt, for example, 
the directional derivative a· a. as some function of the single fundamental operator 
a, the derivative with respect to a point. 

When we deal with functions which are linear functions of other functions, 
it is convenient to generalize, or if you will, to modify our defmition of the dif
ferential somewhat. Let A I = A I (x), . .. ,Ak = Ak(X) be multivector functions 
on vIt, and consider the function 

(I.8a) 

Recalling our definition of extensors in Section 3-10, we say that T is an extensor 
function of the functions Aj = Aj(x), if it is a linear function of each Ai for each 
fixed x. Note that the differential of F = F(x) defined by (1.6a) is an extensor 
function of a = a(x). 

We say that T is an extensor field if 

(1.8b) 

The simplest extensor field is, of course, the projection extensor defmed by {I A). 
We refer to T simply as an extensor when we do not wish to emphasize the distinc
tion between (1.8a) and (I.8b). If the values of T are of homogeneous grade and 
the Ak are vector valued. then, for each fixed x. T is a tensor, as defined in Section 
3-} O. If in addition (} .8b) holds, then T is said to be a tensor field. 

We define the differentiJll Ta of an extensor function T = T(A I •... ,Ak) by 

Ta(A I , ... , Ak) 

=a· at(A I •...• Ak) 

= a· 3T(A I • A z •. ..• Ak) - T(a· aA I • A z •.. .. Ak)-

- T(A I • a· 3A z •. "! Ak) - ... - T(A I • A z •. ..• a· 3Ak). (1.9) 
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like T(A 1, .. . , Ak), the function Tb(A 1, . . . ,Ak) is a linear function of the 
A;'s. It is to preserve this linearity that terms like T(a· aA 1, A 2, ••. , Ak) have 
been subtracted from the directional derivative a . aT in (1.9). We regard (1.6) 
as a special case of (1.9), obtaining when the function T = T(x) is not regarded as 
an extensor. Whether or not a function is regarded as a function of other functions 
is, of course, to some extent a matter of convention, but this ambiguity causes 
no problems. 

The subscript notation Ta for the differential has the advantage of conciseness, 
and it seldom leads to confusion in spite of many other uses we make of sub
scripts. However, sometimes it is desirable to consider the differential as an operator 
without reference to a particular extensor on which it acts. In that case, the operator 
notation da is convenient,· so then daT = Ta. However, we will use the notation 
a • a, as in (1.9), instead of the notation cia, because it explicitly indicates its relation 
to the fundamental operator a, hence it is more amenable to algebraic manipulation. 

In accordance with (1.9), we defme and denote the second differential of a 
function F = F(x) by 

Fb(a) =-Fab =- b· aE(a) - F(b. ita). (1.10) 

This agrees with our defmition of the second differential in Section 2-1, but here 
Fab is an extensor function of vector functions a = a(x) and b = b(x). As we pointed 
out in Section 2-1, the symmetry Fab = Fba is a consequence of the integrability 
condition. However, it is now necessary to add that this symmetry obtains only 
if a and b are tangent vectors. For vector manifolds in general, our operator expres
sion (2-1.29) for the integrability condition must be written in the form 

p(o A a) =rl[. (o A 0) = o. (1.11) 

With the understanding that p(a) = a and P(b) = b, we can write the integrability 
condition in the equivalent form 

[a· a, b . a] = [a, b] . a, (1.12) 

where 

[a· a, b . 0] =- a· ab . 0 - b . ita· a (1.13) 

is the commutator of directional derivatives and 

[a, b] == a· ab - b· ita (1.14) 

is the Lie Bracket. 
The equivalence of (1.11) to (1.12) can be established with the help of the 

operator identity 

(a !\ b) . (0 !\ 0) = [a, b) . 0 - [a . a, b . oJ, (1.15) 

* The subscript on da distinguishes it from the closely related operator d, the exterior differen
tial defmed by (1.20). In Sections 5~ and 6-2 the notation da is used for different but related 
operators. 
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which itself can be established by the following steps 

(a 1\ b) . (a 1\ a) = a . (b . aa) - b . (a. aa) 
= b· aa· a - (b· aa). a - a· ab· a + (a. ab) . a 
= [a, b) . a - [a. a, b . a] . 

Dotting (1.11) with a 1\ b we have 

(a 1\ b) .p('iJ 1\ 'iJ) =p(a 1\ b) . ('iJ 1\ a)= (p(a) I\p(b» . (a 1\ 'iJ) = 0, 

Ouzpter 4 

(1.16) 

which according to (1.15) is equivalent to (1.12) with the conditions p(a) = a and 
P(b) = b. Conversely, beginning with (1.12) we can establish (1.16) which when 
differentiated by a and b gives us (1.11), thus, using (2-1.38), we have 

Note that a and b, being arbitrary functions of x, can be regarded as independent 
variables in the tangent space at each point x. Since the tangent space is an n
dimensional linear space, we are justified in using the fonnulas for derivatives of 
linear functions such as (2-138). This is, in fact, just an application of the chain 
rule for differentiation. It is a device of great power which we shall often use in 
this way. 

Equation (1.12) can be derived from the expression (1.5) for the directional 
derivative in tenns of a limit. Having established the integrability condition, we 
have no further need to appeal to the limit process. Evidently, we could define 
a manifold and develop calculus without reference to limits by adopting certain 
basic formulas such as (1.7) and O.1l) as axioms. 

As we noted in Section 2-1, the differential and the derivative of F are related 
by the identity 

(1.17) 

The differential of 'iJF is related to the second differential of F by the fonnula 

(1.18) 

We can establish (1.18) by expressing the variable a as the projection of a vector 
y in the embedding space .Ji; thus a = P(y), and Fa = a . 'iJF = y . 'iJF = Fy . It 
follows that 

'iJaFa = p('iJy)Fy. 

Sincey and 'iJy are independent of x, 

(OaFa)b = Pb(Oy)Fy + P(0y)Fyb. 

This is equivalent to (1.18) by virtue of the linearity in y of Fyb and Fy = Fp(y). 
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An obvious generalization of (1.18) will be useful. Let n..B, A) be an extensor 
on At linear in multivector fields B and A. Suppose 

Q(A) = 0BT(B, A), (1.19a) 

where 0B = P«(}B) is the multivector derivative defmed in Section 2-2. Then, the 
differential of n..B, A) is related to the differential of Q(A) by the equation 

(1.l9b) 

One other variant of the differential deserves discussion and a special notation. 
We defme the exterior differential dT of an extensor function T = T(A) by 

dT = dn..B) == i(B. 3). (1.20) 

The exterior differential plays a central role in Stokes' theorem (Section 7-3), 
where T is a multifonn· of degree k on the tangent algebra, that is, when 

n..A) = n..P(A» = T«A)k)· (1.21 ) 

Because of the linearity property, a discussion of (1.20) assuming (1.21) is sufficient. 
The exterior differential dT can be obtained from the differential Ta by applying 

the skewsymmetrizer (2-3.10), as was done in writing (3·1.4c); thus 

or, using the same notations as (3.1.4c), 

dT(B) = k! (B· a) • (}(k)i(a(k» = k! B. (a 1\ O(k»t(a(k» 

= (k + I)! B. O(k+ 1) Tak+l (a(k». 

(1.22a) 

(1.22b) 

Note that exterior differential differs from the skewsymmetrized differential by 
the factorial of k + I. As an example, consider the case when T has degree 2. Using 
the identity 

(a A b 1\ c)· a = a 1\ bc· a - a 1\ cb· a + b 1\ ca· a, 
we see that 

dT(al\b I\c)= t«a I\b 1\ c) . a) 
=c· ai(al\b)+b. at(ct\a)+a. at(bt\c) 

= Tc(a t\ b) + Tb(C 1\ a) + Ta(b 1\ c). (1.23) 

• The term 'multiform' was introduced in Section 3-9 to abbreviate 'multivectoI valued alter
nating form'. Our usage here is an obvious extension of the original terminology. 
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It should be obvious from these considerations that the exterior differential raises 
the degree of a multiform by one. 

Now using {1.20} to compute the exterior derivative twice, we have 

{1.24} 

The notation here is awkward. The operator a has two overdots to indicate that it 
is differentiated by a, while both a and a act on T. In Section 4·3 this derivative 
will be evaluated and shown to vanish when projected into the tangent algebra. 
If C = P(C}, we can apply (l.l1) to get 

{l.2Sa} 

Thus the second exterior differential of a multiform vanishes identically. like 
{l.11} and (1.12), the operator equation 

{l.2Sb} 

expresses the integrability condition. 
When the multiform T = T(A} is scalarvalued, it is called a differential form, and 

dT is exactly equivalent to Cartan's 'exterior derivative' of a differential form. For 
this reason, we have adopted his notation dT, however, we use the term 'exterior 
differential' to be consistent with our general distinction between the terms 'dif· 
ferential' and 'derivative'. 

According to Section 14, a k·form T = T(A} can be expressed as the scalar 
product of some k·vector K with A. So for a differential k·form we have 

T = T{x, A{x}} = <A(x)K(x» = <A>A: . K. 

The exterior differential (1.20) can then be written 

dT = (B. 3K) = {(B)k + 1 . 3) . K 

= (B}k+l . (3 I\K) = (Bp(3 I\K)}. 

{1.26} 

(1.27) 

The quantity dT(B} is dermed for all arguments B = P(B} in the tangent algebra, 
so the scalar product (B 3 1\ K) vanishes for any component of 3 1\ K not in the 
tangent algebra. To emphasize this, the projection operator P was included in 
the last term of (1.27). Equation (1.27) shows that the exterior differential of a 
differential k-form is exactly equivalent to the curl of some k-vector field projected 
into the tangent algebra. A more detailed comparison of Geometric Calculus with 
the conventional calculus of differential forms is carried out in Section 64. 

We have introduced the notation dT to simplify comparison of Geometric 
Calculus with more conventional formalisms. But we shall use it sparingly, because 
we regard it as a mere abbreviation of the more explicit expression T(B. a}, and 
the explicit expression is needed for computations such as (l.27)_ 

It should be mentioned that, besides the exterior differential, there is also an 
interior differential, which lowers degree by one, namely, the quantity t(B 1\ a} 
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obtained from an extensor T = 1'(A). We need not introduce a special notation for 
the interior differential, besides, we prefer the name 'tensor divergence' to 'interior 
differential', because it agrees with conventional terminology in tensor analysis. 
A notation frequently used in the calculus of differential forms is explained in 
Section 64. The name 'divergence' is also appropriate for 3· itA), though this 
quantity is quite different from itB" 3). The tensor divergence appears '!lost 
frequently in connection with degree one tensors, when it has the form 1'(3). 
On the other hand, if T = T(A) = A • K is a differential k-form, then, in parallel 
with (1.27), we have 

itB" a) = <B " aK} = {(B)k _ 1 " a) . K 

= (B)k _ 1 . (a . K) = <Bp(a . K». 0.28) 

Thus, the interior differential of a differential form is precisely equivalent to the 
projected divergence of some multivector field, just as the exterior differential is 
equivalent to the prOjected curl. 

4-2. Projection, Shape and Curl 

This section describes and derives the properties of Ph{A), the first differential of 
the projection extensor P(A). As the results of this section are used in subsequent 
sections, it will become clear that Ph completely characterizes the differential 
calculus of fields on a manifold. Indeed, it will be shown in the next chapter 
that Ph completely determines the intrinsic geometry of a manifold and that the 
second differentialPha is needed only to describe extrinsic geometry. 

The identity function on a manifold (which, of course, maps each point to 
itself) is not the trivial function one might at first suppose. The parenthesis ( ) 
is a universal symbol for the identity operator, so we can represent the identity 
function by writing (x) = x. The first differential of the identity function is precisely 
the projection of a vector into the tangent space at each point of the manifold, 
that is, 

a· a(x)= p(a) = (a ./) ·rl =a ·/rl. (2.1) 

This result is established for any differentiable vector manifold in the same way that 
we established it for a linear manifold in Section 2-1. In Section 1-2 we established 
the outermorphism property of projections, PCtt)" P(B) = P(A "B). Hence, the 
general multivector projection P(A) dermed by (1.4) is the outermorphism of the 
vector projection (2.1). 

The second differential of the identity is, of course, the first differential of the 
projection, namely, 

Pb{a) = b . 3P(a) = b . aJ'{a) - p(b . aa). (2.2a) 

More generally, 

Ph{A)=b· ap(,A)=b. ap(A)-p(b· aA). (2.2b) 
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This quantity is well defined at each point x of .At for any multivector function 
A = A (x) and vector function b = b(x). 

The properties of the projection differential Pb are derived from the general 
properties of the projection operator P which we determined in Section 1-2. 
Obviously, Pb is a linear, grade-preserving operator, that is, 

Pb(aA + fJ8) = aPb(A) + fJPb(B), 

Pb(<A)k) = <I'b(A»k, 

and, of course, 

Pb(<A>O) = O. 

Differentiating A • PCB) = B • P(A), we get the symmetry property 

A .Pb(B)=B .Pb(A). 

Differentiating the outermorphism relation P(A A B) = Jl(A) A P(B) we get 

Pb(A AB) = Pb(A) AP(B) + Jl(A) APb(B). 

And differentiating p2 (A) = P(A) we get 

PbJl(A) + PPb(A) = Pb(A). 

(23) 

(2.4a) 

(2.4b) 

(2.5) 

(2.6) 

(2.7) 

We do not get a particularly useful result by differentiating the one remaining 
property of P, namely Jl(P(A)B) = Jl(A)p(B), however, we make good use of this 
as well as other properties of P in computations that follow. Our list of general 
properties of Pb is completed by 

(2.8) 

which follows from b· a = P(b) . a. The operator Pb can be interpreted as the 
rate of change of P in the direction Jl(b), that is, that is, as a 'velocity of the projec· 
tion operator' . 

The above listed properties of Pb do not depend on the fact, expressed by 
(2.1), that peA) is the differential of the identity function. The integrability con· 
dition (1.12) applied to the identity function implies that Pb(a) = P.(b) if a and 
b are tangent vectors, as is readily proved by substituting (2.1) into (2.2a) and using 
(1.12). In view of (2.8), this property can be expressed in the form 

P~a) = P.Jl(b), (2.9) 

which holds for any vector functions a = a(x) and b = b(x). 
According to (2.8) only the tangential component of b contributes to Pb(a). To 

ascertain how Pb(A) depends on the tangency of A, we introduce the decomposition 

(2.10a) 
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where 

All =f(A) (2.l0b) 

is the projection of A into the tangent algebra, and 

(2.10c) 

is the rejection of A from the tangent algebra. The operator Pb treats the com
ponents All and A.l quite differently. Thus, the identity (2.7) admits the special 
cases 

PPb(A II ) =PPbP(A) = 0, 

PPb(A.l) =Pb(Al )· 

From this it follows that identity (2.6) admits the special cases 

Pb{A Ii ABII ) =Pb{A II ) ABII + All APb{B11 ), 

Pb{Al AB II ) = Pb{Al ) A B II , 

Pb(A l AB1) = o. 

(2.11a) 

(2.l1b) 

(2.12a) 

(2.l2b) 

(2.l2c) 

From (2.12) it follows that if Al is a blade andPPb(Al) = Pb(Al) + 0, thenAl has 
a vector factor al.such that 

where BII is defined by the factorization 

Al =al ABII =alBII · 

(2.13a) 

(2.13b) 

The principal object of our interest is the derivative of the projection operator 

(2.14) 

We call SeA) the shape of the function A = A(x), and we refer to the operator S 
as the shape operator of the manifold 1(. The algebraic properties of the shape 
operator can be derived from the above properties of the operator Pb. From (2.3) 
we immediately determine that the shape operator is linear, that is, 

S(aA + (3B) = as(A) + (jS(B). (2.15) 

However, before we present the remaining properties of shape in general, we 
examine the shape of a vector function in detail. 

We first establish that, for a vector function a = a(x), 

Sean) = ab APb(a), 

Seal) = ab . Pb(a). 

(2.16a) 

(2.16b) 
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By (2.14) and (2.15), we can write 

Sea) = S(all) + Seal) = Ob . Pb(a) + Ob APb(a), 

hence (2.16) can be proved by showing that 

0b· Pb(a,0 = 0, 

Ob APb(al) = o. 
We prove (2.17a) from (2.11a) as follows: 

Ob . Pb(all) = P(0b)· Pb(all) = Ob . PPb(an) = o. 
To prove (2.17b), we first notice that (2.l1b) implies that 

P(Ob APb(al» = Ob A PPb (al) = Ob APb(al). 

Chapter 4 

(2.17a) 

(2.17b) 

Hence if c and d are any vectors, we show, with the help of (2.5) and (2.9), that 

(c Ad). (Ob APb(al» = (p(c) AP(d»· (Ob APb(al» 

=p(c) ·Pd(al) -P(d) ·PC(al) 

=al· [PdP(C) -PcP<d)] = o. 
This proves (2.17b). The reader may need to be reminded that we have used the 
formulas (2-1.46) and (2-1.19) in this proof. These and similar formulas from 
Chapters 1 and 2 will hereafter be taken for granted in proofs and computations. 

Equations (2.16a, b) can be combined in the single equation 

Sea) = Sa + N . a, (2.18) 

where 

Sa = a Ap(a) = S(p(a» (2.19) 

and 

(2.20) 

We call the bivectorvalued function Sa the curl tensor or the curl of the manifold 
to emphasize the fact that it is the curl of the projection of a vector. We call N 
the spur of AI' to emphasize the fact that it is the spur of the tensor Pb(a), thus, 

To get (2.18) from (2.16b), we must show that the divergence of the projection 
is determined by the spur. This is easily done with the help of (2.5), thus, 

a . Pea) = a . Pea) = a . N. (2.21) 
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We can also use (2.5) to put (2.17a) in the form 

N· p(a) = O. 
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(2.22) 

This says that N is everywhere orthogonal to tangent vectors of the manifold, 
which fits nicely with the connotation of 'spur' as something that 'sticks out' (of 
the manifold). 

We have yet to complete our justification of (2.20). Equation (2.20) says that 
the spur is determined by the curl. This is proved by 

oa,Sa = oa . (Ob I\Pb(a» = oa' 0bPb(a) - ObOa . Pb(a) =N, 

Equation (2.20) also says that 

oa 1\ Sa = O. 

This follows from the symmetry property (2.9), thus 

oa 1\ Sa = oa 1\ Ob 1\ PbP(a) = O. 

(2.23) 

Equation (2.19) defines Sa in terms of Pb(a). Conversely, we can expressPb{a) 
in terms Sa. Dotting (2.19) with b, we have 

b,Sa = b . (oe I\Pep(a» = b· oePep(a) - oeb· PeP(a). 

By virtue of (2.9) and (2.5), the last term can be written 

while the first term can be re-expressed by (2.9), yielding 

b . Sa = PaP(b) - PPa(b). (2.24) 

Operating on (2.24) with P we get, because of (2.11 a), 

PPa{b) = -p(b . Sa)· (2.25) 

On the other hand, if b = P(b) in (2.24), we have 

PaP(b) = P(b) . Sa· (2.26) 

Adding (2.25) and (2.26) and using (2.7), we get the desired expression 

(2.27) 

Note that, by (2.26), (2.9) is equivalent to the relation 

P(b)· Sa =p(a)· Sb. (2.28) 

This is just what one obtains by dotting (2.23) withP(a 1\ b). Thus, (2.9), (2.23) 
and (2.28) are mutually equivalent expressions of the integrability condition 
applied to the identity function. 
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Note also that, by using (2.26), (2.11a) can be expressed as the condition 

p(p(b) . S/I) C o. (2.29) 

Thus, the vector-valued tensor P(b) . S/I is normal to the manifold. The 'normality' 
of the spur expressed by (2.22) is a special consequence of (2.29), as is the relation 

(2.30) 

Equation (2.30) can be more directly derived from (2.19) by using (2.11a). 
We can generalize Eqn. (2.27) at once. Using (2.6) and the anticommutivity 

of the outer product, we get 
, 

_ ~ '\k+l v 
Pb{a1A ... Aa,)- L.. {-I} Pb{ak)Ap(adA ... P{ak).·.AP(ar ), (2.31) 

k=l 

where the ak's are vectors. Eliminating Pb (ak) with (2.27) and using (I-1.67), which 
applies because Sb is a bivector, we obtain 

Pb(al A ... A a,) =P(al A ... A a,) X Sb - p(al A ... A a,) X Sb). (2.32) 

By virtue of linearity, (2.32) implies that for any multivector A, 

Pb(A) = P(A) X Sb - P(A X Sb). 

With the help of (2.30), we easily get from (2.33) the special cases 

Pb(A II ) =PbP(A) =P(A) X Sb, 

Pb{A L) = PbPl(A) = P(Sb X A). 

(2.33) 

(2.34a) 

(2.34b) 

Thus, the differential of the projection is completely determined by the curl tensor. 
Having examined the shape of a vector-valued function exhaustively, we are 

prepared to establish the general properties of the shape operator dermed by (2.14). 
The most important properties of shape are expressed by 

S(A II ) = S{P(A» = a AP(A), 

S(A1 ) = P(S(A» = a· P(A). 

Of course, 

S(A) = S(A u) + S(A.d. 

Moreover, because of (2.4), we have 

(S(A»k+l =SP«A)k), 

(S(A)}k-l =PS«A)k)· 

(2.35a) 

(2.35b) 

(2.35c) 

(2.36a) 

(2.36b) 

Thus, the shape operator distinguishes All from Al by raising the grade of the 
former while lowering the grade of the latter. 
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Properties (2.35a, b) can be established by proving 

3 I\.p(A!) = 0, 

3· .P(Au) = O. 

(2.37a) 

(2.37b) 

It suffices to consider A = al 1\ al 1\ . .. 1\ a, = <A>,.. Using (2.31) and (2.19), we 
have 

, 
. . \k+l' . 
31\P(al 1\ ... l\a,)= L (-I) 3I\P(ak)I\P(all\ ... ak ... l\a,) 

k=1 
, 

= L (-I'f+ 1S{ak)I\P(all\ ... ak ... l\a,) 
k=1 

= 3 1\ PP(a 1 1\ ... 1\ a,), (2.38) 

from which (2.37a) follows easily. The proof of (2.37b) is a little more trouble. 
Using (2.31) and (I-l.38), we have 

, 
3.'p(a! 1\ .. . 1\ a,) = L (-I'f+1{3.p(ak)p(al 1\ ... ak' .. 1\ a,) + 

k= 1 

+ Pak(a! 1\ ... ak ... 1\ a,) }. 

We notice that, by (2.31) again, 

, 
L (-I'f + I Pak {aJ 1\ ... ak··' I\ar ) 

k=l 

j+k+1 
= L (-I) [Pa/ak)-Pak{aj)] I\P(aJ I\ ... aj ... ak ... I\ar), 

;<k 

which vanishes if P(ak) = ak for all k. Also, by (2.21) and (1-1.38) 

r 
" k+l" L (-I) 3· P(ak)P(al 1\ . .. ak ... I\ar) = P(N . (al 1\ .. . 1\ ar». 

k=l 

Hence, 

3·p(al 1\ ... l\a,)=P(N.(al 1\ ... l\ar»+ 
, 

+ L (-I'f+ 1PPak(all\ ... dk ... l\ar). (2.39) 
k=1 

By virtue of (2.22) and (2.11a), the right side of (2.39) vanishes if P(al 1\ . .. 1\ ar) 
=al 1\ . .. I\ar , from which (2.37b) follows easily. 
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With (2.35) and (2.36) in hand, other properties of shape are readily established. 
For example, from (2.12a, b, c) we get 

S(AII ABII)=S(AII)ABII + (-I)'A II AS(BII ), 

S(Al ABII ) = SeAl) ABII + (-I)'P(Al ) A (a. BII ), 

if <A), =A, and 

S(AlABJ=O. 

From (2.38), we get 

, 
Sp(al A ... A a,) = I (-If+1Sak AP(al A .. . ik .. ' A a,). 

k=l 

From (2.39) and (2.34b), we get 

PS{al A ... A a,) =p(N· (al A ... Aa,»+ 

, 

(2.4Oa) 

(2.4Ob) 

(2.4Oc) 

(2.41 a) 

+ I (-I)k+lp(S(ak)X(al A . .. ik . .. Aa,».{2.41b) 
k = 1 

The last two equations can be combined using (2.18), yielding 

, 
Seal A ... A a,) = I (-I:f+l {S(ak)Ap(al A .. . ik .. ' A a,) + 

k=l 

+ p(S(ak) X (al A ... ilk ... A a,» }. (2.4Ic) 

The differential and shape of the pseudoscalar I are particularly important. 
Differentiating //-1 = I· r l = 1, we get (a. aI)· r' = 0; hence, 

p(a· aJ) = O. 

Differentiating I = P(J) and using (2.42), we get 

a· aI =Pa{l); 

Hence, by (2.35a), 

al = a A I = S(J). 

(2.42) 

(2.43) 

(2.44) 

According to (2.36) the shape operator does not preserve grade. Nor does it 
preserve tangency, as is proved by applying (2.1la) to (235a) to get 

PS(A II ) =PSp(A) = o. (2.45) 

However, the operator S2 preserves both grade and tangency. Thus, from (2.35), 
we find that 

~ (All) = PS2 (A II ) = p~ P(A), 

S2(Al) = Pl S2(A) = SPS(A). 

(2.46a) 

(2.46b) 
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And from (2.36), we ascertain 

Sl (<A),) = (Sl (A »,. (2.47) 

The result of operating with S2 on a A b = p(a A b) is important in the study of 
curvature. With the help of (2.40) and (2.34b) we get 

~(a Ab) = Sl(a) Ab + PbS(a) -PaS(b) +a AS2(b) 

(2.48) 

4-3. IntriDsic Derivatives and Lie Brackets 

This section defines and studies the fundamental differential operators which 
preserve the tangency of fields on a manifold. Intrinsic differential identities are 
established which have wide applicability. The emphasis here is on results which 
are independent of the geometry of a manifold. The role of intrinsic derivatives in 
geometry will be discussed in Chapter 5. 

The last half of this section concerns generalizations and variations of the lie 
bracket concept. This material will not be used in the rest of the book, though the 
induced transformations of brackets will be determined in Section 4·5. The results 
are included for reference purposes, to use the Geometric Calculus for applications 
where lie brackets playa prominent role. 

Often we are concerned exclusively with[ields on a vector manifold .-If. Recall, 
that a field A. = A(x) on .# has the property of tangency: A = P(A). As a rule, the 
directional derivative a· 3Aof a field A = A(x) is not tangent to JII. We can develop 
a differential calculus of fields by introducing the directional coderivative a . \lA 
of a defined by 

a· \lA =p(a· aA). (3.1) 

Similarly, we define the coderivative \lA of A by 

\lA =p(aA) = 3aa· \lA = \lao, \lA. (3.2) 

Recall the definition (1.8b) of an extensor field T = T(A!, A 2 , ••• ,Ak)' Gen· 
eralizing (3.1), we define the codifferential OaT of T by 

0aT=PTa(p(Ad,·· ., P(Ak)) = a· Vt(p(A d, ... ,P(Ak)) 

=a· \IT(A!, ... ,Ak) - T(a. IJP(Ad, ... ,Ak)-

- ... - T(AIo'" ,a· \lP(Ak». (3.3) 

The prefix 'co' is used above to mean 'with', that is, 'with preservation of tangency'. 
Obviously, the projection operator P assures tangency of the coderivative by 
annihilating the component of the derivative which is not tangent. 
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For a tensor field T, the co differential defined by (3.3) is equivalent to the 
usual 'covariant derivative' of tensor analysis. Of course, the meaning of the prefIX 
'co' in 'covariant' is quite different from its meaning in 'codifferential'. 

Just as the codifferential baT is defined as the projected differential of an 
extensor field by (3.3), it is natural to define the exterior codifferentilll 6T as the 
projected exterior differential. Accordingly, for the extensor field 

T= T(A) =PTP(A) , (3.4a) 

from (1.20) we have 

6T = bT(B) ==p(d1) = P(t(B. iJ)) == t(B. V). (3.4b) 

As a rule, we shall use the notation b T sparingly as an abbreviation for the more 
explicit expression t(B . V). However, in the computations of Section 7-8, the 
notation cST is found to be a definite asset. 

We wish to establish the general properties of the coderivative, especially so we 
can use it without reference to its defmition (3.2) in terms of the derivative. For 
scalar fields, the derivative and coderivative are identical, that is, since p(a) = a, 

V I/> = al/> if (I/» = 1/>. 

The derivative VI/> is usually called the gradient of 1/>. like the derivative, the co
derivative of a general multivector valued function A = A{x) can be decomposed 
into two parts 

VA = V· A + V I\A, (3.Sa) 

where 

V . A ==p(a . A), (3.Sb) 

V I\A ==p(a I\A). (3.5c) 

We call V . A the codivergence of A and V 1\ A the cocurl of A. We may refer to 
17 A as the gradient instead of the coderivative of A, because it generalizes the usual 
notion of gradient. Of course, V . I/> = 0 for scalar 1/>, by virtue of the algebraic 
property (1-1.2Ib), so the gradient of a scalar is the curl a 1\ I/> = V 1\ I/> = VI/>. In 
general, the coderivative is equivalent to the derivative only for fields on linear 
manifolds. 

Considering once again Eqn. (l.27) and the attendant discussion, it is clear that 
the role of the cocurl in Geometric Calculus corresponds exactly to the role of the 
exterior derivative in the conventional calculus of differential forms. Similarly, 
Eqn. (1.28) shows that the co divergence corresponds·to the 'interior derivative', To 
readers familiar with the subject, it will be clear that the concepts and terminology 
of de Rham's cohomology theory can be applied to muitivector fields. Accordingly, 
we say that a multivector field F = P(F) is closed if V 1\ F = 0, and we say that 
it is exact if there exists another field A = P(A) such that F = V 1\ A Equation 



Calculus on Vector Manifolds 157 

(3.11) below says that every exact field is closed. But, as standard accounts of 
cohomology theory show, not every closed field is exact. We shall not attempt a 
systematic reformulation of cohomology theory in the language of Geometric 
Calculus, but some results appear in Chapter 7. 

Now let us examine the difference between derivative and coderivative in detail. 
Differentiating the tangency condition A = P(A), we find that for a field A = A(x) 
the derivative is related to the co derivative by 

aA = VA + SeA), 

where SeA) is the shape of A defined by (2.14). Because of (2.35a), we have 

a AA = V AA + SeA), 

a·A=V·A ifP(A)=A. 

(3.6a) 

(3.6b) 

(3.6c) 

Without the tangency condition on A and the notation for coderivative, Eqns. 
(3.6) take the form 

ap(A) = p(ap(A» + S(P(A», 

a AP(A) =p(a AA) +S(P(A», 

a· P(A) = p(a. P(A». 

Operating on (3.7b) with P, we get, because of (2.45), 

pea AP(A» =p(a AA) 

or, eqUivalently, 

vAA=p(aAA) ifA=P(A). 

(3.7a) 

(3.7b) 

(3.7c) 

(3.8a) 

(3.8b) 

The codivergence and cocurl of a field A are related by the duality theorem 

V·A=[VA(AI)]r1 ifP(A)=A, 

where I is the pseudoscalar of the manifold. We can prove (3.9) as follows 

p[a A (AI)] = P[3 A (AI)] + P[3 A (Ai)] = P[3 A (p(A)!)] 

= P[3. (p(A»)l] = P[3. p(A)] I = a . P(A)I. 

In the second step we used (2.24) and (2.45) to justify dropping the term 

P[3A(A.i)] =P[3A(AF(J»] =p[ii A (APF(J))] =0. 

(3.9) 

The integrability condition comes in to play when we consider second deriva
tives. laking A = a in (3. 7b), we get the operator equation 

a A a = a AP(a) = p(a A a) + sea). (3.lOa) 
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But p(a 1\ a) = 0, according to (1.11), hence we have the general relation 

a 1\ aA = s(a)A. 

From this we can prove that for any A = A (x), 

V 1\ V I\A =p(a 1\ a I\A) = O. 

Using (3.7b) we have 

a I\p(a I\A) =p(a 1\ a I\A) + sp(a I\A). 

Operating on this withP.and using (2.45), (3.10b) and (2.30), we have 

p(a I\p(a I\A» = p(a 1\ a I\A) = p(s(a) I\A) =p(p(s(a» I\A) = 0, 

which establishes (3~11). 
'Dual' to (3.11), we have the result 

a· (a· P(A» = 0, 

or, equivalently, because of (3.6c), 

V·(V·A)=a·(a·A)=O ifP(A)=A. 

We can prove (3.12) by using (3.9) twice followed by (3.11), thus 

V . (V . A) = V . {(V 1\ (AJ)]r1 } = V 1\ [V 1\ (AJ)]rl = O. 

Chapter 4 

(3.10b) 

(3.11) 

(3.12a) 

(3.12b) 

The associative rule allows us to expand the colaplacian Vl in two ways which, 
because of(3.11) and (3.12), yields 

V2A = V . VA + V 1\ VA = V 1\ (V· A) + V . (V I\A) if P(A) =A. (3.13) 

From this we can conclude that the operator V 1\ IJ is grade-preserving, that is 

V 1\ V<A)k = (V 1\ VA)k if P(A) = A, (3.14a) 

or, equivalently, 

V 1\ VA = (V 1\ V) X A if P(A) = A. (3.14b) 

This result can also be obtained by using (l-1.62b). 
We can easily derive a large number of 'differential identities' for the coderiva

tive in the same way we did for the derivative in Section 2-1. Identities engaging 
a simple derivative remain valid if a is replaced by V. When two or more derivatives 
are engaged, the differences arising from the replacement of a by V are readily 
determined using the results above. 

The properties of the directional coderviative can be derived from the definition 
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(3.1), but a more interesting and useful approach is to derive them from the prop
erties of the coderviative by using differential identities. Let a = a(x) and b = b(x) 
be vector fields. According to (3.6b), since I'(a) = a, 

3/\a='V/\a+Sa, 

where Sa is the curl tensor defined by (2.19). Using the differential identity 

b· (3/\a)=b· 3a- aa· b 

and noting that aa· b = Vil· b, we obtain, by dotting (3.15) with b, 

b· 3a = b· 'Va + b . Sa. 

(3.1 5) 

(3.16) 

Since I'(a /\ b) = a /\ b, according to (2.28), we have, a· Sb = b . Sa, so from (3.16) 
we have 

[a, b) =a· 3b-b· 3a=a· 'Vb-b· 'Va. (3.17) 

It follows that the Ue bracket [a, b) preserves tangency, in spite of the fact that 
a· 3b and b· 3a do not; that is, regarding a and b as arbitrary vector-valued func
tions, we have 

[l'(a),l'(b)] = I'([a, b]). (3.18) 

This result can also be obtained directly from the integrability condition by operat
ing on the identity function (x) = x with (1.12). The tangency-preserving property 
(3.18) of the Ue bracket is evidently equivalent to the symmetry property (2.28) 
of the curl tensor, which was also derived from the integrability condition. 

The Lie bracket satisfies the differential identity 

[a, b) =3·(a/\b)-b3.a+a3.b. (3.19a) 

Because of (3.6c), this reduces to 

[a, b) = 'V • (a /\ b) - b'V . a + a'V . b, if p(a /\ b) = a /\ b. (3.19b) 

This shows that tangency of the lie bracket is equivalent to tangency of the 
divergence. 

We generalize the notation of Lie bracket to arbitrary functions A = A(x) and 
B =B(x) with the defmition 

[A, B] = (A . 3) /\ B - A /\ (a . B). 

This bracket obviously has the distributive properties 

[A, B + C] = [A, B] + [A, C] , 

[A + B, C] = [A, C] + [B, C] . 

(3.20) 

(3.2Ia) 

(3.2Ib) 
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For A, == <A),. and Bs == (B), we easily prove the 'commutation rule' 

[A"Bs]t =-[Bl,AJ] =(_l)(,-l)(S-l)[Bs,A,]. 

This admits the useful special case 

[a, B) = -[B, a] if (a)1 = a. 

Chapter 4 

(3.22a) 

(3.22b) 

Using the algebraic identity (1-1.42), we easily fmd the generalization of 
(3.19a): 

a . (A, AB) = (a· A,) AB + {-I)'A, A (a· B) + (-1)'+ 1 [A" B), (3.23a) 

which admits the special case 

a . (a A B) = {a . alB - a A (a . B) + [a, B) . (3.23b) 

Since, according to (3.6c), the divergence preserves tangency, it follows at once 
from (3.23a) that the bracket [A, B) preserves tangency, that is, 

[P(A), P(B)] = p( [A, B) ). (3.24) 

With (3.12b) and (3.23a) it can be shown that the divergence of the bracket 
has the simple property 

'1/. [A" B) = ['1/. A"B) + (_1)'+1 [A" '1/. B) (3.25) 

if P(Ar) =Ar andP(B) = B. Thisisjust what one would expect from a naive applica
tion of the product rule for differentiation. However, the curl of the bracket does 
not obey such a simple rule. 

The bracket [A" B) can be regarded as an operator on B. Using (l-1.23b) and 
(1-1.42), it can be shown that this operator has the property 

(A" Bs A C] = [A" Bs] A C + (-1)s(r- l)Bs A [A" C). (3.26a) 

This admits the special case 

[A" b ABs] = [A" b) ABs + (-1)' [A" Bs] Ab. (3.26b) 

By iterating (3.26b), or more easily by using (1-1.38), we get the useful expansions 

s 
[A"Bs] = I (-I)k+l[A"bk]Ab I A ... Abk A ... Abs. 

k=l 

s 
[a,Bs]= I bIA ... Abk_1A[a,bk]Abk+lA ... Abs, 

k=l 

whereBs = b l Ab'l. A ... Abs. 

(3.27a) 

(3.27b) 
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Just as the divergence and curl are dual to one another in the sense of Eqn. (3.9). 
we can introduce a dual bracket {A. B} whose dual relation to the generalized 
Ue bracket is obvious from the definition 

{A. B} = [A. BI]rl. (3.28) 

The dual bracket obviously inherits some of the general properties of the bracket 
without modification. Thus. it has the linear property 

{A. B + C} = {A. B} + {A. C}. 

{A + B. C} = {A. C} + {B. C}; 

and it preserves tangency. 

P( {A. B}) = {P(A). P(B)}. 

(3.29a) 

(3.29b) 

(3.30) 

However. it does not possess any symmetry property comparable to (3.22). In fact. 
since the grade of the dual bracket is given by 

grade {ArBs} =s - r+ I> O. (3.3la) 

we have 

{Ar• Bs} = 0 if r > s + l. (3.31b) 

From (3.26a) we get. for t + r ~ s + 1. 

Ct· {Ar• Bs} = {Ct AAr• Bs}+ (_I)'(s+l) {Ct. Bs}· Ar• (3.32) 

and from (3.25) we obtain. if Ar and Bs are tangents. 

v A {Ar• B} = {V· Ar• B} + (-I)'+I{An V A B}. (3.33) 

The dual of the expression (3.23) for the Ue bracket in terms of the divergence 
is the following expression for the dual bracket in terms of the curl: 

{Ar• Bs} = (-1)'+ 1 V A (A r · Bs) + (-I)'(V . Ar)· Bs + Ar · V ABs. (3.34a) 

which holds if Ar and Bs are fields and s > o. We derive this from (3.23a); thus. 

{Ar• Bs} = [Ar• BsI]rl 

= (-I)'"+lV . (Ar 1\ (Bsl))I-1 + (-I)'"{V . Ar)1\ (Bsl)rl + 

+ Ar 1\ (V . (Bsl))r l 

= (-1)'"+ 1 V . (Ar · Bsl)I-1 + (-I)'"(V . Ar) . (BsIrl) + 

+ Ar 1\ (V 1\ Bsl)I-1 

= (-1)'+ 1 V 1\ (A r · Bs) + (-I)'"{V· Ar)· Bs + Ar . (V I\Bs). 
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In view of (3.3Ib), the only cases excluded from (3.34a) are the easily established 

{a. P} = -PV· a + a· Vp, (3.34b) 

and 

{a, P} = -PVa, (3.34c) 

where a is a vector field and a and P are scalar fields. 
Finally, we have a relation between the two kinds of brackets expressed by the 

identity, for s > 0, 

(CdA r• B,}> = (-1)'+ 1([Ct• Ar ]B,> + (Ar . VB,· Ct> + 
+(-I)'(B,· CtV·Ar>. (3.35a) 

This vanishes unless s + I = r + t, in which case it can be written in the equivalent 
form 

Ct . {Ar• B,} = (-1)'+ I [Ct. Ar] . B, + (Ar . V) . (B,. Ct ) + 

+ (-I)'(Bs ' Ct ) . (V· Ar)· 

To prove this, we note that (3.34a) gives immediately 

(3.35b) 

Ct' {Ar, Bs} = (-1)'+ ICt . (V A (Ar · Bs» + (-I)'Ct . «V· Ar) . Bs) + 

+ Ct' {Ar . (V A Bs». 

With the help of (l-1.42) and (3.20) we see that 

Ct . (V A (A r · Bs» = (Ct' V) . (Ar . Bs) 

= [(Ct' V)AAr] . B, +(_t)'+1 [Ct A(Ar · V)] .Bs + 

+ (-t)'(Ct AAr)· (V ABs) 

= [Ct. Ar] . Bs + (-1)'+ I(Ar . V) . (Bs . Ct) + 

+ (-t)'(Ct AAr)· (V AHs). 

On substituting this into the first term on the right of (3.36), we get (3.35b) as 
required. 

The Ue bracket has many important properties and applications not mentioned 
here, but we have achieved our purpose of showing how it fits into the general 
system of differential identities in Geometric Calculus. 

4-4. Curl and Pseudoscalar 

This section considers the results of Section 4-2 from a different point of view 
and derives some importmt general properties of pseudoscalars. The approach 
here is easier to interpret geometrically than the one in Section 4-2, but it is not 
as directly applicable to the generalization considered in Section 4-5. 
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Section 4-2 studied differentials and derivatives of the projection operator P 
without making use of the fact that P can be expressed in terms of the pseudo· 
scalar by 

(4.1) 

Equation (2.43) expressed the differential of I in terms of the differential of P. 
Obviously, Eqn. (4.1) makes the converse possible, to determine the differential 
Pa from a . a/. This will be done by relating the differentials and derivatives of I 
to the fundamental curl tensor Sa = a 1\ p(a), which was introduced in Section 
4-2. 

According to (2.43) and (2.34a), 

(4.2) 

This shows that the bivector·valued tensor Sa can be interpreted as the 'angular 
velocity' of the unit pseudoscalar I as it 'slides' along the manifold in the direction 
p(a). 

According to (2.30), p(Sa) = 0, which, by (4.1), can be written 

Sa ·1= 0 

if we exclude one·dimensional manifolds, so grade I ~ 2. 
On the other hand, from definition (2.19), it follows tliat 

Sa 1\1=0. 

According to (1·1.63), we can write 

/Sa = I· Sa + I X Sa + 11\ Sa, 

so (4.3a, b) is equivalent to the relation 

/Sa = I X Sa = -Sal. 

Using (4.4), we can solve (4.2) for the curl tensor, obtaining 

Sa = rl a· al = rl Pa(I) = -(a· 3l)i1 = -Pa(l)il . 

(4.3a) 

(4.3b) 

(4.4) 

(4.5) 

We have seen that all the results in Sections 4·2 and 4-3 can be derived from the 
properties of the projection operator P and the curl tensor defined by Sa == a 1\ 
p(a). On the other hand, Eqns. (4.1) and (4.5) show that we could as well have 
obtained the same results beginning with the pseudoscalar I and the curl tensor 
defined by Sa == rIa. aI. This approach has the advantage of beginning with the 
obvious geometrical interpretation of Sa as the rate of rotation of I. We have chosen 
the former approach, however, because it can be directly generalized, as will be 
seen in the next section. 
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Recalling the definition (2.20) of the spur N, we obtain from (4.5) 

N = aaSa = -(aJ)l1 . 

So from (2.44) we have, for a pseudoscalar of grade m, 

al = a A I = S(I) = -NI = (_I)m + 1 IN. 

This entails that 

a· I=N· 1=0, 

and if rl = It , 

N" =laN =laA/12 . 

Differentiating (4.7) and using the fact thatN· a = 0, we obtain 

a2 1= -(N" + aN)/. 

Hence 

a A a A/= -(a AN)A/= -I A a AN= 0, 

since I A a = 0 always. Also, 

(a AN)· I = -(a A a)· I = -a . (a . I) = o. 

So (4.1O) can be written 

a2 1= -(N" + a· N)I + I X (a AN). 

Multiplying (4.13) by rl , we see that 

_rl . (a2I) =N" + a· N. 

Chapter 4 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

Evidently the spur tells us some fundamental things about the manifold - exactly 
what is discussed in Chapter 7. 

It is of interest to examine the consequences of applying the integrability 
condition to the pseudoscalar. Substituting (4.4) into (4.2) and differentiating 
we get 

or, equivalently, 

Vlhere 
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is the differential of the curl tensor. So, by the integrability condition (1.16) we 
have 

(4.16) 

or, equivalently, 

SQb - Sba = '}Sa X Sb. (4.17) 

Thus, as a consequence of the integrability condition applied to the pseudo scalar , 
we fmd that the skew part of Stlb can be determined from SQ without differentiation. 

4-5. Transformations of Vector Manifolds 

We reserve the word translormation to refer to a function which preserves the 
defming properties of a manifold almost everywhere. In particular, a transforma
tion I of a vector manifold .A maps each point x of .A to a point x' = I(x) of 
some vector manifold .A'. This section determines how the 'differential calculus' 
of functions and fields on .A, as formulated in preceding sections of this chapter, 
relates to the differential calculus on .A'. 

The differential/(a) = a . al of the transformation I can be regarded as a linear 
transformation of each vector field a = a(x) on .J{ into a vector field I(a) = a' = 
a' (x') on .A'; more precisely, -

[ : a(x)--.a'(x') = [(x. a(x» = [(f-l(X'), a(Jl(x'»), (5.1) 

where, for clarity, we have made the dependence of I on x explicit and assumed 
the existence of 1-1 to exhibit the dependence on x'. -

At each point x in .A the differential I is a linear transformation of the tangent 
space .s;I(x) to the tangent space .s;I' (x') at x' in .A'. We extend this immediately 
to a linear transformation of the tangent algebra ~(x) = ~(.s;I(x» to the tangent 
algebra ~(x') = ~(.s;I'(X'» by employing the concept of outennorphism devel
oped in Section 3-1. The definitions, notations and results of Section 3-1 apply 
without modification to the differential transformations of tangent spaces and 
tangent albebras of interest here. Accordingly, we understand that I transforms 
any multivector field A = A(x) on .A into a field/(A) =A' =A'(X') on .A'; more 
precisely, -

(5.2) 

It is convenient to refer to I in this extended sense as the differential off whenever 
I is a vector transformation:-

Let I = I(x) and I' = I' (x') be the unit pseudoscalar fields on vi! and .A' respec
tively. If [(I(x» t- 0, we say that fis nonsinguiar at x, and (5.2) gives 

[ : I(x) --. [(I(x» = JtI'(x'). (5.3) 



166 Chapter 4 

The 'scale factor' Jr = Jr(x') = Jr(f(x» is called the Jacobwn of f. We will restrict 
our attention in this book to transfonnations which are everywhere nonsingular. 
If f is everywhere nonsingular, then f is invertible everywhere and .A' has the same 
dimension as .A. It follows also that f itself is invertible. This is a consequence 
of the fundamental inverse function theorem to be studied in Section 7-6. In the 
meantime we assume always that f-' exists. 

Following Section 3·1, we introduce the adjoint 1 of the differential f defined 
~ -

(5.4) 

where 3B = P(3B) is the multivector derivative defined on the tangent algebra 
of .A. Since f is uniquely determined by f, so also is 1. Therefore, it is quite 
appropriate to -refer to 1 as the adjoint of f. The adjoint 1 can be regarded as a 
linear transformation of the tangent algebra of fields on .A' onto the tangent 
algebra of fields on .A, specifically, a field A' = A'(x') on .A' undergoes the 
transformation 

1: A'(x') -+ f(A'(x'» = l(A'(f(x»). (5.5) 

To express the differential and adjoint transfonnation directly and succinctly 
in tenns of f, we need to re-examine the process of simplicial differentiation used 
in Section 3-1. We use the abbreviated notation 

[(r) == [J.al) 1\[(a2) 1\ ... I\[(ar ) , 

where the ak = ak(x) are now vector fields on .N. Similarly, we write 

which is a function of r points Xk on .. N. Since 

[(ak) = ak{x) . 3xJ(Xk) IXk = x' 

we can express (5.6a) in terms of (5.6b) by 

[(r) = al • 31 a 2 • 32 ••. ar . 3rf(r), 

(5.6a) 

(5.6b) 

(5.6c) 

where we have used the abbreviation 3k == 3Xk ' and it is understood that the deriva
tives on the right side of (5 .6c) are evaluated at x J = X2 = ... = x, = x. In accordance 
with (2-3.6b), the simplicial derivative on the tangent algebra is 

~(r) == (r!rl ~r 1\ ... 1\ ~l 1\ ~I , (5.7a) 

where the underbar notation serves to distinguish differentiation by tangent vectors 
~ == 3ak from differentiation by points. Since, 

3k = ~ak' 3k, 
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we have 

a(r) == (r!)-l ar " ... " a2 " a1 

= .Q.(r)al . a1a2 . a2 ... ak' ak· (5.7b) 

Now, using (5.7) and (5.6) in connection with (3-1.4), we have the following 
expression for the differential transformation of a field A = A(x) on .,I{: 

(5.8) 

Similarly, for the adjoint transformation of a field A' = A'(x') = A'(f(x» on .,I{', 
(3-1.11) yields 

(5.9) 

The differential and adjoint of a given transformation can be computed directly 
from (5.8) and (5.9) or (5.4). 

It is evident from (5.8) and (5.9) that the differential and adjoint are well
defmed not only as transformations of fields but of any multivector functions 
on .,I{ and .,I{'. However, it follows easily from (5.8) and (5.9) that 

[=[P=P'[=P'[P, 
1=1P' =P1=P1P', 

(5.lOa) 

(5.10b) 

where P and P' are projections into the tangent algebras of At and .,I{' respectively. 
Thus f and 1 automatically project functions into the tangent algebra of the one 
manifold before transforming them into the tangent algebra of the other manifold. 

Of course, functions on .,I{ can be related to functions on .,I{' by direct sub
stitution as well as by differential and adjoint transformations. Indeed, since the 
differential f is obtained by differentiation from the function f(x) defined on 
.,I{, substitution of x = f-'l (x') is necessary to express f as a function on .,I{'. 
Direct substitution also relates differentiation on .,I{ to-differentiation on .,I{'. 
From a function F' = F'(x') defined on .,I{', we obtain by direct substitution 
another function 

F(x) = F'(f(x» = F'(x') (5.11) 

defmed on Jt. The directional derivative of F on .,I{ is related to the directional 
derivative of F' on .,I{' by the chain rule 

a· aF = a· axF(x) = a· axF'(f(x» 

= (a· axf(x» . ax'F'(x') = lea) . a'F'. (5.12a) 

where a' = ax' is the derivative on .,I{'. This relation is summarized by the operator 
identity 

a.a=[(a).a'=a'.a'. (5.l2b) 
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There is ambiguity here and throughout our fonnu1ation of transfonnation theory 
as to whether a quantity such as a' = f(a) is to be regarded as a function on vIt or 
or vIt'. Actually either interpretation-may be preferred over the other depending 
on how the quantity in question is to be used. We depend on the context to resolve 
any ambiguities. 

Using the symmetry property of differential and adjoint, from (S.12b) we get 

a· a = [(a) . a' = a . Ra'). (S.12c) 

Differentiating (S.12c) by the tangent vector a, we get 

(S.13a) 

or, more succinctly, 

a = Ra'). (S.13b) 

This is a result we found in Section 2-1, but now its significance is more apparent. 
Equation (S.13) fonnulates the chain rule as a rule for transforming the derivative 
on vIt' to the derivative on vIt. Of course qx' :f: [(ax); rather, the inverse of(S.13b) 
is found from (S.3) and (3·1.21a) to be -

ax' = 1-1 (ax) = [f(J)]-l[(Iax ) = (J[I'r1[(Jax ). 
- - - (S.14) 

It should be noted that in the coordinate-free fonnulations of the chain rule 
(S.12) and (S.13) the multiplication of a by the point x' = [(x) is essential. Though 
[= [(x) is a function on vIt, it is not generally a field. This is one of a number of 
places where restricting the calculus on a manifold to fields alone, as is done in the 
theory of differential forms (see Section 64), creates unnecessary complications. 
The consideration of functions with values outside the tangent algebra is essential 
to the coordinate-free theory developed here. 

To relate the calculus on vIt to the calculus on vIt', we must examine the 
differentials of the differential and adjoint transfonnations defined, respectively, 
by 

[b(A) == b· a[(A) -[(b. aA) 

= b' . a,[(A)- [(h' . a'A) ==,[b,(A), (S.ISa) 

and 

!b(A') == b· al(A') - J(b· aA') 

= h' . a'1(A ')- Rh' . a'A') ==Ji,'(A'), (S.1Sb) 

where b' = f{b), and we have used (S.12b) to exploit the ambiguity in our choice 
of independent variables. 
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We hope it is clear by now why 'we have introduced and used so many different 
notations for differentials. Geometric functions play many different roles, and 
the various notations for differentials help us identify and distinguish these roles. 
Generally we prefer the underbar notation / for the differential of a function / 
given the role of a transformation, and we extend it automatically to denote the 
differential outermorphism. But if the function / is to be regarded as a field or 
some other kind of function, we usually indicate its differentials by subscripts. 
Sometimes it is convenient to employ both notations at once, as we have in writing 
/b above. 
- Each of the properties of Pb ascertained in Section 2 generalizes to some property 
offp andlb.lndeed, for the identity transformation/ex) = (x) =x, 

[(A) =P(A) =P'(A) = f(A) 

and 

tb(A) = Pb(A) = lb(A). 

Thus, / and /i, are direct generalizations of P and Pb . 
From the outermorphism property of differential and adjoint, we determine 

immediately that 

[b(A AB) = [b(A)A[(B) + [(A)A[b(B), 

lb(A' AB') = h(A') At(B') + t(A') Alb(B'). 

(5.16a) 

(5.16b) 

This generalizes Eqn. (2.6). Differentiating (5.10a, b), we get the operator identities 

[b =Pb[+P'[b =[bP+[Pb, (5.17a) 

tb=Pbt+p'f,,=lbP'+tPi,. (5.17b) 

This generalizes Eqn. (2.7). The choice A = <Ah =a reduces (5.15a) to the second 
differential of /, which by virtue of the integrability condition is symmetric, that is, 

[b(p(a» = /ab = /ba = [a (P(b». (5.18) 

This, of course, generalizes (2.9). We need not list other obvious properties of 
/b andlb such as the fact that they are grade-preserving operators. 
- The relation of h to /b can be determined by differentiating (5.4). With the 
help of (1.19), we fmd -

h(A') = 3B[b(B) * A' + Pb(f(A'». (5.19) 

Because of (5.10) and (2.11a), (5.19) implies 

p'f,,(A') = 3B[b(B) * A'. (5.20) 

This result can also be obtained directly by differentiating 

B *lb(A')=A' * [b(B), (5.21) 

which is the obvious generalization of (2 .5). 
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With the help of (5.20) we can derive the important result 

Ilb "h(A') =P(ab "h(A'» = O. 

Indeed, for vector arguments b, c and a', (5.20) and (5.18) give us 

P(ab "h(a'» = ab " aclbc . a' = 0, 

whence (5.22) follows for arbitrary A' by induction with (5.16b) as follows: 

p{ab "h(a' "B')} =p{ab /\1,,(a') /\1(B') + ab /\1(a') /\[,,(B')} 

= -l(a')/\p{ab Ah(B')}. 

(5.22) 

Equation (5.22) is equivalent to the condition that the exterior differential of 
[vanish identically; according to the definition (1.20), 

d[(A)=i:'<A. a)=o, 
or simply, 

d[=O. 

(5.23a) 

(5.23b) 

Equation (5.23) can be proved by relating it to (5.22), but instead we prove it 
directly from the integrability condition. First note that, for a vector field a, 

I(a) = a· a/= d/. 

So, by (1.25) 

dr[(a)] = d2/= O. 

Hence, the exterior derivative of [(a" b) = [(a) "[(b) also vanishes; 

dr[(a"b)] =d[[(a)] "[(b)+[(a)Ad[[(b)] =0. 

From these first steps, the proof of (5.23) is easily completed. Note that by taking 
Ito be the identity transformation in (5.23), one gets 

dP=o. (5.24) 

Thus the exterior differential of the projection operator vanishes identically. 
Since the curl tensor Sb determines Pb completely, its transformation properties 

are of the utmost interest. The relations of Pb to h andPi, are expressed by(5.17b), 
which, because of (2.11 a), can be put in the fo.rm 

h(A') =Pb(A n) + P/i,(A') = h(Ail) + lpi,(Aj), 

whereAil =P(A') andAn = leA'). Using ab =P(ab) = 1<ab'), we get 

ab Ah(A') = ab A Pb(A il) + P(ab Ah(A'» 

= ab Afb(Ail) + 1<ab' APi,'(Al». 

(5.25) 
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The last terms on these lines vanish by virtue of (5.22) and (2.37a) respectively. 
So, recalling the defmition (2.35a) of the shape tensor, we have 

(5.26) 

As a corollary of (5.26), we have 

(5.27) 

For vector arguments, (5.26) reduces to the desired expression for the curl tensor 

Sa =S(1{a')) = ab Ah(a') = ab Ah(p'(a'». (5.28) 

The remarkable feature of (5.28) is that the cur! tensor on vIt is completely deter
mined by [ and Jb without reference to the cur! tensor on vIt' . 

We wish to know how intrinsic derivatives on vIt' are related to intrinsic deriva
tives on ,-'t. Differentiating A = [(A') and using a = [(a') and (5.26), we get 

a AA = a A [(A') = S(AII) + [(a' AA'). (5.29) 

Because of (2.45), this yields 

V AA =P(a AA) = [(a' AA')=[(V' AA') (5.30a) 

or 

v A[(A') = [(V') A[(A') = [(V' AA'). (5.30b) 

Thus, the coeur! operation 'commutes' with the adjoint transformation. 
The rule for transforming the codivergence can be derived from the rule (5.30) 

for transforming the coeur! because of the 'duality relation' 

(V'· A')!' = V' A (A'I'), 

which, according to (3.9), holds if P'(A') =A'. For this purpose, recall the relation 
(3-1.20b), which, with the help of (5 .3), can be put in the form 

[([(A)J') = JrAI. 

Using these relations, we fmd 

l[(v' . [(A)}l'] = [[V' A ([(A}l')] = V Alr[(A}l'] 

= V A (JrAf) = V . (JrA)I. 

(5.31 ) 

This can be 'inverted' by using (5.31) in the form [(B'I') = Jrf-1(R}l to get the 
desired expression for transformation of the codivergence: -

V' . [(A) = [{J't (V· (JrA»} = [(V· A + (V 10gJr) . A), (5.32a) 
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where A = /XA). Because of (3.6c), (5.32a) can be expressed in a more general 
form as an equation for the transformation of the divergence: 

a' . leA) = [(a ·/XA) + (a 10gJ,). A). (5.32b) 

The 'dual roles' played by land/in (5.30) and (5.32) are evident. 
According to (3-1.14b), for avector b' , 

b' . [(A) = [(f(b'). A). (5.33) 

Using this in connection with (5.32), we fmd 

V' . [(A) = [(V· A), (5.34) 

and 

a' ·l(A) = ab' • [b'(A) = [«a logJ,). A) = (a' 10gJ,). [~A). (5.35) 

Thus, the last term in (5.32) arises from the divergence of /. 
Equation (5.33) also gives us the operator equation -

[(A) . a' = [(A· a), (5.36) 

which generalizes (5.12). Obviously (5.32) differs from (536) only by the action 
of a' on/. 

From-the transormation (5.32) of the divergence, we easily derive the rule for 
transforming the generalized Lie bracket. Noting that derivatives of the Jacobian 
vanish when (5.32) is applied to (3.23a), we obtain for fieldsA and B 

[([A, BD = [,(A),j(B)]. (5.37) 

Thus, the bracket operation applied to fields commutes with the differential 
transformation. 

The induced transformation of the dual brackets can be obtained by transform
ing (3.34a). Recalling that (3-1.14a) says that for r '" s, 

and using (5.30), we find the transformation of the first and third terms on the 
right side of Eqn. (3.34a); 

nV' A ([(Ar) . B;)] = V AI([(Ar) . B~) = V A (Ar . [(Bs», 
1r,[(Ar) . (V' A B~)] = Ar .f(V' A B;) = A, . (V A f( B;». 

Using (5.32) we find the transformation of the second term in (3.34a); 

1< [V' . [(Ar» . u,] = (V . Ar + (V 10gJ,) . Ar) .1<u,). 

(5.38a) 

(5.38b) 

(5.38c) 
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Applying Eqns. (5.38) to the terms 6f (3.34a) we fmally get the desired transforma
tion formula; 

l({l(Ar).B~}). = {A"JtB~)} - [A,· (11 log Jf)] . JtB~). (5.39) 

Our derivation shows that the Jacobian on the right side of (5.39) arises from the 
transformation of the term in(5.38c) containing the divergence of A,. So we can get 
a more symmetrical transformation by subtracting that term from the dual bracket; 
thUS. 

1l f[(Ar), B~} + ([Vir) . V'}· B~] = {Ar• JtB~)} + (Ar . V) . JtB~). (5.40) 

Alternatively, given a nonvamshing scalar field a = a(x) we can defme an Ot-dual 
bracket by 

{Ar• Bs}a == [Ar• B,p]p-l = {Ar• Bs} + [Ar · (11 log a)] ABr (5.41) 

where p == aI. We readily show that the a·dual bracket obeys the simple transforma· 
tion formula 

(5.42) 

where, as before, Jf is the Jacobian of the transformation. Equation (5.42) differs 
from (5.39) only because the change in scale of the pseudoscalar induced by the 
transformation has been incorporated in the defmition of the dual bracket. 

4-6. Computation of Induced Transfonnations 

In the preceding section we have shown how the general theory of induced trans· 
formations of fields and their derivatives can be formulated in simple coordinate
free form with Geometric Algebra. Here we wisli to demonstrate that Geometric 
Algebra is equally valuable as a practical computational tool. For three important 
general classes of transformations, we compute the induced transformations 
without using coordinates and formulate the results as simple relations which 
are often awkward to express without Geometric Algebra. We carry out a few 
elementary computations to the very end to show that Geometric Algebra is 
helpful all the way. The examples examined here also show that application of 
the algebra is by no means automatic; like any tool. it must be skillfully wielded 
to be most effective. 

Example 1 . Consider the class of transformation f: .;fI ~ .;fI' of the form 

f: x-+x'=f(X)=Nc, (6.1) 
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where A = ~x) is a scalar field. The differential of 1 can be computed from (5.7) 
and (5.8) with the techniques for differentiation developed in Chapter 2. For an 
arbitrary r-vector Ar , we have 

f!..Ar) ==Ar . a(r)/(r) =Ar . O(r) (A1Xd A (A2X2) A ... A Q.,-x,) 

=(r!)-IAr · [(a,~+Ao,)A .. _A(OlAl + Aa1)]x(,) 

= WA, • O(,)X(,) = >t- 1A, . [(a A) A 0(,-l)]X(,-1) Ax 

= WP(A,) + >t- 1 [A,· (aA)] . a(,-1)X(,-l) Ax 

= WP(A,) + >t- 1 [P(A,) - oA] Ax. 

Hence, if A, is a field on vIt, 

f!..A,) = W[A, + (A, . 0 log A) Ax]. 

In a similar way we compute the adjoint transformation: 

1<B~) = 0(,)/(,)· B~ = a(,)[(A1Xl) A ... A (¥,)] . B; 

Hence, 

= (r!)-1 (a,).,.·+ A(},) A ... A (a l AI + Aa1 )xc,) . B; 
= W O(,)X(,) . It,. + >t- 1[(aA)A O(,-l)](X('-l) Ax) .B; 
= WP(B',.) + >t- 1 [(a A) AP(x. B;)]. 

1<B;) = WP[B~ + (0 log A) A (x. B~)]. 

(6.2) 

(6.3) 

To determine further properties of the transformation, properties of A and of 
the range or domain of 1 must be specified. For example, if .At' is the unit sphere 
in an (m + 1 )-dimensional Euclidean space t! m + 1, then 1 is the central projection 
of an arbitrary differentiable hypersurface .At in tf m +1 onto the sphere; of 
course .At is completely determined by specifying A. The tangent I' to the unit 
sphere can be expressed as an explicit function of x; 

I' =I'(x') = x'i =xi = I'(x), (6.4a) 

where x == lxi-I X is the unit normal to the sphere and i is the unit pseudoscalar 
of tf m + 1. Similarly, the tangent I is related to the normal n of .At by 

1= I(x) = n(x)i = ni = (-1)min. 

Recalling (5.3), (6.2) is seen to relate I' to /; 

1(I) =JtI' = ",m (I + (I 0 log X)Ax]. 

(6.4b) 

(6.5a) 
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This can be expressed as a relation between normals by using (6.4); 

[(f)it =Jrx = Am [n + (n A a log A)' x]. 
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(6.5b) 

From the symmetry of(6.1), it is clear that (6.5b) can be inverted by interchanging 
n and x, replacing x by x', A by A-I andJrandJ!'. Hence, 

n = A-mJr[x + (x A a' log A-I). x'] = A-mJr[x - X21xI a'A -I]. (6.6) 

Thus we have an explicit expression for the normal of .Af in terms of quantities 
defmed on the sphere. In a similar way other properties of ..If are related to prop
erties of the sphere. Note that the Jacobian Jr is just a normalization factor for 
(6.6), so we get an explicit expression for the magnitude of Jr by squaring (6.6); 
thus 

(6.7a) 

The sign of the Jacobian is easily determined by noting that (6.6) also implies 

(6.7b) 

This, by the way, is just what one obtains by using (6.5a). 
As another important special case of (6.1), we consider inversions of Euclidean 

m-space tS = A = A'. With A=x-2 , (6.1) becomes 

(6.8) 

Since alxl = x = x/lxi, a log X = -a logx2 = -x-2 2x, and (-lrxA, = A,x + 
2A,. x, (6.2) and (6.3) reduce to 

(6.9a) 

It should be noted that the equivalence of f and 1 is a consequence of aa Af(a) = 
a Af= O. For a tangent vector, (6.9a) can be written -

[(a) = _x-lax-I = -x'ax' = lea). (6.9b) 

Hence the transformation of the derivative is given by 

a = Ra') = _X-I a'x-' , (6.10a) 

or 

a' = -x ax =x2(a - 2Xx . a), (6.10b) 

where, of course, a is understood not to differentiate the explicit x. From (6.10) 
we find immediately that the transformation of the Laplacian is given by 

a 2 = X - 4 a'2 = X '4 a'2 . (6.11) 
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The Jacobian of the transformation is read off immediately from (6.9a); 

Jt = 11"[(1) = -x- 2m = -x' 2m . 

Example 2. Consider the class of transformations of the form 

f: x-+x' =f(x)=x +ntJ(x), 
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(6.12) 

(6.13) 

where n is a fixed vector and P = /3(x) is a scalar field. Computation of the differ
ential of (6.13) is quite similar to that of (6.1); 

!JAr) =Ar . a(r)f(r) 

=Ar · a(r)(Xl +Pln)" ... "(xr +(J,.n) 

= Ar . a(r)X(r) + Ar . [(ap) " a(r-l)]X(r-l) An 

= P(Ar) + P[Ar . (ap)] "n. 

Hence, if Ar is a field 

[(A,) =Ar + [A,· (ap)] An. 

Similarly, 

1<B;) = P[B; + (ap) " (n . B~)]. 

(6.14) 

(6.15) 

Noting that (I A n)z = (I" n). a = In· a - (Ia) " n for any tangent vector a, and 
defmingPi(n) =It(I A n) = n - p(n), we get from (6.14) 

Kt=Itf(1) = 1+ n· ap + (ap)Pi(n), 

IJ,I2 = (I + n· ap)2 + (VP)'JI A nl2 . 

From (6.15), 

a = l(a') = P[ a' + (ap)n· a'] . 

(6.16) 

(6.17) 

(6.18) 

If the domain of fin (6.13) is a hyperplane .At in tS m + I, then f is the trans
formation of the hyperplane into an arbitrary hypersurface .At' in tS m + 1. We 
suppose that n is the normal to .At and that the origin x = 0 is in .At so that 

x . n = 0 and n . a = O. (6.19) 

This minor simplification incurs no loss of generality since a 'hypertransformation' 
can always be reduced to this form by utilizing a transformation of the type (6.13). 
If i is the tangent to tS m + I, then the tangent I of .At is related to the normal 
by 

/= ni. (6.20a) 
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Similarly, the tangent I' is related to the normal n' of J{' by 

I' = n'i. 

Because of (6.19), (6.14) reduces to 

[(Ar) =Ar + (Ar · ap)1. 

Hence, 

[(I) = JfI' = I(I + (ap)n), 

or, using (6.20) 

Kf=It[(I) = Jfnn' = I + (ap)n = 1- nap. 

Solving this for n', 

n' =JJ1(n - ap), 

where 

Jf = In - api = (I + (af1)2)112. 

Equation (6.18) reduces to 

a = 1(a') = p(a') + (ap)n. a' = a' + (ap- n)n . a', 
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(6.20b) 

(6.21) 

(6.22) 

(6.23) 

(6.24) 

(6.25) 

since p(a') = It I· a' = n(n A a') = a' - nn . a'. But ordinarily one is more interested 
in a' as a function of a, since it can be used to reduce differentiation on the curved 
surface J{' to differentiation on the flat surface J{. This is more easily accom
plished by using the inverse of (6.13). First note that, because of (6.19), 

p=f1(x)=n.x'; (6.26) 

thus, whatever its x-dependence, the x' -dependence of P is always linear. Hence 

,1: x'-+x=,I(x')=x'-nn.x'=p(x'), (6.27) 

which displays x as simply the orthogonal projection of x' into the hyperplane. 
Computation of the differential and adjoint of 1-1 is similar to that of f. From 
(6.21), sinceB~· a'p =B~· a/x'· n =B;. n, we can write down immediately 

[-1 (B;) =B; - (B;· n)n =P(B~), 

and from (6.15); since n· Ar = 0 for any tangent fieldA r on At, 

rl (Ar) = p'(A,) =A, - n'(n' . Ar), 

(6.28) 

(6.29) 

where I" is the projection into the tangent algebra of .;I{'. From (6.29) and (6.23) 
we get the desired expression 

a' = 1-1 (a) = p'(a) = a - n'n' . a 

= a + Ifl (n - ap)(afj) . a. (6.30) 
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In a similar manner we can easily evaluate the expressions of Section 4-5 for the 
transformation of curl, divergence and lie brackets. 

For the sake of concreteness, we consider a couple of specific hypersurfaces. 
With the choice p(x) = x 2• [(x) = x + x 2n transforms a hyperplane into a hyper
paraboloid. Since 3(3 = ax2 = 2x in this case, the details of the induced transforma
tions are described by the simple algebraic equations 

[(A,) = A, + 2A,. xn, 

1(B;) = P[B; + 2x A (n . B;)] 

= n [n A B; + 2(nx) A (n . B;)] , 

Jf = (1 + 4x2)112, 

3' = 3 + 2(1 + 4x2rl(n - 2x)x· 3. 

The transformation of the unit ball in AI = 8 m into a hemisphere AI' in 
8 m + 1 is obtained by the choice (3{x) = (1 - x 2 )112 , 

x' =[(x) =x + (1 _x2)112 n, X2..; 1. 

Since 3/3 = -(1 - X 2) - 1/2 x, we find, for instance, 

[(A,) =A, - (1 - x 2 )-1/2 Ar • xn, 

'I = (1 - X 2)-1/2 = _x- 1 2{3, 

3'=3- [(1 _X2 )-1/2 n +x ]x' 3. 

Example 3. As a final example, we consider the stereographic projection of a 
hyperplane S m onto the unit sphere in 8 m + 1. As in the last example, we write 
n for the unit normal to 8 m and take n . x = o. The transformation [ of a pOint x 
in 8 m to a point x' on the sphere can be written in the following three significant 
forms: 

x' = [(x) = n + A-I (x - n) 

= -(x - nr1 n(x - n) 

= (x - nr1x-1nx(x - n), 

where 

(6.31a) 

(6.31b) 

(6.13c) 

(6.32) 

Form (6.31a) expresses x' as a 'point of division' of the line segment connecting 
nand x. Form (6.31b) expresses x' as obtained from n by a reflection in the hyper
plane with normal x - n. Form(6.31c) expresses x' as obtained from n by a rotation 
trough twice the angle between the vectors x and x - n. The equivalence of forms 
(6.31 b) and (6.31c) is obvious since n . x = 0 implies 

xn = -nx. (6.33) 
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We can fmd the differential transformation of a tangent vector a by evaluating 
the directional derivative of 

(x - n)n(x - n) 
f(x) = - Ix _ nl2 . 

Since a· il¥ =a and a . iHx - nl2 =a· il¥2 = 2a. x, we have 

an(x - n) - (x - n)na - 2a. xf(x) 
[!..a) = a· af(x) = Ix _ nl2 

Hence, 

(x- n) = --- {(x - n)an + na(x - n) - 2a. xn}(x - n) 
Ix-nl4 

(x - n) 2 
= 2a(x - n) = -- (x - n}lnan(x - n). 

Ix - nl4 Ii - nl2 

[(a) = _).-1 (x - n}la(x - n) = ).-I;-la;, 

where). is defmed by (6.32) and 

;=n(x - n). 

(6.34a) 

(6.34b) 

Thus, the vector a' = f(a) tangent to the sphere at a' is obtained from a = a(x) by 
a rotation specified by the spinor ; and a dilation by ).-1. 

From (6.34) we easily determine all the significant properties of the induced 
transformations of tangent multivector fields. Since ;;-1 = 1, for vector fields 
a and b (6.34) implies 

[(a)[(b) = ).-'Z;-lab;. (6.35) 

The scalar part of (6.35) is 

[(a) . [(b) = ).-2a . b. (6.36) 

This proves that the stereographic projection is a confonruzl transformation. The 
bivector part of (6.35) is 

This obviously generalizes to 

[(A,) = ).-';-IA,; 

for a tangent r-vector field A,. Obviously, 

[(A,}f!-Bs) = ).-'-';-1 ArBs;. 

Note that this is not equal to [(A,B,) unless A,Bs = A, A Br. 

(6.37) 

(6.38) 

(6.39) 
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The inverse of (6.38) is obviously 

r-1(B~) = ){t/>B~<p-l. 

Chapter 4 

(6.40) 

And, since the adjoint of a rotation is equal to its inverse, we can immediately 
write down 

]'(B~) = ~-' ~<p-l = ~-2'rl(B~). 
But, as a check, we compute1{a') directly; 

l(a') = 'Va' . [(x) = 'V2a' . (x - nrl 

= 21x - nl-" [a' - nn· a' - 2xa' . (x - njl J 
= A-I [a' - 2(x - n)a' . (x - njl J 
= _~-I(X - n)a'(x - njl 

= ~-ln(x - n)a'(x - nj1n = ~-I<Pa'<p-I. 

4-7. Complex Numbers and Conformal Transfonnations 

t6.4l} 

The theory of functions dermed on the two-dimensional real plane 91" made great 
progress, especially during the last century, when points of 91" were represented 
by complex numbers. The algebra of complex numbers greatly simplified the 
construction and geometrical interpretation of many important functions with 
range and domain in a plane. But complex algebra is incapable of describing geo
metrical features of functions in more than two dimensions. This inherent limitation 
to two dimensions has contributed to the development of complex function theory 
as an independent discipline, distinguished from the theory of 'real functions' 
on m·dimensional real manifolds by differences in definitions and notations which 
obscure their common basis. The artificial separation of complex analysis from 
real analysis persists today in textbooks, in curricula and in mathematical practice. 

This section shows how Geometric Algebra unites the real and complex planes 
algebraically. All the results of complex function theory are thus readily obtained 
as a special case of the Geometric Calculus on vector manifolds, and appropriate 
generalizations to higher dimensions become apparent. This approach reinterprets 
the role of complex analysis in mathematics, eschewing the common convention 
of regarding complex numbers as scalars. But none of the valuable algebraic features 
of cemplex analysis are thereby sacrificed; indeed, they are enhanced by integrating 
them into the calculus of vectors. 

After establishing notations and conventions which make it easy to relate the 
conventional language of complex analysis to the language of Geometric Calculus, 
this section shows how the notion of analytic function can be defined and gener
alized without complex analYSiS, and furthermore, that conformal transformations 
of the plane are as efficiently described by the general transformation theory 
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developed in Section 4-5, as by the usual method of complex analysis. Chapter 
7 shows that the integral theorems of analytic function theory are also included 
as special cases of more general theorems in Geometric Calculus. 

Let ~(i) be the Geometric Algebra with a two-blade i as unit pseudoscalar. To 
emphasize relations to traditional concepts, we call the even subalgebra of ~(i) 
the complex plane and designate it by I'Ij = ~+(i). Every element z of I'IJ can be 
written in the form z = x + iy, where x and yare scalars. We may call z a 'complex 
number' because i" = -1. Since zt = x - iy, reversion reduces to 'complex con
jugation in 1'Ij'. The real and imaginary parts of a complex number correspond to 
its scalar and bivector parts, that is, 

z + zt 
x = Re{z} = (z)= -2- , (7.1a) 

z - zt 
Y = Im{z} = -Hz}" =--. 

2i 
(7.lb) 

The odd elements of ~(i) comprise a two-dimensional vector space yt" = ~-(i) 
= ~1 (i), called the relll plane here to emphasize that it is a linear space 'over the 
reals'. Every vector x in yt" satisfies the equation 

x!\i=O, (7.2a) 

or, equivalently, 

xi = -ix. (7.2b) 

We have noted this fact before, namely that the vectors 'in' a plane anticommute 
with the bivectors, the pseudo scalars of the plane. In the rest of this section it 
will be understood that all vectors are elements of yt". And perhaps it is well to 
explicitly mention the assumption that x" > 0 if x is a nonzero vector. 

In this section we use boldface letters to denote vectors and simple bivectors. 
This allows us to use the conventional symbol x for the 'real part' of z, while 
distinguishing it from the vector x. Moreover, the boldface i emphasizes that 
A here is not to be interpreted as a scalar. 

A linear mapping of the real plane onto the complex plane is given by the 
equation 

z = a-I x = x + iy, 

where a is fixed nonzero vector. Of course 

a.x 
x = a-I . x = -,,-, 

a 

al\x 
ilY = a-I !\ x = -" . a 

(7.3) 

(7.4a) 

(7.4b) 
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To each point x in 91 2 , Eqn. (7.3) corresponds a unique point z in ~. According 
to (7.3), every complex number z can be uniquely expressed as the ratio of some 
vector x to an arbitrarily chosen vector a. Vectors collinear to a correspond to 
points on the real axis, the subspace of scalars in ~. Complex conjugation in 
r;J corresponds to a reflection in 912 'through' the vector a; thus, 

zt = xa-1 = a-I (a-1 xa) = a-I za. 

Multiplying by a, we get 

azt =za, 

which is also an obvious consequence of (7 .2b). 
Solving (7.3) for x, we get 

x =az. 

(7.5a) 

(7.5b) 

(7.6) 

Equation (7.6) provides complex numbers with a geometric interpretation. It 
exhibits z as an operator which rotates and dilates a vector a into a vector x. Since 
a can be any vector in 91 2 and, given a, x is unique, by (7.6), z f 0 determines 
a linear transformation, more specifically, a homothetic transformation of 91 2 

onto 9f 2. Each homothetic endomorphism of the real plane is uniquely represented 
by a point in the complex plane; points on the positive real axis represent dilata
tions, while points on the unit circle in ct represent rotations. Multiplication of 
complex numbers represents composition of homothetic transformations. Indeed, 
complex numbers are just the simplest kind of spinors, as they were defined in 
Section 3-8. 

Having determined how the real and complex planes are related algebraically 
and geometrically, we are prepared to study how the complex derivative is related 
to differentiation in the real plane. 

Let z' = F(z) be a mapping of rc into ct. According to (7.3), 

F(z) =F(a-1x) = F(x + iy), (7.7) 

so F determines a mapping of 91 2 into ~. For functions with values in <;§(i), 
the derivative is equal to the coderivative, that is, 

"1-= "Ix = ax. 
Complex derivatives can be defmed in terms of scalar derivatives by 

! -=! (ax - i ay), 

~t -=! (ax + i ay). 

The vector derivative is related to the scalar derivatives by 

a· "1= ax, 

a" "1= i ay . 

(7.8) 

(7.9a) 

(7.9b) 

(7.l0a) 

(7.lOb) 
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Hence the complex and vector derivatives are related by 

d 
aV = a . V + a t\ V = 2 dzt ' 

d 
Va = a . V - a t\ V = 2 rrz. 

The function F(z) is said to be QTIIllytic at a point z if 

~ (z) = axF+i ayF= O. 
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(7.11a) 

(7.1Ib) 

(7.12) 

The real and imaginary parts of (7.12) are the so-called Cauchy-Riemann equa
tions. By virtue of (7.11 a), (7.12) is equivalent to the equation 

VF=O_ (7.13) 

In contrast to (7_12), Eqn. (7.13) obviously generalizes immediately to functions 
with any multivector values defined on a vector manifold of any dimension. So 
we regard (7.13) to be more fundamental than (7.12) and take it to be the defining 
property of analytic functions in general. In Chapter 7 we shall see that this leads 
to a generalization of Cauchy's integral formula. 

If F(z) is analytic, then, because of (7_12), the complex derivative (7 _9a) reduces 
to 

(7.14) 

Thus, the complex derivative of an analytic function is precisely equivalent to the 
directional derivative in the real plane in the direction corresponding to the real 
axis. In most books on complex analysis, the complex derivative is defmed by 

dF( ) = I. F{z + h) - F(z) 
dz z - 1m h ' h-O 

(7_15) 

where h is complex, and F{z) is said to be analytic if the limit exists and is in
dependent of h. We object to this defmition, because it confuses two distinct 
concepts, the directional derivative (7.14) and the vanishing of the vector derivative 
(7 .13); in so doing, it obscures the way to generalize the concept of analytic function 
to manifolds of higher dimension. 

Let us consider some simple analytic functions. The simplest such function 
is evidently F{z) = z = a'-I x. According to (2-1.40), we have indeed, 

Vz = Va-Ix = 0. 

It is instructive to derive this result from (2-1.34) and (2-1.38) instead; thus, 

V(a-I x) = V( -xa-I + 2x . a-I) = -2a-1 + 2a-1 = O. 

According to (2-1.36), we have 

'\lx-I = 0 at x :f 0, 

(7.16) 

(7.17a) 
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hence 

VZ-I = V(a-I xr l = Vx-I a = O. (7.17b) 

Obviously, z = a-I x and Z-I = X-I a are analytic functions of a as well as x. More 
generally, we see that any power of z is an analytic function of a and x; that is, 

(7.18a) 

or, differentiating by a instead of x, 

(7.18b) 

The fact that zk is an analytic function of both vector variables a and x has signif
icant advantages in applications which are not available when complex numbers 
are used without relating them to vectors. 

The complex function z' = F(z) corresponds to a transformation x' = [(x) of 
9t 2 into 9t 2 according to the relation 

z' = a-I x' = F(z) = F(a-I x) = a-I [(x). 

By virtue of (7 .11 b), 

dF 
dz = ! (Va) (a-If) = ! Vi. 

(7.19) 

(7.20) 

In particular dz/dz = ! Vx = 1. The correspondence of complex derivative to 
vector derivative exhibited by (7.20) holds for differentiable functions in general. 
But if F is analytic, then, by comparing (7.14) with (7.20), we get the special 
relation 

dF 
dz = a . VF = a-I a . Vi = ! Vf. (7.21) 

Thus VF = 0 does not imply V[= 0, but, according to (7.21) it does imply that 
V[ is completely determined by the directional derivative a . V[ in any direction 
a. 

Since 9t 2 is a vector manifold, we can use the general method of Section 
4-5 to analyze the transformation x' = [(x). We wish to compare conformal trans
formations of the real plane with analytic functions. The transformation [is said 
to be conformal if 

[(a) . [(b) = A?a· b, (7.22a) 

that is, if the angle between any pair of tangent vectors is preserved by the induced 
transformation. From our study of orthogonal transformations in Section 3-5, 
we know that (7.22a) implies that there exists a rotor U such that 

[(a) = a· V[= xutaU. (7.22b) 
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Equations (7.22a, b) hold for any confonnal transformation of a vector manifold. 
For the two-dimensional case of interest here, (7 .5b) permits us to write (7 .22b) 
in the simple form 

fJa) = a· V/= al/l = I/Ita, (7.22c) 

where 1/1 = 1/1 (x) = XU 2 is a complex·valued or, better, a spinor field on ~2. It 
will be noted that 11/112 = I/II/It = I/It 1/1 = X2. 

All the general properties of conformal transformations of the plane are con
sequences of (7.22). The adjoint of [is given by 

Rb) = V.b- [(a) = I/Ib = bl/lt . (7.23) 

This is easily derived from (7.22) by noting that b • [(a) = (ba-I/I) = (a 1/1 b) = a • ( 1/1 b). 
We can solve (7.22) for 1/1 in two ways: by differentiating by a and by dividing 

by a_ Thus, we obtain 

V.[(a) = W= 21/1 = 2a-1[(a). (7.24) 

But this is identical to the condition on [ specified by (7.21). Therefore, the 
analyticity condition VF = 0 on the function F(a-1x) = a-1[(x) is precisely 
equivalent to the condition that [(x) = aF(a-1x) be a conformal transformation 
of the real plane. By differentiating (7.24) we discover that 

VI/I =! Vl[=o, (7.25) 

since V(a-1 a . Vf) = a . V(Va-1 f) = a . V(VF) = O. Of course, we are not regarding 
a as a function of x here. 

It seems that the analyticity of 1/1 expressed by (7.25) is more significant than 
the analyticity of F, for 1/1 directly determines the induced transformation of 
vector fields according to (7.22) and (7.23), whereas F merely re-expresses the 
transformation [ of the real plane as a transformation of the complex plane. Equa
tions (7.22) through (7.25) express the fundamental facts about conformal 
transformation of the real plane, so our earlier references to the complex plane 
and complex derivatives are really quite unnecessary for applications, although 
they are needed to translate results from the literature of complex variable theory 
into the language of Geometric Calculus. 

Conformal transformations of the plane have some other properties which 
we should consider. From (7.22) we see that [(a)[(b) = X2ab, hence 

[(a" b) = [(a) "[(b) = X2 a" b. (7.26) 

This tells us immediately that J f = X2 is the Jacobian of [, and, using (7.24), we see 
that 

(7.27) 



186 Chapter 4 

Using (7.25) now, we fmd that 

Wf= V} .. ,2 = I/ItVl/lt = (Vl/lt)1/1. (7.28) 

We are most interested in the induced transformations of vector fields and their 
derivatives. Of course, from (5.13) and (7.23) we get 

(7.29) 

where "I' == "Ix' = ax'. Now, if E' = E' (x') is a vector field on 9f 2, then the adjoint 
transformation gives us a new vector field 

E(x) = f(E'(f(x» = I/I(x')E'(f{x», (7.30a) 

or, more briefly, 

E = f(E') = I/IE'. (7.30b) 

Operating on (7.30) with (7.29) and using (7.25), we fmd the induced trans
formation 

'VE = WeE') = ~.2 V'E' . 

Taking E' = "I' in (7 .31), we get the rule for transforming the Laplacian: 

"12 ='11.2"1'2. 

(7.31) 

(7.32) 

We have used the symbol E here to emphasize applicability of the present theory 
to physical problems in which E is an electric field. Indeed, much of analytic 
function theory was developed during the nineteenth century precisely to solve 
such problems. A static electric field E satisfies the equation 

"IE = p, (7.33) 

where p is the charge density. In general, Eqn. (7.33) defines fields in a three
dimensional space, but for certain charge distributions, it reduces essentially to 
an equation in two dimensions, and the results of this section can be applied to 
its study. From (7.31) we find that the change of charge distribution induced by 
a conformal transformation of the plane is 

(7.34) 

As (7.33) says, in charge-free regions a static electric field is analytic. And (7.31) 
shows that V'E' = 0 implies 'VE = 0, that is, analyticity of fields is preserved by 
conformal transformations of the plane. This is the property of conformal trans
formations of most significance in physical applications. Beside it, the conformal 
property (7.22a) is hardly more than incidental. Actually, the essential eqUivalence 
of 'conformality' to 'analyticity' is a special feature of two dimensions. The class 
of analytic functions is quite distinct from the class of conformal transformations 
in higher dimensions. 
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For completeness we determine the differential transformation of Eqn. (7.33), 
to be compared with the adjoint transformation (7.31). Using (7.23), (7.29) and 
(7.28), we find 

Hence, 

(7.35) 



Chapter 5 

Differential Geometry of Vector Manifolds 

This chapter continues the study of calculus on vector manifolds begun in Chapter 
4. The emphasis here is on the central object of classical differential geometry, the 
curvature tensor. We have endeavored to supply simple and systematic derivations 
of all properties of the curvature tensor including relations to extrinsic geometry, 
behavior under transformations, and generalization to nonRiemannian curvature. 
We believe that some of our results are new, but our main objective is to demon
strate the unique advantages of the method and to develop the calculus to the point 
where application to any problem in differential geometry is straightforward. 

The advantages of formulating differential geometry in terms of Geometric 
Calculus are best seen by examining the details developed in this chapter, but 
some general features deserve mention here. In the first place, the formulation of 
differential geometry in this chapter is completely independent of coordinates. 
Other formulations in the literature are at best only nominally coordinate-free; 
by this we mean that they provide coordinate-free formulations of the general 
theorems, but they must resort to coordinates for many proofs and most com
putations. We have been able to achieve a coordinate-free formulation of differen
tial geometry, because in the preceding chapter we avoided coordinates in our 
defmition of a manifold and in our fonnulation of the chain rule and induced 
transformations. 

Another advantage of our approach is its unification of intrinsic and extrinsic 
geometry. This unification simplifies the study of intrinsic geometry itself and 
shows how extrinsic geometry is reflected in the intrinsic structure. 

It should be pointed out that our formalism has special advantages for under
graduate courses in classical differential geometry of surfaces in Euclidean three
space, as set forth, for example, by Struik [St]. Unlike tensor analysis and the 
calculus of differential forms, Geometric Calculus contains the vector algebra 
in the fonn used by Struik, including the vector cross product. References [H4] 
and [HI] explain how the cross product fits into Geometric Algebra. So the 
geometry in Struik is already expressed in terms of Geometric Calculus. Thus, our 
approach retains all the virtues of Struik's vector formulation while fitting it 
into the general theory of manifolds without unnecessary alterations of method or 
notation. Translation of the classical geometry in Struik into our formalism is easily 
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accomplished with the help of Section 5-2. The resulting material is, of course, 
appropriate for a fust course in differential geometry. 

Our approach to differential geometry generalizes a special method which has 
long been used for hypersurfaces, as can be seen by comparing our Section 5-2 
with the account by Hicks (Hi] as well as by Struik [St]. The classical method 
characterizes the geometry of a hypersurface by equations for its normal as it 
"slides" over the surface. Our method characterizes the geometry of every manifold 
by the curl tensor, which describes how the pseudoscalar 'slides' over the manifold. 
Conventional formulations of intrinsic geometry employ only tensors with values 
in the tangent algebra, so they overlook the curl tensor, which does not belong to 
this class. This impoverishes and complicates the theory unnecessarily. 

5-1. Curl and Curvature 

In Section 4-4, we learned that the curl tensor Sa can be interpreted as the angular 
velocity of a pseudoscalar as it slides along a curve in the manifold with tangent 
a. In our approach to geometry the curl tensor takes over the function of the 
'Christoffel symbols' or 'coefficients of connection' in classical formulations of 
Riemannian geometry. But the curl tensor contains more information about the 
manifold than do the coefficients of connexion, and it is defmed without reference 
to any coordinate system. The Riemann curvature tensor depends on derivatives of 
the coefficients of connexion, but it is a simple algebraic function of the curl tensor. 
Indeed, as we show below, the commutator Sa X Sb determines both intrinsic and 
extrinsic curvatures. We have good reason, therefore, to regard the curl, rather than 
t.lte curvature, as the fundamental object in different geometry. 

In spite of the importance of the curl, the curvature tensor can be formulated 
and some of its properties are more easily derived without reference to the curl. So 
in this section we keep our attention centered on the curvature tensor and seek to 
establish each of its properties with the most direct argument available. 

The curvature tensor is commonly introduced as a measure of the failure of 
commutivity of codifferentials. According to (4-3.3) and (4-3.1), the codifferential 
of a function A = A (x) is defmed by 

(1.1) 

The commutator of codifferentials [c5a , c5b] == Sa Sb - c5b Sa is related to the 
coderivative by the identity 

[c5a , c5b]A = [a· 11, b· II]A - [a, b] . IIA = (b Aa) . (11 A II)A. (1.2) 

The proof of (1.2) is similar to the argument establishing (4-1.15), so it can be 
omitted. 

We determine the curvature tensor by using the integrability condition to 
evaluate the commutator (l.2). We are primarily concerned with the codifferentials 
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of fields, so we assume peA) = A and pea 1\ b) = a 1\ b throughout this section. 
Differentiating (4·3.1) and using (4-2.33) we get 

b· 'Va' 'VA =P(b' aa· aA) +PbPa(A) 

=P(b' aa· aA) + P(Sb X (A X Sa». 

Recalling the integrability condition (4-1.12), we find that 

where [Pa, Pb] =. PaPb - PbPa and 

R(a 1\ b) =,P(Sa X Sb) 

=Pa(Sb) = av I\PaPb(V) 

= b· 'VSa = obSa 

= au 1\ avPu(a) . Pv(b). 

To get the right side of (1.4) from (1.3), we used the Jacobi identity 

Sa X (A X Sb) - Sb X (A X Sa) = A X (Sa X Sb). 

(1.3) 

(I.4) 

(1.5a) 

(1.5b) 

(1.5c) 

(I.5d) 

Since P(Sa X Sb) is linear and skewsymmetric in a and b, we know from Section 
1-4 that it is a function of the bivector a 1\ b; accordingly, we have adopted the 
notation R(a 1\ b). The first term in C1.5b) follows from (1.5a) by (4-2.16a), and 
the second term then follows from (4-2.l2b), because of (4-2.16a) and (4-2.30). 
We get (1.5c) from (1.5b) by using (Ll) and P(Sb) = O. Finally, to get (L5d), we 
use (1-1.68) to get the identity 

Sa X Sb = [av I\Pv(a)] X [au I\Pu(b)] 

= Pv(a) . au av I\Pu(b) - av 1\ aupv(a) . Pu(b) 

+ Pu(b) . avPv(a) 1\ au - av . aupv(a) I\Pu(b). (1.6) 

According to (4-2.11a), C • Pv(a) = 0 if c, v, a are vector fields, so the first and third 
terms on the right of (I .6) vanish, and besides (1.5d), we see that 

(1.7) 

and 

(1.8) 

Because of (I.8), the operator P is unnecessary when (I.5a) is substituted into 
(1.4), that is 

(1.9) 
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We call the bivector valued function R(a A b) defmed by (1.5) the curvature 
(tensor) of the manifold At. We sometimes refer to it as the 'Riemann curvature' 
if the tangent algebra of At is assumed to be Euclidean in the sense of Section 14. 
The Riemann curvature of classical differential geometry is the (scalar-valued) 
tensor of rank four R (a, b, c, d) == (c Ad)· R (a A b); a proof that this is equivalent 
to the conventional covariant tensor form is given in Section 6-2. Comparison with 
Cartan's 'curvature form' is made in Section 64. Equations (1.4) and (l.5) display 
important properties of the curvature tensor which are not apparent in conventional 
formulations. Equation (I.4) evaluates the commutator of codifferentials in terms 
of differentials of the projection and in terms of the curvature tensor. Equation 
(l.5a) reveals the remarkable fact that the curvature tensor is a simple algebraic 
function of the curl tensor. Thus, the curl tensor completely characterizes the 
intrinsic geometry of a manifold. 

The general properties of the curvature can easily be established from its sundry 
equivalent expressions given by (1.5), as we now show. At each point of At, the 
curvature tensor defmes a linear transformation of tangent bivectors into tangent 
bivectors; that is, to every bivector field B on At there corresponds another bivector 
field R (B) defined by 

(1.10) 

To use the terminology introduced in Sections 3-9 and 4-1, the curvature R = R (B) 
is a multiform field of degree two and grade two. Indeed, the curvature is a pro
tractionless multiform in the sense of Section 3-9; for, by (1.5b) and (4-2.37a), 
we have 

(1.11) 

As shown in Section 3-9, Eqn. (1.11) is equivalent to two weaker conditions onR, 
namely, that R is symmetric in the sense that for bivector fields A and B 

A· R(B) =B' R(A), (1.12a) 

and R satisfies the Ricci identity 

a' R(b Ac) +b' R(c Aa) +c' R(a Ab) = 0, (1.12b) 

for vector fields a, b, c. It is not difficult to show that the Ricci identity is equiva
lent to the property (4-3.11) that 'i/ A 'i/ AA = O. 

The curvature tensor satisfies the famous Bianchi identity, which can be cast in 
either of the equivalent forms 

VAR(aAb)=O, (1.l3a) 

or 

(1.13b) 
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Equation (1.13b) can be further abbreviated by using the exterior codifferential 
(4-3.4b) and recalling (4-1.23), thus, 

6R=0, (1.13c) 

that is, the Bianchi identity says that the curvature tensor has a vanishing exterior 
differential. We can prove (1.13) easily by differentiating (1.Sd) with the help of 
(4-1.19) and using (4-2.11a) to get 

6cR(a Ab) = au A av 6c(Pu(a) ·Pv(b» 

(1.14) 

Equation (1.13b) follows trivially from (1.14), and 

V AR(a A b) = ac 6cR(a A b) = ac A au A av(puc(b) . Pv(a) -Puc(a)· Pv(b», 

which vanishes to give (1.l3a) because Puc =Pcu . 
It is interesting to express the fundamental Eqn. (1.4) in terms of the exterior 

codifferential (4-3.4b); the result is simply 

(1.15) 

This should be compared with the second exterior differential d2 A = 0. Since 
6R = 0, all 'powers' of the exterior differential can be immediately computed from 
(1.15), thus 

63A=6AXR, 

64 A = (A X R) X R =A X Rl, 

and, in general, 

62kA =A X Rk, 

62k +lA = 6A X Rk, 

(1.16a) 

(1.16b) 

(1.16c) 

(1.16d) 

where Rk indicates the k-fold commutator with R, as shown explicitly in (1.16b) 
for k = 2. The multiform 6k A has degree k, so, of course, 

(1.16e) 

where m is the dimension of vii. The k-vector argument of 6k A is suppressed 
in (1.15) and (1.16), giving the formulas a somewhat misleading appearance of 
simplicity, which rapidly vanishes when (4-1.22) is used to make the argument 
explicit. We will not have occasion to use Eqns. (1.16), but (1.15) along with 
(1.13c) fmd important applications in Section 7-8. 

Now let us consider some of the classical tensors constructed from the curvature 
tensor. 
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The contraction of the curvature tensor is the Ricci tensor 

R(b) == aa . R(a A b) = aaR(a A b), 

where we have used (1.11). Also, by contracting (1.11) we get 

ab AR(b) = 0, 

which as we saw in Section 34 is equivalent to the condition 

a·R(b)=b·R(a). 
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(I.17) 

(uSa) 

(I.lSb) 

Thus the Ricci tensor is a symmetric linear transformation of vector fields into 
vector fields. 

From (l.5b) and (I .5c) we fmd easily 

(I.19) 

Hence, the shape operator on vector fields is a square root of the Ricci tensor. 
The contraction of the Ricci tensor is commonly called the scalar curvature and 

denoted by R. (We will not use the scalar curvature often enough to allow it to be 
confused with the Riemann curvature which we sometimes also denote by the 
single symbol R as in Eqns. (I .15) and (I .16).) From (I .17) and (1.ISa) we have 

(1.20) 

Contraction of (I.19) gives, with the help of (4-2.19) and (4-2.11a), R = - ab . 
(II' Sb) = -cab A V) . Sb = V . (ab . Sb). So, recalling the defmition (4-2.20) of 
the spur N, we get 

(1.21) 

By contracting the Bianchi identity we get relations of special interest in 
Einstein's geometric theory of gravitation. From (1.13a) we get 

By virtue of (4-1.19), 

VR{b) = p(avPv(aa»R(a A b) + vaaR{a A b). 

But p(avPv(aa» = avPpvP(aa) = O. Hence the contracted Bianchi identity can be 
written 

V AR(b) =R{V A b), (I.22) 

where R{V A b) ==p{R(a A b». Contracting (1.22), we have 

ab . (V AR(b» = 3b . VR(b) - Vab' R(b) = 3b' R{V Ab) 
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or 

where R (V) =p(R(i})). If we define the Einstein tensor G(o) by 

G(o) =R(o) - !aR, 
then (1.23) takes the fonn 

G(V) =0. 

Chapter 5 

(1.23) 

(1.24) 

(1.25) 

Recalling the relation of the simplicial derivative to the multivector derivative, 
we can write (1.20) in the form 

(1.26) 

where a B is the derivative by the bivector variable B. Of course, (1.26) is equivalent 
to the equations 

aB • R(B) = !R, 

aB X R(B) =0, 

aB "R(B) = o. 

(1.27a) 

(1.27b) 

(1.27c) 

Now we return to the fundamental Eqn. (1.4), and show that it can be put in the 
alternative fonn 

V" VA = S2(A) = aBR(B) X A. 

First we use (1.2) and (2.2.41) followed by (4-3.l4b) to prove 

! aa ab [6a, 6b]A = V" VA = (V " V) X A. 

To prove 

! aa ab [Pa. Pb]A = S2(A), 

(1.28) 

(1.29) 

(1.30) 

we use the grade-preserving property of the operator established by (1.29) along 
with several results from Section 4-2 which are evident in the following computation: 

aa abPbPiA) = aa ab· PbPa(A) = aa" [ab· PbPa(A)] 

= -ab . (aa APbPa(A» + a.., . abPbP..,(A) 

= -S2(A) + aa . abPaPb(A). 

Combining this with 

a.., abP..,Pb(A) = - aa abPbP..,(A) + 2 a.., . abP..,Pb(A) 

we get (1.30). Of course the right side of (1.28) is obtained by simply replacing the 
simplicial derivative by the bivector derivative. 
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Noting the grade-preserving property (I .29), from (I .28) we get 

3B '(R(B)XA)=O if(A)l =0, 

3BR(B) X A = 3B X (R(B) X A), 

3B "(R(B) X A) = O. 

SettingA = b·and dotting (I .3Ic) with a, we get using (I .2Ia), 

(a' 3B )"(R(B) ·b)=R(a"b). 
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(1.3Ia) 

(13lb) 

(13lc) 

(I.32) 

Equation (I.28) gives us some other interesting relations. Applying (I.28) to a 
vector field b and using (I .19), we get 

S2(b) = V" Vb = 3BR(B)' b =R(b). (1.33) 

Again, applying (1.28) to the bivector field a A b and using (4-2.38) we get 

S2(a"b)= V" Va"b =R(a)"b +a"R(b)-2R(a"b). (1.34) 

Clearly, the operator S2 contains all the information in the curvature tensor, but it 
has the advantage of applying to any field, whereas the curvature tensor operates 
directly only on bivector fields and, by contraction, on vector fields. 

So far in this section we have been concerned only with intrinsic geometrical 
properties of a manifold. At the end of Section 44 we found that the differential 
of the curl tensor Sab satisfies the relation 

(I.35) 

This result can also be established by computation from (I.6) or (I .sa, d) and (1.7). 
The tangential component of (I .35) expresses a fact about curvature which we have 
already expressed by (1.5a, c). But the normal component of (1.35) gives us the 
important new result 

(I.36) 

This equation describes extrinsic geometric properties of the manifold. As we 
show in the next section, Eqn. (1.36) generalizes the so·called Codazzi-Mainardi 
equations for hypersurfaces in Euclidean space. Note that, by virtue of (I.8), we 
have from (I.36) 

c· P1(Sab - Sba) = c· P1(b· 3Sa - a' aSb) +c . S[a, b J = O. (1.37) 

Since the tensor 

(1.38) 

unifies in a simple way the 'intrinsic' curvature P(Sa X Sb) = R(a" b) with the 
tensor P1(Sa X Sb), which can fairly be called the extrinsic curvature, it seems 
appropriate to refer to Sa X Sb as the total curvature. 
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The total curvature satisfies the generalized Bianchi identity 

(1.39) 

where 

(1.40) 

is the differential of the total curvature. To prove (1.39) we take the differential of 
(1.35) to get 

(1.41) 

where the last term was obtained by using the symmetry Sbae = Sbea of the second 
differen tial of the curl tensor S b. Adding three copies of (1.41) differing only by a 
cyclic permutation of the arguments a, b, c, we get (1 .39) immediately. Projection 
of (1.39) into the tangent algebra gives us another proof of the Bianchi identity 
(1.l3b) since 

fJeR(a A b) = P«Sa X Sb)C> + PPe(Sa X Sb), 

and the last term cancels other similar terms from (1.39) because of the Jacobi 
identity 

5.2. Hypersurfaces in Euclidean Space 

For a hypersurface in Euclidean space, the role of its pseudoscalar can be taken 
over by its normal. This section shows how easily our general formalism is adapted 
to this special point of view. The results facilitate comparison of our formalism 
with the classical approach to hypersurfaces. The effectiveness of our calculus in 
geometrical computations is demonstrated by several examples. 

Let AI be an m-dimensional hypersurface in lffm + 1. If i denotes the (constant) 
unit pseudoscalar of lffm + 1 , then at a generic point x of AI, the unit tangent I = 
lex) can be written 

f=ni, (2.1) 

where n = n(x) is the unit normal to AI. In the last chapter and the preceding 
section, the geometry of an arbitrary vector manifold has been expressed in terms 
of f and its derivatives. But, by virtue of (2.1), for hypersurfaces in Euclidean space 
the role of the tangent f can be taken over by the normal n. Thus, the curl tensor 
for A can be written 

Sa = fa· art = no· an = nn(a) = n An(a), (2.2) 
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where E(a) == a· an is the differential of n. The function n = n(x) maps vii into 
the unit sphere Y'm in em + 1. The differential !! transforms tangent fields onAt 
linearly into tangent fields on !/m. Indeed, the condition n1 = 1 implies that 
n . (a· an) = n· ~(a) = 0; hence the vector field~(a) is tangent to vii at each point 
x as well as to Y'm at each corresponding point n = n(x). Thus the tangent space 
at x in vii is identical to the tangent space at n(x) in Y'm. It follows that 

a· Vn =a· an ==!!(a), 

and, from (2.2) used in (4-2.28), that 

a.~(b)=b.~(a). 

(2.3) 

(2.4) 

Therefore, !! is a symmetric linear transformation of vector fields on vii to fields 
on !/m. 

While (2.1) allows the normal n to take over the role of I, Eqn. (2.2) allows 
!!(a) to take over the role of Sa on At. Thus, substitution of (2.2) into (4-3.16) 
gives 

b· Va - b· aa = na . ~(b). 

And, again using (2.2), the intrinsic curvature can be written 

R{a " b) = P(Sa X Sb) = !1(b) " !1(a) = !1(b "a). 

(2.5) 

(2.6) 

On the right of (2.6) we are again using the notation for outermorphism from 
Section 3-1. Equation (2.6) shows that the transformation of bivector fields on 
vi{ under the differential outermorphism !1 is equivalent to the Riemann curva
ture. Therefore the intrinsic geometry of vi{ is completely described by algebraic 
properties of the symmetric linear transformation !!, with the set of all tangent 
multivector fields on .A taken as its domain. The properties of!1 can be formulated 
and analyzed by the method of Chapter 3. 

The concept of mean curvature plays an important role in standard discussions 
of hypersurfaces. The mean curvature H{x) at each point x of vi{ is given by the 
trace of!1, which by (4-1.17) is equal to the divergence of the normal; thus, 

1 1 -n· N -nN H = - a n{a) = - a· n = = --m a_II m m m' (2.7) 

where we have also related H to the spur N by Eqn. (4-2.20). Evidently the spur is 
the appropriate generalization of mean curvature to arbitrary vector manifolds. 

Recall the definition of characteristic multivector from Section 3-2. The scalar 
curvature R can be expressed as the second characteristic multivector of !1: 

R == (aa /\ ab) . R (b /\ a) = (aa /\ ab) . (n(b) /\!l.(a» == 2Q(2) . !l.(2) 

= (a2 "ad· (nJ /\ n2) == 2a(2) . n(2), (2.8) 

where nk == n{xk)' and we have adopted the notation of (4-5.7a) and used (4-5.7b) 
to replace derivatives by tangent vectors with derivatives by points. 
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The transformation n = n(x) of vii into the sphere !/m is commonly called 
the Gauss map of the hypersurface vii, and its Jacobian K is called the Gaussian 
curvature. Of course, the Jacobian of n is the determinant of its differential !!. 
Thus, using (4-5.7) again, we have 

_ I 
= a (m) . n (m) = m! (am /I. ... /I. a I) . (n I /I. ... /I. nm ) 

=r1!!(J). (2.9a) 

We can calculate K from whichever of these forms is most convenient. Since n is a 
symmetric transformation, the dots in (2.9) can be included or omitted at will. 

When m is even, the Gaussian curvature is simply related to the curvature tensor. 
From (2.6) and (2.9) we find that, for [= el /I. el /I. ... /I. em, 

R(el /I. el) /I. ... /I. R (em -1 /I. em) = !!(el) /I.!!(el) /I. ... /I.!!{em ) 

(2.9b) 

This result is obviously independent of the choice of vector factors ek for [. 
Though the local intrinsic geometry of vii is fully characterized by the algebraic 

properties of !!, derivatives of !! are needed to describe the extrinsic geometry of 
vii. 'Dotting' Eqn. (1.35) or (1.36) by n, we find that 

n ·(b· aSa -a· aSb)=b· a!!(a)-a· a!!(b) 

(2.10) 

This result may be recognized as equivalent to the well-known Codazzi-Mainardi 
equations by comparison with Eqn. lOin Chapter 2 of ref. [Hi]. 

With the above results in hand, the entire discussion of hypersurfaces in Chapter 
2 of ref. [Hi] can easily be translated into the language of geometric calculus, so 
we need not pursue the subject further. But an example is called for to illustrate 
computations. 

Let JI be the m-sphere of radius Ixl in ,ffm +1. Then at a generic point x of JIt 
the outward unit normal is given by the explicit function n = n{x) = x/I xl. Since 
Ixl is constant on Jl, we have alxl = axlxl = o. But for any m-dimensional 
manifold we have ax = axx = m and a· ax = a if a = a(x) is a field. Hence, 

(2.11) 

and 

m a n(a) = an = a· n = -. 
D- Ixl (2.12) 
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Hence the intrinsic curvature is 

the mean curvature isH= lxi-I, and the Gaussian curvature is, by (4-6.7a), 

K = g(m)~(m) = Ixl-ma(m~(m) = Ixl-m . 

Computations of other geometric properties of a sphere are equally trivial. 
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(2.13) 

(2.14) 

We now discuss the computation of the shape and curvature of an arbitrary 
hypersurface AI' in ~m +1 which is parametrized (at least locally) by its projection 
into a hyperplane AI in tfm +1. We are given a differentiable function f which 
maps a point x in AI to a point x' = f(x) in AI'. The properties of such a function 
were discussed in detail in Example 2 of Section 4-6 (see Eqns. (4-6.13) through 
(4-6.30». The definitions and results obtained there will be used here with little 
commentary. 

As in Eqn. (2.1), I' = I'(x') = n'i denotes the unit tangent to AI' at x', where 
n' = n'(x') is the unit normal; the (constant) unit normal to AI is denoted by n. 
To every tangent vector field a' = a' (x') on AI' there corresponds a unique tangent 
vector field a = a(x) determined by the differential function: a' = f(a) = a' af. We 
will express the geometry of AI' in terms of tensor fields on AI:-Differentiation 
on AI' is simply related to differentiation on AI by the operator equation a' . a' = 
a' a. 

We are now in position to get a simple explicit expression for the curl tensor Sa' 
of AI'. Recalling the results given by (4-6.23) and (4-6.24), namely 

n' = Jt (n - a{3) where Jf = In - a{31 = (1 + (a{3)2 )1/2 • 

we find 

'f') , a" J- I ' a' a{3 "a' 1 J !! ,a = a· n = - fa· - n a· n f' 

Defining a tensor field h(a) by 

h(a) =Jjla. a a{3 =Jta'. a'a{3, 

and using (2.2), we get the shape tensor in the form 

Sa' =h(a)l\n'. 

Dotting this on the left with n', we get 

!!'(a') = n' . (h(a) 1\ n') = -h(a) + n'n' . h(a). 

Comparing (2.19) with (2.16), we fmd 

n' . h(a) = -a' . a' In Jf = -a' a In Jf , 

which could have been obtained by differentiatingJ, directly. 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 
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Just as the geometry of the hypersurface vii'". can be characterized by the 
tangent field !J.'(a') on the unit hypersphere, so it can be alternatively characterized 
by the tangent field h(a) = h<.r' (a'» on the hyperplane vii. The tangency of h(a) 
to vii, that is, -

n· h(a) = 0 (2.21) 

follows immediately from (2.17). It is also important to note that h is a symmetric 
linear transformation of tangent fields on vii into tangent fields on J, that is, 

a· h(b) = b· h(a). (2.22) 

Using (2.19) in (2.16), we fmd the expression for the intrinsic curvature in terms 
ofh; 

Ra'b' = h(a) Ah(b) - n' . h(a)n' Ah(b) + n'· h(b)n' A.h(a). (2.23) 

The mean curvature is computed with the help of (2.1 S) and (4-6.30) which ex
presses a' in terms of a; 

1 " a' . ap 1 [2 2 ( 2] H = - a . n = - -- = - .hf (ap· a) (3 - a(3) . m mJf mJr (2.24) 

The Gaussian curvature can be computed in several instructive ways. For example, 
if {ak} is an orthonormal frame on vii, we haveI=a,a2 ... am, and 

Hence, 

= Jj' it n' A head A ... A h(am) 

= Jrflh(ad A ... Ah(am) =.Tjl fl !!(l) 

=Jjl det h = (_1)m Jjm-2 a(m)(a(3)(m) 

= (_l)m Jjm- 2 det (aj ak{1). (2.25) 

The computations are now easily completed given any explicit form of the function 
(3 = (1(x). 
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5.3. Related Geometries 

In &'·~tion 4-5 we determined how fields and their derivatives can be transformed 
from one manifold to another. This section applies and extends the results of 
Section 4-5 to describe the induced transformation of the intrinsic geometry on a 
manifold. Accordingly, the defmitions and results of Section 4-S are taken for 
granted here. 

The main result of this section is Eqn. (3.11) describing the induced transforma
tion of the curvature tensor. It is needed for applications in the next two sections. 

Let h = h(A) = h(x, A(x» be an extensor function defmed on the vector mani
fold ."If. The substitution x = r 1 (x') expresses h as an extensor function on the 
manifold ."If'. According to (4-5.12) we have a' a =a' . a' ifa' = !.<a). Hence 

h,,(A) =a' ah(A) - h(a' aA) 

= a' . a'h(A) - h(a' . a'A) = h,,'(A), (3.1 a) 

or, more briefly, 

(3.1b) 

Thus, the differential of h has the same values, whether reprded as a function on 
."I{ or on ."I{'. To relate the second differentials of h on ."If and ."If', we note that 

So 

or 

(b' . a'a') . a' = ([b(a) + !.(b . 04» . a' 

= !.b(a) . a' + (b . 04) . a. 

= b' . a'h,,' - h(b" a',,' - !..b("» 

h"b = h,,'b' + h!.b(II)' 

Sinceb(a) = 111 (b) , we have 

(3.2) 

(3.3) 

This result is independent of the fact that hll is a differential, which, of course, 
implies that 

(3.4) 
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Now suppose that h = h(A) is an extensor field on .J{' when A is a field on .J(, 
so h transforms fields on .J( into fields on .J('. We can express this by the operator 
equation 

h =P'h =hP=P'hP. (3.S) 

This generalizes the defmition of extensor field given by (4-1.8b). To ascertain the 
implications of (3.S) for the differential of h, consider 

Operating with this on PaP and using (4-2.11a) expressed in the form PPaP = 0, 
we get 

h"PaP = hP"PaP. (3.6a) 

Similarly, considering hb = (P'h)b, we get 

(3.6b) 

The codifferential of an extensor h satisfying (3.S) is appropriately defaned by 

(3.7) 

This generalizes (4-3.3), our previous defanition of 'codifferential'. Using (3.6a, b) 
we fand that the second codifferential of h satisfies 

We can eliminate projection operators from this expression by using (3.S) and 

which is easily derived from (4-2.11a) and (4-2.11b). Hence, 

(3.8) 

Now using (3.3) and (3.4) we fand that the commutator of codifferentials satisfies 

[6a, 6bl h = [P~. Pblh - h[Pa• Pbl 

= [P~'.Pb'lh-h[Pa'.Pb'l = [6a',6b'lh. (3.9) 
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We can express the fact that this tensor is a function of a and b only through the 
product a A b by introducing the notation 

(3.10) 

Recalling Eqn. (I .4), we see that (3.9) relates the curvatures on the two mani
folds At and A'. Thus, for A = peA) and A' = h(A) = P(A') with a' = f(a) and 
b' = f{b), we have the fundamental relations -

[c5a,c5b]h(A) = [P~'. Pb']A' - h([Pa'Pb]A) 

= [c5a " c5b']A' - h([c5a' c5b]A) 

=R'(a' Ab')XA' -h(R(aAb)XA) 

= [c5a " c5b'] h(A). (3.11) 

In particular, this holds if h = f. If we introduce a bivector field B' = h (B) and use 
the notation (3.10), we have the more succinct expression 

c5 i[(A) = R'([{B)) X leA) - [(R(B) X A) 

= R'(B') X A' - [(R(B) X A) = c5 ileA). (3.12) 

By interchanging P and P in our discussion of h, we get the analog of (3.12) 
involving the adjoint transformation, namely, 

c5ih(A') =R(B) X h(A') -h(R'(h(B')) X A') 

=R(B) X A - h(R'(B') X A') = c5i,h(A'), (3.13) 

where B' = h(B), but we have A = h(A') instead of the relation A' = h(A) required 
in (3.11) and (3.12). 

S-4. Parallelism and Projectively Related Geometries 

In this section we review some well-known properties of parallel vector fields and 
geodesics to show how they can be expressed with Geometric Calculus. Then we 
study projective transformations of manifolds, defmed as transformations which 
preserve geodesics. Although the main result of this study was discovered by Weyl, 
our method is distinguished by its complete independence of coordinates and the 
new form it gives to basic relations. 

Let the function x = X(T) be a curve ({j in some region 9f of a vector manifold 
At. The 'velocity' v of the curve is 

dx 
v= - =P(v' 

dT " 
(4.1) 
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where P is the projection into the tangent algebra of vii. Let a = a(x) be a vector 
field dermed at points x in 91. On the curve ~,a = a(x(T» is a function of T. 
According to (2-2.27), the derivative by T is related to the directional derivative by 
x by the chain rule as follows: 

da = ( dx ) . axa(x) = v . aa. 
dT dT 

(4.2) 

We derme the coderivative by T to be the projection of the derivative into the 
tangent algebra of J{, namely 

(4.3) 

Thus, the coderivative of a vector fi.eld on a curve is identical to the codifferential 
of the field evaluated at the velocity of the curve. 

As we have seen in Chapter 4, the differential is related to the codifferential of 
the vector field by the equation 

v . aa = P(v . aa) + v . 3P(a) 

(4.4) 

Since pea • Sv)=PPv(a) =PPvP(a) = 0, we identify 

(4.5) 

as the component of da/dT normal to the manifold, while (4.3) is the tangential 
component. 

We say that the direction of the vector field a = a(x) is uniform on the curve ~ 
if fJa/fJT is proportional to a, that is, if 

fJa 
a A 6T = a A (fJva) = o. (4.6) 

When (4.6) is satisfied, tangent vectors a(x) and a(y) at points x and y on ~ are 
said to be parallel to one another with respect to the curve, and either one is said 
to be obtainable from the other by parallel displacement. 

Equation (4.6) is independent of the magnitude of a, for it remains valid if 
a is replaced by Xa where X = X(x) is a scalar field. Some authors say that the 
direction of a is 'constant' if (4.6) is satisfied; however, (4.5) shows that the normal 
component of da/dT cannot vanish in general unless the curl tensor vanishes, so we 
have adopted the weaker adjective 'uniform'. 
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We say that a curve rc is a geodesic if the direction of its velocity v = dx/d1' is 
unifonn on the curve, that is, if 

vA ~: =vA(livv)=O. (4.7) 

Accordingly, we interpret a geodesic connecting two points as the straightest curve 
connecting those points. 

This property (4.7) is independent of the parametrization given to the curve. 
Any monotonic scalar function l' = 1'(1") dermes a change of parameter. The 
'velocity' of the curve with respect to the parameter 1" is 

(4.8a) 

Differe~tiating again, we get 

6v' _ li 2x _ d21' ( d1' ) 2 liv 
W - 61"2 - d1"2 V + dT' 61' . (4.8b) 

Hence, v' A 6v'/li1" = 0 as claimed, and there exists a scalar function 1/1 = 1/1(1") 
such that 

liv' , 
liT' = !/Iv. (4.9) 

Given the curve rc parametrized by 1", we can introduce a new parameter l' dermed 
by the differential equation 

d1' J", dT' 
d1" =" e , 

where" is a constant scalar. This integrates to 

1'=1'(1")=" Ii'" dT' d1". 

Differentiating (4.10a), we get 

(4.10.) 

(4.10b) 

(4.1Oc) 

Substituting (4.1Oc) into (4.8b) and equating the result to (4.9) we determine that 

liv li 2x 
-=v· 'i/v=--=O. 
61' 61'2 (4.11) 



206 ChapterS 

Thus every geodesic possesses a preferred parameter for which the function x = x(r) 
describing the curve satisfies Eqn. (4.11). Equation (4.11) is called the geodesic 
equation. Dotting (4.11) by v we determine that 

v' ~ =..!... 6v2 = ~ dlvl2 = O. 
or 2 or 2 dr 

(4.12) 

Thus, a preferred parameter assigns a constant speed I vi to the geodesic. 
Every vector field v = vex) satisfies the identity 

(4.13) 

Hence, a vector field u = u(x) is everywhere tangent to a 'bundle of geodesics' if 
and only if there exists a scalar field'" = "'(x) such that v = 1/Iu satisfies 

v . 'Vv = v . ('V 1\ v) + ! 'Vv2 = O. (4.14) 

If condition (4.6) is satisfied for every curve in the region 91, then the vector 
field a = a(x) satisfies the equation 

ova = V' 'Va = aa = V· Aa, (4.15a) 

where v = vex) is any vector field on 91 and we have used the fact that the 'scale 
factor' a must be a linear function of v and so can be written in the form a = v' A 
where A = A(x) is some vector field. Computing the commutator of second co
differentials from (4.15a) and recalling (4.4) we get 

[ou, ov]a = (v 1\ u) . ('V I\A)a =R(vl\u) . a. (4.15b) 

The last term vanishes when dotted with a, so, since v 1\ u is arbitrary, (4.15b) holds 
only if 

'V I\A =0, (4.15c) 

and thus 

R(u 1\ v)· a = 0. (4.16a) 

Since [R(u " v) ·a] . b = R(u "v)· (a" b) = (u "v) ·R(a" b), we can replace 
(4.16a) by the condition 

R(a "b) = 0, (4.16b) 

where b is any vector field. 
Since 'V "A = 0, there exists a scalar field A = A(x) such that 

A = 'V log A. (4.17) 
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So Eqn. (4.15a) becomes 

6va = v· 'Va = av . 'V log X. (4.18a) 

This equation can be simplified by introducing a field b = Xa which satisfies 

6vb = v . 'Vb = O. (4.18b) 

A vector field a = a(x) satisfying (4.18a) at every point x of a region 91 is said to be 
a parallel field on 91. From (4.1Sb) it can be shown that parallel displacement of 
the tangent vector a(x) at a point x in 91 to a pointy is independent of the curve 
along which it is displaced. 

From (4.16) we can conclude that the curvature tensor of an m-dimensional 
manifold vanishes if and only if it admits m - 1 linearly independent parallel vector 
fields. 

Manifolds .A and .A' are said to be projectively related if there exists a trans
formation f of .A to .A' which 'preserves' geodesics, that is, if 

X'(T) = f(X(T» (4.19a) 

is a geodesic on .,1(' when X(T) is a geodesic on .,1(. The velocities of corresponding 
curves on .,I( and .,1(' are related by the differential transformation f. for, by 
differentiating (4.19a) we get -

, dx' dx 
v = - = _. af= v· 'Vf= f(v). 

dT dT -

Differentiating again we have 

dv' ", f() - = v . a v = fv'(v) + V· av . 
dT --

Projecting this equation into the tangent algebra of .,1(', we get 

where 6v·fis the generalized codifferential defined by (3.7). 

(4.19b) 

(4.19c) 

(4.19d) 

Equations (4.19) apply to the transformation of any curve. From (4.19b) and 
(4.19d) we get 

(4.20) 

Invoking now the geodesic condition (4.7) on both manifolds, we conclude from 
(4.20) that the manifolds are projectively related by f if and only if 

v' 1\ 6v'[(v) = 0 where v' = l(v). (4.21) 
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Condition (4.21) holds for the transformation of any vector field a = a (x) on ,A 
to a field a' = f(a) on ,A', because, at any given point x, a(x) can be chosen tangent 
to a geodesic:- This fact enables us to derive an expression for the codifTerential 
Bol.. With the help of the integrability condition in the form 

(4.22) 

we determine that 

i}o·· [a' A Bo'[(a)] = i}o·· [a' A Bo·ff-l(a')] 

= (m + 1) Bo·[(a) - la' i}o' . [o·(a) = 0, 

where m is the dimension of the manifolds ,A and ,A'. This result can be P\lt in 
the form 

BO'/Ja) = 2~(a)a' = 2f.(~(a)a), 

where, because of (4-5.35), 

(4.23) 

1 1 1" () ~(a)==m+1 i}o··[o·(a)= m+1 a· 'VlogJ!= m+1 a·'V logJ!, 4.24 

and J! is the Jacobian of the transformationf. Operating on (4.23) with c' . i}o' and 
using (4.22) we get the desired result 

(4.25) 

This enables us to evaluate the codifTerentialBo'falgebraica1ly fromfand ~(a). 
It is now a simple matter to compute the second codifTerential-of f and relate 

the curvature tensors on ,A and .,1('. CodifTerentiating (4.25), we get -

Bb·Bo·[(C) = Bb·[(~(e)a + ~(a)e) + [(~b(c)a + ~b(a)e) 

= [([~b(e)+~(b)~(e)]a+2~(a)~(e)b + [~b(a)+~(b)~(a)]c).(4.26) 

From (4.24) we see that 

(4.27) 

Hence, from (4.26), we get for the commutator of codifferentials 

[Bo" 6b'][(e) = [("'(a, e)b - ",(b, e)a) 

= [«a A b) . i}v"'(v, e» = [60 , 6b1[(e), (4.28) 

where 

",(a, e) == ~o(e) - ~(a)~(e). (4.29) 
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Comparing (4.28) with (3.12), we get the fundamental relation 

R'(a' Ab') . c' - [(R(a A b) . c) = [«a A b) . avljl(v. c». 

Since 

aa' [R(aAb)'c] = [aa'R(aAb)] 'c=R(b)'c=b'R(a), 

and 

the contraction of (4.30) with aa' yields 

209 

(4.30) 

b' . R'(c') - b' R(c) = (m - I)ljI(b, c). (4.31) 

This implies that 

(a' A b')· R'(c') -[«a A b) . R(c» = (m -l)[«a A b)' avljl(v. c». (4.32) 

Combining (4.32) with (4.30) we fmd 

R'(a' A b') . c' - _1-1 (a' A b') . R(c') 
m-

1 
=[(R(a Ab)' c - m -1 (a Ab) ·R(c». (4.33) 

The tensor R(a Ab)' c - It(m -l)(a A b)' R(c) is commonly called the Projective 
Weyl Tensor. According to (4.33), its form is preserved by the differential of a 
projective transformation. 

We can characterize projectively related curvatures in a different way. We write 
(4.30) in the form 

R'(A') . c' -[(R(A) . c) =!J.A . av)ljI(v, e), (4.34) 

where A' = f(A) is a bivector field. Since f(A) A f(A . av) = f(A A (A . av)} = 0, 
from (4.34)-;-we get - - -

A' A (R'(A')· e') = [(A A (R(A)' e». (4.35) 

Equation (4.35) is equivalent to Eqn. (4.33). And the trivector A A (R(A) . e) 
is fully equivalent to the Projective WeyI Tensor, though, of course, it is not a 
tensor because it is a quadratic function of A; let us call it the Weyl trivector. 
Equivalence of the Weyl trivector to the Weyl tensor can be proved by carrying out 
the differentiation 

(ab A a a) . [a A b A (R(a A b) . e)J 

=m(m - I)R(a Ab)' c - mea Ab) ·R(e). (4.36) 

The Weyl trivector has some advantages. For example, when m = 2, it vani:.hes 
identically; whence the projective Weyl tensor also vanishes. 
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As a simple but important application of the general results we have established, 
we determine the functional form of the curvature tensor for projectively flat 
manifolds. A manifold is said to be flat if its curvature tensor vanishes everywhere. 
A manifold is said to be projectively flat if it is related to a flat manifold by a 
projective transformation. From (4.33) it follows immediately that a manifold.J{ 
is projectively flat if and only if its Weyl tensor vanishes identically. Thus, the 
curvature tensor satisfies the identity 

(m - I)R(a 1\ b) . c = (a 1\ b) . R(c). 

From (4.37) we easily derive 

R 
R(al\b)= m(m-l) al\b, 

where R is the scalar curvature. The contraction of (4.38) is the Ricci tensor 

R(a) = Ji a. 
m 

(4.37) 

(4.38) 

(4.39) 

Using (1.23) we find 2VR = mVR, which implies that the scalar curvature must be 
constant if m > 2. Hence we have proved (for m > 2) that a manifold is projectively 
flat if and only if it is a space of constant curvature. It can be proved that this result 
obtains for the case m = 2 as well. 

5·5. Conformally Related Geometries 

This section develops the general theory of changes in geometric quantities induced 
by conformal transformations. The method of Section 5·3 is used, and the special 
advantages of the spinor representation of rotations are fully exploited. This enables 
us to derive simple equations for the transformed curvature and related quantities. 

A transformation f of a vector manifold .J{ into a manifold .,H' is said to be 
conformal if its differential satisfies the relation 

f(a) . f(b) = e2tPa· b, '').1) 

where t/J = t/J(x) is a definite scalar function and a = a(x) and b = b(x) are any 
vector fields on vIt. The manifold vIt is said to be conformally related to vIt' by 
f. If etP == 1 in (5.1), then f is said to be an isometric transformation and vIt is 
isometrically related to vIt'. 

We will ultimately arrive at a more general conception of conformally related 
geometries by considering an extensor function h, as defined in Section 5·3, which 
satisfies 

h(a) . h(b) = e2tPa· b. (5.2) 

After examining the consequences of (5.2), we will consider the implications of 
assuming that h is also a differential [. 
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Our analysis of isometries in Chapter 3 enables us to infer at once from (5.2) 
that h can be put in the canonical form 

heal = l/Ial/lt = e·Uaut , (5.3a) 

where 

l/I =e·12U, (5.3b) 

and 

uut = 1. (5.3e) 

If U = W>_, that is, if U is an odd multiveetor, then Uaut is a reflection and we 
say that heal is an tmticonformal tensor. But we will confIDe our attention to the 
more interesting case when U is even. that is, when 

(5.3d) 

Then, in the parlance of Section 3-8, l/I = l/I(x) is a spinor function and we say that 
heal is a conformal tensor. 

Strictly speaking, instead of (5.3a) we should have written 

heal = l/IP(a)l/It (5.4) 

to insure that h-I h = P, but as long as we understand that a = Pea), (5.3a) is 
sufficient. 

We extend the tensor heal to an extensor by assuming the outermorphism 
property h(a A b) = heal A h( b). Thus from (5 .3a) we get 

h«A)r) = er.U(A)rut = er.WAut>r (55) 

for any multivector field A = A (x) = peA). In particular, for the unit pseudoscalar 
1= l(x) of the m-dimensional manifold .A, we have 

h(/) = em.t, (5.6a) 

where 

t=U/ut (5.6b) 

is the pseudoscalar of .A' if h is assumed to have its values in the tangent algebra 
of .A'. This is weaker than the assumption that h = f. 

The canonical form (5.3a) enables us to compute the codifferentials of h from 
differentials of the spinor l/I, and this makes the special properties of conformal 
transformations explicit. We exploit the fact that the differential a . au of the 
spinor Uin (5.3) can be written in the general form 

a' au=! UB/I = !B~U, (5.7) 



212 Chapter 5 

where BQ and B~ = UBQUt must be biveetors to be consistent with the constraint 
(S.3c). We work withBQ , but occasionally mention results in terms of B~. According 
to (S.3b) and (S.7), the differential t/lQ = a . at/l of the spinor can be written 

t/lQ =! t/I(t/JQ + BQ) = Ht/JQ + B~)t/I, 

wht.le t/JQ = oQt/J = a . at/J. Since B1 = -BQ, the reverse of (S .8a) is 

t/l1 = Ht/JQ - BQ)t/lt =! t/lt (t/JQ - B~). 

For the differential of h(e) = t/let/lt , we obtain 

hQ{e) = t/lQet/lt + t/let/lZ = t/I(BQ· e +et/JQ)t/lt. 

So for the codifferential of h, as dermed by (3.7), we have 

oQh{e) = P'hQP{e) = P'(t/I(BQ . e + et/JQ) t/lt ) 

= t/lP{BQ . e + et/JQ) t/I t . 

This assumes the simple form 

oQh(e) = h(~ . e + et/JQ) = n.,; . h{e) + h(e)t/JQ 

if we introduce 

From (S.ll), we readily compute higher codifferentials of h; thus 

Ob oQh(e) = h«Ob~) . e + et/JQb) + Obh(~ . e + et/JQ) 

= h«Ob~) . e + nb . (~ . e) + ~ . et/Jb + 

Using the Jacobi identity 

we find for the commutator of codifferentials 

where 

[OQ, 0b]h(e) = h(C(a 1\ b) . e) = C(a 1\ b) . h(e), 

C(a 1\ b) ==OQnb -Ob~ +~ X nb, 

C(a 1\ b) == OQnb + Obn.,; - n.,; X nb· 

(S.8a) 

(S.8b) 

(S.9) 

(S.10) 

(S.l1) 

(S.12) 

(S .13) 

(S.14a) 

(S.14b) 

(S.14c) 
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Recalling (3.1 I), we get from (5.14a) 

R'(a' A b')· h(c) -h(R(a A b) . c) = h(C(a A b)· c) = C(a' A b')· h(c), (5.15) 

where a' = f(a), b' = f(b) and the primes on a and b in the last term are justified by 
our discussion in Section 5-3. Observing that, for any bivector field B = P(B) and 
vector field c = P(c) , we have 

h(B· c) = e.U(B· c)cft = e.(UBrfl) . (Ucrfl) 

= (UBrfl)· h(c) = e-Z.h(B) . h(c), 

we are able to replace (5.15) by the simpler relation 

R'(a' Ab') = U(R(a Ab) + C(a Ab»rfl = e-Z.h(R(a Ab) +C(a Ab», (5.16a) 

or 

R'(a' Ab') - C(a' Ab') = e-Z·h(R(a Ab». (5.16b) 

This is the general equation relating the curvature tensors of conformally related 
manifolds. 

It may be of interest to note that if we define a codifferential of U by 

so that 

then 

[611 ,6bJ 1/1 = 1/l0000b =n/zbl/l, 

and this is related to (5.14a) by 

[6 11 , 6bJh(c) = [611 , 6bJ I/Icl/lt + I/Ic[611 ,6bJ I/It. 

(5.17a) 

(5.17b) 

(5.1 Sa) 

(5.ISb) 

We now consider the consequences of assuming that h = f. In the first place, the 
integrability condition hll(b) = t.1I(b) = [b(a) implies, by (5.11), that 

(5.19a) 

or 

00" . b - fib • a = (b A a) . a~. (5.19b) 

On the other hand, from (5.3) the adjoint transformation is seen to have the 
canonical form 

(5.20) 



214 Chapter5· 

and its differential is 

fJbf(a') = l{a') . nb + l{a')IPb· 

But, according to (4-5.22), 

ab A fJbf(a') = o. 

Hence, from (5.11) we get 

ab A (a· nb) = a A alP. 

From (5.19a) we get, using ab Ab =0 and ab A(ila· b)= -2ila, 

2ila = ab A (a· nb) + a A alP. 

Finally, substituting (5.22) into (5 .23), we get the remarkably simple result 

ila = a A alP. 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

If IP is constant, that is, if alP = 0, then ila = 0 by (5.24), so C{a A b) = 0 by 
(5.l4b), and, by (5.16), 

R'([!..a) A[(b» = IJR{a A b». (5.25) 

This is the equation relating the curvature tensors of isometrically related manifolds. 
We also note that alP = 0 in (5.24) and (5.11) implies that 

(5.26) 

Hence the condition (4.21) for a projective transformation is trivially satisfied, and 
we may conclude that every isometric transformation is projective. The metric 
on A' defmes a metric tensor g{a, b) on vii according to 

g{a, b) =[(a) . [(b) = a' . b'. 

Since g is scalar valued its coderivative is equal to its differential; thus, 

fJcg{a, b) = c· ag(a, b) = lc{a) . [(b) + [(a) "lc(b) 

= fJc[(a) . [(b) + [(a) . fJc[{b) , 

, (5.27) 

(5.28) 

the last equality following from the defmition (3.7) for the codifferential. Hence 
(5.26) is equivalent to fJcg(a, b) = 0; this is another way to express the condition 
that a transformation/be isometric. 

The simplest significant applicatlon of (5.26) is to determine the isometric 
transformations of a flat manifold into itself. In this case, the codifferentials of / 
are equal to its differentials, so (5.26) becomes 

(5.29a) 
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Since [(b) = Ubrfl, (5.29a) can be reduced to the equation 

a' au=o, 
hence U is constant. But 

[(b) = b . af= Ubrfl 

is a differential equation for fwith the general solution 

x' = f(x) = uxrfl + e, 
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(5.291) 

(5.30) 

(5.31) 

where e = Pee) is a constant vector. Thus, every isometric transformation ofa flat 
manifold into itself can be expressed as a rotation about the origin followed by a 
translation, as exhibited explicitly by (5.31). 

Now we evaluate the projective change in curvature C(a 1\ b) and study its 
properties. For this purpose, it is convenient to write (5.24) in the form 

ilo=aAw, 

where the vector field w satisifes 

V I\w=O, 

which follows from w = alP = VIP. The differential of ilo is 

6bilo = a 1\ (6bW), 

(5.32a) 

(5.32b) 

(5.33) 

where, of course, 6bW =a' Vw. We fmd that the tensor 6bilo has the contractions 

ao 6bilo = aaa 1\ (6bW) = (m - 1)6bW, 

aa ab 6bilo = -em - I)V . w. 

With the help of (1-1.69) we see that 

no x nb = (a 1\ w) X (b 1\ w) = W· (a 1\ w 1\ b) 

= w . aw 1\ b - w2 a 1\ b + w . ba 1\ w. 

This tensor has the contractions 

(5.34a) 

(5.34b) 

(5.34c) 

(5.35) 

(5.36a) 

ab aailo X nb = -em - w) (w 1\ ab)' (b 1\ w) = -em -2)(m -1)w2 • (5.36b) 

Substituting (5.33) and (5.35) into (5.14b), we get 

C(a 1\ b) = b 1\ 6aw - a 1\ 6bW + w . (a 1\ w 1\ b). (5.37) 
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With the help of (5.34) and (5.36) we determine the contractions 

C(b) = aaC(a" b) = -(m - 2) (~bW + (b" w) . w) - bV' w, 

C= abC(b) = -(m - 1)(2'V' w+ (m - 2)w2 ). 

Comparing (5.38a, b) with (5.37), we fmd that 

C(a"b)= a "C(b)-b"C(a) _ a"bC . 
m - 2 (m - l)(m - 2) 

Thus, C(a " b) is completely determined by its contraction C(a). 

Chapter 5 

(5.38a) 

(5.38b) 

(5.39) 

We now have a general apparatus sufficient to determine all conformal trans· 
formations of flat manifolds. The group of all conformal transformations of a flat 
manifold into itself is called the special con/omral group of the manifold. We are 
concerned here with manifolds of dimension m ~ 3, and our results hold for any 
signature. The case m = 2 is discussed in Section 4·7. 

A flat manifold is characterized by a vanishing curvature tensor. So, from 
Eqn. (5.16) we fmd'immediately that C(a " b) = 0 is the condition for a special 
conformal transformation. From Eqn. (5.38a) we get the simpler condition C(b) = 
o and the differential equation 

b'V' W 
~bw + (b" w)· w + (m _ 2) = O. 

From Eqn. (5.38b) we get C = 0 and 

2V' w+(m -2)w2 =0. 

Eliminating 'V . w from these equations, we get 

~bW=b· ww-!w2 b, 

or 

(5.40) 

Our problem now is to solve this differential equation for w = Vrp. We have already 
considered the case rp = 0 and found the general form (5.31) for the corresponding 
isometric transformations. It is also trivial to show that the dilatations x ->- e"'x 
correspond to constant rp = Q. By direct differentiation we can verify that the 
nontrivial solution to (5.40) is 

, 2{l -xc) 
w = 'VI/> = 2c{l -xcrl = 2{l - CX)-IC = ' , 

a (x) 
(5.41) 

where c is a constant vector and 

a(x)={1-xc)(l-cx)= 1-2x· C+C2X 2 =e"""'. (5.42) 
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The verification is easy when we have the following important formula at our 
disposal: 

(5.43) 

Note that the factor be does not commute with the other factors except in the case 
m = 2, when all vectors are in the same plane. The formula (5.43) is most easily 
derived by using (5.41) and (5.42) as follows 

(I-ex) b'V(1-xe)-I=b'V -u-

=_~ -(1-ex) [-b(1-ex)-(1-xc)eb] 
u . a1 

= (1 - ex)be(1 - ex) 
u1 

The remaining steps in establishing (5.41) are left to the reader. 
Our next problem is to determine the differential of the special conformal 

transformation from the equation 

f(a) = 1/Ia1/lt . 

According to(5.8), (5.12) and (5.24), the spinor 1/1 satisfies the differential equation 

For Vr/> given by (5.41) this becomes the specific equation 

a' V1/I = 1/Iac(l - xcr1 • 

(5.44) 

Comparing this with (5.43), we see immediately that it has the particular solution 

I -xc 
1/1 = (1 - XC)-I = . 

U 
(5.45) 

The general solution is obtained by multiplying (5.45) on the left by a constant 
spinor, but this has already been accounted for in our discussion of transformations 
with constant 1/>. From (5.45) we get the differential 

(5.46) 

Equation (5.46) is a differential equation for f(x) with solution 

[(x) = x(1 - CX)-I = (1 - XC)-I x, (5.47) 
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where an additive constant describing a translation has been omitted. To verify 
(5.47) we differentiate as follows 

a' V[x(l-cxr' ] =a(l-cxrl +x(1-cxrlca(l-c.xrl 

=(l-xcrl [(l-xc)a+xca] (l-c.xr l 

= (l - XC)-l a(1 - CS)-l . 

The special conformal transformation (5.47) can be further analyzed into the 
composite of an inversion 

1 x-+-x-1 =-
X 

followed by a translation and another inversion. Thus, 

-1 1 1 
f(x)= = = x--

_rl +c (l-c.x)x 1 1 -cx . 

(5.48) 

(5.49) 

We can summarize our results with the conclusion that any transformation in the 
special conformal group can be expressed in the form 

(5.50) 

where 1/1 = ea / 2 U is a constant spinor. This is a composite of a special conformal 
transformation 

x -+ x(l - c.x)-l , (5.51a) 

a rotation about the origin 

x-+Uxut , (5.51b) 

a dilatation 

x -+eQx, (5.5Ic) 

and a translation 

x-+x+h. (5.51d) 

Next in generality to the problem we have just solved is the problem of deter· 
mining the conformal transformations from a nat space to a curved space. The most 
important transformation of this kind is the stereographic projection, which we 
have already found to be given by the explicit Eqn. (4-6.31). We will not study the 
extent to which this exhausts the possibilities. But we will use it in Section 8-3 to 
prove that the special conformal group is isomorphic to a rotation group in higher 
dimensions. 
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For general applications to Riemann manifolds it is convenient to have con
formally invariant relations among the curvature tensors. For h = f, Eqn. (5.16a) 
can be written -

e2~R'(a' 1\ b") = f!..R(a 1\ b) + C(a 1\ b» 

= e2~U(R(a 1\ b) + C(a 1\ b))Ut. (5.52) 

To help us derive the corresponding equation relating the Ricci curvature tensors 
R'(b') = aQR(a' 1\ b') and R(b) = ab(R(a 1\ b), we use (5.3) to invert the general 
equation aQ = [(aQ'), obtaining 

aQ' = e-2~[(aQ) = e-~U aQut. 

Using (5.30) to contract (5.52), we get 

e2<t>R'(b') = [(R(b) + C(b» 

= e<t>U(R(b) + C(b» ut . 

(5.53) 

(5.54) 

And, contracting (5.54) in the same way, we find that the scalar curvature R = 
abR(b) on At is related to the scalar curvature R' on .~' by 

e2<t>R'=R+C. (5.55) 

Now, considering (5.39), we are led to introduce a new tensor 

W(al\b)=R(al\b)+ bI\R(a)-aI\R(b) + ( al\bR . (5.56) 
m - 2 m - 2)(m - 1) 

By combining (5.52), (5.54), (5.55) and using (5.39) we easily prove that 

e2~W(a' 1\ b') = [(W(a 1\ b» = e2~UW(a 1\ b)ut. (5.57) 

By dotting (5.57) with c' = [(c) = e<t>Ucut we get 

W(a' 1\ b') . c' = [(W(a 1\ b) . c) = e<t>UW(a 1\ b) . cut. (5.58) 

The tensor W(a 1\ b) . c is commonly called the Conformal Weyl Tensor; we use the 
same name for the equivalent tensor W(a 1\ b). 

Recalling our analysis of linear multivector functions in Section 3-9, we recognize 
(5.56) as the equation for the tractionless part W(a 1\ b) of the tensor R(a 1\ b); 
thus, 

Oa W(a 1\ b) = O. (5.59) 

EXamining (5.57), we note another important property of the Weyl tensor, namely 
that its magnitude is preserved by conformal transformations, that is, 

(5.60) 

The Weyl tensor has important applications in the theory of gravitation. 
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5-6. Induced Geometries 

The intrinsic geometry of vector manifolds developed in preceding sections is just 
the conventional Riemannian geometry expressed without coordinates. This section 
shows how our method can be used to formulate affine geometry. 

Affme geometry generalizes Riemannian geometry. However, we prefer not to 
regard affine manifolds as essentially different from Riemannian manifolds. Instead, 
we develop affine geometry by enlarging the class of differential operators defmed 
on a given vector manifold. This approach helps us compare the Riemannian 
geometries of related manifolds by showing us how to express them as different 
affme geometries on a single manifold. Conversely, our approach clearly exhibits 
the necessary conditions for an affme geometry on one manifold to be equivalent 
to a Riemannian geometry on another manifold. 

In preceding sections we expressed the intrinsic (Riemannian) geometry of a 
vector manifold in terms of properties of the directional coderivative a' 'V. We can 
defme a' 'V by the operator equation 

a' 'V = Pa . aP, (6.1) 

where P and a . a are defmed as before. Equation (6.1) suggests that we generalize 
a' 'V by replacing the projection operator P in (6.1) by a more general extensor 
function. 

Our approach here is a variation of our approach in Section 5-3. We begin with 
an invertible extensor function h(a) = hex, a(x» defined on the tangent algebra 
of the manifold A. We assume that h is an outermorphism, though it will suffice 
for us to consider the action of h on vector fields. Since h is invertible, we have 

We can define a new projection operator p' by the equation 

P'='hh-1 • 

(6.2a) 

(6.2b) 

We do not assume here, as we did in Section 5-3, that p' is necessarily associated 
with some manifold A'. We can express (6.2a, b) in the alternative forms 

h = hP=P'h =plhP, 

We define the codifferential of h as in Section 5·3: 

(6.3a) 

(6.3b) 

(6.4) 

where ha = a . ah is the differential of h. By differentiating (6.2a) we can get 5ah-1 

from 5ah; since 5aP = PPaP = 0, we have 
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or 

~ah-l = _h-1 (~ah)h-l = _h-1 hah-1 . 

Now we are prepared to generalize (6.1) by introducing an operator 

a' D==h-1a' 3h 
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(6.5) 

(6.6) 

to be applied to multivector fields on A. Using (6.1) and (6.2a) we can write (6.6) 
in the form 

a . D = a' 'i/ + La, 

where La is a linear operator defmed by 

La == h-1 haP = h-1 ~ah. 

(6.7) 

(6.8) 

The operator P appears in (6.8) because a' D is understood to act on fields only. 
In standard terminology, the operator a . D is called an affine connexion or simply 
a connexion on A. * 

We have seen how Riemannian geometry is determined by properties of the 
operator a' 'i/. Similarly, a' D determines an affine geometry for the manifold A. 
Since a' D is determined by h according to (6.6), we say that the connexion a' D 
and its corresponding affme geometry are induced by h. Furthermore, if h = f is 
the differential outermorphism of a transformation f of the manifold A into a 
manifold A', we say that a' D and its geometry are induced by f. It will be clear 
that the affine geometry induced on A by f is equivalent to the Riemannian 
geometry on ,;#' related to the Riemannian geometry on A by f in the sense of 
Section 5·3. 

We call the operator La an affine extensor. By studying its properties, we learn 
important things about induced geometries. According to (6.7), La can be expressed 
as the difference of the two connexions a' D and a' 'i/, and this is the way it 
generally arises in the literature, but we determine the properties of La from (6.8). 
Since h is an outermorphism, h(CP) = cP if cP is a scalar field; hence 

La(CP) = 0, 

and 

a . Dr/! = a' 'i/CP = a . acp. 

It also follows from the outermorphism property of h that 

La(b 1\ e) = La(b) 1\ e + b 1\ La(e), 

(6.9a) 

(6.9b) 

(6.10) 

where band e are vector fields. So the properties of La are determined by its action 
on vector fields. 

• The terminology and approach in this section may be compared with Chapter 5 in Ref. [Hi). 
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When La operates on vector fields, we call it an alfine tensor. The affme tensor 
Lib) can be decomposed into the form 

where 

ra(b) = !(La(b) + Lb(a», 

Ta(b) = !(La(b) -Lb(a». 

(6.11a) 

(6.11b) 

(6.11c) 

The skewsymmetric tensor Ta(b) = -Tb(a) is called the torsion tensor. Using (6.7), 
we can express it in terms of the affme connexion; thus 

2 Ta(b ) = a . Db - b . Da - [a. b) . (6.12) 

Recall that the Lie bracket can be written [a, b) = a' ob - b . aa, so (6.12) does 
not actually involve coderivatives. On the other hand, with (6.8) we can express 
torsion in the form 

(6.13) 

If h = I is the differential of a transformation I, then the integrability condition 
implies-the symmetry ha(b) = la(b) = Ib(a) = hb(a), and Ta(b) vanishes by (6.13). 
Thus, every affine geometry induced by a transformation has vanishing torsion. 

The extensor h determines a symmetric extensor field g on At defmed by 

g=hh, (6.14) 

where 11 is the adjoint of h. The symmetry of g is evident from 

a· g(b) =a· hh(b) = h(a) . h(b) = g(a) . b. (6.15) 

Thus a . g(b) can be regarded as a metric tensor on At. We say that g is the metric 
induced by h, or by lif h = I. 

By differentiating (6.14)and using (6.8) with (6.2a), we easily derive 

(6.16) 

where La is the adjoint of La. From (6.16) we can solve for the symmetric affine 
tensor ra(b) in terms of the metric tensor g and its codifferential. From (6.l~) 
we get 

6ag(b) = Lag(b) + gLa(b), 

obg(a) = Lbg(a) + gLb(a), 

ila . g(b) = oca . gc(b) = oca . ocg(b) = Lag(b) + LbK(a). 

(6.17a) 

(6.17b) 

(6.17c) 
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Adding (6.17a) to (6.17b) and subtracting (6.17c), we get 

g(La(b) + Lb(a» = Sag(b) + Sbg(a) - aa· g(c). 

So from (6.11b) we get 

ra(b) =!g-I(Sag(b) +Sbg(a) - aa ·g(b» 

= !g-l (ga(b) + gb(a) - 3ca . gc(b ». 
This should be compared with the expression for ra(b) in terms of h, 
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(6.18) 

(6.19) 

In the special case that h = f and f is a transformation of a flat manifold vH to 
a manifold vH', Eqn. (6.18) reduces to an expression for the 'Christoffel symbols' 
of classical Riemannian geometry (a manifold is said to be flat if its Riemann 
curvature vanishes). This relation can be regarded as a specification of a coordinate 
system for vH'; it represents the intrinsic geometry of vH' as an induced geometry 
of the flat manifold vH. Of course, there are many ways to supply vH' with a 
coordinate system, that is, there are many ways to transform a flat manifold into 
vH', so there are many different representations of the intrinsic geometry of vH' 
by a metric and Christoffel symbols on flat space. 

Recall that the Riemann curvature was introduced in Section 5-1 as a measure of 
the degree of commutivity of codifferentials; specifically, 

(6.20) 

The Ue bracket [a, b] appears in (6.20) so the commutator of derivatives will 
result in a tensor. Similarly, we defme the affine curvature tensor L (a " b, c) by 

L(a" b, c) == [a· D, b· D]c - [a, b] . Dc. (6.21) 

Using (6.7) and (6.20), we find that the affme curvature is related to the Riemann 
curvature by 

(6.22) 

This shows that L(a " b, c) is a tensor field, since the right-hand side is obviously a 
linear function of vector fields a, b, c. 

If we define the affine differential do by the operator equation 

(6.23) 

then the significant feature of (6.22) can be expressed by the operator equation 

(6.24) 



224 Chapter 5 

At any rate, the change in curvature induced by the extensor h is given by the 
operator fjaLb - fjbLa + [La, Lb]. Let us express this in terms. of h itself. Differen
tiating (6.8) we get 

fjbLa = h-1 Ob oah + (fjbh- 1) fjah , 

and using (6.5) we find 

LbLa = h-1 (fjbh)h-1 fjah = -(fjbh-1 )oah. 

Hence, 

So the desired result is 

(6.25) 

(6.26) 

This makes it easy to compare the results of the present section with those of 
Section 5-3. In particular, for h = f Eqn. (6.24) is seen to be equivalent to (3.11), 
the commutator of affine differentials [do, db] on A corresponding to the com
mutator of codifferentials lOa', fjb'l on A', while the operator (6.26) describing 
the induced change in curvature is obviously equivalent to the operator (3.10). 

The results of Sections 5-4 and 5-5 concerning the geometries of projectively and 
conformally related manifolds can now be easily re-expressed as features of induced 
affine geometries on a single manifold. For example, comparison of (6.8) with 
(5.11) shows that an induced conformal geometry is characterized by 

La(c) = h-1 fjah(c} = na . c + cq,a' 

And comparison of (6.26) with (5.14a) shows that 

fjaLb(C) - fjbLa(C) + [La, Lb]C = C(a 1\ b)' c, 

where C(a 1\ b) == fjanb - obila + na X nb. 

(6.27) 

(6.28) 
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The Method of Mobiles 

This chapter develops an efficient method for expressing the intrinsic geometry of 
a manifold in terms of local properties of vector fields. The method is actually 
a special case of the theory in Section 5-6, but we develop it ab initio here to make 
its relation to the classical method of tensor analysis as direct and clear as possible. 
This chapter does not depend on results of Chapters 4 and 5, though it does presume 
the basic properties of a vector manifold and the definitions and notations for 
differentials and codifferentials established in Sections 4-1 and 4-3, and a couple 
of results from Chapter 4 are used without taking the trouble to rederive them by 
the method of this chapter. 

A mobile is a frame of orthonormal vector fields smoothly attached to a manifold. 
The method of mobiles has significant advantages in physical applications primarily 
because a frame can be directly associated with a rigid body. The formalism in this 
chapter is designed to be immediately applicable to Ein~tein's geometrical theory of 
gravitation, but specific physical applications must be considered elsewhere. 

Nothwithstanding its direct applications to physics, the method of mobiles suffers 
the drawbacks of requiring reference to a coordinate system and of completely 
overlooking relations between intrinsic and extrinsic geometry. These drawbacks 
are necessary concomitants of a theory that deals exclUSively with quantities in the 
tangent algebra. They were avoided in the general theory of the last two chapters 
by working outside the tangent algebra. Section 6-2 shows how the two approaches 
are related. 

Our method should be compared with Cartan's formulation of differential 
geometry in terms of differential forms, which has enjoyed increasing popularity 
in recent years. Section 6-4 shows that the entire calculus of differential forms is 
included in Geometric Calculus. This perspective reveals that the calculus of forms 
is subject to unnecessary limitations which are removed by adopting the more 
general Geometric Calculus. 

6-1. Frames and Coordinates 

Let vlt be an m-dimensional vector manifold as defined in Section 4-1. The signa
ture of a vector space was defined in Section' 1-5. We say that the nt8nnold At has 
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signllture (m-q, q) if the tangent space at each point of A has signature (m-q, q). 
To make the results of this chapter immediately applicable to the 'spacetime 
manifold' of physics, which has signature (1,3), it is desirable to take account 
of signature from the beginning. However, it will be seen that signature has little 
influence on the form of the general theory. 

This section expresses local properties of vf{ in terms of frames, coordinates 
and their derivatives. After such preparation, the fundamental notion of afiducial 
system is introduced. 

A set of m vector fields {ek = ek(x); k = 1,2, ... ,m} is said to be a frame 
for a region fit of A if the pseudoscalar field e = e(x), defined by 

(1.1) 

does not vanish at any point of fit. We say that e is the pseudosca/ar of the frame 
{ek}. As we will be concerned only with local properties of A, it will be unneces· 
sary to repeat that we require the existence of frames on subregions of A. 

The m vectors {ek(x)} constitute a frame or- basis for the tangent space at x 
in fit. Thus, a frame for the region fit is a set of frames for the tangent spaces 
at each point of fit, and is sometimes referred to as a frame field to distinguish 
it from a frame at a point. 

A frame {ek} reciprocal to the frame {ek} is determined by the set of m l 

equations 

(1.2) 

where i, j = 1, ... , m. As shown in Section 1·3, Eqn. (1.2) can be explicitly solved 
for the reciprocal vectors ek, with the result 

- k -- 1 A A A A -1 ek-(-lJ el ... ek ... eme . 

Moreover, 

e-1 = ~ = em A ... A el A e1 
e 

is the pseudoscalar for the reciprocal frame {ek}. 
In accordance with standard usage we refer to the quantities 

(1.3) 

(1.4) 

(l.S) 

as the metric tensor of the frllme {ek}. Different senses in whichgij is to be regarded 
as a tensor will be explained at the end of this section and the next. Following the 
approach to determinants in Section 14, we find that the determinant of the 
metric tensor is related to the pseudoscalar of a frame by 

g= det {gij} = (em A ... Aed' (el A .. . Aem ) 

=ete=(-l)qlell , (1.6a) 
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where q is the number of vectors in the frame with negative square. The quantity 

(1.6b) 

is a measure of volume associated with the frame {ek}. 
Having established the basic algebraic properties of a frame, we now determine 

general properties of its derivatives. Because of (1.2), from the differential identity 
(4·3.19) we get the relation 

(1.7) 

where we have used the notations of Section 4·2 for the cocurl \l " ek = p(3 " ek) 
and the lie bracket 

(1.8) 

According to (4-3.18), p([ei, ell) = lei, el]' hence (1.7) can be solved for the 
lie bracket, giving 

(1.9) 

where sum over repeated upper and lower indices is understood. Thus the lie 
brackets of a frame are determined by the curls or cocurls of its reciprocal frame. 
Conversely, the cocurls of a frame are determined by the lie brackets of the 
reciprocal frame, according to 

(l.IO) 

The general duality relation between codivergence and cocurl implies that 
the divergences of a frame are determined by the cocurls of its reciprocal frame. 
Precise mathematical relations can be determined in the following way. Noting 
that e = ±IeIJ where J is the unit pseudoscalar of JH, we use (4-3.9) to obtain 

(1.11) 

On the other hand, from (1.3) we have eke-1 = ek • e- 1 = (_l)m - k em 1\ ... 1\ ek 

" ... " e1 , whence 

(1.12) 

Combining (1 .11) and (1 .12), we obtain the desired 'duality relations' 

(1.\3a) 

Because of (4-3.6), we can write this instead as 

(1.l3b) 
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If we use (1.7) to express the right side of (1.13) in terms of the brackets, and note 
from the definition (l.8) of the bracket that 

ei . [ei. e k 1 = 3 . ek - ei . (ek . 3ei), 

then we find 

(1.14) 

the last equality being obtained by differentiating ei . ei = m. Equation (1.14) 
is equivalent to a well·known result of tensor analysis, as can be seen by using 
(1.6b) to express the left side in terms of the metric tensor. 

Let the points {x} in some region of '/!f be parametrized by scalar coordinates 
Xl, x 2 , ... ,xm ; thus, 

(l.lSa) 

A frame {ek} is said to be a coordinate frame if the ek are tangents to coordinate 
curves, that is, if 

(USb) 

where, by an abuse of our notation, 3k is the (partial) derivative with respect to 
the scalar xk, that is, 

3k == 3xk = 2.... 
3xk 

(I.l6a) 

By virtue of the chain rule, directional derivatives by vectors in a coordinate frame 
are equivalent to partial derivatives by the coordinates, that is, 

(1.l6b) 

The inverse of the function (l.lSa) is a set of m scalar functions on 

Xk =xk(x) (1.l7a) 

defined on .41 and called coordinate [unctions. The gradients of a set of coordinate 
functions comprise a frame 

ek = 3xk = IJxk. (l.l7b) 

Indeed, the frame {ek = IJxk} is reciprocal to the frame {ek = 3kX}, as is easily 
proved by using (l.l6b) to show that (1.2) is a consequence of the chain rule. 

A frame {ek} for a region of vii is a coordinate frame if and only if its lie 
brackets vanish; 

(l.18a) 
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For the coordinate frame (USb), we prove (USa) by applying (U6b); thus, 

ej' aej = at ajX = ilj ajX = ej . aej. 

We shall not attempt the more difficult converse proof that (1 .1 Sa) implies (1.15), 
because we will not make use of it. 

By virtue of (1.10) and (1.9), Eqn. (USa) is equivalent to 

'i/ "ek = 'i/ " 'i/xk = p(a" axk) = O. (USb) 

Hence, (LISa, b) are equivalent expressions of the integrability conditions for a 
coordinate frame. 

To every frame {ek} there corresponds a unique orthonormal frame {'Yk} such 
that 

(1.19a) 

where h is the unique tensor field determining, at each point x, a positive symmetric 
linear transformation of the tangent space which takes {'Yk(x)} into {ek(x)}. 
Being symmetric, h is equal to its adoint Ii, and we have 

-yk = Ii(ek) = h(ek) = h~ei. 
J 

(I.19b) 

The matrix elements of this transformation are 

(1.20) 

The metric tensor gjj = ej . ej can be regarded as a symmetric tensor field a . g(b) 
with components 

(1.21) 

Thus, the tensor h is the positive square root of the metric tensor. 
The metric tensor g of a frame {ek} can be regarded as a linear transformation 

of its reciprocal frame {ek} into {ek}. To express this explicitly, we first take 
account of the metric signature by introducing the indicators 11k = 'Yf, so the 
orthonormality of the 'Yk is expressed by 

'Yj . 'Yk = 11k 0jk. 

Then from (1.19b) we have 

'Yk = 11ki' = 1Ikh(ek), 

and by substituting this in (1.19a), we get 

ek = 1Ikh2(ek) = 1Ikg(ek) = Kkj-ej. 

The matrix elements of this linear transformation are 

(I.22) 

(1.23) 

(1.24) 

(J .25a) 
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The inverse of the transformation g is expressed by 

ek = llU-1 (ek) = gkiej. 

with matrix elements 

Chapter 6 

(l.2Sb) 

(1.26) 

When {xk} is a system of coordinates with coordinate frame {ek = akX}, we 
call the corresponding tensor h and the frame hk} just defined, respectively, the 
fiducilll tensor and the fiducilll frame of the coordinote system {xk}. We will 
refer to this whole set of quantities as a fiducilll system. We shall see that there 
are significant advantages to working with the fiducial tensor instead of the metric 
tensor as has been traditional in classical differential geometry. 

6-2. Mobnes and Curvature 

This section develops the method of mobiles as a general tool for the study of 
intrinsic differential geometry. The main result is a systematic procedure for 
computing the curvature tensor from a frame of vector fields. The efficiency of 
this procedure will be obvious to anyone who applies it to explicit calculations in 
gravitation theory, but such claculations will not be carried out here. The method 
of mobiles will be related to the more general method of Chapter S, so results 
obtained by either method can be applied with impunity in connexion with the 
other. 

The method of mobiles can be formulated in other languages, such as tensor 
analysis or differential forms, but only Geometric Calculus relates the method 
of mobiles directly to spinors. This feature greatly simplifies applications to physics 
where spinors are necessary. At the end of this section, the relation of our method 
to the standard method of tensor analysis is established. Relation to the method of 
differential forms is established in Section 64. 

Given the codifferentials of a frame of vector fields on vIt, the coderivatives 
of any tensor field are determined, because the frame provides a basis for the 
tangent algebra of multivector fields on vIt. The curvature tensor is then determined 
as usual by the commutator of codifferentials. As we shall see, it is especially 
convenient to begin with the codifferentials of a fiducial frame. 

We continue to use here the definitions of co derivative and codifferential in
troduced in Section 4-3. We introduce the term mobile to refer to an orthonormal 
frame of vector fields. Since the vectors of a mobile {'Yk} are orthonormal, their 
codifferentials can be expressed in the form 

(2.1) 

where Wa is a bivector-valued linear function of the vector Q. We can interpret wa 
at any point x as the 'angular velocity' of the frame {'Yk(x)} as it is displaced in 
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the direction a(x). We do not presenta proof of (2.1) just now, as it will be supplied 
later on when we solve Eqn. (2.1) explictly for Wa. 

It is convenient to derme the mobile differentilll daB of a multivector field B 
by the equation 

(2.2) 

where, as before, the cross denotes commutator product. Consider, for example, 
the codifferential of a vector field b. Writing b = bk'Yk, where bk = b . 'Yk are the 
components of b relative to the mobile {'Yk}, we have, using (2.1), 

6ab = 6a(bk'Yk) = (6abk )'Yk + bk 6a'Yk 

= (a· abknk + Wa . b. 

Comparison with (2.2) shows that, since Wa • b = wa X b, 

dab = (a· abknk. (2.3) 

Thus, the mobile differential of a vector field is just the derivative of its mobile 
components. The same is true of the mobile differential of any multivector field. 
Thus, if B is a bivector field, with mobile component! Bil = "I. B . 'Yi = B . ('Yi A -yi), 
we have 

B = i IJiI'Yi A '11. (2.4a) 

Note that, with the help of the algebraic identity (1-1.67), from (2.1) we get 

6a('Yi A'Yi) = Wa X ('Yi A '11). (2.4b) 

Hence, 

6aB = i (a. alliini A '11 + Wa X B (2.4c) 

and 

daB = i (a· alliini A 'Yi (2.4d) 

as advertised. 
For a scalar field t;, Eqn. (2.2) reduces to 

(2.5a) 

since wa X t; = O. The integrability condition (4-1.12) then gives us 

(2.5b) 

Since the mobile differential of any multivector field B reduces to the mobile 
differential of scalars (the mobile components of B), we have the general result 

(2.6) 

Thus, mobile differentials always commute. 



232 Chapter 6 

One other basic property of mobile differentials should be mentioned; like 
codifferentials they conserve linearity when they operate on tensors, as follows by 
requiring (2.2) to apply if B is a tensor. We have tacitly used this property in 
obtaining (2.6). 

Now we use (2.2) to obtain an expression for the curvature tensor. With the 
help of (2.6) and the Jacobi identity 

wb X (wa X B) - wa X (Wb X B) = (Wb X wa) X B, 

we easily obtain 

[6a, 6b]B =R(a" b) X B, 

where the curvature tensor R(a "b) is given by 

R(a" b) = cJ.,Wb - %Wa + Wa X Wb' 

(2.7) 

(2.8) 

Since 6aWb = dawb + Wa X Wb, we can replace mobile differentials in (2.8) by 
codifferentials to get 

(2.9) 

The expression (2.8) is most useful for computations, while (2.9) is valuable for 
theoretical considerations. 

When (2.8) is used for computations, it is essential to remember that cJ., is 
required to preserve the linearity of tensors; since wb is bivector valued, we can 
write explicitly 

(2.10) 

This should be compared with (2.4d). The last term in (2.10) vanishes if the com
mutator [a, b) vanishes. For this reason, evaluation of curvature from (2.8) may 
be Simplified by using coordinate frames. 

To prove that the representation of curvature given by (2.9) is equivalent to 
the one derived in Chapter 5, we use (2.1) and (4-3.16) to get 

a· O'Yk =a· 'iJ'Yk - Sa' 'Yk = (wa - Sa)' 'Yk· 

Hence, we can write 

a· on = 11a' 'Yk, (2.11a) 

where 

na = Wa - Sa (2.11b) 

gives the decomposition of the total mobile angular velocity na into a tangential 
component wa = p(na), which describes the rotation of the mobile within the 
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manifold, and a normal component'Sa, which describes the rotation of the mobile 
with the manifold as it is displaced. The integrability condition for differentials of 
the mobile can be written 

[a. a, b • O]'Yk - [a, b] . O'Yk = 0, 

which we use to deduce from (2.lla) that 

l)a!lb -l)b!1a + P(!1a X !lb) = O. (2.12) 

Finally, by substituting (2.1lb) in (2.12) and using (44.17) as well as (4-2.28), 
we obtain 

(2.13) 

This completes the proof that (2.9) is equivalent to the previously derived expres
sion (5-1.5a) for the curvature in terms of the curl tensor Sa. So all the general 
properties of the curvature tensor established in Section 5-1 are properties of the 
tensor (2.9) constructed from the mobile angular velocity Wa. Of course, Eqn. 
(2.13) also shows that the angular velocity of any mobile can be used to compute 
the curvature tensor ,since the curl of the manifold Sa is independent of a choice of 
mobile. 

Now let us study how derivatives of a mobile are related to its angular velocity. 
Setting a = 'Yj in (2.1) we have 

'Yj . 'i/'Yk = Wj . 'Yk, (2.14a) 

where we have introduced the abbreviation 

Wj == w-Yj; (2.14b) 

the 'hat' on the subscript reminds us that it indicates a tensor argument evaluated 
at the unit vectors of the mobile. Algebraic manipulations of (2.14) are expedited 
by the formula 

~(.4),'Yk = (-l)'{m - 17)(.4)" (2.15) 

which holds for any multivector field A by virtue of (2·1.40). Thus, since wi is a 
bivector, we have 

~Wi· 'Yk = !(oyk"7""k - -yk'YkWj) = -2wj, (2.16) 

so if we multiply (2.14a) and -yk and sum over k we get 

Wi = -! oyk'Yj . 'iJ'Yk = -hk " hj . 'iJ'Yk) = ! hj . 'iJ'Yk)yk. (2.17) 

Note that the wedge in (2.17) can be retained or dropped as desired, because 
-yk . ('Yj . 'iJ'Yk) = 0 holds with or without a sum on k as a consequence of ortho
normality. The quantity 

W == -yiWj =! 'Yk'iJoyk - 'Yk . 'i/'Yk (2.18) 
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describes properties of the angular veclocity which are independent of direction. 
The right side of (2.18) is obtained from (2.17) by observing that 

-;i-rni . V-;k = (2-;1 . 'Yk - 'Yk-;inl· V-;k = 2'Yk . vi' - 'Yk vi'. 

If we multiply (2.14a) on the left by -;i and sum, we see that 

Vn = -;i! (W/yk - nWj) 

Hence, 

= ! (-;1 Wj-;k - (2-;1 . 'Yk - n-;/)wj) 

=! (W-;k + nw) - w~. 

V'Yk = W . 'Yk - w~. 

The scalar part of (2.19) is 

v . -;k = {wh . n = (wn)· 

(2.19) 

(2.20) 

Thus the divergence of the mobile vectors is completely specified by the vector 
part ofw . 

. We can solve (2.19) for (W)3. With the help of(2.15) we find 

i' Vn = t (i'W"Yk + -;k-;kW) - W 

= t (2{W)1 + 6{W)3) - ({W)l + (wh)· 

Hence 

{w~=--;kAwk = ti'Vn =i -;kA V An. 

Comparison of (2.21) with (2.18) and (2.20) shows that 

{wh = -;k . Wk = i'V . -;k = -n . Vi' = -'Yk . (V A -;k). 

Finally, substituting (2.21) into the bivector part of (2.19), we obtain 

wi: = ~ (-;1 A V A -;j) . 'Yk - V An. 

(2.21) 

(2.22) 

(2.23) 

This is a most important result, for it tells us how to obtain the angular velocity 
of a mobile from the CQcur! of the mobile vectors. Note that the free index in 
(2.23) can be raised or lowered at will, because i' differs from -;k by at most 
a sign depending on signature. 

A fiducial frame {n} is a mobile 'tied' to a coordinate frame {ek} by a fiducial 
tensor h, as described in the preceding section. Since [ej, ek] = 0 for a coordinate 
frame, it is most convenient to deal with coordinate differentials of a fiducial 
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frame (this point was explained 'previously in connexion with Eqn. (2.10». 
Accordingly, we set a = ej in (2.1) and write 

6;'Yk = e; . V'Yk = w; . 'Yk, 

with the abbreviations 

Using (1.19a), we get an explicit expression for wI from (2.23), namely, 

Wj = h;Wk =! (-yk A V A 'Yk) . e; -IIjV A 'Yk. 

Thus, the Wj are determined by the V A 'Yk . 

(2.24a) 

(2.24b) 

(2.25) 

We can calculate V A 'Yk from derivatives of the fiducial tensor. Taking the 
cocurl of (1.23) and using (USb) we fmd 

V A'Yk = 11k (V It;) A e; = 11k frA h(ek ) = V A hh-1 ('Yk). (2.26) 

This equation becomes particularly simple for an orthogonal coordinate system, 
for then 

(2.27a) 

and 

(2.27b) 

that is, each 'Yk and each ek is an eigenvector of the fiducial tensor with eigenvalue 
hk. In this case, (2.25) and (2.26) reduce to 

(2.2S) 

These results are most useful for explicit calculations of curvature in gravitation 
theory. 

The present method should be compared with the conventional approach of 
covariant tensor analysis. Tensor analysis proceeds by specifying the codifferentials 
of a coordinate frame {ek} with the equation 

(2.29) 

This equation amounts to no more than the requirement that codifferentials 
preserve tangency of vector fields. Many expositions of tensor analysis do not 
write an equation like (2.29) explicitly, but such an equation must nevertheless be 
tacitly assumed. The 'coefficients of connection' L;k can be related to the metric 
tensor by using (2.29) to differentiate gjk = ej' ek, with the result 

(2.30) 

where, in accordance with (1.16), 0i = o/axi. Under the assumption LJk = L~i' Eqn. 
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(2.30) can be solved for the coefficients yielding the famous 'Christoffel symbols' 
{/~}; 

LJk = {i~} == !gin(Ojgnk + 0kgnj - 0ngkj), (2.31) 

where gin = ei . en. This symmetry of the coefficients of connexion entails the 
vanishing of the torsion tensor described in the last chapter. 

Expression of the 'coordinate connexion' in terms the metric tensor by (2.31) 
corresponds to specification of the 'fiducial connexion' in terms of the fiducial 
tensor by (2.25) and (2.26). The coordinate and fiducial connexions can be directly 
related by using (2.25) and (2.14) as well as (1.19) and (1.16) in (2.29); we find 

(2.32) 

These equations are easily solved for either L;k or Wi. 
Covariant derivatives of tensors' are usually dermed by requiring 'covariance' 

under coordinate transformations. Our codifferential, dermed without reference to 
coordinates or transformations by (4-3.3), is completely equivalent to the usual 
covariant derivative. It is worthwhile to see this exhibited by some examples. Let 
v and u be vector fields. The product v . u can alternatively be regarded as a scalar 
field 

;==v· u, 

as a tensor field of rank 1, 

v(u)==v· u 

or as a tensor field of rank 2, 

g(v, u)==v· u. 

By (4.3.3) and (4·3.1), the codifferentials of these tensors are respectively, 

/jo; = a· II; = a· ~ = a· o(v· u), 

/jov(u) = a· o(v· u) - V· (a· lIu), 

/jog(u, v) = a· o(v· u) - (/jov), U - v . (/jou). 

(2.33a) 

(2.33b) 

(2.33c) 

(2.34a) 

(2.34b) 

(2.34c) 

Now, the quantities Vk == v(ek) = V· ek are coordinate components ofv. Writing 
a = aiej and using (2.29) in (2.34b) we obtain 

(2.35) 

The quantity in parenthesis here will be recognized as the classical expression for 
the covariant derivative of a vector field. 
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Similarly, by applying (2.34c) to gii = g(ej, el) = ei . ej. one sees that (234c) 
is equivalent to (2.30) if 

6ag(v, u) = O. (236) 

This is the classical condition that the covariant derivative of the metric tensor 
vanishes on a Riemannian manifold. 

6-3. Curves and Comoving Frames 

This section adapts the method of mobiles to curves imbedded in an m-dimensional 
vector manifold 11. It provides us with an efficient apparatus for cbmparing direc
tions at different points on a curve as well as for describing geometrical properties 
of the curve itself. Among other things, it enables us to cast the classical Frenet 
equations for a curve in a particularly useful form. The method has important 
applications to physics, for example, to describe the precession of a satellite in a 
gravitational field. . 

Let x = X(T) describe a smooth curve ce in 11 parametrized by the scalar T. 
The velocity 

dx v=-
dT 

(3.1) 

is a nonvanishing vector field on ceo Indeed, v is a pseudoscalar for the one-dimen
sional manifold ceo If v2 = 0 on ce, we say that the curve is nuU. If ce is not null, 
we can always parametrize the curve so that I v\2 = 1, in which case 1'2 - 1'1 is the 
arc length between points X(T2) and x(Td on ceo We automatically do this when
ever convenient. 

As we have noted before, for any function f = f(X(T» defmed on ce, the co
derivative by l' is equal to the codifferentilll by v; that is, by virtue of the chain rule, 

'VT = (:) ·'Vx =v·'V=6v. (3.2) 

An orthonormal frame {ek} of vector fields ek = ek(x(T» = ek(T) on the curve 
ce is called a mobile or comov~ frame on ce if 

dx 
e1 = v = dT (3.3) 

when ce is not null, or 

(3.4) 

when ce is null. Many properties of mobiles determined in the preceding section 
obtain here as well. Thus, by the same argument that established (2.1), it can 
be proved that there exists a unique bivector 'n such that 

(3.5) 
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It is convenient to indicate differentiation by an overdot here, because we will 
be concerned with only a single parameter. We call n the angular velocity of the 
mobile. The argument that gave us (2.17), also yields from (3.5) 

(3.6) 

For the rest of our discussion we assume that v2 = 1, since this is the case of 
most interest in physics, and the argument is easily adjusted to take care of the 
other cases. From v2 = 1, we obtain v· v = 0 and note the identity 

iJ = (iJ A v) . v. (3.7) 

Since v = e" we see by comparing (3.7) with (3.5) that n can be written uniquely 
in the form 

n=iJAv+B, (3.8a) 

where B is a bivector satisfying 

B· v=O. (3.8b) 

This shows the high degree of freedom available in the selection of a comoving 
frame, for any value of B is allowed provided only that (3.8b) is satisfied. 

We interpret the mobile {ek = ek(T)} as a frame whose 'rigid motion' along 
the curve rc is described by the equations of motion (3.5). The term iJ Av in (3.Sa) 
is the angular velocity needed for the frame to 'follow' the curve while preserving 
frame orthogonality and the tangency of v = e, to the curve. The term Bin (3.8a) 
is an additional angular velocity of vectors orthogonal to v. Hence, a mobile with 
angular velocity 

n=vAv (3.9) 

can be interpreted as a frame moving without rotation relative to the curve along 
which it is transported. Such a frame is called Fermi- Walker frame in the physics 
literature, and its displacement along a curve is called Fermi- Walker transport. 
A geodesic is defined by v = 0, whence ek = 0 by (3.9) and (3.5), so Fermi-Walker 
transport reduces to parallel transport when the curve is a geodesic. Fermi-Walker 
transport provides a good description of the motion of a gyroscope. See [MTW] 
for further discussion and references. 

Instead of beginning with a curve to which we wish to attach a mobile, we are 
often supplied with a mobile determined by specifying the angular velocity n. 
The problem then is to integrate Eqn. (3.5) to get ek = ek(T) and then to integrate 
e, = VeT) = dx/dT to get the 'orbit' x = X(T) of the mobile. The general method 
described here has wide applicability to geometry as well as physics. 
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Suppose our manifold vi{ is described by specifying a fiducial frame {'Yk} as 
described in the preceding section. According to the results of Section 3-8, the 
frame {ek(X)} at any point x of vi{ is related to the fiducial frame {'Yk(x)} at the 
same point by the equation 

(3.10) 

where U is a rotor satisfying 

utu= 1. (3.11) 

Thus the mobile ek = ek(r) is completely determined by the rotor-valued function 
U = U(r) which relates it to a given fiducial frame at each point along the orbit. 

According to (2.2), we can write Eqn. (3.5) in the form 

(3.12) 

One easily verifies by differentiating (3.10) that the set of m equations (3.12) is 
equivalent to the single rotor equation 

(3.13) 

Since dv'Yk = 0, integration of (3.13) can be carried out as if it were an equation on 
an m-dimensional flat manifold for which {'Yk} is a 'cartesian frame'. It is only 
necessary to remember that fiducial components of the integrated rotor U = U(x(r) = 
U(r) are relative to the fiducialframe {n(x(r»} at the point of interest on the curve. 

Expressed in terms of the codifferential, Eqn. (3.13) takes the form 

(3.14) 

However, Eqn. (3.13) is more useful than Eqn. (3.14) because it can be integrated 
by conventional methods. 

Classical differential geometry defines the Frenet Frame {ek} of a non-null 
curve by the so-called Frenet equations 

x = el = v, 

eZ = -"leI + "ze3 , 

e3 = -"zez + "3e4, 

em = -Km -1 em -1, 

(3.15) 

where the "k are scalars chosen so that the ek are orthonormal. SubstitUting Eqns. 
(3.15) into (3.16), we get 

(3.16) 
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We call the angular velocity n defined by (3.16) the Darboux bivector, because 
it directly generalizes the classical Darboux vector. 

The Darboux bivector summarizes the geometrical properties of a curve in a 
single convenient quantity. From (3.16) we see that the kth curvature Kk is the 
projection of n on the ek "ek + 1 plane, thus, 

(3.17) 

Curves can be classified according to properties of their curvatures {Kk}, but an 
equivalent classification of Darboux bivectors would evidently be more systematic 
and compact. 

The greatest benefit of the Darboux bivector comes from the replacement 
of the coupled system of Eqns. (3.15) by the single rotor Eqn. (3.13) relating 
the Frenet frame to a fiducial frame. Applications of Frenet frames in the literature 
are easily reformulated in the present language, so further discussion is unnecessary. 
It should be remarked, however, that in spite of the geometrical significance of 
Frenet frames, other choices of comoving frames are often more significant in 
physical applications. 

64: The Calculus of Differential Forms 

In the last decade or so, formulations of integral and differential calculus and 
geometry in terms of Cartan's calculus of differentilll forms have steadily worked 
their way into the mathematics curriculum. Recently. an influential physics text· 
book [MTW] has broadened the base of this movement with the claim that Cartan's 
calculus is superior in many physical applications to conventional vector and 
tensor analysis. Since the calculus of forms calls for a substantial revision of the 
mathematical language used by physicists, any commitment to it should be fully 
justified. 

The section compares the calculus of forms to Geometric Calculus in sufficient 
detail so that any expression can be easily translated from one language to the 
other. It will be seen that the calculus of forms need not be regarded so much a 
separate language as a special set of notations for a limited part of Geometric 
CalcUlus. From the more general perspective of Geometric Calculus the limitations 
of the calculus of forms and the drawbacks of its special notations become apparent. 
A critique of the calculus of forms is given at the end of this section. Chapter 7 
discusses the role of forms in geometric integration theory. 

For the sake of comparison, we introduce some common notations used in 
the calculus of forms. We use such notations only in this section, because they 
are superfluous and inappropriate in the general Geometric Calculus. 

In Section 4-1 we encountered differential forms as scalar valued multiform 
fields. Let us repeat and elaborate on our discussion of forms with a notation 
which is closer to conventional practice. 
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We use the definition and properties of r-forms developed in Section 1-4_ A 
differential r-form a.,. is a scalar valued skewsymmetric linear function a.,. = a,(dx 1 , 

dx2 , •.• ,dxr ), where the 'differentials' dx 1 , ••• , dxr are arbitrary vector fields. • 
According to Section 1-4, a.,. can always be written, 

a.,. = a.,.( dXr) = At (x) . dXr(x) = dXJ . A r, (4.1 a) 

where dXr = dx 1 A dx2 A ... A dxr, and Ar = Ar(x) is a defmite r-vector field. It 
should be noted that Ar need not be a tangent field; however, since dXr is tangent 
only the tangential component of Ar contributes to a.,., that is, 

a.,. = dXt . Ar = dXt . P(Ar), (4.lb) 

where, as before, P is the projection into the tangent algebra. Hence, we suppose 
Ar is a tangent field in the following, unless stated otherwise. 

According to Section 1-4, the exterior product of forms a.,. = dXt . Ar and 13, = 
dXt . Bs is the (r + s)-form 

a.,. A13s = dXt+s· (Ar ABs)· (4.2) 

The exterior product is not sufficient for routine applications of the algebra of 
forms, so a duality operation is commonly introduced which can be expressed in 
terms of Geometric Algebra as follows. An (n - r}form 'dual' to a.,. is defmed by 

.a,. == dXL, . (At!) = (Ar A dXn _ ,)t . I, (4.3) 

where I is the unit pseudoscalar and dXn _, = dXr + 1 1\ dXr + 21\ ... 1\ dXn . Since by 
(l-1.23a), Arl = A r · 1= (_l)r(n -1) lA" the 'double dual' is 

•• 0, = dXt . [(At!)t I] 

=dXt· [flAr/] = (_l)r(n-l)a,. 

Combining (4.2) and (4.3), we have 

a, A·/3, = (dXr 1\ dXn_r)t . (A, 1\ (Btl) 

=A . Bt/t . dX r r n, 

where dXn = dXr A dXn-, = ~l A .. . 1\ dxn. And with dXo == 1, we get 

.(0, A ·13b) =A,· Bt. 

(4.4) 

(4.5) 

(4.6) 

* It might be better to write d1x, ...• d,x instead of dx1, ...• dx, to indicate more clearly 
that we have here, distinct tangent vectors at each point x rather than' oomponents of a single 
vector dx or 'differentials' at different points xk. As a rule, it is best to use the notation dxr 
for a tangent vector only when it stands 'under' an integral sign where it represents a directed 
measure (see Chapter 1). We use it here hoping to clarify its relation to similar usage in the 
literature. 
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Thus the *-operator on differential forms can be used to do the work of the inner 
product on tangent fields. However, the inner product is more convenient than 
the *-operator for many reasons; for instance, the *-operator can be applied only 
to tangent fields unless the manifold is imbedded in some manifold of higher 
dimension. But, in the preceding two chapters we have seen important applications 
of the inner product to non-tangent fields. More important, use of the *-operator 
helps to disguise the existence of the elementary combination of inner and outer 
products ab = a· b + a /I. b, which cannot even be expressed with differential forms. 

As we pointed out in Section 4-1, Cartan's exterior derivative dar of a form a, 
can be expressed in Geometric Algebni by the formula 

da, = dXj+ 1 . (a /I. A,) = (dXj+ 1 . a)· A, 

=dXj+l·(V'/l.A,)=(dXj+l·V')·A,. (4.7) 

Note that, because of ( 4.1 b), either the derivative a or the coderivative V' = p(a) 
can be used in (4.7). Rather than show that (4.7) reduces to the usual expression 
for da, when coordinates are introduced, we merely point out that (4.7) implies 
the fundamental properties of the exterior derivative: 

dCa, /I. IJ,) = dar + diJ" 
d(a, /l.lJs) = da, /l.lJs + (-I),a, /I. diJs, 

d(da,) = O. 

(4.8) 

(4.9) 

(4.10) 

Equation (4.8) is an obvious consequence of the linearity of the curl and the 
scalar product; (4.9) follows from (2-1.50); and (4.10) follows from (4-3.11). 

Equation (4.7) shows that dar is equivalent to the projected curl V' /I. A, = 
pea /I. A,); this reveals the chief limitation of the exterior derivative. In Chapters 
4 and 5, we saw that even if A, is a tangent field, a /I. A, has a nontangential 
component which may contain significant information about intrinsic as well as 
extrinsic properties of the manifold. Such information is suppressed from the 
beginning when calculus on manifolds is formulated in terms of differential forms. 
Thus, the calculus of forms is not sufficiently general to give a complete account 
of manifold theory. This limitation is overcome in the literature by extending the 
formalism in various ways, for example, with the theory of fibre bundles. But such 
complications are unnecessary if Geometric Calculus is used from the beginning. 
The transformation of a differential r-form induced by a point transformation 
f: x -+ x' = [(x) is determined by assuming that the numerical value of the r-form 
is unchanged. According to Chapter 4, the induced transformation of an r-vector 
field dX, is 

dX; = f(dX,), (4.11) 

so, by virtue of (3-1.15) relating differential and adjoint transformations, we have 

a;.(x') = rca,) =A; . dX; = A; . [(dX,) 

= J<A;) . dX, = A, . dX, = ~(f(x)) = a,(x), (4.12) 
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where A, = J(A~). In the next chapter we show that Eqn. (4.12) is just a special case . 
of the rule for transforming integrals by substitution, and we avoid the common 
notation r for the induced transformation of forms. But just now, let us verify 
that, when defined by (4.12),[* has the usual properties attribted to it. Obviously, 
Eqn. (4.12) entails the linearity 

r(a,. + (J,) = r(a,.) + r(l3,), (4.13) 

and because of (3-1.13), 

(4.14) 

The fact that exterior differentiation commutes with r follows directly from 
(4-5.30b) and (4.7); thus, 

da;. = df*(a,) = r(da,.). (4.15) 

Ordinarily red,) is defmed by using coordinates and coordinate substitutions. 
We have just shown that this is unnecessary if differential forms are obtained from 
Geometric Calculus. 

The 'adjoint' 0 of the exterior derivative is sometimes defmed by the operator 
equation 

With the help of (4.3), (4.7) and (4-3.9), we fmd 

*d*a, = dXt-1 . ([17 A (17t 1)] t I 

Hence, 

= (_I)n -'( _1)'(n -1)dXt_1 «(17 A (A,It)] 1) 

= (_l)n(,+ l)dXtl . (17 . A,). 

o a,. = -dXtl . (17· A,). 

(4.16) 

(4.17a) 

(4.17b) 

Thus, 0 is eqUivalent to the codivergence 17 defined in Section 4-3, and, comparison 
of (4.17b) with (4-1.28) shows that 0 can be regarded more generally as the 'interior 
derivative' mentioned in Section 4-1. 

Obviously, 'differential identities' in the language of differential forms can be 
obtained by multiplying the identities in Sections 2-1 and 4-2 by arbitrary multi
vector fields to obtain scalar equations. Given the. identifications made above, 
it is an easy matter to derive and relate any of the identities in the literature on 
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differential forms to identities in Geometric Algebra. We give only one example. 
Especially with the help (I-l.38), (4-3_23) and (4-3.27), we find 

dar=(dXr+l·V)·Aj 

= (dXr-l . V) .Aj + (dXr-l . V)· Aj 

r+ 1 
= L dxk' Va,.(dx 1 A ... dXk ... A dxr+ d + 

k=l 

+ L {-I)j+ka,.([dx,·,dxk] Adx 1 A .. . dX,· ... dXk ... Adxr+d. (4.18) 
j<k 

The right side of (4.18) is sometimes given as a definition of the exterior derivative 
in terms of the Lie bracket. 

What we have said so far about the calculus of forms could as 'well have been 
said at the end of Chapter 4. But Cartan's formulation of differential geometry 
in terms of forms (see, for example, p. 61 of ref. [Hi)) should be compared with 
our formulation in Section 6.2. 

A frame field {ek} with reciprocal frame {ek } determines the so-called dual 
frame of one-forms: 

(4.19) 

which would be referred to as the components of a vector field a = a{x} in our 
language. According to (4.7), the exterior differential of fie is a two-form equivalent 
to the cocurl of ek , 

dfie = dQk{a A b) = (b Aa) . (V A ek). 

The so-called connexion one-forms ~ are defined by 

w! = W!£ a) == a· L ~ 
/ j" " 

with 

Li =Li ek 
j- jk ' 

(4.20) 

(4.21a) 

(4.21b) 

where the 0k are the coefficients of connexion introduced by Eqn. (2.29). When 
we wrote eqn. (2.29), we were concerned with a coordinate frame. However, 
an equation of that kind obviously holds for the arbitrary frame {ek} which 
concerns us here. 

By differentiating ek . ej = 6: and using (2.29), we see that 

(ei . Vek) . ej = -ek . (ej . Vej) = -L~ = -L: . ej. 
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Thus, 

ei' lIek = -L~, (4.22) 

whence, 

II "ek =L~ "ei. I 
(4.23) 

'Dotting' (4.23) with b " a and using (4.20) and (4.21), we get a corresponding 
equation in terms of differential forms: 

dak = w~ "ai, (4.24) 

where we have used the outer product of forms defmed by (4.2), that is, 

H1 "ai = (b "a) . (L~ "ei) = H1(a)ai(b) - H1(b)ai(b). (4.25) 

Equation (4.25) is called Carlan's rust structural equation.· It is, of course, equi
valent to Eqn. (4.23). We have already noted that 

(4.26) 

for scalar cp implies that II " ek = II " IIxk = 0 for a coordinate frame; whence, by 
(4.23), 

L~ "ei = 0, I 
(4.27) 

and this is equivalent to L~ = L~, or, in words, 'the coefficients of connexion for 
a coordinate frame are symmetric'. Thus, Eqn. (4.25) merely expresses the elemen
tary property of coderivatives (4.26) as a property of the coefficients of connexion 
for an arbitrary frame. 

Cartan's second structural equation is 

dK-f + w:" w{ = uf, (4.28) 

where, in accordance with (4.21), (4.7) and (4.2), we have 

dH1 = (b "a) . (II "L~), (4.29) 

and 

w; " w{ = (b "a) . (L: "L{), (4.30) 

* Cartan's flIst structural equation is often written with a torsion term (see p. 62 of [Hi)). 
This is not so much a generalization of Eqn. (4.25) as it is a different dermition of a connexion 
on the manifold'. Torsion can be introduced or eliminated at will by our method in Section 
5-6. 
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while 

nf == (b "a) . R(ek "ej) = (ej" ek) . R(a "b), (4.31) 

and R(a 1\ b) is the curvature tensor specified by Eqn. (2.9). Obviously Eqn. (4.28) 
is equivalent to the equation 

Il "L~ +L~ "L{=R(ek "ej). (4.32) 
/ / I 

For a coordinate frame {ek}, Eqns. (4.29), (4.30), and (4.31) give 

(en 1\ em) . (Il "L7) = 3mL7n - 3nLfm, 

(en" em) . (Lf 1\ L{) = LfmL{n - LfnL{m' 

R:mn == (ej" ek) . R(em "en), 

-whence (4.28) yields the classical covariant form of the curvature tensor: 

Rfmn = 3mL7n - 3nL:m + LfmL{n - L~L{n (4.33) 

Having established this relation to tensor analysis, we will not bother with a more 
formal proof of Eqn. (4.28). 

Though we have seen that Cart an's structural equations are readily formulated 
with Geometric Calculus, we shall not make use of them, because alternative 
expressions for the curvature tensor developed in Sections 6-2 and 5-1 exploit the 
Geometric Calculus more efficiently. 

The calculus of forms is insufficient for most applications. It must be supple
mented by other algebraic systems such as matrices or tensors. Thus, though 
[MTW] strongly advocates the use of forms in physics, it frequently resorts to 
tensor methods. The algebra of forms is not competent to handle the theory of 
linear transformations in Chapter 3, though it is intimately related to the subject. 
Only in Geometric Calculus are spinors, tensors and linear transformations as well 
as forms developed in a unified mathematical system. 

The exterior product is the fundamental algebraic operation in the calculus of 
forms. It is generally defined first for forms; consequently, an independent definition 
will be required when the similar product for vectors is needed. Such redundancy 
in the algebraic axioms is unnecessary. Geometric Algebra relates the two kinds 
of product by Eqn. (4.2), which shows that the exterior product of forms is readily 
obtained from the outer product of vectors but not vice versa. Thus, if we regard 
the product of vectors as fundamental, the product of forms is quite superfluous. 

Save for integration theory, which is handled in the next chapter, we have shown 
that the basic relations and equations in the calculus of differential forms can be 
formulated with equal or greater efficiency in terms of Geometric Calculus. At the 
same time we have noted that, by itself, the calculus of forms has several serious 
drawbacks and limitations which are avoided by Geometric Calculus. These points 
should have decisive bearing on the selection of a mathematical system, so let 
us review and discuss them further. 
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The virtues of Cartan's exterior differential are undoubtedly responsible for the 
popularity of his calculus. But, according to (4.7) and (4.l7), the exterior differen
tial da and its 'adjoint' Ij a are respectively equivalent to the cocurl V 1\ A and the 
codivergence V . A. This brings to light two major deficiencies of the exterior 
differential. First, since V 1\ A = pea 1\ A) is the projection of the curl a I\A into 
the tangent algebra, it follows that the exterior differential projects away all the 
information about extrinsic geometry and its relation to intrinsic geometry dis
covered in Chapters 4 and 5. The lost information can be restored only at the cost 
of unnecessary complications in the theory. 

The second major deficiency of the exterior differential and its calculus is the 
fact that it does not discover any relation corresponding to 

VA=V·A+VI\A, (4.34) 

which makes it possible to regard V . A and V 1\ A as two distinct parts of a single 
more fundamental quantity, the coderivative VA_ The importance of (4.34) is 
apparent in many places in this book and in applications to physics. For example, 
ref. [HI] shows that (4.34) makes it possible to reduce Maxwell's equations for 
the electromagnetic field to a single equation, whereas tensor analysis and the 
calculus of forms must deal with two separate equations corresponding to the 
two parts of (4.34). The combination of V . A and V 1\ A in (4.34) is more than 
a mere abbreviation or triviality, because, as shown in Sectiun 74, when VA = 
aA, it can be directly solved for A, whereas V . A and V 1\ A cannot, because 
each is only part of the derivative of A. 

The calculus of forms was developed expressly to unify and simplify integration 
theory. But it fails to provide a straightforward account of one of the most re
markable and useful results in mathematics, namely, Cauchy's integral formula. 
The reason is that the calculus of forms works with Ija and da separately, and, 
for two-dimensional manifolds, this is equivalent to working separately with the 
real and imaginary parts of complex functions. On the other hand, by exploiting 
(4.34), Geometric Calculus provides an efficient formulation not only of the 
celebrated 'Generalized Stokes' Theorem', but also of Cauchy's integral formula 
and its generalization to manifolds of any dimension. The details are given in 
Chapter 7. 

Besides the major deficiencies just mentioned, the calculus of forms suffers a 
number of lesser defects. Compare, for example, the exterior derivative diP of a 
scalar-valued function iP = ¢>(x) with the vector derivative ViP = V 1\ iP. According to 
(4.7), they are related by the equation 

d¢ = dx· V¢ = dx· (ViP). (4.35) 

The utility of the vector ViP (the gradient) as indicating the direction of change of 
iP is evident to everyone. Yet the calculus of forms can represent the gradient only 
indirectly in terms of its projection .diP onto an arbitrary direction indicated by the 
vector dx in (4.35). The notation d¢ hides the dependence of the exterior derivative 
on the vector dx, which for many purposes is superfluous. More generally, Eqn. 
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(4.7) shows that the exterior derivative implicitly introduces the superfluous 
variable dX, in its representation of the curl of a vector or a multivector. Of course, 
the dX, is needed under integrals, but even there it must be inserted in a more 
general way than dictated by (4.7) if it is to yield results like Cauchy's integral 
(see Chapter 7). However, as ref. [HI] shows, the dX, is quite superfluous in the 
basic differential equations of physics. Moreover, for three-dimensional manifolds, 
Geometric Calculus yields the well-established vector calculus due to Gibbs without 
alternation of definitions, notations or point of view (see, for example, p. 72 of 
Ref. [HI]). In contrast, the calculus of forms does not mesh well with vector 
analysis; it calls for a translation of all the standard vector .equations of physics, 
a translation which is as unnecessary as it is troublesome. 

Cartan's calculus is often said to provide a coordinate-free formulation of 
differential geometry. But actually, it is only nominally coordinate-free. By this 
we mean that, though some equations and manipulations do not explicitly refer 
to coordinates, nevertheless, for some basic defmitions, proofs and manipulations, 
reference to coordinates cannot be avoided. There are two distinct reasons for 
the implicit coordinate dependence of Cart an's calculus. First, manifolds are 
usually defmed as sets to which coordinates can be assigned. Having been included 
in the very defmition of a manifold, coordinates must then necessarily be employed 
in the development of calculus. However, we have seen in Chapter 4 that manifolds 
can be defined without reference to coordinates. Hence Eqn. (4.7) can be regarded 
as a coordinate-free definition of the exterior derivative. But, of course, we used 
Geometric Calculus to achieve this. 

A second reason that Cartan's calculus must resort to coordinates is the fact that 
it works only with scalar quantities defined on the tangent algebra of a manifold. 
It was only by going outside the tangent algebra that we were able to achieve a 
completely coordinate-free formulation of differential geometry in Chapters 4 
and S. Coordinates are as essential to our treatment of intrinsic geometry in Section 
6-2 as they are to the formulation and the application of Cartan's structural equa
tions described in this section. 

To sum up, we have shown that Geometric Calculus retains the advantages 
of the conventional calculus of forms while removing its deficiencies and exhibiting 
a greater range and flexibility. 



Chapter 7 

Directed Integration Theory 

This chapter describes some basic contributions of Geometric Calculus to the 
theory of integration. The directed integral enables us to formulate and prove a 
few comprehensive theorems from which the main results of both feal and complex 
variable theory are easily obtained. 

The main feature of this chapter is the new form given to the fundamental 
theorem of calculus in Section 7-3. This leads to the remarkable generalization of 
Cauchy's integral formula in Section 74. The power of this result in general the
oretical arguments is demonstrated by the new constructive proofs of the inverse 
and implicit function theorems in Section 7-6. 

Modern integration theory on manifolds is usually couched in the language of 
differential forms. To facilitate contact with the literature, this chapter conforms 
as closely to that language as is consistent with the integrity of the present system. 
Aside from some important notational deviations d!scussed in Section 4-1, the 
geometric integration theory in this chapter differs from conventional approaches 
chiefly in its explicit use of directed measure, the vector derivative and multivector
valued forms. 

7-1. Directed Integrals 

This section introduces the notion of a directed integral. To facilitate comparison 
with more conventional theories and explain the main ideas with a minimum of 
argument, the directed integral is defined by relating it to the standard Riemann 
integral. Although the Riemann integ'ral is commonly regarded as less satisfactory 
than the Lebesgue integral, it has the advantage of a straightforward geometric 
interpretation. A completely satisfactory theory of integration should combine the 
geometric features of the Riemann theory with the generality of the Lebesgue 
theory. A unified theory of Riemann and Lebesgue integration has been proposed 
by McShane [Me]. We submit that integration theory could be improved sub
stantially by exploiting the unique features of Geometric Algebra from the outset. 

For a more detailed treatment of integration theory, the reader is referred to the 
book by Whitney rWh}, which is especially related to the spirit of Geometric 
Calculus. 

249 
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We will be concerned with integrals over an m-dimensional manifold .At with 
boundary a.At. Our discussion presumes the definition of a smooth oriented vector 
manifold given in Section 4-1. 

Let f = f{x) be a multivector-va1ued function defined on the manifold At. The 
directed integral off over .At is dermed by 

f dXf= ( dX{x)f{x) = lim fAX{X;)f{Xj). 
},If Ju n-+oo j=l 

(Ll) 

The limit on the right side of (1.1) is to be understood in the usual sense of Riemann 
integration theory. It is well dermed, because multivectors have a unique norm 
dermed by (1-1.49) or, more generally, by (l-S.1).* The 'magnitudes' IdXl and 
lAX! are each to be understood as the usual Riemann measure of 'volume' for.At. 
The direction of a volume element at x is characterized by the unit pseudoscalar 
I{x); thus," 

AX{Xj) = I AX{xj)l/{xj), 

dX{x) = IdX{x)l/(x). 

(1.2a) 

(1.2b) 

Obviously, the directed integral off is equivalent to the Riemann integral of If; 

lim £ IAX(x;)II(xj)f(xj)= ( IdXlIf= f dXf· 
n-+ oo ;=1 Jf( ,If 

(1.3) 

Note that the directed integral is an oriented integral. The orientation is determined 
by the unit pseudoscalar field I = I(x), which, as we have pointed out before, 
assigns an orientation to ~#. 

The directed integral (1.1) is a nontrivial generalization of the Riemann integral, 
in spite of the fact that the two are related by (1 .3). The reason is that a complete 
description of the local direction and orientation of the manifold has been built 
in to the directed integral, whereas it must be supplied ad hoc to the usual Riemann 
integral. The directed integral would best be founded on a generalization of measure 
theory characterizing 'directed measure' instead of 'scalar measure'. A 'directed 
measure' associates a direction and a dimension as well as a magnitude to a set. 
Accordingly, the directed integral (I.1) may be said to use 'cirected Riemann 
measure' instead of the usual 'scalar Riemann measure'. Of course, it is the geo
metric product that enables us to represent direction algebraically. Geometric 
Algebra is essential to the theory of directed integration. 

* Later on we will suppose that integrals are defined in the slightly more general sense of 
distribution theory. but the reader is referred to the literature [GS] for details, 
** Sometimes it is of interest to integrate over null manifolds, such as the light cone in space
time. For such manifolds all pseudoscalars have vanishing square, so a measure cannot be 
specified by using (1.2) to relate it to Riemann measure. The mtegral (1.1) may be well defined 
nevertheless, but we need not go into such details here, 
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The 'volume' or 'constant' IAiI of the manifold Ai is given by 

\.AI: ! dXI-1 = f IdXl. 
If .# 

(1.4) 

The integral 

(1.5) 

may be called the 'directed volume' or the 'directed content' of .If. It defines 
an 'average direction' for .Jf. For a flat manifold 1 = I(x) is constant, hence 

-.,It = 11 ,AI. 

On the other hand, for any closed manifold, the definition (1.1) implies that 

;H = 1. dX=O, ill 

(1.6) 

(1.7) 

where 1 indicates that the integral is over a closed manifold. Intuitively, it is clear 
that (1.7) obtains because on a closed manifold 'directed volume elements' occur 
in pairs with opposite orientations which cancel when added. 

Since the geometric product is noncommutative, the position of the volume 
element 'under the integral' is important. Accordingly, we generalize (1.1) to 

fll g dXf: lim f g(x;) AX(xi)f(Xi), 
n~oo ;=1 

(1.8) 

where, of course, f and g are multivector-valued functions defined on ,It. Actually, 
we can reduce (1.8) to (1.1) by writing g dXf = ciYg'f, where, for nonnull manifolds, 
g' = 1-1 gl. But this device is usually awkward as well as unnecessary. 

The most general form for a directed integral is 

f L(dX) =! L(x, dX(x»: lim f L(x;, AX(xz)), 
11 II 11~~ ;=1 

(J .9) 

where L = L(x, dX(x)) is a multiform of degree m on .#, that is, L is a multivector 
valued linear function of the pseudoscalar field dX = dX(x). From our study 
of multiforms in Section 3-9, we know that there exist functions gk(x) and fk(X) 
such that L can be expressed in the form 

L(dX) = L gk dXfk. 
k 

(1.10) 

Hence, the integral (1.9) can \;e reduced to a sum of integrals of type (l.8). How· 
ever, such a reduction is not '1lways necessary or desirable. 
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Derming [by [= l;k [kKk, it follows from (1.10) that the scalar part of L can be 
written in the form 

(L) = (dXf) = dX· (f)m' (1.11) 

As observed in Section 4-1, this is the general expression for a differential form. 
Thus, the scalar parts of the integrals (1.9) and (1.1) are equivalent expressions 
for the integral of a differential form, that is 

(/.; ) = L(L} = L(dXf). (1.12) 

From this view, conventional integration theory of differential forms is seen as a 
special case of 'directed integration theory'. 

Of course, one could adopt the alternative view that a directed integral is no 
more general than the integral of a differential form, because a multivector-valued 
integral can be reduced to a set of scalar-valued integrals. 

It may be noticed that many notions of homology theory are more readily 
expressed by directed integrals than by the scalar-valued integrals of cohomology 
theory. For example, Eqn. (1.7) could be regarded as a condition that a connected 
manifold be closed. It remains to be seen to what degree homology theory can be 
regarded as a calculus of directed integrals. 

This chapter will show that the directed integral extends the well-known virtues 
of complex integrals to the whole of integration theory. The directed integral 
literally brings new dimensions to the theory of integration. 

7-2. Derivatives from Integrals 

Considering the performance of the vector derivative in preceding chapters, there 
can be no doubt that it should be regarded as the fundamental differential operator 
on vector manifolds. Yet in Chapter 4 we obtained the vector derivative from the 
directional derivative. The directed integral provides us with a more fundamental 
approach. It enables us to derme the vector derivative directly in terms of a limit 
process. Then, as we have seen, the directional derivative obtains by elementary 
algebra. 

The derivative a[ = ax[(x) of a function [ = [(x) on AI can be defined by any 
of the equivalent limits 

3[(x)= lim ~ i dS[= lim [-I(X) j,dS[, 
91-0 ~ r 1;4'1-0 1~(x)1 r (2.1) 

where: (1) The set ~ = ~(x) is a neighborhood of the point x in At, that is, 
~ is an open smooth m-dimensional sub manifold of At with x as an interior 
point. In the limit, the directed content 6l (x) can be replaced by 1.9l(x)II(x), 
where lex) is the unit pseudoscalar at x. 
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(2) The directed integral of f is taken over the boundary of fIA. The (m - 1)
vector dS, representing a directed volume element of afIA , is oriented so that 

dS{x')n{x') = lex') I dS(x') I (2.2a) 

or, equivalently, 

dS = In-lldSl = (_I)m -In-llldSl, (2.2b) 

where n = n(x') is the outward unit normal vector at a point x' of a A.* According 
to (2.2b) the direction of dS is In-I, which is obtained by 'dividing out' the normal 
direction from the unit pseudoscalar. 

(3) The limit is taken by shrinking E3l and hence its volume I E3l1 to zero at the 
point x. We allow the limit to be proportional to a delta function or its derivatives, 
so the limit is well defined in the sense of distribution theory, ref. [GS]. A precise 
discussion of the limiting process is too involved to be given here. It requires, 
however, only standard arguments of analysis. 

The definition of the derivative a = ax in terms of an integral by (2.1) is equi
valent to the definition of a in Section 4-1, but the proof will be left to the reader. 
The definition of the derivative as the limit of an integral is not only independent 
of coordinates, but, as we shall see, it clarifies and simplifies the relation of integra
tion to differentiation. These are compelling reasons to introduce integrals before 
deri ltives in a systematic development of calculus. 

Without taking the trouble to re-establish all the properties to the derivative 
found in preceding chapters, let us consider some examples to show how the basic 
definition (2.1) can be applied. 

Consider the evaluation of the limit (2.1) in the simplest case, when .~ is a one
dimensional manifold. In this case, E3l is an oriented curve passing through the 
point x with unit tangent vector l(x) and arc length s == I.~ I. The boundary of the 
curve consists of the end pOints, say x 1 at the beginning and x 2 at the end of the 
curve. Since the boundary of E3l consists of only two points, the integral over the 
boundary is evaluated by trivial appeal to the definition (1.1). The only problem 
is to ascertain the volume element t:.S on the boundary. To do this, note that at 
the boundary points the outward normals are given by n(x2) = lex 2) and n(x d = 
-I (x I), so, from (2.2), we get * 

M(x2)=J2=1, t:.S(x2)=-12=-1. (2.3) 

(Note that to get (2.3) we have assumed the Euclidean norm j2 I. We could as 
well have assumed j2 = -I. Indeed, the latter convention obtains for space· like 
curves imbedded in a space·time manifold. But the overall sign is not a matter of 
concern here.) 

* It should be noted that n- I in (2.2b) depends on the signature of. tf. For Euclidean signa
ture n 2 = 1, so n- I = n. For other signatures, one may have n 2 = -·1, whencen- I = -no This 
is important in applications to space-time physics. 
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Thus, 

1 dSf = M(x 2 )f(x 2 ) + M(x I )f(x I ) = f(x 2 ) - f(x I ). (2.4) 

Hence, (2.1) reduces to 
1 . 

af{x) = l(x) lim -(({xz) - f{Xd). 
s-O s 

(2.5) 

The limit on the right side of (2.5) will be recognized as the average of left and right 
derivatives with respect to arc length. 

As another important example, let us apply (2.1) to evaluate the derivative of 
the unit pseudoscalar 1= I(x). Recall that al was previously expressed in terms of 
the spur N by Eqn. (44. 7), which says 

a/= -NI= {_I)m+1 JN. (2.6) 

Comparing this with what we obtain by using (2.1), we see that 

N= lim (_I)m+l -- = lim f dSl- 1 f'dS,n-1 
U'I-O 1911 I.~I-O 1911 

(2.7) 

This result gives us new insight into the significance of the spur N = N(x), for the 
right side of (2.7) can be interpreted as specifying the average direction of the 
normal on the boundary of an infinitestimal neighborhood of the point x. A simple 
figure showing the normals on the boundary of a neighborhood to a point in a 
one- or two-dimensional manifold makes it easy to see why N is always orthogonal 
to the manifold (Le. N· I = 0). Indeed, for the one·dimensional case, we can use 
(2.5) to evaluate (2.7), and we find that 

dl 
N= ds' (2.8) 

Thus, the spur of a curve is just the 'acceleration' of the curve (with respect to arc 
length). The concept of spur generalizes the concept of acceleration for curves 
to manifolds of arbitrary dimension. This links the geometrical theory of curves 
to the theory of higher dimensional manifolds. According to (6-3.15) and (6·3.17), 
the magnitude of its acceleration is the first curvature of a curve. Just as the inflec· 
tion points of a curve are determined by the vanishing of its acceleration, so a 
general class of inflection points on any manifold are determined by a vanishing 
spur. 

To allow for differentiation to the left as well as to the right, we generalize 
(2.1) to the definition 

g af == lim g' = lim ( - I)m - 1 g' ---- . 
. f I-I dS'f' f dS'l-1 f' 

1#1-0 Ull 1Sf'1-0 I~I 
(2.9) 

In (2.9) the primes indicate quantities evaluated at a point x' on the boundary of 
~: thus. [' = [(x'). It is essential to note that I -I = I-I (x) in (2.9) is evaluated 
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at the limit point x and not on the boundary, even though it appears 'under the 
integral'. We cannot 'pull' [-lout to the left in (2.9) like we did in (2.1), because 
[-I may not commute with g'. Also, we cannot use (2.2b) to replace [-I dS' = 
[-I (x) dS(x') in (2.9) by /-1 (x') dS(x') = n- I (x') I dS(x') I , although, as indicated 
by (2.9),1-1 dS' is equivalent in the limit to (-lyn -1 dS'/-I. It is most important 
to distinguish the directed measure dS from the measure /-1 dS = n-lldSl. The 
two measures are equivalent only when [ is independent of x, that is, when the 
manifold is flat. Thus, although, dS = 0 for any bounding manifold, Eqn. (2.7) 
shows that, in general, 

(2.10) 

The derivative operator a = ax defined by (2.9) is fully equivalent to the deriva
tive as it was defmed in Section 4-1. Instead of presenting a proof of this fact, 
we pOint out that the basic properties of the derivative can be proved directly 
from (2.9). Consider for instance, the 'Leibnitz Rule' for differentiating a product 
in the form 

(2.11) 

This is easily proved from the identity 

1. ' [-I dS'! = {J ' [-I dS'} + {J [-I dS'! } + rg I~I rg I~I f g 'f I~I 

+ (g' -g)-- if-!)-g- dS' f. f [-I dS' [-I {I } 
I~I I~I 

(2.12) 

The last term in (2.12) is identically zero while the next to last term vanishes in 
the limit. 

Our definition of the derivative deserves a final generalization. Let T = T(n) = 
T(x. n(x» be a tensor function on .-It. In accord with our definition in Section 
4-1, the divergence of T is given by 

T(a) = lim I ~I-I IT(I-I dS). 
I jfl-+O 

(2.13) 

Obviously this includes (2.1) and (2.6) as special cases. 
Our definition of exterior differential in Section 4-1 can be founded on (2.13). 

If L is a multiform of degree k, and A is a multivector field of grade k + I, then 
L(A· Il) is a tensor function of a vector n. According, the exterior differential dL 
is given by 

dL(A) = L(A· a) = L(A . a) - L(A· a). (2.14) 

The last two terms in (2.14) can be evaluated directly from (2.9) and (2.1). 
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7-3. The Fundamental Theorem of Calculus 

The Fundamental Theorem: Let A be an m-dimensional smooth oriented vector 
manifold with a piecewise smooth boundary aAf. Let L = L(A) be a differentiable 
multiform of degree (m - 1) on A and aA. Then 

f L(dX a) = f L(dS), J.4( Ja.1I (3.1) 

where dX and dS are directed volume elements on A and aA. 
The derivative a in (3.1) is, of course, the derivative with respect to a pOint on 

A, as defined in Section 7-2. The term 'differentiable' means that the derivative of 
L exists in the sense of distribution theory. Since dX is a pseudoscalar, we have, 
in accord with (2-1.4), 

dX 1\ a = 0, 

dXa=dX· a=(-l)m-1adX. 

The property (3.2) entails that dX a, like dS, is pseudovector-valued. 

(3.2a) 

(3.2b) 

The great virtue of the formulation (3.1) of the fundamental theorem is that 
it holds for manifolds of any dimension. As a consequence, the famous special 
cases of the fundamental theorem, such as the theorems of Gauss and Stokes, can 
all be written in the same form and established by a single proof. The fundamental 
theorem formulated for arbitrary manifolds is frequently referred to as the 'gen
eralized Stokes' Theorem', or simply Stokes' Theorem. 

If we adopt the notation (1.11) for exterior differential, we can write (3.1) 
in the abbreviated form 

f dL = f L 
LII la.1I (3.3) 

Many modern mathematics texts formulate Stokes' theorem with the notation 
(3.3), but they limit their considerations to the case where L is scalar-valued. If 
the differential argument were not suppressed in (3.3) we would have the peculiar 
expression dL = dL(dX). Of course, the symbol 'd' is used here in two quite dif
ferent senses, which must not be confused. Following long standing tradition, the 
symbol 'd' in 'dX' serves to indicate an increment of directed measure, and it is 
not well-defined except in connexion with integration. On the other hand, the 'd' 
indicating the exterior differential dL is well defined whether or not it appears 
'under' an integr.al. 

The employment of directed integrals is essential to the formulation of the 
fundamental theorem, although this fact can be disguised by various devices. For 
example, define a tensor function T = T(n) by 

T(n) = L(In), (3.4) 
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where I is the unit pseuoscalar and L is the extensor function of (3.1). Then 

T(3) = i(J 3) + L{i 3) = i{1 3) - 1{N), (3.5) 

where we have used 

i3 = -IN = (_l)m -1Nf, (3.6) 

obtained from Eqn. (44.7), to introduce the spur N of A. Also 

dX= IdXI/, (3.7a) 

and, assuming Euclidean signature, from (2.2b) we have 

dS =lnldSl, (3.7b) 

where n is the outward normal. Consequently, the fundamental theorem (3.1) 
can be put in the form 

i 1dX1[t(3)+1{N)] = [ IdSIT(n). 
vi{ la~ 

(3.8) 

The spur N appears in (3.8) as a consequence of the fact that dX is not differentiated 
in (3.1). 

The fundamental theorem will frequently be applied in the special cases 

jdX3f = fdSf (3.9) 

and 

jg dX 3f+ (_l)m -1 j g 3 dXf= fg dSf, (3.1O) 

where we have suppressed the reference to 41, and, of course, f and g are differen· 
tiable functions on A. To get (3.1 0), we u.sed (2.7) and (3.2b). 

Takingg = I-I in (LO) and using (3.6) and (3.7), we get 

jldXl[3f+Nfl = f'dS'n[. (3.11) 

This is just what we would obtain from (3.8) with 1{n) = nf. Note how (3.11) 
simplifies for flat manifolds, because N = 0 when I is constant. 

Since dS had grade m - 1. only the (m - I)-vector part of f contributes to the 
scalar part of 3.9). Thus, writing A = (f}m -1, we have 

(dSf) = dS· A, 

(dX af) = (dX· 3)· A = dX· (3I\A). 
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Hence the scalar part of (3 .9) can be written in the form 

!dX. (al\A)= IdS. A. 

Chapter 7 

(3.12) 

Following (6-4.7), we can identify cia = dX· (a 1\ A) as the exterior derivative of 
the differential form Q = dS· A. Thus (3.12) is fully equivalent to the conventional 
formulation of Stokes' theorem in terms of differential forms. 

Alternatively, if the vector part of f is denoted by a = <t>1, then the scalar part 
of (3.1 1) can be written 

jldXl[a. a+N· a] '" f'dS,n. a. (3.13) 

This could fairly be called the generalized Gauss theorem. If a is a vector field 
then N· a = 0 in (3.13), because N· f = 0 according to (4-4.8). The same result 
could be obtained by substituting A = fa = f· a into (3.12). 

We have adopted the name 'fundamental theorem', because it has long been 
used in the conventional differential and integral calculus of scalars for what 
amounts to the one-dimensional case of (3.1). Thus, for an oriented curve e with 
end points XI and X2, by virtue of (2.4) and (3.2), the fundamental theorem 
(3.1) can be put in the familiar form 

1 dX· af=f(X2)-f(xd· (3.14) 

Our stipulation in the fundamental theorem that the boundary must be 'piecewise 
continuous' is already 'degenerate' in this case. 

Having examined alternative formulations of the fundamental theorem, let 
us now discuss its proof. Suppose that .,II{ is partitioned into n regions and let 
f1X; denote the directed content of the ith region .A;. A proof of the funda
mental theorem in the form (3.9) is achieved by establishing the following sequence 
of equations: 

{ dX af= lim f f1X; {~. { dSf} J II n _.. i = 1 I 1 a.Hi 

= lim f { dSf= { dSf. 
n_ oo ;~l la./l; 13 It (3.15) 

Obviously, the proof is greatly Simplified by using the expression (2.1) for the 
derivative as the limi~ of an integral instead of the original definition of derivative 
adopted in Chapter 4. Equally important is the fact that details of the proof do not 
depend on the dimension of .11. The limits in (3.15) can be established by standard 
techniques, so we need not consider them further. However, it is worth mentioning 
that most proofs of Stokes' theorem to be found even in advanced mathematics 
texts fail to establish the theorem in its utmost generality. For a careful discussion 
of this issue see [He] and [Ca]. 
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The fundamental theorem gives us a number of useful results immediately. For 
example, using f = 1 in (3.9) we recover (1.7), and usingf= 1 in (3.11), we get the 
generalization of (2.7): 

f'dS,n = fidXlN. (3.16) 
Again, since we know from Chapter 5 that ax = a· x = m, we get from (2.1) a 
formula for the directed content of .-It: 

..K== /dX=~ fdSx=~ f dSAx. 
The (m - 2}·vector part of (3.17) is simply 

fdS. x=O. 

Similarly, from (3.1l) we get a general formula for the content of .K: 

I.Itl == f,dXI =~ f,dS'nx - ~ !ldXWX 
= ~ f'dS,n. x - ~!ldXIN. x. 

The bivector part of (3.19) is just 

!ldXWAx = f'dS,n Ax. 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

It is easy to prove that the last few formulas are independent of a choice of origin 
in spite of the explicit appearance of x. For flat manifolds N = 0, so (3.19) or 
(3.17) can be used to compute volume from a 'surface integral'. For example, 
for the m-ball £!1m of radius R, (3.19) gives 

(3.21) 

7-4. Antiderivatives, Analytic Functions and Complex Variables 

The fundamental problem of calculus on manifolds is to invert the 'differential 
equation' 

af=s 

to get the solution 

f= a-Is. 

(4.1) 

(4.2) 

In this section we show how to use the fundamental theorem to get an explicit 
expression for the antiderivative operator a-I. Actually, it is something of a 
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misnomer to speak of (4.2) as a 'solution' to (4.1) unless certain 'boundary condi
tions' on [are specified; otherwise, (4.2) will be an integral equation equivalent to 
the differential equation (4.1). 

It should be pointed out that a method for solving (4.1) enables us to solve the 
more general differential equation 

h(a)/ = s, (4.3) 

when h can be expressed as the differential of a transformation, for then, because 
of (4-5.13), Eqn. (4.3) can be put in the form (4.1) by a change of variable. It may 
not be superfluous to point out as well that any system of partial differential 
equations can be expressed as an equation of the form (4.3). Thus, Geometric 
Calculus reduces the 'theory of partial differential equations' to the theory of 
operator functions h(a) of a single fundamental differential operator a. From our 
point of view, the name 'theory of partial differential equations' is unfortunate, 
because it emphasizes the representation of the vector derivative a by the partial 
derivatives, which are merely components of a along coordinate directions. Of 
course, it takes Geometric Calculus to define a and deal with it directly. 

We shall see that existence of an antiderivative for (4.1) requires only that 
s = sex) be integrable. Thus s can be singular in the sense of distribution theory. 
This result is important in itself, for it says that any integrable function is the 
derivative of some other function. Thus, to an integrable function s = sex) there 
corresponds a function[= [(x) called a potential of s, such that s = at. The potential 
[ is, of course, not uniquely determined without further conditions. However, 
it will be evident from the discussion below that equivalent potentials differ only 
by an analytic function. A well-known special case of the existence theorem for 
potentials is called the Helmholtz Theorem in vector analysis. 

Now let us see how to determine the antiderivative. Suppose there exists a 
multivector-valued function g = g(x, x') of pOints x and x' on the manifolds < 11 and 
a JfI which satisfies the equation 

3g = -g a' = o(x - x'), (4.4) 

where a and ax and a' = ax' are derivatives with respect to points x and x' respec
tively, while o(x - x') is the o-function. Recall that the o-function is a 'distribution' 
with the properties: 

o(x - x') = 0 if x l' x', 

/ .ldX(X')1 o(x - x')F(x') = F(x), 
!J 

(4.5) 

(4.6) 

if F = F(x) is a continuous function on ~ and ~ is a subregion of j( containing 
the point x_ 
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Suppose that At is a simple manifold. By this we mean that ,,H is not self
intersecting, Then using (4.4) and (4.6) in the fundamental theorem (3,10), we 
get 

(_l)m I(x)[(x) = - fit g(x, x') dX(x'} a'[(x') + 

+ hit g(x, x') dS(x')[(x'), (4.7) 

where x is an interior point of At, Equation (4.7) is the desired general expression 
for the antiderivative. It shows explicitly that values of [at interior points oLI{ 
are determined by values of [ on a.//{ as well as by values of a[ inside ,11. Of 
course, boundary values of [ are not needed on segments of aA where g vanishes. 

In common parlance, the function g is said to be a Green's function for the 
differential Eqn. (4.1). But g holds a special place in the general theory of Green's 
functions because of its relation to the fundamental differential operator a. Equa
tion (4.7) reduces the problem of solving (4.1) to that of solving the more special 
Eqn. (4.4). The solution of (4.4) depends on the manifold. I{ and the desired 
boundary conditions. We shall exhibit particular solutions for flat manifolds later. 
Such solutions make it possible to prove existence of anti derivatives for integrable 
functions on any manifold, because the manifold can be locally mapped 0;1tO a 
flat manifold, and the mapping can be applied to (4.1) and (4.7). However, we shall 
not prove this formally, as our aim is simply to explain the role of Geometric 
Algebra. 

We say that a multivector·valued function [ = [(x) is analytic* on a manifold 
.~II if 

alex) = 0 (4.8) 

at each point of . if. The term 'analytic' is appropriate here, because [ has the 
fundamental properties of an analytic function in complex variable theory. * 
Indeed, as we have explained in Section 4-7, Eqn. (4.8) generalizes the Cauchy
Riemann equations. By substituting (4.8) into the fundamental theorem (3.9), 
we get 

f dS[= O. (4.9) 

This generalizes Cauchy's theorem. 
By substituting (4.8) into (4.7) we get 

[(x) = \(~r f g(x, x') dS(x')f(x'). (4.10) 

* It might be better, instead, to adopt the term monogenic recommended by Richard Delanghe. 
That would avoid confusion with the common meaning of analytic as 'differentiable to all 
orders'. 
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This generalizes Cauchy's integral formula. It reveals the fundamental property of 
an analytic function, namely: If [is analytic on .If, then its value at every point 
of . H is uniquely determined by its values on aA. Equation (4.10) reduces the 
study of analytic functions on a manifold to the study of the function g(x. x'). 

A function [is said to be meromorphic if it is analytic except at poles xk in A, 
that is, if 

3[(x) = -0m L Rk c5(x - Xk), (4.11) 
k 

where 

2fr'T1/2 
0 m == r(m/2) (4.12) 

is the area of the (m - 1 )-dimensional unit sphere in 8m expressed in terms of the 
gamma function. The factor -0m has been introduced into (4.11) for conformity 
with standard conventions in complex variable theory. Accordingly, the multivector 
Rk is called the residue at the pole xk' By substituting (4.11) into (3.9). we ~et the 
residue theorem 

(4.13) 

Now suppose that A is an m-dimensional manifold embedded in an m-dimen
sional Euclidean vector manifold 8m . Then A is flat, and Eqn. (4.4) admits the 
particular solution 

, 1 x - x' ( ) 
g(x. x ) = -;:;:- I '1m ' 4.14 I!.Im x-x 

where 0 m is dermed by (4.12). This is easily verified by using (2-1.36) to dif
ferentiate (4.14) and show that property (4.5) is satisfied, and then using the 
fundamental theorem (3.9) to show that property (4.6) is satisfied for F = 1. Using 
(4.14), we get (4.7) in the more specific form 

) _(-1)'" {{ (x-x') dS ')[(' {(x-x') "f'} ( ) 
[(x - 0 mI Ja.l/lx-x'im (x x)-Jlllx_x'lmdX(x)a (x) . 4.15 

Since A is flat, the pseudoscalar I is constant, so (1.2) and (2.2) can be used to put 
(4.15) in the form 

[(x) = rl- {ldX(x')1 I (x - <~ a'/(x')-
I!.Imlll x-x 

1 /. I (' I ex - x') (' [( I -"" dSx) I 'Im nx ) x). I!.Im a.11 x - x 

From (4.15) and (4.16) we find that an analytic function satisfies 

[(x) = (-1)'" ( ex - ~'~ dS(xl)f(x') 
0 mI J q/1 Ix - x I 

_ -1 / (' (x - x') (' (' - -;;;- IdS x )1 1 '1 m n x)[ x). 
I!.Im all x-x 

(4.16) 

(4.17) 
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With (4.17), one can easily establish many straightforward generalizations of 
theorems in complex variable theory: liouville's theorem, the mean value theorem, 
the maximum modulus principle, power series expansions, etc. The proofs are so 
similar to well-known proofs based on Cauchy's integral formula that they need 
not be discus:;ed here. 

To see that our theory encompasses complex variable theory in a simple and 
natural manner, consider the case m = 2. For this case, Eqn. (4.15) can be written 

f(x) = _1_ ( _1 _, dx'f(x') +.!... ( IdX(x'~1 a'!(x'). (4.18) 
21rI JallX - x 21rJn x-x 

This can be expressed in the conventional language of complex variables. Following 
Section 4-7, introduce the complex variables z = ax, where a is a fIXed unit vector 
in 8 2 • Write F(z) = f(x)a = f(az)a so from (4-7.11a) 

Then, 

and 

elF 
af= Vf= a(aV) (fa)a = 2a dzt a. 

(x - x')-'dx' = (x - X')-I aa dx' = [a(x - x')j1a dz' = ~ 
z-z 

_1_, a'f(x') = 2, elF (z')a. 
x - x z - z dzt 

Thus, Eqn. (4.18) can be put in the form 

F(x) = _1 J dz'F(Z) + 1. ( IdX(z')I elF(z') 
21rI 'fait z - z 7r J f{ z - z' dzt· (4.19a) 

This reduces to the conventional form for Cauchy's integral formula when elF/dzt = 
o and 

1= -i. (4.19b) 

It would have been nice if we could arrange things so that 1= j instead. But, unfor
tunately, we are faced with conflicting conventions. Section 4-7 explained how to 
identify the bivector i as the imaginary unit of Complex Variable Theory. In 
accordance with Eqn. (4-7.6), the orientation of j is fIXed by the convention that 
it is the generator of counterclockwise rotations. On the other hand, the orientation 
of I is determined by (2.2) and the convention that curves in the complex plane 
are oriented counterclockwise. According to (2.2), at a point on a closed curve 
in the plane, the unit tangent v is related to the outward normal n by 

dx 
v= Idxl = In = -nl. (4.19c) 

This establishes (4.l9b), since v is obtained from n.by a counterclockwise rotation. 
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Fonnula (4.19a), or its equivalent (4.18), is a generalization of Cauchy's integral 
formula which applies to any differentiable function defmed on the Euclidean 
plane, and not to analytic function~ only. In spite of its generality and power, 
it is seldom noted or exploited in works on complex variable theory (see [Ber] 
for an exception). Perhaps this is because the last tenn in (4.19a) involves an area 
integral and only line integrals are employed in conventional approaches. More 
probably, it is because the conventional defmition (4-7.15) of the complex derivative 
d/dz applies only to analytic functions. The usual defmition of analytic functions 
by the requirement that d/ dz exist works in two dimensions, because it happens 
to be equivalent to the requirement af = 0 in that case. However, it is not the 
existence of d/dz, but Cauchy's integral formula which best describes the essence 
of analytic functions. As we have seen, Cauchy's integral fonnula generalizes 
quite nicely to higher dimensions, nonanalytic functions and curved manifolds, 
while the definition of analytic functions by requiring that d/dz exist not only 
fails to generalize but may be accu~ed of obscuring the essence of analytic function 
theory. 

Our generalization of Cauchy's integral formula should be compared with the 
conventional one in the 'theory of analytic functions of several complex variables.' 
The conventional result can be expressed in terms of Geometr~ Calculus in the 
following way: Consider the Euclidean space t! 2m as a 'Cartesian product' of m 
planes, and let ik be the unit pseudoscalar of the kth plane. Since ik is a bivecter, 
we have 

(4.20a) 

Moreover, 

(4.20b) 

and the pseudoscalar I of t!2m can be factored into the product 

(4.20c) 

A point x in t! 2m can be expressed as the sum 

(4.21a) 

where 

(4.21 b) 

is the component in the kth plane. A function f(x) on t! 2m can be regarded as 
a function f(x 10 x 2, .•• , x m) of the m variables defin~d by (4.21). If f is analytic 
in a region Aft of the kth plane, then 

(4.22) 
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where ak == aXk is the derivative with respect to a point xk in .Ak. Let the manifold 

.A = .AI ® • .112 ® .•. ®..IIm (4.23) 

be the Cartesian product of the regions ..Ilk. Then, for x in ..II we have, by m 
applications of (4.18), 

I Ia I , h 1 dx' X f(x) = --- ---, dx l ---, 2· .. 
(-21r~ avltt XI - XI avlt2 X2 - X2 

X ( 1 , dxmf(x'). 
Javltm xm - xm 

(4.24) 

This is eqUivalent to Cauchy's integral formula for an analytic function of m 
complex variables. The order of integrations in (4.24) is immaterial. 

On thl: other hand, we note that (4.22) implies that 

axf(x} = atf(x) + 32 (fx) + ... + amf(x) = O. (4.25) 

Therefore, (4.17) applies and assumes the form 

(m - I)! { (x - x') " 
f(x) = 2~1 Javltlx-x'12m dS(x)f(x) 

= (m - I)! ( 1dS'1(x' - x)n't 
2~ J alf Ix - x'12m . 

(4.26) 

Evidently (4.26) is a more general formula than (4.24) and reduces to (4.24) when 
the special conditions (4.22) and (4.23) are satisfied. 

An 'equation corresponding to af = s is never written down in conventional 
complex variable theory. Nevertheless, our discussion shows that complex variable 
theory can be regarded as a study of that equation on the Euclidean plane for the 
special case where s vanishes except at isolated points (poles) and lines (cuts). 
The equation af = s has also been studied, though indirectly, on higher dimensional 
manifolds in the branch of mathematics known as Potential Theory. To see the 
relation to Potential Theory, substitute f = alP into af = s to get 

a2 1P=s. (4.27) 

For Euclidean manifolds an integral form for (4.27) can be obtained from (4.16) 
by expressing the Green's function (4.14) in terms of a potential. Writing 

g = ac = -G a' , (4.28) 

it is readily verified that (4.14) obtains if 

, Ix-x'12-m 
C(x. x ) = ( when m > 2. 

2 - m)0m 
(4.29a) 

1 I ' = -log x - x I 
21T whenm = 2. (4.29b) 
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So, by inspection of (4.16) we can immediately write down 

I/>{x) = [ldX(x')IG(x, x') a'llP(x')-Lit 

where 

- [ I dS(x')1 G(x, x')n(x') a' IP(x') + q,o (x), 
)aA 

3q,o(x)=O. 

Chapter 7 

(4.30) 

(4.31) 

For q,o we are free to choose any function analytic on the manifold vii. With the 
choice 

~(x") = [ IdS(x')1 aG(x, x')n(x')l/>{x'), 
) aj( 

Eqn. (4.30) assumes the form 

q, = [ldXlG a1q, + [ IdSI[(n· aG)q, - Gn· 3q,] . Lit )aAr 

(4.32) 

(4.33) 

This is the main result of Potential Theory. Of course, it obtains for other choices 
of G besides (4.29). Also, the potential q, need not be a scalar but may have multi
vector values of any grade. In this respect our result (4.33) is somewhat more 
general than the one in Potential Theory. 

The Laplacian a1 has been the fundamental differential operator in Potential 
Theory for the simple reason that its 'square root' a was not available for a long 
time. Now that Geometric Calculus has made it possible, the advantage of dealing 
directly with a should be evident enough. 

7-5. Changing Integration Variables 

The rules for 'changing the variable' in a directed integral follow almost trivially 
from the transformation theory developed in Section 4-S. But they are so important 
that we spell them out explicitly. 

A nonsingular transformation f of vii to vlt' induces a transformation f of each 
directed volume element dX on vii to a volume element -

dX' = ±[(dX) (S.l) 

on vii'. The appropriate sign in (S.I) is determined by a choice of orientations 
for vii and J{'. We can establish (S.l) by writing 

dX= IdXII, dX' = Idx' II' 

and using Eqn. (4-S.3) for the transformation of the unit pseudoscalar: 

[(!)=J/I'. 

(S.2) 

(S.3) 
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If JI is positive, the transformation is said to be orientation-preserving. Alterna
tively, if JI is assumed positive, Eqn. (5.3) determines I' and so specifies an 
orientation on vH' induced by its relation to vH by f. Using the linearity of f, 
we get (5.1) from (5.2) and (5.3), and we obtain the famous relation -

1dX'1 = IJllldXl (5.4) 

Our argument shows that the Jacobian Jr arises from the transformation of the 
unit pseudo scalar I rather than from the transformation of I dXI as (5.4) suggests. 
This fact is well disguised in classical treatments. 

It should be mentioned that (5.1) applies to transformations of null manifolds. 
Our argument omitted this case by presuming the existence of a unit pseudoscalar 
in writing (5.2), but this presumption is actually not essential. 

Having established the rule (5.1) for the transformation of directed measure, 
we obtain the rule for changing the variable in the general directed integral (1.9) 
by simple substitution. If L' = L'(dX') is a differential multiform on .A', then by 
substitution of (5.1) we get a differential multiform L = L(dX) on .if defined by 

L(x, dX) == L'(f(x),[(dX)) = L'(x', dX'). (5.5) 

Thus, a one-to-one, orientation-preserving mapping f from vH to "It determines 
the change of integration variables 

f L' = f L'f, lu' if{-

or, more explicitly, 

1If' L'(dx') = !f{L'(f(dX)) = /IfL(dX). 

If, instead, the one-to-one mapping f is orientation-reversing, we have 

r L' = _ f L'f. JJt' J 11 -

(5.6a) 

(5 .6b) 

(5.7) 

We take it for granted that the integrals being considered have finite values, so we 
do not mention mathematical assumptions of compactness. 

When the integrals are scalar valued, Eqns. (5.6) and (5.7) describe the change 
of variables for differential forms. Their relation to conventional formulations 
should be clear from the discussion in Section 6-4. 

For the important special case where L'(x', dX') = IdX'IF'(x'), use of (5.4) 
reduces the relation (5.5) to 

IdX'IF'(x') = IdXIJ/(x)F'(f(x)). (5.8a) 

For this case (5.6) yields 

r , IdX'IF'(x') = ! IdX1Jt<x)F(x), J If .ff 
(5 .8b) 
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where F(x) = F'(j(X». Thus, the standard rule for changing variables in a (non
directed) integral is a simple special case of the rule (5.6) for directed integrals. 

The formulas (5.6) and (5.7) for change of integration variables admit a valuable 
generalization for many-to-one mappings. In this case f maps a discrete set of points 
{Xk} in A to each point x' in A'. A neighborhood of each Xk maps one-to-one 
onto a neighborhood of x'. The degree off is defined by 

(5.9) 

where sign 'f(Xk) is the sign of the Jacobian of the local mapping. For connected 
manifolds, the continuity of f implies that deg (f) does not depend on the choice 
of a point in A'. Thus, 'degree' is a general topological property of a mapping. 

A many-to-one mapping of connected manifolds determines the change of 
variables 

L L'j= deg(f) L. L'. (5.10) 

This result is called the degree formultl. It can be proved by decomposing f into 
one-to-one mappings to which (5.6) and (5.7) apply. A proof of the degree formula 
with due attention to mathematical detail is given in [GPJ. See [MiJ for a concise 
bQt thorough development of the degree concept. 

It is worth pointing out that the general change of variables formula (5.10) 
applies without modification to induced transformations of sub manifolds. Specif
ically, ~. (5.10) applies to the case where A is a sub manifold of some manifold 
% and f is a transformation of % to %' which maps A to a submanifold A' 
of%'. 

We should consider how a change of variable affects the fundamental theorem 
of calculus. According to (5.5), a change of variable on the right-hand side of(3.1) 
or (3.3) is expressed by 

L'(dS') = L'([(dS) = L(dS), (5.11) 

while the change on the left-hand side is 

dL' = i'(dX' a') = i'([(dX a» = i(dX a) = dL. (5.12) 

In (5.12) we used 

(5.13) 

which is an application of (3-1.14), and 

(5.14) 

which is an application of (4-5.23). 
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Equation (5.12) may be interpreted by the statement that 'the exterior differen
tial commutes with a change of variable'. This might be clearer if (5.12) is written 
in the alternative form 

[dL')[ = d[L'[l - L' d[ = d[L'[l = dL. (5.15) 

Of course the basis for this result is the integrability condition operating through 
(5.14). 

Equations (5.11) and (5.12) together imply that the form of the fundamental 
theorem is not altered by a change of variables. Interpreted differently, this fact 
is expressed by the valuable formula 

f L(h(dX I))) = J L(h(dS)), (5_16) 
.II ra.d 

which holds if h can be identified as the extended differential of some transforma
tionf, that is, if h = f. 

It should also be pointed out that by applying the fundamental theorem to 
(5_14) one gets 

J f(dS) = O. (5.17) 
faJ(-

Indeed, this result remains true if a vIt is replaced by any closed sub manifold 
of vIt. A manifold is said to be closed if its boundary vanishes. 

7-6. Inverse and Implicit Functions 

This section develops a new method for proving two venerable theorems of mathe
matics, the 'Inverse Function Theorem' and the 'Implicit Function Theorem'. 
The method is constructive, that is, it provides explicit procedures for finding the 
inverse of a function and solving for an implicit function. It supplies, therefore, 
much more than the usual existence proofs; it is itself a powerful computational 
tool. 

We shall be concerned with the following form of The Inverse Function The
orem: A nonsinguiar transformation has a unique inverse. 'Transformations' were 
dermed earlier as functions relating vector manifolds. We restrict our attention to 
transformations, because we have built up the apparatus needed to handle them 
efficiently. We lose little generality by this restriction, because any muItivector 
function can be re-expressed as an equivalent vector function. 

Let f be a nonsingular transformation of a vector manifold <~ to a vector 
manifold ,,H'. According to (4.7), the inverse of f, if it exists, satisfies the equation 

r 1 (x') = (-~t { fa If' g'(x', y') dS'(y')f-l (y')-

-LI' g' (x', y') dX' (y') ay ' f- 1 (y') } . (6.1) 
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By a change of variable, we can express the right side of (6.1) as an integral on 
.P determined by f. To accomplish this, recall that, according to (4-5.13), 3y = 
1< 3y') if y' = f(Y), hence 

3y 'f- I (y') = 1-1 {3y )Y = 1-1 (iz)3a = [3J-I (a)] t, (6.2) 

where we have used the linearity of 1 and (2-1.19) to express the result in terms of 
a variable a in the tangent space at yin vIt. Using (6.2) as well as (5.1) and (5.3) 
in (6.1), we get 

f-I(x') = (-l)mlf(x) {( g'(x',f(Y»f(dS(y))y 
[(lex»~ J a. If -

-tg'(X',f(y»[(dX(Y» [3J-I(a)]t }. (6.3) 

Of course, in (6.3) the point dependence of f and1 is suppressed, as usual. 
Formula (6.3) is an explicit integral representation of p-I in terms of f. The 

conditions that f- I exist are preCisely the conditions that the integral in (6.3) 
be well-defined. The condition that f be non-singular means that f(l) f 0, and this 
entails that f be continuously differentiable, as required in conventional statements 
of the inverse function theorem. 

Chapter 4 explains how to compute the differential f and its adjoint 1. Evaluation 
of (6.2) merely requires inversion of the linear transformation 1, an algebraic 
problem solved by (3-1.21). The right side of( 6.2) will be recognized as a character
istic multivector of the linear transformation 1-1 , a quantity much studied in 
Chapter 3. Thus, all factors on the right side of (6.3) are readily computed from 
f, and the only remaining problem is to find a Green's function g' for J!1'. We 
shall see that the existence of f- I can be established without finding g'. 

If .-'1' C tim, that is, if .p' is an m-dimensional submanifold of Euclidean m
space, then, using (4.14), we have 

" »_ I x' -fey) 
g (x,f(Y - 8 m Ix' _ f(Y)lm ' (6.4) 

where 8 m is given by (4.12). Substituting (6.4) into (6.3), we get an explicit 
formula for the inverse of any nonsingular transformation of a vector manifold 
into a Euclidean manifold with pseudo scalar I' = lfl [(I), 

f-I(x')= (-I)~{ ( x,'-f(Y) f(dS(y»y-
8 ml J a.Jf Ix - f(y)lm-

( x' - fey) --I t 
-, # Ix' - f(y)1 m [(dX(y» [3af (a)] t f . (6.5) 

This result has innumerable applications, for example, to inversion of series and 
evaluation of integrals. The reader may like to apply it to the specific transforma
tions considered in Section 4-6. 



Directed Integration Theory 271 

If f- 1 is an analytic function on t! m, then, as (6.2) shows, the 'volume integral' 
in (6.5) vanishes, and we have 

-1 ' - (_l)m f x' - f(y) 
f (x) - 0 mI' Ix' _ f(Y)l m [(dS(y»y. 

For the two-dimensional special case At C 8 2 and ,.It' C 8 2 , formula (6.6)-
reduces to 

(6.7) 

By the procedure which gave us (4.19a) and with the help of (4-7.2 I), we can put 
(6.7) in the form 

1 ' _ I j zdz ~ r (z ) - 271'i r F(z) _ z' dz . (6.8) 

This is a well-known formula in complex variable theory. Some applications of 
(6.8) are discussed in Section 9.4 of ref. [Hil]. 

Having determined the conditions under which our general inverse function 
formula (6.3) reduces to a known result (6.8) in the literature, let us return to 
complete the proof of the inverse function theorem. Our proof is based on the fact 
that a nonsingular mapping of a manifold into a Euclidean space with the same 
dimension has a unique inverse. This fact is established by the explicit formula 
(6.5). 

Let f be a nonsingular transformation of At on ,A' . Suppose g is a nonsingular 
transformation of At' onto a region Yt in t! m. Then the composite function 
h = gf transforms ,-/{ onto Yt. But h is invertible, hence f-1 = h-1 g-1 exists. It 
may be thatg cannot be defined on all of . It', however, our proof actually requires 
only that such a function can be dermed on some neighborhood of any point x 
in the manifold. It suffices to note that we can take g = P in a neighborhood of 
x, where P is the projection into the tangent space at x. The operator P was dermed 
in Chapter 4 and studied in Chapter 5. This completes our proof of the inverse 
function theorem. 

Now consider the Implicit Function Theorem in the following form: Suppose 
that 

(1) F(x. y) is a vector-valued function dermed for x andy in vector manifolds 
% and .It respectively. 

(2) For each value of x. F(x. y) is a nonsingular function of y. 
(3) For a particular Xo in % and Yo in ,-/{, F(xo. Yo) = O. 

Then there is a unique [unction f from % to .A such that 

F(xo. f(xo» = o. (6.9) 
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We plan to prove the implicit function theorem by using the inverse function 
formula to solve the equation 

z = F(x. y), 

with x held flXed, for 

y = F-l(X. z), 

and then identify 

f(x) = F-l(X, 0). 

(6.1 Oa) 

(6.10b) 

(6.l0c) 

To make our proof as simple and explicit as possible, we assume that the values 
of F(x. y) lie in a Euclidean manifold with the same dimension as vii. In fact 
most statements of the implicit function theorem in the literature make such an 
assumption. The assumption can be dispensed with by the same argument we used 
to generalize our proof of the inverse function theorem. 

Applying the inverse function formula (6.5) to (6.10), we immediately get the 
implicit function formula 

) _ (_l)m {( F(x,y) . [--1. )]t 
f(x - 8 mI' 1« IF(x,y)lmE(dX(Y),x. y ) aaF (a.x.y -

_ f F{x.y) LTdS(y)'x ) } J a.At IF(x. y)l m £\ ,. Y Y . 
(6.11) 

The conditions for validity of the implicit function theorem are just the conditions 
that this formula be well-defined. Thus, the theorem is proved. 

7-7. Winding Numbers 

This section develops the concept of winding number for a manifold and a function, 
relates it to the degree of a mapping and uses it to describe the index of a vector 
field. 

The concept of winding number arises naturally from integrals over self-inter
secting manifolds. If makes its appearance in the generalization of Eqns. (4.1 5) 
and (4.16) which allows. 11 and a vii to be self-intersecting. That generalization 
has the form 

#yf(y) = ( __ l)m { f y - x dS(x)f(x) _ f y - xm dX(x) af(x)} 
8 m I ]a. 11 Iy - xl m } If Iy - x I 

(7.1 a) 

= _1_ f I dXl y - x af __ 1_ f I dSI Y - x nf 
8 m }/f Iy-xl m 8 m Ja;/ 'Iy-xl m ' 

(7.1 b) 
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where the winding number #y = #y(avlf) is equal to the number of times avlf 
encloses (or, 'wraps around') the point y. The winding number, #y can also be 
regarded as the multiplicity of the point y in vIf; indeed, this interpretion is most 
helpful in deriving (7.1). The derivation is not different from the one in Section 
4. The fCy) on the left of (7.1) arises from the integral of 6(x - y)f(x); one has 
only to count the number of times the integral 'passes over' the point y to get #y. 
Evidently, this argument could be used to get from (4.7) a result more general 
that (7.1), but the matter will not be pursued here. 

It is convenient to allow for a negative winding number by interpreting the I 
in (7.1a) as the positive unit pseudoscalar for the Euclidean space 8 m in which 
vIf is imbedded. Then, for the directed volume elements in (7.1a), we have dX = 
±/ldXl and dS = ±In IdSl, with the minus sign obtaining if the orientation of vIf 
is opposite to that of 8 m . A positive orientation for vIf was assumed in writing 
the integrals in (7.1 b). 

Taking f = 1 in (7.1), we get an integral formula for the winding number of any 
closed hypersurface % in 8m . 

_(_1)m J. y-x 
#yc¥) - 0 mI r~· Iy _ xl m dS 

=_1_ ,{ IdSl x - y n. 
0 m Tv Ix-ylm 

(7.2a) 

(7.2b) 

Here the sign of the winding number depends on the orientation of % relative 
to 8 m. If % is not self-intersecting, then #y(.;V) = +1 or -1 if % encloses 
y with positive or negative orientation, and #y<%) = 0 if y is not enclosed by 
%. Formula (7.2) is known in the literature as the Kronecker integral. We have 
not allowed for the possibility that y might be located on the hypersurface %. 
That can be taken care of in a natural way, yielding winding numbers with values 
±! . But the matter will not be pursued here. 

Note that the right side of (7.2) includes the integral of a bivector function 
which must vanish since the left side of (7.2) is a scalar; that is, 

,{ IdSl(x-y)An =(-1~ ,{ (y-x)·dS =0 (73) 
T~ IX-Ylm I tv Iy-xlm . 

The winding number of a hypersurface can be interpreted or, indeed, dermed 
as the degree of a mapping onto ,a hypersphere. Specifically, the winding number 
#y<%) equals the degree of the central projection u of the hypersurface % onto 
the unit hypersphere !/y centered at y. The central projection takes a point x in 
. I ~ to a point 

x-y n=u(x)=--
Ix-YI 

in '/~. According to (4-6.7b), the Jacobian of this transformation is 

_(x-y)·n 
Ju - . 

Ix-Ylm 

(7.4) 
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The increment 

IdSl ~ - y\: = IdSlJu = 1dS'1 signJu 
x-y 

(7.5) 

may be regarded as the element of hypersolid angle on.4 sub tended by the surface 
element dS{x) on ..iV. With (7.5), the degree formula (5.10) can be applied to 
(7 .2b), with the result 

~(.K) = 0-1 1. IdS(x)1 (x - y). n = 0::1 1. 1!f(dS(u)1 signJu 
"Y m fv' Ix _ ylm m r~ 

as advertized. 

= 0;1 deg (u) is IdS(u)1 = deg (u), 
.yY 

(7.6) 

If [ is a one-to-one mapping of a manifold ..iV' onto a closed hypersurface 
..iV in t! m, we can derme a winding number for [by identifying it with the wind
ing number of ..iV. Specifically, from (7.2) and (7.6) we get the explicit expressions 

~if)= (_I)m 1. y-[(x:) [(dS(x'» = (_1)m 1., y-x dS(x) (7.7a) 
"Y 0 ml r 1 ' Iy - [(x )Im - 0 m l r1 Iy - xl m 

= _1 f 1[(dS')1 [(x') - y n(f(x'» = _1 f 
0 m t ' - I[(x') - ylm 0 m 1 

= deg [ [(~') - y ] . 
I[(x) - yl 

IdSl x - y m n(x) (7.7b) 
Ix -yl 

(7.7c) 

Formula (7.7a) generalizes a well-known result in complex function theory. To see 
this, let [be a mapping of t! 1 into t! 1 which maps a closed curve ..iV' onto a 
curve ..iV. Choose the origin so thaty = O. Then (7.7a) becomes 

if) -1 1. 1 f(' -1 J 1 
#0 = 21(1 r t ' [(x')- dx) = 21(1 r t x- dx. (7.8) 

We can express this as a complex integral in the way we got (4.19) from (4.18). We 
write z = ax, identify 1 = -i, define F(z) == a-I [(a-1 z) = a-I [(x), and, following 
(4-7.21), observe that 

With this change of variables, (7.8) assumes the form 

. f F'(z) dz f dz f 21Tl#oif) = = -= ,d(logz). 
i' F(z) i Z 1 

(7.9) 

This result is known as the argument principle in complex function theory. 
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The concept of winding number provides a valuable means to characterize 
critical points of a vector field, namely, those points at which the vector field 
has a zero or a singularity. Let v = v(x) be a smooth vector field on em with an 
isolated critical point z. Define the z-centered hypersphere of radius e by 

9'z (e) == {x: I x - z I = e } . (7.10) 

The function u(x) = v(x)/lv(x)1 maps Y'z(e) into the O-centered unit hypersphere 
//0 in em. The winding number of this mapping in the limit e ~ 0 is said to be 
the index !z(v) of v at z. To get a convenient expression for the index from (7 .7), 
recall the basic property (3-1.7) of the extended differential ~ of a transformation 
u, and note that u2 = 1 implies 

U· ~(dS) = 0; (7.11) 

hence 

Then, from (7 .7a) we get 

(7.12) 

The brackets in (7 .1 2) are not really necessary; they have been inserted to emphasize 
that the integrand is scalar-valued; thus, the integrand is a differential form of 
degree m - 1. If we use the degree formula to evaluate (7.12) by mapping onto 
the unit sphere Yo, we have, for each value of e, 

1.. (J-I~(dS)u)=deg(u) f (I-I dS'(u)u). (7.13) l'/ z (~) .'/' 0 

By comparison with (1.4), the last integral in (7.13) can be identified as an area 
integral, so it has the value 8 m . 

We may regard (7.12) as the basic definition of the index of a vector field. 
The arguments leading to (7.12) show that the index is an integer and that it can 
be interpreted as a winding number or the degree of a mapping. The form of 
(7.12) has been chosen to define the index of a vector field on any vector manifold, 
not merely the Euclidean manifold assumed to simplify the initial argument. For 
an arbitrary manifold Eqn. (7.1 0) defmes a hypersurface for e suffiCiently small. 
Though Yz(e) will not be a hypersphere as in the Euclidean case, it approaches 
a hypersphere in the tangent space at z in the limit. In the Euclidean case, Eqn. 
(7.13) is actually independent of e for e sufficiently small. In the general case, the 
surface //'0 in (7.13) depends 9n e, however, as x approaches z. u(x) approaches a 
unit tangent vector at z, so Yo approaches the unit hypersphere in the tangent 
space at z. Therefore, in the limit the integral on the right side of (7.13) has the 
value found in the Euclidean case. 
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7-8. The Gauss-Bonnet Theorem 

The most significant recent developments in geometry have been the emergence of 
coherent global theories such as the de Rham cohomology. We believe that a 
systematic reformulation of this work in the language of Geometric Calculus will 
be of great value, but the task is a large and difficult one, too much to be accom
plished here. However, this section makes a beginning by explicitly demonstrating 
the efficiency of Geometric Calculus in the fonnulation and proof as well as the 
generalization of the chief global result of classical geometry, the Gauss-Bonnet 
theorem. 

The generalized Gauss-Bonnet Theorem: If AI is a closed oriented vector 
manifold of even dimension m = 2p, then 

T4I "ldXl =! 8 m + IX, (8.1) 

where" is the Gaussian curvature and X is the Euler characteristic of .41. As before, 
8 m + 1 is the area of the m-dimensional unit sphere. 

The Gaussian curvature can be defined in terms of the Riemann curvature tensor 
R(a A b) by the equation 

Bi/) = "I, 

where 1 is the unit pseudoscalar and B(l) is an m. m-fonn defined by 

B(l):= m\ (I aam A ... A aa1)R(a1 Aa2) A ... AR(am -1 Aad 

1· . 
= m! (le1m A ... A e1)R(ei1 Aei2)A . .. AR(eim -1 /\eim )· 

The integrand in (8.1) can thus be written 

"ldXl = 1-1 R(eL¥) = dXR(I-1). 

This is a differential form of degree m. 

(8.2a) 

(8.2b) 

(8.3) 

In Section 5-2 we defmed the Gaussian curvature for a hypersurface ull in cC m + 1 

as the Jacobian of the Gauss mapping, the mapping which takes each point x in 
.$1 into the unit normal n = n(x); thus, 

!1(l) = "I. (8.4) 

This is perfectly consistent with (8.2) if m is even; indeed, considering (5-2.9b), 
we see that 

(8.5) 

with 1 = e1 A e2 A ... A em. Thus, our definition of Gaussian curvature for an 
arbitrary even dimensional manifold is fully in accord with Gauss' original notion. 
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For hypersurfaces, the Gauss-Bonnet theorem can be proved by using the 
degree formula (5.10). Considering (8.2), we have 

1. KldXI= 1. I-1n(dS)=deg(n)0m+l, fit J'.It- (8.6) 

where deg (n) is the degree of the Gauss mapping. Obviously (8.6) agrees with 
(8.1) if 

deg (n) =! x. (8.7) 

So by establishing (8.7) we confum (8.1) for hypersurfaces. This approach is taken 
in [GP, p. 196]. We shall develop a proof which is not restricted to hypersurfaces. 
Then (8.7) is a simple consequence of the Gauss-Bonnet theorem. 

Our proof of the Gauss-Bonnet theorem will appeal to some basic results in 
differential topology. We take it for granted that a smooth vector field u = u(x) 
with a fmite number of isolated zeros can be defmed on A. According to the 
Poincare-Hop! Index Theorem, the sum l: t of indices at zeros of u is equal to 
the Euler characteristic of M, that is 

(8.8) 

(For a convenient proof of the theorem see [Mi, p. 35] or [GP, p. 134] . The Euler 
characteristic is defined and discussed in [GP] as well as in many other books on 
topology.) 

This relation holds when A has a boundary if u pOints outward at boundary 
points. Moreover, it does not depend on the particular choice of a vector field, 
so it is a topological invariant of vIf. Indeed (8.8) could be taken as a definition 
of the Euler characteristic. 

Before conSidering the general case, let us prove the Gauss-Bonnet theorem for 
two-dimensional manifolds, since this case has some features of special interest. 
Let u ;: u(x) be a smooth vector field on vi{ with isolated zeros. We may normalize 
u so that u2 = 1 except at zeros. Following Eqn. (6-2.1), we can express the codif
ferential of u in terms of the angular velocity of u, which we denote here by w(a) 
instead of Wa; thus, 

6au = 6u(a) = w(a) . u = w(a)u. (8.9) 

The last equality in (8.9) obtains because the trivector w(a)" u necessarily vanishes 
for a two-dimensional manifold. Solving (8.9) for the angular velocity, we get 

w(a) = 6u(a)u. (8.10) 

This quantity is well defmed except at the zeros of u. Recall that the codifferential 
is the projection of a differential, that is, 

6u(a) = a· 'Vu = p(a· au) = ~(a». (8.11 ) 
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Hence, 

r 1 w(a) = 1-1 45u(a)u = (1-1 ~(a)u). (8.12) 

We recognize this as the 'index form' in Eqn. (7.13). So if we apply it to all the 
zeros of u simultaneously, we have 

J 1-1 w(dx) = 21T ~ t. 
Tzeros 

(8.13) 

Now consider the curvature tensor. From Eqn. (6-2.9) we see immediately that 

R(I) = -45w(I), (8.14) 

since the commutator w(a) X w(b) necessarily unishes, because all tangent bi
vectors are proportional. Using the fact that M = 0, from (8.14) we get 

r 1 R(J) = _1-1 45w(J) = -45[1-1 w] = -d(l-I w). (8.15) 

We recognize the right side of (8.15) as the exterior differential of the I-form 
(8.12). Of course (8.14) and (8.15) are not defined at the zeros of u. 

Now we are in a position to evaluate the integral of the Gaussian 2-form 
I-IR(dX) over vIt. Applying Stokes' theorem to (8.15) and using (8.13) to 
evaluate the integral at the zeros, we get 

f I-1R(dX) = 21T ~ t - 1. (I-Iw(dx). 
J~ To# 

(8.16) 

This supplies us with the desired proof of the Gauss-Bonnet theorem for avlt = 0 
by appeal to the Poincare-Hopftheorem. 

For manifolds with boundary, the last integral in (8.16) can be put in standard 
form for ease of evaluation. Let x = x(s) be a curve in .-If parametrized by arc 
length s. The velocity v of the curve is a unit vector, so it can be obtained from the 
unit vector u = u(x) at any point x by a rotation described by the formula 

v= dx = el6 u =u e-/6 
ds 

(8.17) 

The sign of the angle () = 6(s) depends on the orientation of the unit bivector I. 
The orientation of I is determined by Eqn. (2.2) relating the orientation of'# to 
the orientation of a .If. We discussed this in connexion with complex variable 
theory, and we determined that I should be regarded as the generator of clockwise 
rotations. The sign of 6 has been chosen in (8.17) so that positive 6 determines a 
counterclockwise rotation, as is customary. 

The codifferential of (8.17) gives us the expression for the 'coacceleration' of 
the curve compared to the vector field u; 

v· 'i/v = 45 vv = (45 vuu + Iv· a())v. (8.\8a) 
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Using (8.10), this can be put in the form 

d8 
kg =:1-1 v6vv=I-1 w(v) + dS' 
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(8.18b) 

where we have introduced the symbol kg to identify the usual geodesic curvature. 
To see that the identification has been properly made, note that no special assump· 
tions about the vector field u were made in deriving (8.18). If u is chosen to be 
'parallel' on the curve, then v· lJu = 0 and w(v) = (v . lJu)u = O. Whence kg = 
dBldS, which correctly describes the geodesic curvature as the rate of angular 
deflection of the curve from a geodesic. 

Equation (8.l8b) can be used to evaluate the boundary integral in (8.16). 
Suppose that aJ{ consists of a single piecewise smooth curve ek with exterior 
angles CXj at the vertices. Then from (8.18b) we have 

J. r1w(dx) = L i kg dS - L J.. d8. (8.19) 
jaI' k re k Jek 

For conformity with the Poincare-Hopf theorem, we assume that u points outward 
on each ek. The angle B, then, varies continuously on 13k between the values of 
o and 11", except at the vertices where it suffers discontinuities CXj. It follows that 

J. d8 = - ~ CXj. (8.20) T ek I 

With (8.19) and (8.20) in (8.16), we finally get 

( I-IR(dX)+ J. kgdS+ L OIi = 211")(, J If Ta If i 
(8.21 ) 

where the summation is over exterior angles at all vertices on a.A. The result 
(8.21) is the famous Gauss-Bonnet Formula, in a form valid for a surface with 
any number of holes in it. 

We prove the Gauss-Bonnet theorem for manifolds of arbitrary even dimension 
by a straightforward generalization of our proof for the two-dimensional case. 
Our proof is based on the original proof by Chern [Chi, 2]. It incorporates some 
simplifications by Flanders [Fl]. Comparison with Chern's work displays the 
great economy of Geometric Calculus vis-a-vis conventional differential forms. 
The main problem is to express the Gaussian form as a form explicitly determined 
by a given vector field and its differentials. Then the theorems of Stokes and 
Poincare-Hopf can be applied to complete the proof. 

Our computations will be concerned with a sequence of multiforms of various 
grades and degrees. To simplify the formulas and computations, we introduct: a 
number of abbreviations. To begin with, we define a k. k-form for k = 1, 2, ... , 
mby 

QlYc = QlYc(A) =: (Ae ik A ... A ei2 A ei I) 6u(e; 1) A 6u(ei2) A ... A 6u(eik) 

= k! ~«Ak»' (8.22) 
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The last equality, expressing ~ as the projection of the extended differential g 
into f§k(.A), is an easy generalization of (8.11). For the k-blade argument A = al 
/\ a2 /\ ... /\ ak, defmition (8.22) reduces to 

~(al /\ ... /\ ak) = k! 6u(ad/\ 6u(a2) /\ ... /\ 6u(ak) 

Note that u2 = 1 implies u . 6u = 0, hence 

u·~=O. 

It follows that 

~=O. 

From the curvature tensor R =R(a /\b) we construct the 2k, 2k-form 

Rk =Rk(A) 

= <Ae i2k /\ ... /\ ei2 /\ ei1)R(eil /\ ei2) /\ .. . /\R(ei2k_l /\ ei2k)' 

Comparison with (8.2) shows that for m = 2p, 

RP(f) = m! B(f) = m! lK. 

(8.23) 

(8.24) 

(8.25) 

(8.26) 

(8.27) 

It is convenient to introduce pseudoscalar valued multiforms Yk and Zk of 
degreesm-l andm,definedfork=0,1,2, ... ,p-l by 

and 

Yk = Yk(a) =Rk I\Q~- 2k- 1 1\u 
. i = <Ae1m - 1 1\ .. . 1\ e I )R (ei 1 1\ ei2) /\ .. . /\R(ei2k_l 1\ ei2k) /\ 

1\ 6u(ei2k+l) /\ ... /\ 6u(eim_l) 1\ u, 

Zk = Zk(A) = Rk + 1 1\ Q~ - 2k - 2 

= <Aeim 1\ ... /\ eil )R(eil 1\ ei2) 1\ .. . /\R(ei2k+ 11\ ei2k+2) 1\ 

/\ 8u(ei2k+3) A ... A 6u(eim)' 

These multiforms are related by the exterior codifferential, speCifically 

The proof is merely a matter of computation, but a little finesse is helpful. 
To establish (8.30), we first prove that 

(8.28) 

(8.29) 

(8.30) 

Zk = Rk + 1 A QIbn _ 2k _ 2 = - 2(k + 1 )Rk 1\ QIbn _ 2k _ 2 A 82 U 1\ u. (8.31) 
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Recall Eqn. (5-1.15) relating the codifferential to the curvature tensor: 

02U = U· R. 

Using this in connexion with the defmition (8.26), we can write 

RI = 2R = 2u Ao2U +h. 

This may be regarded as a defmition of hi; it reduces to (8.32) if 

u· h =0. 

Using the binomial expansion and the asymmetry of the multiforms, we get 

Rk = 2khk_lAu AfJ 2 u +hk, 
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(8.32) 

(8.33) 

(8.34) 

(8.35) 

where hk is defmed in terms of h in the same way that Rk is defined in terms of 
R by (8.26). But (8.35) implies that Rk; Au = hk A u, hence 

(8.36) 

Now note that 

hk + 1 A Q'6n - 2k - 2 = 0, (8.37) 

because it has grade m but u . (hk + 1 A Q'6n _ 2k _ 2) = 0 by virture of (8.24) and 
(8.34). So (8.31) is established by substituting (8.36) into the left side of (8.31) 
and using (8.37). 

Now we are prepared to evaluate the codifferential of Y k. We note that 

(8.38) 

This is an immediate consequence of the Bianchi identity oR = 0 established in 
Section 5-1. Using (8.38) and (8.29) to evaluate the codifferential of (8.28), we 
get 

o Y k = Rk A Q'6n - 2k + Rk A 0 £Q.'6n - 2k - 1 Au 1 

=Zk-l + (m - 2k - l)Rk AQ'6n- 2k- 2Ao2U Au, 

which, when combined with (8.31), gives (8.30) as promised. 
We can solve the set of Eqn. (8.30) for Zk in terms of the 0 Yr ; thus 

2(k+l) {2k } 
Zk = m _ 2k _ 1 8 Yk + m _ 2k + 1 {o Yk - 1 + ... } , 

an d finally, 

k 
(k + l)k ... (r + I)2k - r + 1 ~ 

Zk =- L uY 
r~O (m-2k-l)(m-2k+l) ... (m-2r-l) r· 

(8.39) 
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We will be concerned only with the special case of (839) with m = 2p and k = 
p - I. Considering (827) and (8.29), we have 

(2 )IR(l)=Z =_P~.,1P(P-I) ... (r+I)2p-r 6Y 
p.- p-l ':-0 1.3 ... (2p-2r+1) , 

= -p! 2P 
1 ·3 ... (2p - I) 6Yo + ... (8.40) 

This is the desired generalization of Eqn. (8.14). 
We prove the Gauss-Bonnet theorem by applying Stokes' theorem to (8.40). 

First note that, by (8.28) and (8.23), 

Moreover, 

I-I 6 Yo = 6 (I-I Yo> = d (I-I Yo>, 

so, by (7.12) and the theorems of Stokes and Poincare-Hopf, 

fA( r l c5 Yo = -(2p - 1)! 0 mX. 

Therefore, from (8.40), we get 

1 - (P_I)!2P - 1 
j.( I IR(dX) = 1 .3 ... (2p _ I) 0 mX. 

(8.41) 

(8.42) 

(8.43) 

(8.44) 

All terms but the first from the right side of (8.40) make a vanishing contribution 
to (8.44) because of Stokes' theorem. Equation (8.44) agrees with (8.1), because 

(p - I)! 2P 2P+11TP 
0 m + 1 = 1 . 3 . 5 ... (2p - 1) 0 m = 1 . 3 . 5 ... (2p - 1) . (8.45) 

This completes our proof of the generalized Gauss-Bonnet theorem. In developing 
the proof, we derived some general formulas, like (8.39), which undoubtedly have 
many other applications, but the matter will not be pursued here. Chern [Ch 2] 
applies them to evaluate integrals over hypersurfaces. His differential forms <l>k and 
"'k are related to our Yk and Zk by 

<l>k=(-l)m-k-l U - 1 yk ) and "'k=(-lf+1U-1Zk). 
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Lie Groups and Lie Algebras 

In this brief chapter we aim to lay the foundation for a formulation of the theory 
of Lie groups and Lie algebras in terms of Geometric Calculus. Such a reformulation 
of Lie theory appears to be desirable for several reasons. First, it is a step toward 
the unification of mathematics. Second, the coordinate-free methods of Geometric 
Calculus can be expected to simplify specific computations as well as the proofs of 
general results. Third, Geometric Algebra brings new methods and ideas to Lie 
theory which could simplify the theory and even lead to new results. Indeed, the 
structure of Geometric Algebra has so much in common with Lie algebra that we 
would be surprised if they could not be unified in a productive -way. 

Lie theory is so extensive, that even had we completed its reformulation, the 
results would certainly not fit in the remainder of this book. We will be content 
here to get the reformulation started. 

Section 1 reformulates the basic concepts and results of Lie theory in sufficient 
detail to make application of Geometric Calculus to any problem in the theory of 
group manifolds a fairly straightforward matter. It will be noticed that little more is 
reqUired than a few definitions. The proofs of Lie's fundamental theorems are quite 
trivial given the theory of vector manifolds developed in preceding chapters. 

Section 2 shows how to make explicit coordinate-free computations on a group 
manifold by working out an important example. 

Section 3 proposes a program for systematically classifying Lie algebras with 
methods of Geometric Algebra. This section presupposes familiarity with the 
problem of classifying Lie algebras, so well-known terms and results are freely 
employed and referred to. 

8-1. General Theory 

A Lie group If is a group which is also a manifold on which the group operations 
are continuous. Recall that a manifold If is a set of elements in one-to-one corre
spondence with the points of a vector manifold JIf. Thus, there exists an invertible 
function T which maps each point x in JIf to a group element X = T(x) in If. 
This function enables us to apply to groups the powerful differential and integral 
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calculus which we have developed for vector manifolds. On the other hand, the 
'group structure' of .ff'imposes stringent restrictions on the geometric structure 
of the group manifold At. Let us see how this group structure can be expressed 
precisely. 

A group is a set on which there is defmed a binary product XY = W which 
associates a unique element W in the group with each pair of elements X and Y. 
The group product is associative, so for any three elements, 

(XY)Z = X(YZ). (1.1 a) 

The group contains a unique identity element E with the property that 

EX=X=XE (1.1 b) 

for any element X in the group. Finally, to every element X in the group there 
corresponds a unique inverse element X-I with the property 

XX-I =E=X-IX. (l.1c) 

For the Lie group .ff' we have a correspondence of elements with points (vectors) 
in JlI given by 

X= T(x), 

X-I = T(X), 

E = T(e). 

(l.2a) 

(1.2b) 

(1.2c) 

Corresponding to the group product XY = T(x)T(y) = T(w) defined on !f, we have 
a binary product [unction ¢(x, y) = w defmed on JlI which associates a unique 
vector w in j{ with each pair of vectors x and y. From (1.1) and (1.2) it follows 
that the product function has the group properties 

¢(¢(x, y), z) = ¢(x, ¢(y, Z », (associativity) 

¢(e, x) =x = ¢(x, e), (identity) 

¢(x, X) = e = ¢(x, x). (inverse) 

(1.3a) 

(1.3b) 

(1.3c) 

We have written ¢(x, y) for the product function instead of the simpler notation 
xy, because we wish to retain the latter notation for the geometric product, and 
we will be using both kinds of product in our analysis of Lie groups. Indeed, 
we shall see that for a specific group the product function ¢(x, y) is specified 
by expressing it in terms of the geometric product: To avoid confusion with the 
algebraic inverse X-I = X/X2, we have written x for the 'group inverse'. Of course, 
the group product XY should not be confused with the geometric product, although 
the two products are identical for the important case of vector groups and spin or 
groups discussed in Section 3·8. 
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We say that the group vIt is a global parametrization of the group !l'. It should 
be realized that this parametrization is significantly different from the local para
metrization of a group by coordinates so common in the literature. The two kinds 
of parametrization can be related by introducing a coordinate system on a neigh
borhood of the identity element in vIt. This is best done by introducing a smooth 
invertible function 

[: x -x' = [(x), (1.4a) 

which maps points x in vIt to points x' in the tangent space vIt' at the identity 
element in vIt and satisfies the condition 

[(e) =0. (1.4b) 

The group product function w = </I(x, y) on vIt is mapped into 

w' = [(</1(/-1 (x'), r 1 (y'» = </I'(x', y') (1.5) 

on vIt'. The new product function </I'(x', y') obviously enjoys group properties with 
the same form as those for </I(x, y) given by (1.3a, b, c). Coordinates for the group 
are components xic = x' . eic oflocal group elements relative to a basis {ek} in vIt'. 
In terms of coordinates, the product function (1.5) takes the form 

(1.6) 

This is the form of the product function most used in the literature. Geome'tric 
Calculus enables us to work directly with the vector form of the product function 
(1.5) without decomposing it into the component form (1.6). 

The neighborhood of the identity in the vector space vIt' which has been 
endowed with the group product function (1.5) is commonly called a local Lie 
group or group germ, because it does not describe the global properties of the 
group manifold vIt, for the simple reason that the manifold vIt cannot in general 
be covered by a single coordinate system. In other words, the transformation (l.4a) 
usually has a singularity at some point of ./It. The complications that result from 
this fact can be avoided by working directly with the manifold vlt, and that is what 
we shall do. Geometric Calculus makes the transformation from global groups to 
local groups for computational purposes quite unnecessary, though easy to carry 
out if desired. 

Once the product function </I(x, y) has been determined, the group structure of 
.Yhas been transferred to . # where it can be analyzed with the help of Geometric 
Calculus without further reference to !t'. Since this can be done for any Lie group, 
we can develop an abstract theory of Lie groups by studying vector manifolds on 
which we can define a binary product /j)(x, y) satisfying the group properties. We 
can get a classification of Lie groups by determining all such vector manifolds and 
all such product functions. We can get a good start on this program by determining 
how the geometry of group manifolds is restricted by the group structure. 
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The group properties (1.3) imply that a continuous group manifold h is 
necessarily a smooth manifold, which is to say that the unit pseudoscalar field 
I = I(x) on A has finite differentials (derivatives) of all orders at every point x 
in A. It also follows that f/>(x, y) is a smooth function of each variable. For the 
sake of brevity, we simply assume these results in our analysis. 

Our study of group geometry begins with the observation that each 'group 
element' y determines a transformation Ay of the group manifold .,It onto itself 
defined by 

Ay : x -+ x' = Ay(x) == f/>(Y, x). (1.7) 

This transformation is called a left translation of the group by the element y. Its 
differential ~y transforms each tangent vector a = a(x) at a generic point x of the 
manifold to a tangent vector a' = a'(x') at some point x' = Ay(x), as given by 

~y : a(x) -+a'(Ay(x» = ~y(a(x» = a(x)' axAy(x). 

We often suppress the argument, writing 

~y : a -+ a' = 4v(a). 

(1.8a) 

(I.8b) 

We call the linear operator ~y the left differential by the group element y. From 
our study of transformations in Section 4-5, we know that left differentials map 
vector fields into vector fields on the group manifold. 

We can also define a right translation Py of the group by 

Py: x-+x'=Py(x)==f/>(x,y), 

with the corresponding right differential 

b(a(x» = a(x) . axpy(x). 

The properties of right translations are obviously so similar to those ofleft transla
tions that we lose little by limiting our study to the latter. 

Now let us establish the fundamental properties of group translations and 
differentials, namely, that the set of all left translations is a transformation group, 
while the set of all left differentials is a group of linear transformations of vector 
fields. Rewriting the associative rule (I.3a) with the notation of (1.7), we get 

(1.9a) 

It will be convenient to write this in the operator notation 

(1.9b) 

This is the group product rule for left translations. Applying the rule twice, we have 
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from which, by using (1.3a) once again, we get the associative rule 

(1.10a) 

Of course we could have written this down immediately, since the composition of 
functions is associative in general. Next, applying (1.3b) to (1.9b), we deduce 

(1.10b) 

thus, Ae is the identity transformation. Finally, by applying (1.3c) to (1.9b), we get 

(l.lOc) 

from which we conclude that the inverse of Ax is A;1 = Ax. This reformulation of 
the group properties in terms of left translations is mathematically trivial but 
conceptually powerful. Both mathematical and conceptual power are increased 
by proceding to the left differentials. 

In an earlier chapter we established that application of the chain rule for differ
entiation to the composition of transformations yields the composition rule for 
differentials. Thus, by differentiating (1.9a) and using the notation of (1.8a), we get 

~¢(x. y)(a(z» = a(z) . 3zA¢(x. y)(z) 

= [a(z)· 3z~(z)] . 3wAx(w) I 
W = Ay(z) 

= h~y(a(z»), (1.1Ia) 

or, in operator notation, 

(l.1Ib) 

Since differentials are linear operators, the associative property can be written 
down without further ado; 

(1.12a) 

Repeating the arguments used to get (I.lOb) and (I .tOe), we identify the identity 
differential 

(1.12b) 

and the inverse 

(I.l2c) 

Equations (I .11) and (I .12) show that the group of left differentials is isomorphic 
to the abstract group A. This is a group of linear operators, but it acts on the 
infinite dimensional space of vector fields on A. 
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Besides transforming vector fields, the left differential can be used to construct 
vector fields on the group. A tangent vector a' = a (e) at the identity can be extended 
to a smooth vector field a = a(x) on the whole group by the defmition 

a(x) == k(a) = a' . aet/J(x, e). (1.13a) 

Since the x-dependence is obvious, it will often be convenient to reduce this to 

a = ~(a'). (1.13b) 

Throughout the rest of this section, we use primes exclusively to denote tangent 
vectors at the identity. The vector field defmed by (1.1 3) is said to be left invariant, 
because it is transformed into itself by a left translation of the group. This follows 
from the transformation (1.8a) by using (1.13a) and (1.1b), thus 

a'().y(x» = ~y(a(x» = ~yk(a) 

= ~<I>(y. x)(a') = a(~(x». 

The left invariance is best expressed by the equation 

a().y(x» = ~y(a(x». (1.14) 

We call each left invariant vector field on A a generator of the group A. Accord
ing to (l.1 3), every generator is uniquely determined by a tangent vector at the 
identity. It follows that the set of all generators is a line,r space with the same 
dimension as the group manifold. 

We are now in position to prove the Fundamental Theorem of Lie Group Theory: 
The generators of a Lie group fonn a Lie algebra. Multiplication in this algebra is 
taken to be the Lie bracket defmed by Eqn. (4-3.17). With Eqn. (4-3.18) we proved 
that the Lie bracket [a, b) of differentiable vector fields on any manifold is again a 
vector field. A set of vector fields a, b, c, ... on a manifold form a Lie algel--'a if it 
closed under the Lie bracket and all fields satisfy the Jacabi identity 

[[a, b],c] + [[b, c],a] + [[c, a], b) = O. (1.15) 

The fundamental theorem was first formulated and proved by Sophus Lie using 
messy coordinate methods. He broke it into three theorems which have since 
become famous. Lie's first theorem is equivalent to Eqn. (I .11), and its importance 
is chiefly for the proof that group generators are left invariant, as we have already 
established. Lie's second theorem holds that the Lie bracket of generators is again 
a generator. This follows immediately by using the definition (1.13) in our general 
formula (4-5.37), to get 

[a, b) = [Ha'), Hb')] = M[a', b']). (1.16) 

Lie's third theorem holds that generators satisfy the Jacobi identity. By applying 
(1.16) twice we see that 

([a, b],c] = H[[a', b'],c']), 
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so we need only establish the result for tangent vectors at the identity. To this end, 
we introduce the bilinear function 

!E<a', b')==a'· axb'· ayl/>(x'y)1 . 
x =y =e 

(1.17) 

This is related to the Lie bracket by applying the defmition of the bracket (4-3.17) 
to (1.13a), whence 

!E<a', b) - ~(b', a') = [a', b'] . (1.18) 

By operating on the associativity relation (1.3a) with a' . ax, b' . ay and e' . az , 
we get 

~(a', ~(b', e'» = ~~(a', b'), e'). (1.19) 

This associativity relation differs from (1.3a) in that it is a linear function of each 
variable. Therefore, 

[a', [b', e']] = ~(a', ~(b', e'» - !p(a, !P(b', e'» -

- !P(p.(b', e'), a') + !p~(e', b'), a'). 

A similar expansion of the other two terms in the Jacobi identity shows that aU 
terms cancel when added up. This completes our proof of the Jacobi identity and 
of the fundamental theorem. We turn now to some other aspects of the general 
theory which can also be regarded as fundamental. 

From left invariant vector fields we can get left invariant multivector fields by 
the general outermorphism property of Eqn. (4-5.16a); thus, 

a 1\ b = :Ma') 1\ Mb') = .Ma' 1\ b') (1.20) 

is a left invariant bivector field. The left invariant pseudoscalar fields are of great 
importance for the theory of integration on Lie groups. Their properties can be 
read off 'at once from Eqn. (4-5.3), thus 

M(x) == h(/) = l(x)/(x) , (1.21) 

where I(x) is the unit pseudoscalar field and lex) = det h = rl h(/) is the 
Jacobian of the left translation Ax. Now let dX(x) = II dX I be a positively oriented 
pseudoscalar field on the group. Then 

D (x) == _dX(x) = ~y(dX) =./1 I dXl 
h M(x) ~y(M) 

(1.22) 

is obviously invariant under left translations. It is called the Haar measure for the 
group in the literature. With this observation it will not be difficult to apply our 
integration theory in Chapter 7 to standard problems in group integration theory. 
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The study of group structure is enhanced by the methods of differential 
geometry. Though we do not intend to pursue the subject here, we wish to point 
out that the necessary apparatus is available in this book. For example, all the 
results of Section 5-6 apply immediately to a group manifold if we take the extensor 
function h studied there to be 

h == ~ -I = ~-I = ~_ _ !!X !!X, (1.23a) 

or, more explicitly, 

h(a) = h(a(x), x) = &1 (a(x». (l.23b) 

Then Eqn. (5-6.14) provides us with a left invariant tensor on the group manifold 

(1.24) 

and Section 5-6 provides us with a formulation of its general properties. Note that 
for left invariant vector fields a = 1(a') and b = ~(b'), 

a·g(b)=a'·b', (I.25) 

so g can be regarded as the extension to the whole manifold of a scalar product 
defmed at the identity. 

The geometrical methods of Chapter 6 are closer to conventional methods than 
those in Chapter 5. Let us examine briefly how they can be applied to Lie groups. 
Let {ek} be a basis in the tangent space of the identity element in the group 
manifold. Then a frame of left invariant vector fields is defined on the manifold by 

(1.26) 

Expanding the Lie bracket of basis vectors at the identity, we have 

[ "] k, ei' ej = Cjjek' 

This relation is immediately extended to the rest of the manifold by applying Lie's 
second theorem (1.16), thus, 

lei' ej] = M[e;, ejD = ~(ctek), 
so 

[ej' ej] = c:ek' (1.27) 

The coefficients ct are called structure constants of the Lie group. IntrodUcing the 
reciprocal frame {et} defined by the relations ek . ej = 6jk , we solve (I .27) to g~t 

ct = ek . lei' ej] , (I.28) 

and from Eqn. (6-1.10), we get 

'V /\ek =!c~ei /\ek . IJ 
(1.29) 
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These equations are commonly called the Maurer-Cartan relations. They can be 
immediately expressed in terms of differential forms with Eqn. (64.24). Of course, 
Eqn. (1.29) is completely equivalent to Eqn. (1.27). This should suffice to show 
how the apparatus of Chapter 6 can be effectively applied to Lie groups. 

8-2. Computation 

Computations in group theory are usually carried out with matrix algebra. We 
have established by general arguments in Chapter 3 that any computation with 
matrices can also be carried out with Geometric Algebra and in a coordinate-free 
manner, unless coordinates are essential to the given problem. Furthermore, we 
have demonstrated with many examples that computations with Geometric Algebra 
are usually simpler than those with matrices. Our extensive treatments of the 
orthogonal groups in Section 3-8 and the symplectic groups in Section 3-7 exhibit 
considerable advantages over matrix treatments. Here we wish to demonstrate by 
example how Geometric Algebra enables us to carry out coordinate-free computa
tions on a group manifold. 

We will study the group manifold of the spinor group Spin(3) = Spin+(3, 0). 
This is the covering group of the three-dimensional rotation group and it is iso
morphic to the special unitary group SU(2). The spinor groups were completely 
characterized in Section 3-8, and from that analysis we know that any element U 
in Spin(3) can be written in the form 

U=a+B, (2.1) 

where a is a scalar and B is a bivector in the three-dimensional space of bivectors 
~ ~. Thus, U is an element of the four-dimensional linear space of scalars and 
bivectors ~ ~ + ~~. However, the elements of Spin(3) are restricted by the 
condition 

utU=(a-B)(a+B)=a2 +IBI2 = 1. 

This suggests that the group can be parametrized by vectors of the unit sphere vH 
in four-dimensional Euclidean space 84 , To determine the parametrization, we 
select a unit vector e to represent the identity element and let x be the vector in 
vI( corresponding to U. From these two vectors we can form the scalar a = e . x, 
which will agree with (2.1) and reduce to U = a = 1 when x = e provided that B 
vanishes when x = e. The latter condition will be satisfied if B is a function of the 
bivector e 1\ x. We can satisfy the additional condition e' B = 0 if B = Ie 1\ x, where 
I is the unit pseudoscalar of 84 , with the properties 

Ix = -xl. 

(2.2a) 

(2.2b) 
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Thus, our parametrization takes the form 

U = e . x + Ie A x, (2.3) 

and we observe that 

(2.4) 

as required. 
We can now find the group product function z = tjI(x, y) on JI! from the simple 

group composition rule for spinors 

U(z) = U(x)U(y). (2.5) 

Substituting (2.3) into (2.5) and expanding, we find, with the help of identity 
(1-1.69), 

e·z+Ie Az = e·xe·y+(e Ax) ·(e Ay)+e(x A e Ay)+I(e·xe Ay+e·ye Ax). 

Separating this into scalar and bivector parts, we find 

e· z = e· xe· y + (e Ax) . (e Ay) = 2e· xe· y - x· y, 

e Az = e ·xe Ay + e· ye Ax + Ie(x A e Ay). 

Adding these equations, we use the fact that e· z + e A z = ez and solve for z, 
putting the result in the form 

tjJ(x, y) = (xeY)l + x A e AyI = 1 (xey + yex) +! (xey - yex)I. (2.6) 

Observe that this is a vector-valued bilinear function, although, of course, only 
its values for unit vectors apply to the group. Its symmetnc part can be written in 
any of the equivalent forms 

(xeY}l =! (xey + yex) 

= x· ey + (x A e) . y = e· xy + e· yx - x . yeo 

Its skewsymmetric part can be written in the equivalent forms 

(xeY[)l = !(xey - yex)I = x A e AyI 

=(Ie)·(xAy)=(I·eAx)·y. 

As a check on (2.6), we note that 

(2.7a) 

(2.7b) 

We should also verify that the group properties (1.3a, b, c) are satisfied. Verification 
of the identity property (1.36) is trivial, and we observe that (2.6) satisfies the 
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inverse property (1.3c) if and only if the element inverse to x isx= -x. Verification 
of the associative property requires a tiresome computation which we leave to 
the reader. 

Computation of the left differential from (2.6) is trivial, with the result 

~(a) = k(a) = (xea)l + x 1\ e 1\ aI 

= !(xea + aex) + !(xea - aex)I. (2.8) 

This function is defmed for all tangent vectors on the group manifold. The condi
tion that a = a(y) is a tangent vector at some pointy is simply Y . a = O. 

To clarify the significance of its functional form (2.8), we ascertain the effect of 
the left differential on products of vectors. The computation is easiest if we write 
(2.8) in the form 

Ma) = !(A + B) + !(A - B)I = !(A + B) -I!(A - B), 

where A = xea and B = aex. Then 

hence 

Mal )Ma2) = !(ala2 + xeala2ex) + !(ala2 - xeala2ex)I. 

From the scalar part of (2.9) we get 

Ma.)· Ma2) =al . a2, 

and from the bivector part we get the outermorphism 

Mall\al)=~(a.)I\Ma2) 

(2.9) 

(2.10) 

=!(all\a2 +xeall\a2ex)+!(all\a2 -xea1 I\a2ex)eI. (2.11) 

These results are much more difficult to obtain if computations are carried out with 
inner and outer products instead of the geometric product. 

Equation (2.10) shows that ~ is an orthogonal transformation, in fact, it is a 
rotation, because it is continuously connected to the identity. Equations (2.6) and 
(2.8) show that a left translation has the same functional form as its differential; 
hence the left translations are also rotations. This comes as no surprise, since the 
group manifold is a sphere in four dimensions. Clearly, the left translations provide 
us with a representation of SU(2) as a subgroup of the rotation group 0+(4,0). 
We prove':: In Section 3-5 that every such rotation can be written in the canonical 
form 

(2.12) 
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In Section 3-8 we learned how to calculate the spin or S = S(x) in (2.12) when the 
function X is given. From Eqn. (2.6) we calculate the quantity 

ax = ekX(ek) = !(ekxeek + ekekex) + !(ekxeek - ekekex)I. 

From Eqns. (2-2.38a, c) we find ekek = 4 and ekx 1\ eek = O. Hence, 

aX=4[e.x+el\x!(! -1)]. (2.13) 

Finally, from Eqn. (3-8.33) we get the explicit result 

ax 
S = ± -,------;--o-:-:=_ 

[aX(aX)t] liZ 

e.x+el\x!(I -1) 
= ± ---~-----:---------

[(e· x)Z + Ie I\xl z !(! -1)] liZ 
(2.14) 

This should be compared with the spinor (2.3) which we started out with. Of 
course these spinors also have the group property S(x)S(y) = S(¢(x, y». 

We can determine the left translation of pseudoscalars by evaluating Ha I 1\ az 1\ 
a3) from ~(al l\az)Ma3) in the same manner that we evaluated Mal I\az). Writing 
M = a I 1\ a2 1\ a3, we fmd that the result can be put in the form 

HM) = ~(Mex + xeM) + !CxeM - Mex)I. (2.15) 

To get a left invariant pseudoscalar field we apply (2.15) to the pseudoscalar at the 
identity Ie, with the result 

~(~) =Ix. (2.16) 

But Ix is just the pseudoscalar at a point x of the sphere. Thus, a left translation 
simply rotates the pseudoscalar at one point into the pseudoscalar at another with 
no change of scale. Of course, this is what we expected after we learned that the 
left differential is a rotation. 

Now we are in a position to easily evaluate the Lie bracket of left invariant 
vector fields. According to (1.18), we can evaluate the bracket at the identity from 
the product function (2.6), and we find that 

[a', b'] = lea' 1\ b'. 

According to (! .16), we can extend this to the entire group manifold by operating 
on it with the left differential. As we noted in writing Eqn. (3-5.38), since ~ is a 
rotation, Hlea' 1\ b') = Hle)~(a' 1\ b'), so we get 

[a. b 1 = Ixa 1\ b. (2.17) 

This tells us that the bracket [a. b] is simply the dual of the bivector field a 1\ b. 
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Now let us examine a local parametrization of the group. As an alternative to 
our global parametrization (2.3), we can employ the parametrization by angles 
determined by the equation 

u = leX /2 = cos!X + Ie sin!X 

=cos!IXI +Ieisin!IXI. (2.18) 

As we saw in Section 3-5, the spinor U determines a rotation in three dimensions. 
The direction of the vector X specifies the axis of rotation, while its magnitude IXI 
is the angle of rotation. The dual of X by the unit pseudoscalar Ie is the bivector 
angle of rotation leX specified by (2.18). To relate the local and global parametriza
tions, we equate (2.18) to (2.3) and solve for x as a function of X, with the result 

x = [-I (X) =e cos!X + sin!X 

= e(exp !eX), (2.19) 

where e· X = 0, because X is in the tangent space at the identity. Equation (2.19) 
is an example of our parametrization Eqn. (104) expressed in terms of the inverse 
function for simplicity. 

We are most interested in the induced transformation of a tangent vector field 
A = A (X) on '~lgle ~pace' into a vector field a = a (x) on the sphere. So we calculate 
the differential of the function (2.19). Straightforward differentiation gives 

[-I(A) =A . axrl(X) 

=(A· axIXI)xei+(A· axX)sin!IXI. 

From Section 2-1, we know how to evaluate the indicated derivatives, and we get 
the explicit result 

_ . A 1\ XX 
rl(A)=A·XxeX+ sin!IXI. 

!XI 
(2.20) 

Since [-I(A) is to be a tangent vector at x, we must have x· [-I (A) = 0, and from 
(2.20fwe get the requirement x . (X I\A) = o. 

From (2.20) we compute the induced transformation of pseudoscalars. Many 
terms vanish, cancel 0-1 combine, leaving us with the result 

( sin! I XI ) 2 _ • 
= (xeX)A[X·(A I I\A2I\ A 3)]. 

IXI 
(2.21) 
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This can be further simplified to give us the transformation for the unit pseudo
scalar: 

(Sin!X) 2 
[-I(Ie)= ~ Ix. (2.22) 

In accordance with Eqn. (1.21) applied to angle space, from Eqn. (2.22) we con
clude that (sin !X/X)2 is the Haar measure on angle space for SU(2) and the 
rotation group 0+(3, 0). 

Another important local parametrization is determined by stereographic projec
tion. From the explicit Eqn. (4-631) for stereographic projection, our computa
tions based on Eqn. (2.19) for parametrization by angles can be duplicated in 
straightforward fashion. The example we have worked out is sufficient to show how 
such computations can be carried out without coordinates. 

Since the group manifold of Spin(3) is a sphere, it will not be necessary to 
discuss its geometry. We have already discussed the geometry of spheres in Section 
5-2. However, we should take note of the fact that a sphere is a surface of constant 
curvature. There is a general connexion between Lie groups and surfaces of constant 
curvature which has been much explored in the literature. Our computation has 
some features which may be important for the general theory. In particular, we 
conjecture that any surface of constant curvature can be made into a Lie group 
manifold by endowing it with a bilinear product function I/>(x, y) like (2.6). The 
linearity of I/J(x, y) is of great importance, for, among other things, it leads directly 
to a spinor representation for the group, as we observed in writing Eqn. (2.12). 
This must be related to our observations about spinor representations in the next 
section, though much work will be required to work out the details. Note, fmally, 
that the linearity of I/J(x, y) is totally obscured in the product function for a local 
parametrization of the group, as is obvious from our example of parametrization 
by angles. So it should be no surprise that conventional approaches employing local 
parametrizations have failed to notice such an important fact. 

8-3. Uassification 

Our analysis in Section 8-1 shows that to every Lie group there corresponds a Lie 
algebra of left invariant vector fields on the group manifold. Conversely, every 
simply connected Lie group is uniquely determined by its Lie algebra. It follows, 
then, that a classification of Lie groups will be achieved by classifying Lie algebras. 
The latter classification can be attacked with the methods of linear algebra, because 
every Lie algebra is a linear space. Traditionally, the computations required for 
detailed classification have been carried out with matrix, algebra. But we have seen 
in Chapter 3 that Geometric Algebra supplies us with alternative ways to make 
computations. This leads us to ask how Geometric Algebra can best be employed 
to describe and classify Lie algebras. 
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To simplify the study of the lie bracket [a, b] = c on an abstract lie algebra 2, 
an associlltive algebra isomorphic to 2 can be constructed in which the lie bracket 
is represented as the commutator product 

[A,B] =AXB==i(AB-BA)=C. (3.1) 

The possibility of identifying the elements A, B, C, ... as linear transformations, 
or matrices, or differential operators has been studied at length in the literature. 
We shall consider a different possibility. Geometric Algebra is associative, so any 
subalgebra which is closed under the commutator product is a lie algebra. We have 
previously noted that, as a consequence of Eqn. (1-1.67), the space ofbivectors is 
closed under the commutator product. Let us call any linear subspace of bivectors 
which is closed under the commutator product (3.1) a bivector algebra. We now 
propose to investigate a Most Interesting Conjecture (MIC): Every Lie algebra is 
isomorphic to a bivector algebra. The bivector algebra isomorphic to a given lie 
algebra 2 is called the bivector representation of 2. 

To support our claim that MIC is interesting, we will: 

(1) establish the existence of bivector representations for many of the most 
important lie algebras, and 

(2) show that bivector algebras provide us with a simple mechanism for 
analyzing and representing the structure of lie algebras. 

It follows that MIC is interesting even if it is false, for, at the very least, it should 
lead to a significant classification of lie algebras into those with bivector represen
tations and those without. 

Now let us examine some specific bivector algebras. For reasons which will 
become apparent, we believe that the spinor groups characterized in Section 3-8 
comprise the most important class of Ue groups. In our discussion here, we assume 
that the reader is familiar with the nomenclature and results established in Section 
3-8. Recall that the spinor group Spin+(p, q) is the covering group of the special 
orthogonal group SO(p, q) == O+(p, q) on a vector space .9Ip•q with signature (p, q). 
It follows that the lie algebras of Spin+(p, q) and O+(p, q) are isomorphic. The lie 
algebra of Spin+(p, q) is the linear space 91(P, q) == C§2(.9Ip,q) of all bivectors in 
the Geometric Algebra of .9Ip• q. If B is a bivector in 91(p, q), then 

.. I 
1/1 = eB = L I Bn (3.2) 

n=O n. 

in a spin or in Spin +(p. q). This has a partial converse: Every element 1/1 in Spin + (P. q) 
which is continuously connected to the identity can be represented in the form 
(3.2) if and only if p or q = 0 or I. The case q = 0 was treated in Section 3-5, and a 
complete proof is given in [Ri]. 

To describe the stlucture of the Lie algebra 91(p, q), we choose a basis e 1 , el, 
... , en of vectors in .91 P. q. Their inner products determine a 'metric tensor' 

(3.3) 
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while their outer products determine a basis for 91(p, q): 

eij == ei" ej. 

Chapter 8 

(3.4) 

With the help of identity (l-1.68), from (3.3) and (3.4) we evaluate the commutator 
products 

(3.5) 

These are the well-known structure relations for the Ue algebra of the rotation 
group. But (3.5) is a consequence of the simpler relations (3.3) and (3.4), so these 
relations can, with equal merit, be referred to as structure relations for the bivector 
algebra 91(p, q); thus, Eqn. (3.4) describes the structure of the bivector eij by 
giving its factorization into vectors. 

Obviously, every bivector algebra is a subalgebra of some 91(p, q). To show how 
structure relations for a subalgebra can be specified without commutation relations, 
we exhibit them for the bivector representation of the Lie algebra of the special 
unitary group SU{n) and its generalization SU(p, q). This algebra is a sub algebra 
of 91 (2p, 2q). To describe it, we select a basis in S#2p , 2q of vectors el, e2, ... , en, 
II = en + 1,12 = en + 2, ... , In = e2n with the properties 

ei' ej = Ii' Ii ==gij, 

ei'li = 0, 

where i, j = I, ... ,n. From these vectors we construct bivectors 

Eij = ei" ej + f; "Ii, 
Fij = ei "Ii - f; "ej (i *- j), 

Hk = ek "ft - ek + 1 "ft + 1, 

(3.6a) 

(3.6b) 

(3.7a) 

(3.7b) 

(3.7c) 

where i, j = I, ... , n and k = I, ... ,n - I. The bivectors Eij, Fij' Hk are linearly 
independent, so they form a basis for a space of bivectors of dimension !n{n - 1) + 
!n(n - 1) + n - 1 = n2 - I. The reader can verify that this space is closed under 
the commutator product, so it is a subalgebra of 91(2p, 2q). The commutator 
products are easily evaluated with the help of (3.5) and seen to give the usual 
structure relations for the special unitary algebra when gij = 0ij' However, Eqns. 
(3.6) and (3.7) are not only simpler than those relations, they give us more insight 
into the structure of the algebra. In particular, the structural relations (3.7) show 
that none of the bivectors in this algebra is simple. Evidently, the distinction 
between simple and nonsimple bivectors is an important one in the classification of 
bivector algebras. 

It is a well-known fact that every compact Lie group is isomorphic to a closed 
subgroup of some unitary group. Since we know how t~ represent the Lie algebras 
of the unitary groups, it follows that our MIC is true for the Ue algebras of all 
compact groups. 
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Every bivector algebra determines a unique spinor group by exponentiation, for 
the exponential (3.2) of any bivector is a spinor. Thus, from (3.7) we immediately 
obtain a spinor representation of SU(p, q). More generally, our MIC obviously 
admits the following corollary: Every simply connected Lie group is homomorphic 
to a spinor group. Our corollary suggests a new approach to the theory of group 
representations. The conventional approach is based on homomorphisms with 
the general linear group. Our corollary implies that matrix representations can 
be replaced by spinor representations. For reasons which should be apparent 
from this section, we expect to fmd that the analysis and classification of spinor 
representations is generally simpler than that of matrix representations. Of course, 
we do not claim that the general linear group can be dispensed with just because it 
can be represented by spinors. Rather, we believe that spinor representations will 
give us a deeper understanding of all transformation groups, as they have most 
certainly done for the orthogonal groups already. 

Let us return to the general problem of classifying lie algebras. In Cartan's 
approach to this problem the so-called Killing form plays a key role. For the 
bivector algebra 91(p, q), the Killing form K(A, B) is given by 

K(A, B) = L [A, [B, ei/]] . eii, 
i<i 

where the sum is over a basis in 91(p, q). Using (3.1) to reduce this to an expression 
in terms of the geometric product, we get 

K(A, B) = L ! (eiieit4B - eiiAeifI>. 
i<i 

From the identities (2-2.38a, c), we get 

L eiieil = (n) = !n(n -1), 
i<i 2 

L eliAeii = r~A, 
i<1 

where n = p + q ~ 2, and 

Hence, 

K(A, B) = 1(4n -7)UB>. 

The numerical coefficient is of no consequence, so we can regard the inner product 
A . B = UB) as the Killing form on any bivector algebra (either 91(p, q) or any 
of its subalgebras). Clearly, both inner and outer products, in fact, the entire 
Geometric Algebra is needed for a full analysis of bivector algebras. 

We are now in a position to examine some standard results translated into 
properties of bivector algebras. Consider Cartan's criterion: A lie algebra is semi-



300 ChapterS 

simple (i.e. has no nonzero abelian ideals) if and only if its Killing fonn is non
degenerate. This can be translated to assert that a bivector algebra is nondegenerate 
if it has a basis which does not include any null elements. A multivector A is said 
to be null if (Al) = A· A = O. Let us examine the structure of null bivectors. 
Consider, first, a simple bivector A = a A b, for which 

From this we can conclude that 

Al =0 iffa·b=Oanda1b1 =0, 

Al <0 iffa1b1 >0, 

Al>O iffa1 b2 <0. 

(3.8) 

(3.9a) 

(3.9b) 

(3.9c) 

The vectors a and b are factors of A, and they are said to be orthogonal/actors if 
a· b = o. From (3.9a) we conclude that a simple bivector is null iff it has a null 
vector as an orthogonal factor. Now consider a two-bladed bivector B = BI + B1 ; 

obviously, its 'nonn' 

(JJl)=Bi +B~ 

caR vanish only if B~ and Bi have opposite sign. Equations (3.9b, c) show how this 
conditions depends on properties of vector factors; thus, A 1 < 0 if the factors of A 
have the same signature, and A 1 > 0 iff the factors have opposite signature. (The 
signature of a vector is the sign of its square.) These considerations are sufficient 
to explain how Cartan's criterion can be satisfied or violated by a bivector algebra. 
They also give us insight into Weyl's theorem that a semisimple connected lie 
group is compact iff its Killing form is negative definite; for we have seen that all 
factors of a negative defmite blade have the same signature. Thus, all questions 
of compactness can be reduced to questions of signature for factors of bivector 
representations. 

It should not be difficult now to reproduce Cartan's classification of semisimple 
algebras for bivector algebras. However, to follow Cartan's method closely it would 
be necessary to 'complexify' the algebra. Formal algebraic 'complexification' 
without an underlying geometriC basis is contrary to the philosophy of this book, 
so we believe it is desirable to look for an alternative method. The issue will be 
clarified by examining the simplest case. 

The simplest lie algebras are those for the three-parameter groups, and they can 
all be obtained directly from Eqn. (3.5). Let el. el and e3 be orthogonal vectors; 
for such vectors (3.5) reduces to 

(3.10a) 

(3.10b) 

(3.lOc) 
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By letting gil, g22 and g33 have all combinations of the values 1, -1,0, we get all 
the Lie algebras for the three-parameter groups. The choice gil = g22 = g33 = ± 1 
gives us the Lie algebra of the isomorphic compact groups 

Spin +(3) - SO(3) - SU(2) - Sp(2), (3.11) 

where Sp(2) is the (real) symplectic group on two dimensions. The choice gil 

g22 = -g33 = ± 1 gives us the Lie algebra for the isomorphic noncompact groups 

Spin +(2, 1) - SO(2, 1) - SU(1, 1) - SL(2), (3.12) 

where SL(2) is the special linear group on two dimensions. The choices gll = 
± g22 = ± I and g33 = 0 give us the Lie algebras of the isometry groups on two 
dimensions, about which we shall have more to say later. 

Cartans classification of Lie algebras is based on a systematic analysis of the 
'eigenvalue' problem [A, X] = U. To find eigenbivectors of e12 in the algebra 
given by (3.10), we look for linear combinations satisfying 

Using the commutation relations (3.10), we fmd that this relation holds if and 
only if gllg12 = -1, which implies that the algebra is noncompact. However, if 
we complexify the compact algebra by introducing 'Hermitian' generators Hi; == iei; 
where i = (_1)112 is an imaginary scalar, then Eqn. (3.10a) becomes 

and similar changes can be made to Eqns. (3.lOb, c), and we fmd that the condition 
for H12 to have eigenbivectors is now gllg22 = 1. Clearly, this artifice of com
plexification to accommodate the eigenvalue problem does not alter the structure 
relations, but it does introduce some danger of obscuring the crucial distribution 
between vectors of different signature in the gij, so we think it can and should be 
avoided. Besides, Geometric Algebra presents some attractive alternatives. For 
example, the analysis of 'root vector systems' which characterize the simple Lie 
algebras is known to be facilitated by employing finite reflexion groups, and our 
treatment in Sections 3-5 and 3-8 shows that Geometric Algebra is the ideal tool for 
describing reflexions. Also, our representation (3.7) for the Lie algebra of SU(p, q) 
suggests that a root vector system for a bivector algebra describes how elements of 
the algebra can be factored into vectors. 

Now let us make a thorough analysis of the spinor representations for an impor
tant class of noncompact groups. Let I' (p, q) be the special conformal group of the 
vector space .r#p, q' We found explicit expressions for the elements of this group in 
Section 5-5. Now we will prove by explicit construction that I' (p, q) is isomorphic 
to SO(p + 1, q + 1), hence, Spin+(p + 1, q + 1) is its covering group. 
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First, we extend SlIp, q to SlIp + I, q + 1 by introducing vectors e and e with 
the properties 

e·e=O, e·x=O=e·x, (3.13) 

for all x in SlIp, q. Next we introduce the function 

F(x) = -(x - e)n(x - e) = -(x - e)e(x - e) + (x - eie, (3.14) 

where n = e + e. This function can be regarded as a representation of the stereo
graphic projection of SlIp, q onto the unit sphere in sip + 1 , q in terms of 'homo
geneous coordinates'; for, 

ee AF(x) -1 
I(x) = = -(x - e) e(x - e) 

e' F(x) 
(3.15) 

is exactly our formula (4-6.31) for a stereographic projection, and it is obviously 
invariant under an arbitrary scale transformation 

F(x) --+ ~(x)F(x). 

We will show that rotations of the point x' = F(x) in SlIp + 1, q + 1 correspond 
exactly to conformal transformations of the point x in sip, q. In our computations 
we will use the relations 

n =e- e= ene, nen = 2n 
(3.16) 

nn = 2ne een = n, xe = -ex, xe=-ex, 

which follow.from the relations (3.13). 
Rotations on S#p, q are obviously rotations on sip + 1, q + 1, so if U is an element 

of Spin+(p, q), then 

UF(x)ut =F(UxUt ). (3.17) 

Explicit proof of this relation from (3 .14) uses only the properties that U commutes 
with e and e and uut = 1. 

The correspondence between rotations and transla~ions is given by the equation 

TaF(x)T! =F(x+a), (3.18) 

where Ta is a spin or defmed by 

Ta =ena /2 = 1 +!na= 1 -!an. (3.19) 
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Equation (3.18) is derived by operating with Til on (3.14); thus, 

TIl(x - e)n = (1 - !an)(x - e)n 

=(x +a - e)n, 

with a similar result from the action of rJ . 
The special conformal transformation (5-5.51a) corresponds to the rotation 

(3.20) 

where 

(3.21) 

and 

a(x) = (1 - XII) (I - ax). 

We have already noted that the scale factor a(x) in (3.20) does not affect the 
correspondence established via the stereographic projection (3.15). Equation (3.20) 
follows by operating with KII on (3.14), for 

KIl(x - e)n(x - e} = (1 - !an) (x - e}n(x - e) 

= (x - e +aex}n(x - e) 

= [x(1 -axrl - e) (1 -ax)n(x - e). 

In a similar way, by operating on this expression from the right with Kj we get 
(3.20) as' desired. 

The correspondence between dilations and rotations is given by 

(3.22) 

where 

(3.23) 

as the reader can readily verify. 
To sum up, we have shown that the spinors KIl, U, Da, Til are respectively, in 

two-to-one correspondence with the special conformal transformation, the rotation, 
the dilation and the translation specified by Eqns. (5-5.51a, b, c, d). This group of 
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spinors is therefore a representation of the conformal group. The generators of this 
spinor group are bivectors 

(e - e)Aej 

ej" ej 

eAe 

(e +e) "ei 

for Ka, 

for U, 

for DOl' 

for Ta, 

(3.24a) 

(3.24b) 

(3.24c) 

(3.24d) 

where { ej} is a basis for .511 p, q. But these bivectors form a complete basis for 
~(p + 1, q + 1), which is the Lie algebra for Spirl+(p, q). Therefore,.the special 
conformal group e (p, q) is isomorphic to the complete orthogonal group SO(p + I, 
q + 1) as claimed. 
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Projection operator, 18, 149 
Projective Weyl tensor, 209 

trivector, 209 
Projectively flat, 210 
Projectively related, 207 
Proper blade, 76 

Lorentz group, 106 
value, 76 

Protraction, 115 
Pseudo-Euclidean space, 41,102 
Pseudo scalar, 1 7 

angular velocity, 163 
of a manifold, 140 

r-blade,4 
,-form, 33, 114 
,-vector, 4, 11 3 
Real numbers, 4 

plane, 81 
Reciprocal frame, 28 
Reflection, 178 
Reisz's identity, 40 
Rejection, 18, 149 
Related manifolds, 

projectively, 207 
conformally, 210 
isometrically, 210 

Residue Theorem, 262 
Reversion,S 
Ricci identity, 191 

tensor, 193 
Riemann Curvature, 191 

mobiles, 232 
Rotation angle, 108 

group, 105 
simple, 107 

Rotor group, lOS, 110 
Root vectors, 301 

Scalar,4 
curvature, 193 
product, 13 

Shape operator, 149 
Shear, 95 
Signature, 42 

Euclidean, 102,105 
Lorentz, 110 
of a manifold, 226 

pseudo-Euclidean, 102 
spacetime, 106 

Simple ,-vector, 4, 113 
,-form, 33 
rotor, 107 
reflection, 92 
rotation, 107 
manifold,261 

Simplicial derivative, 61,166 
variable, 61 

Skew-symmetrizer,62 
Skewsymmetric, 78, 112 
Spacetime, 106, 226 

biform, 126 
signature, 226 

Special conformal group, 216, 301 
Special linear group, 301 
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Special orthogonal group, 104, 297, 301, 
304 

Special unitary group, 291,293,298,301 
Spectral form, 79, 88 
Spin group, 105, 299 
Spinor, 106, 182 
Spur, 150, 164,257 
Square root of metric tensor, 101 
Stereographic projection, 178, 296, 302 
Stokes Theorem, 256, 258 
Strain,95 
Structure constants (group), 290 
Sylvester's identity, 39 
Sylvester's Law of Inertia, 102 
Symmetric bilinear form, 101 

transformation, 112 
Symplectic transformation, 97 

basis, 99 
group, 97 
orthogonal, 10 1 
rotation, 99 
transvection, 101 

Tangent algebra, 140, 141 
vector, 139 
space, 139 

Taylor expansion, 47 
Tensor, 131 

addition and multiplication, 132 
contraction 132 
divergence, 147, 255 
Einstein, 194 
field,142 
product, 135 
summation convention, 134 

Torsion, 222 
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Trace, 11, 74 
Tractions, 114, 132 
Transformation, 66, 165 

active, 135 
codivergence, 156 
conformal, 186 
degree of, 268 
divergence, 172 
induced, 165, 173 
linear, see: Linear transformation 
passive, 135 

Trivector,4 

Vector manifold, 139 

signature of, 42 
space, 20 

Velocity of a curve, 237 
of pseudoscalar, 163 

Versor, 103 
group, 104 

Volume element, 251 

Weyl tensor, 
conformal,219 
projective, 209 
trivector, 209 

Whitney, 249 
Winding number, 272 
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