# 18.04 Complex analysis with applications

Jörn Dunkel

L 03: Analytic functions



## 4 Analytic functions

### 4.1 The derivative: preliminaries

$$f'(z) = \lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z} = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

**Example 4.1.** Find the derivative of  $f(z) = z^2$ .

Solution: We compute using the definition of the derivative as a limit.

$$\lim_{\Delta z \to 0} \frac{(z+\Delta z)^2 - z^2}{\Delta z} = \lim_{\Delta z \to 0} \frac{z^2 + 2z\Delta z + (\Delta z)^2 - z^2}{\Delta z} = \lim_{\Delta z \to 0} 2z + \Delta z = 2z$$

**Example 4.2.** Let  $f(z) = \overline{z}$ . Show that the limit for f'(0) does not converge.

Solution: Let's try to compute f'(0) using a limit:

$$f'(0) = \lim_{\Delta z \to 0} \frac{f(\Delta z) - f(0)}{\Delta z} = \lim_{\Delta z \to 0} \frac{\overline{\Delta z}}{\Delta z} = \frac{\Delta x - i\Delta y}{\Delta x + i\Delta y}.$$

Here we used  $\Delta z = \Delta x + i \Delta y$ .

Now,  $\Delta z \to 0$  means both  $\Delta x$  and  $\Delta y$  have to go to 0. There are lots of ways to do this. For example, if we let  $\Delta z$  go to 0 along the x-axis then,  $\Delta y = 0$  while  $\Delta x$  goes to 0. In this case, we would have

$$f'(0) = \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta x} = 1.$$

On the other hand, if we let  $\Delta z$  go to 0 along the positive y-axis then

$$f'(0) = \lim_{\Delta y \to 0} \frac{-i\Delta y}{i\Delta y} = -1.$$

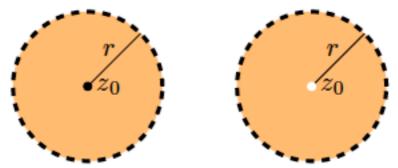
The limits don't agree! The problem is that the limit depends on how  $\Delta z$  approaches 0.

# (Unique) limit does not exist!

### 4.2 Open disks, open deleted disks, open regions

**Definition.** The open disk of radius r around  $z_0$  is the set of points z with  $|z - z_0| < r$ , i.e. all points within distance r of  $z_0$ .

The open deleted disk of radius r around  $z_0$  is the set of points z with  $0 < |z - z_0| < r$ . That is, we remove the center  $z_0$  from the open disk. A deleted disk is also called a punctured disk.



Left: an open disk around  $z_0$ ; right: a deleted open disk around  $z_0$ 

**Definition.** An open region in the complex plane is a set A with the property that every point in A can be be surrounded by an open disk that lies entirely in A. We will often drop the word open and simply call A a region.



Left: an open region A; right: B is not an open region

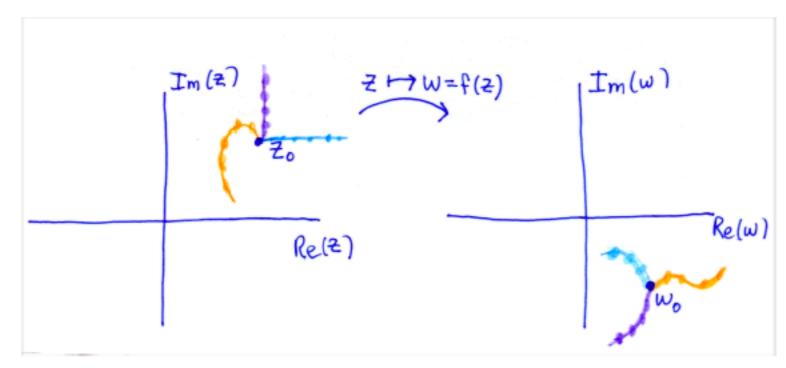
### 4.3 Limits and continuous functions

**Definition.** If f(z) is defined on a punctured disk around  $z_0$  then we say

$$\lim_{z \to z_0} f(z) = w_0$$

if f(z) goes to  $w_0$  no matter what direction z approaches  $z_0$ .

The figure below shows several sequences of points that approach  $z_0$ . If  $\lim_{z\to z_0} f(z) = w_0$  then f(z) must go to  $w_0$  along each of these sequences.



Sequences going to  $z_0$  are mapped to sequences going to  $w_0$ .

Example 4.3. Many functions have obvious limits

$$\lim_{z \to 2} z^2 = 4$$

and

$$\lim_{z \to 2} (z^2 + 2)/(z^3 + 1) = 6/9$$

Example 4.4. (No limit) Show that

$$\lim_{z \to 0} \frac{z}{\overline{z}} = \lim_{z \to 0} \frac{x + iy}{x - iy}$$

does not exist.

Solution: On the real axis we have

$$\frac{z}{\overline{z}} = \frac{x}{r} = 1$$

so the limit as  $z \to 0$  along the real axis is 1. By contrast, on the imaginary axis we have

$$\frac{z}{\overline{z}} = \frac{iy}{-iy} = -1,$$

so the limit as  $z \to 0$  along the imaginary axis is -1. Since the two limits do not agree the limit as  $z \to 0$  does not exist!

### 4.3.1 Properties of limits

We have the usual properties of limits. Suppose

$$\lim_{z \to z_0} f(z) = w_1 \text{ and } \lim_{z \to z_0} g(z) = w_2$$

then

- $\bullet \lim_{z \to z_0} f(z) + g(z) = w_1 + w_2.$
- $\bullet \lim_{z \to z_0} f(z)g(z) = w_1 \cdot w_2.$
- If  $w_2 \neq 0$  then  $\lim_{z \to z_0} f(z)/g(z) = w_1/w_2$
- If h(z) is continuous and defined on a neighborhood of  $w_1$  then  $\lim_{z\to z_0} h(f(z)) = h(w_1)$  (Note: we will give the official definition of continuity in the next section.)

We can restate the definition of limit in terms of functions of (x, y). To this end, let's write

$$f(z) = f(x+iy) = u(x,y) + iv(x,y)$$

and abbreviate

$$P = (x, y)$$
,  $P_0 = (x_0, y_0)$ ,  $w_0 = u_0 + iv_0$ 

Then

$$\lim_{z \to z_0} f(z) = w_0 \qquad \text{iff} \qquad \begin{cases} \lim_{P \to P_0} u(x, y) = u_0 \\ \lim_{P \to P_0} v(x, y) = v_0. \end{cases}$$

### 4.3.2 Continuous functions

**Definition.** If the function f(z) is defined on an open disk around  $z_0$  and  $\lim_{z\to z_0} f(z) = f(z_0)$  then we say f is continuous at  $z_0$ . If f is defined on an open region A then the phrase 'f is continuous on A' means that f is continuous at every point in A.

**Fact.** f(z) = u(x,y) + iv(x,y) is continuous iff u(x,y) and v(x,y) are continuous as functions of two variables.

### Example 4.5. (Some continuous functions)

(i) A polynomial

$$P(z) = a_0 + a_1 z + a_2 z^2 + \ldots + a_n z^n$$

is continuous on the entire plane. Reason: it is clear that each power  $(x+iy)^k$  is continuous as a function of (x,y).

(ii) The exponential function is continuous on the entire plane. Reason:

$$e^z = e^{x+iy} = e^x \cos(y) + ie^x \sin(y),$$

so the both the real and imaginary parts are clearly continuous as a function of (x, y).

(iii) The principal branch  $\operatorname{Arg}(z)$  is continuous on the plane minus the non-positive real axis.

(iv) The principal branch of the function  $\log(z)$  is continuous on the plane minus the non-positive real axis. Reason: the principal branch of log has

$$\log(z) = \log(r) + i\operatorname{Arg}(z),$$

so the continuity of  $\log(z)$  follows from the continuity of  $\operatorname{Arg}(z)$ .

### 4.3.3 Properties of continuous functions

Suppose f(z) and g(z) are continuous on a region A. Then

- f(z) + g(z) is continuous on A.
- f(z)g(z) is continuous on A.
- f(z)/g(z) is continuous on A except (possibly) at points where g(z) = 0.
- If h is continuous on f(A) then h(f(z)) is continuous on A.

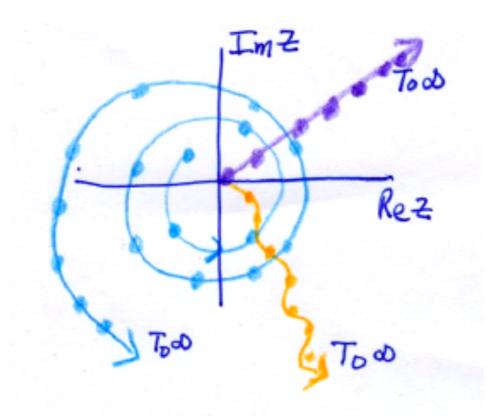
Using these properties we can claim continuity for each of the following functions:

- $\bullet$   $e^{z^2}$
- $\cos(z) = (e^{iz} + e^{-iz})/2$
- If P(z) and Q(z) are polynomials then P(z)/Q(z) is continuous except at roots of Q(z).

### 4.4 The point at infinity

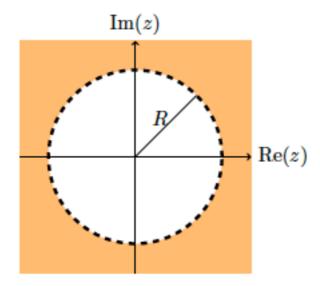
By definition the extended complex plane =  $\mathbb{C} \cup \{\infty\}$ . That is, we have **one** point at infinity to be thought of in a limiting sense described as follows.

A sequence of points  $\{z_n\}$  goes to infinity if  $|z_n|$  goes to infinity.



Various sequences all going to infinity.

If we draw a large circle around 0 in the plane, then we call the region **outside** this circle a neighborhood of infinity.



The shaded region outside the circle of radius R is a neighborhood of infinity.

### 4.4.1 Limits involving infinity

The key idea is  $1/\infty = 0$ . By this we mean

$$\lim_{z\to\infty}\frac{1}{z}=0$$

We then have the following facts:

• 
$$\lim_{z \to z_0} f(z) = \infty \Leftrightarrow \lim_{z \to z_0} 1/f(z) = 0$$

• 
$$\lim_{z \to \infty} f(z) = w_0 \Leftrightarrow \lim_{z \to 0} f(1/z) = w_0$$

• 
$$\lim_{z \to \infty} f(z) = \infty \Leftrightarrow \lim_{z \to 0} \frac{1}{f(1/z)} = 0$$

Example 4.6.  $\lim_{z\to\infty} e^z$  is not defined because it has different values if we go to infinity in different directions, e.g. we have  $e^z = e^x e^{iy}$  and

$$\lim_{x\to -\infty} \mathrm{e}^x \mathrm{e}^{iy} = 0$$

$$\lim_{x\to +\infty} \mathrm{e}^x \mathrm{e}^{iy} = \infty$$

 $\lim_{y\to +\infty} e^x e^{iy}$  is not defined, since x is constant, so  $e^x e^{iy}$  loops in a circle indefinitely.

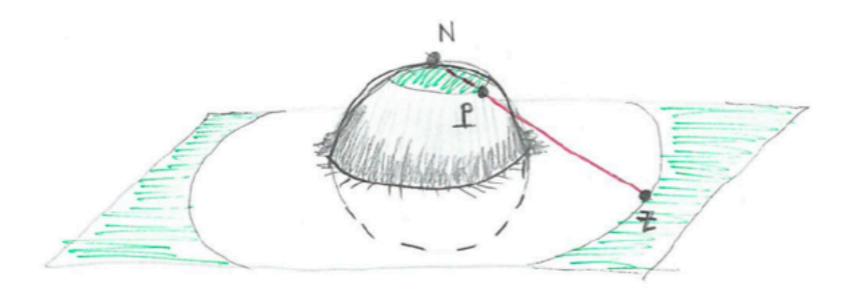
Example 4.7. Show  $\lim_{z\to\infty} z^n = \infty$  (for n a positive integer).

Solution: We need to show that  $|z^n|$  gets large as |z| gets large. Write  $z=Re^{i\theta}$ , then

$$|z^n| = |R^n e^{in\theta}| = R^n = |z|^n$$

Clearly, as  $|z| = R \to \infty$  also  $|z|^n = R^n \to \infty$ .

### 4.4.2 Stereographic projection from the Riemann sphere



Stereographic projection from the sphere to the plane.

$$P = (a, b, c) \mapsto z = \frac{a}{1 - c} + i \frac{b}{1 - c}$$

The point N = (0,0,1) is special, the secant lines from N through P become tangent lines to the sphere at N which never intersect the plane. We consider N the point at infinity.

### 4.5 Derivatives

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

If the limit exists we say f is analytic at  $z_0$  or f is differentiable at  $z_0$ .

**Remember:** The limit has to exist and be the same no matter how you approach  $z_0$ !

If f is analytic at all the points in an open region A then we say f is analytic on A.

Alternative notations:

$$f'(z_0) = \frac{dw}{dz}\Big|_{z_0} = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z}$$

-

### 4.5.1 Derivative rules

assuming f and g are differentiable we have:

• Sum rule: 
$$\frac{d}{dz}(f(z) + g(z)) = f' + g'$$

• Product rule: 
$$\frac{d}{dz}(f(z)g(z)) = f'g + fg'$$

- Quotient rule:  $\frac{d}{dz}(f(z)/g(z)) = \frac{f'g fg'}{g^2}$
- Chain rule:  $\frac{d}{dz}g(f(z)) = g'(f(z))f'(z)$
- Inverse rule:  $\frac{df^{-1}(z)}{dz} = \frac{1}{f'(f^{-1}(z))}$

(same as for real function)

To give you the flavor of these arguments we'll prove the product rule.

$$\frac{d}{dz}(f(z)g(z)) = \lim_{z \to z_0} \frac{f(z)g(z) - f(z_0)g(z_0)}{z - z_0}$$

$$= \lim_{z \to z_0} \frac{(f(z) - f(z_0))g(z) + f(z_0)(g(z) - g(z_0))}{z - z_0}$$

$$= \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}g(z) + f(z_0)\frac{(g(z) - g(z_0))}{z - z_0}$$

$$= f'(z_0)g(z_0) + f(z_0)g'(z_0)$$