18.04 PROBLEM SET 1

DUE IN CLASS, FEBRUARY 19 ${ }^{\mathrm{TH}}$, 2019
1.1) (30: $10,10,10$ points)
(a) Let $z_{1}=1+i, z_{2}=1+3 i$. Compute $z_{1} z_{2}, z_{1} / z_{2}, z_{1}^{z_{2}}$ (use the principal branch of $\log)$.
(Give $z_{1} z_{2}$ and z_{1} / z_{2} in standard rectangular form and $z_{1}^{z_{2}}$ in polar form.)
(b) Compute all the values of i^{i}. Say which one comes from the principal branch of log.
(Give all your answers in standard form.)
Is it surprising that i^{i} is real?
(c) Let $z=1+i \sqrt{3}$.
(i) Compute z^{8}. (Give your answer in standard form.)
(ii) Find all the 4th roots of z.
1.2) (15: 5,5,5 points)
(a) Show $\overline{\mathrm{e}^{z}}=\mathrm{e}^{\bar{z}}$.
(b) Show that if $|z|=1$ then $z^{-1}=\bar{z}$.
(c) Let $\frac{x+i y}{x-i y}=a+i b$. Show that $a^{2}+b^{2}=1$.

Hint: This takes one line if you look at it right. Think polar form.
1.3) (15: 5,10 points)
(a) Sketch the curve $z=\mathrm{e}^{t(1+i)}$, where $-\infty<t<\infty$.
(b) Consider the mapping $z \rightarrow w=z^{2}$. Draw the image in the w-plane of the triangular region in the z-plane with vertices 0,1 and i.
1.4) (10 points)

Let $z_{k}=\mathrm{e}^{2 \pi i / n}$. Show

$$
1+z_{k}+z_{k}^{2}+z_{k}^{3}+\ldots+z_{k}^{n-1}=0
$$

Hint: The polynomial $z^{n}-1$ has one easy root. Use that to factor it into a linear term and a degree $n-1$ term.
1.5) (20 points)

Consider the mapping $w=\mathrm{e}^{z}$.
(i) Sketch in the w-plane the image under this mapping of vertical lines in the z-plane.
(ii) On the same graph sketch the image of horizontal lines.

Show enough lines to give a good idea of what's happening.
(iii) Show (argue either geometrically or analytically) that the images of a vertical and a horizontal lines meet at right angles.

