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15 Elasticity

What shape does a piece of paper take when we push it in at the ends? To answer this
question let’s acquaint ourselves with another continuum approximation, used to describe
the deformation of elastic solids (we might actually have studied this before our work on
fluids, as it is conceptually simpler). We first need to find a way to describe stress and strain
within the solid, and then determine the relation between the two. Then we can derive the
equations of elasticity and apply them to the buckling of a thin plate.

15.1 Strain

If a solid is deformed, then points within the solid will move. We fix our attention on a
single point, whose coordinates are (x1, x2, x3), and the close neighborhood of this point.
We suppose that in the strained state the Cartesian coordinates of the same point have
become (x′1, x

′
2, x

′
3). The displacement of this point due to the deformation is denoted by

u = u(x1, x2, x3), where
ui = x′i − xi. (1)

The vector u is called the displacement vector.
When a body is deformed the distance between its points change. Let’s consider two

points very close together. If the vector joining them before is dxi, the vector joining them in
the deformed body is dx′i = dxi +dui. This distance between the points was originally dl =√
dx21 + dx22 + dx23 and is now dl′ =

√
dx′21 + dx′22 + dx′23 . Using the summation convention,

which tells us to sum over repeated indices (i.e., aibi = a1b1 +a2b2 +a3b3), and substituting
in that dui = (∂ui/∂xk)dxk, we get

dl′2 = dl2 + 2
∂ui
∂xk

dxidxk +
∂ui
∂xk

∂ui
∂xl

dxkdxl. (2)

We shall neglect the last of these terms, as we consider the ui to be small, so that

dl′2 = dl2 + 2eijdxidxj (3)

where

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(4)

are the components of the strain tensor e. This is called linear elasticity (even though it
is not really linear). It is often very useful to separate pure shear from pure compression
effects, which can be achieved by rewriting1

eij =

(
eij −

δij
3
ell

)
+
δij
3
ell =

(
eij −

δij
3
∇ · u

)
+
δij
3
∇ · u. (5)

The first part in parentheses has a vanishing trace and therefore represents pure shear.

1In d dimensions one would simply replace δij/3 by δij/d everywhere.
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15.2 Stress tensor

When a body is deformed, the arrangement of molecules within is changed, and forces arise
that want to restore the body to its equilibrium configuration. These are called internal
stresses, represented by a stress tensor σ = (σij), and when there is no deformation the
stress is zero

σik = 0. (6)

As with a fluid, the three components of a force on a volume element V can be obtained
from stresses by transforming a surface integral into a volume integral∫

∂V
σikdAk =

∫
V

(∂kσik)dV =

∫
V
fidV (7)

Hence, the vector fi must be given by the divergence of the stress tensor σik.

fi =
∂σik
∂xk

. (8)

We recognise that σikdAk is the force per unit area in the i-direction on the surface element
with outward normal dA. One thing we know about the stress tensor is that it is symmetric
(σij = σji). If, for example, the body is in a gravitational field then the internal stresses
must everywhere balance gravity, in which case the equilibrium equations are

∂σik
∂xk

+ ρgi = 0. (9)

Additional external forces applied to the surface of the body will enters as boundary condi-
tions that complement the equilibrium conditions (9). For instance, if there is an external
force per unit area, f̂ , acting over the surface, then we require

σiknk = f̂i, (10)

where n is the outward unit normal on the surface.

15.3 Hooke’s law

In general, we would like to use Eqs. (9) to predict the deformation of a solid body under
a given force distribution. That is, we have to express the stress tensor σij in terms of the
displacement field u. The main body of the mathematical theory of elasticity rests on the
assumption of a linear homogeneous relation between the elements of the stress tensor and
the strain tensor. This is just the continuum version of Hooke’s Law. To simplify matters,
let’s focus on materials that are isotropic (i.e., the elastic properties are independent of
direction). In this case

σij = λδij(e11 + e22 + e33) + 2µeij = λδijTre + 2µeij (11)

where δij is the Kronecker delta and λ and µ are positive elastic constants of the material,
called Lame coefficients. The corresponding (free) energy density E of the body associated
with deformation, obtained from the relation

σij =
∂E

∂eij
, (12)
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is therefore

E =
1

2
λe2ii + µe2ij . (13)

As stated above, the sum eii = Tre is related to the change in volume associated with a
deformation. If this is zero, only the shape of the body is altered, corresponding to pure
shear. Recalling our above decomposition

eij = (eij −
1

3
δijell) +

1

3
δijell. (14)

we can obtain a general expression for the energy density of a deformed isotropic body, by
replacing (13) with

E =
1

2
Ke2ll + µ(eik −

1

3
δikell)

2 (15)

where K and µ positive constants, respectively called the modulus of compression and the
modulus of rigidity. In 3D, K is related to the Lame coefficients by2

K = λ+
2

3
µ (16)

15.4 A simple problem

Consider the simple case of a beam. Let the beam be along the z-axis, and let us pull it a
both ends to stretch it. The force per unit area p is uniform over each end. The resulting
deformation is uniform throughout the body and, hence, so is the stress tensor. It therefore
follows that all components σik are zero except for σzz, and from the forcing condition at
the end we have that σzz = p.

From the general expression that relates the components of the stress and strain tensors,
we see that all components eik with i 6= k are zero. The equilibrium equations are therefore

exx = eyy = −1

3

(
1

2µ
− 1

3K

)
p (17)

and

ezz =
1

3

(
1

µ
+

1

3K

)
p. (18)

The component ezz gives the lengthening of the rod, and the coefficient of p is the coefficient
of extension. Its reciprocal is Young’s modulus

Y =
9Kµ

3K + µ
. (19)

The components exx and eyy give the relative compression of the rod in the transverse
direction. The ratio of the transverse compression to the longitudinal extension is called
Poisson’s ratio, ν:

exx = −νezz, (20)

2In 2D, this relation becomes K = λ+ µ.
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where

ν =
1

2

(
3K − 2µ

3K + µ

)
. (21)

Since K and µ are always positive, Poisson’s ratio can vary between -1 and 1
2 . Note that a

negative value corresponds to pulling on the beam and it getting thicker! Now we see why
we use Y and ν; they are easier to measure. Inverting these formulae, we get

µ =
Y

2(1 + ν)
, K =

Y

3(1− 2ν)
. (22)

The free energy then becomes

E =
Y

2(1 + ν)

(
e2ik +

ν

1− 2ν
e2ll

)
. (23)

The stress tensor is given in terms of the strain tensor by

σik =
Y

1 + ν

(
eik +

ν

1− 2ν
ellδik

)
. (24)

Conversely

eik =
1

Y
[(1 + ν)σik − νσllδik]. (25)
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16 The bending of a thin beam

Now we are in a position to try and calculate the shape of a bent beam. Our analysis
requires that the thickness be much smaller than the lateral dimension. The deformations
must also be small, such that the displacements are small compared with the thickness.
Although the general equilibrium equations are greatly simplified when considering thin
plates, it is more convenient not to derive our result from these. Rather, we shall use our
knowledge of variational calculus to calculate afresh the energy of a bent plate, and set
about varying that energy.

When a plate is bent, it is stretched at some points and compressed at others: on the
convex side there is evidently an extension and on the concave side there is compression.
Somewhere in the middle there is a neutral surface, on which there is no extension or
compression. The neutral surface lies midway through the plate.

We take a coordinate system with the origin on the neutral surface and the z-axis normal
to the surface. The xy-plane is that of the undeformed surface. The displacement of the
neutral surface is given by uz = w(x, y). For further calculations we note that since the
plate is thin, comparatively small forces on the surface are needed to bend it. These forces
are always considerably less than the internal stresses caused in the deformed beam by the
extension and compression of its parts. Thus we have on both surfaces of the plate

σxz = σyz = σzz = 0. (1)

Since the plate is small, these quantities must be small within the plate if they are zero on
the surface. We therefore conclude that σxz = σyz = σzz are small everywhere, and equate
them to zero. From our general formulae relating stress and strain, we have

σzx =
Y

1 + ν
ezx, σzy =

Y

1 + ν
ezy, (2)

σzz =
Y

(1 + ν)(1− 2ν)
[(1− ν)ezz + ν(exx + eyy)]. (3)

Substituting in our expression for the the strain tensor and equating to zero, we get

∂ux
∂z

= −∂uz
∂x

,
∂uy
∂z

= −∂uz
∂y

, (4)

ezz = −ν(exx + eyy)

(1− ν)
. (5)

In the first two of these equations uz can be replaced by w(x, y). Thus, integrating the
above relations gives

ux = −z ∂w
∂x

, uy = −z ∂w
∂y

, (6)
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where the constants of integration were chosen so as to make ux = uy = 0 for z = 0.
Knowing ux and uy we can now determine all the components of the strain tensor:

exx = −z ∂
2w

∂x2
, eyy = −z ∂

2w

∂y2
exy = −z ∂

2w

∂x∂y
, (7)

exz = eyz = 0, ezz =
zν

1− ν

(
∂2w

∂x2
+
∂2w

∂y2

)
. (8)

We now calculate the free energy of the plate, using our general formula,

E = z2
Y

1 + ν

[
1

2(1− ν)

(
∂2w

∂x2
+
∂2w

∂y2

)2

+

(
∂2w

∂x∂y

)2

− ∂2w

∂x2
∂2w

∂y2

]
. (9)

Integrating from −h
2 to h

2 , where h is the thickness of the plate, then integrating again over
an area element gives the free energy per unit area

EA =
Y h3

24(1− ν2)

∫ ∫ (
∂2w

∂x2
+
∂2w

∂y2

)2

+ 2(1− ν)

[(
∂2w

∂x∂y

)2

− ∂2w

∂x2
∂2w

∂y2

]
dxdy. (10)

where the element of area can be written dxdy since the deformation is small.
We now derive the equilibrium equation for a plate from the condition that it’s free

energy is a minimum. To simplify things, let’s just ignore any y-dependence and consider a
2D problem. Using the calculus of variations we have that the energy of the distorted beam
is

δE =
Y h3

12(1− ν2)

∫
d4w

dx4
δwdx. (11)

This energy must be equivalent to the work done in deforming the plate. Let f(x) be the
force per unit length acting on the plate, normal to the surface. Then the work done by
the external force is ∫

f(x)δwdx. (12)

Thus for an arbitrary deflection δw we have

Y h3

12(1− ν2)
d4w

dx4
= f(x). (13)

The simplest boundary conditions are if the edges are clamped, in which case

w = 0,
dw

dx
= 0 (14)

at the edges. The first of these expresses the fact that the edge of the plate undergoes no
deformation, and the second that it remains horizontal. For more details, see chapter 2 in
Theory of Elasticity, Landau & Lifschitz.
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