Supporting Online Material for

Rules for Biologically Inspired Adaptive Network Design

Atsushi Tero, Seiji Takagi, Tetsu Saigusa, Kentaro Ito, Dan P. Bebber, Mark D. Fricker, Kenji Yumiki, Ryo Kobayashi, Toshiyuki Nakagaki*
*To whom correspondence should be addressed. E-mail: nakagaki@es.hokudai.ac.jp

This PDF file includes:

Figs. S1 and S2

Fig. S1: The effect of varying I_{0} on network architecture

Simulation results are shown for increasing values of I_{0} at a fixed value of γ (1.80). The networks increase the number of cross connections from close to a minimum spanning tree at the lowest values of I_{0} (A), to give a better connectivity at higher values (I). Numbers in parenthesis are ($\gamma, \mathrm{I}_{0}, \mathrm{TL}_{\mathrm{MST}}, \mathrm{FT}_{\text {MST }}$ and $\mathrm{MD}_{\text {MST }}$).

(1.80, 0.20, 1.05, 0.00, 0.97)

(1.80, 0.80, 1.11, 0.38, 0.99)

G

$(1.80,1.40,1.22,0.63,0.96)$

(1.80, 1.00, 1.12, 0.39, 0.96)

$(1.80,2.20,1.39,0.92,0.87)$

(1.80, 1.20, 1.11, 0.38, 0.95)

$(1.80,3.00,1.56,0.97,0.85)$

Fig. S2: The effect of varying γ on network architecture

Simulation results are shown for increasing values of γ at a fixed value of $\mathrm{I}_{0}(0.2)$. At the lowest value of γ, much of the original mesh remains, with little development of a preferential distribution network (A). As γ is increased, the network progressively resolves towards the minimum spanning tree (I). The parameter combinations shown in B, give a network that closely matches the Tokyo rail network and the illuminated Physarum networks. Numbers in parenthesis are ($\gamma, \mathrm{I}_{0}, \mathrm{TL}_{\mathrm{MST}}, \mathrm{FT}_{\text {MST }}$ and $\mathrm{MD}_{\mathrm{MST}}$).

