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1 Brief course description

Complex analysis is a beautiful, tightly integrated subject. It revolves around complex
analytic functions. These are functions that have a complex derivative. Unlike calculus
using real variables, the mere existence of a complex derivative has strong implications for
the properties of the function.

Complex analysis is a basic tool in many mathematical theories. By itself and through
some of these theories it also has a great many practical applications.

There are a small number of far-reaching theorems that we’ll explore in the first part of
the class. Along the way, we’ll touch on some mathematical and engineering applications of
these theorems. The last third of the class will be devoted to a deeper look at applications.

The main theorems are Cauchy’s Theorem, Cauchy’s integral formula, and the existence
of Taylor and Laurent series. Among the applications will be harmonic functions, two
dimensional fluid flow, easy methods for computing (seemingly) hard integrals, Laplace
transforms, and Fourier transforms with applications to engineering and physics.

1.1 Topics needed from prerequisite math classes

We will review these topics as we need them:

• Limits

• Power series

• Vector fields

• Line integrals

• Green’s theorem

1.2 Level of mathematical rigor

We will make careful arguments to justify our results. Though, in many places we will allow
ourselves to skip some technical details if they get in the way of understanding the main
point, but we will note what was left out.

1.3 Speed of the class

(Borrowed from R. Rosales 18.04 OCW 1999)
Do not be fooled by the fact things start slow. This is the kind of course where things

keep on building up continuously, with new things appearing rather often. Nothing is really
very hard, but the total integration can be staggering - and it will sneak up on you if you
do not watch it. Or, to express it in mathematically sounding lingo, this course is ‘locally
easy’ but ‘globally hard’. That means that if you keep up-to-date with the homework and
lectures, and read the class notes regularly, you should not have any problems.
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2 Complex algebra and the complex plane

We will start with a review of the basic algebra and geometry of complex numbers. Most
likely you have encountered this previously in 18.03 or elsewhere.

2.1 Motivation

The equation x2 = −1 has no real solutions, yet we know that this equation arises naturally
and we want to use its roots. So we make up a new symbol for the roots and call it a
complex number.

Definition. The symbols ±i will stand for the solutions to the equation x2 = −1. We will
call these new numbers complex numbers. We will also write

√
−1 = ±i

where i is also called an imaginary number.1 This is a historical term. These are perfectly
valid numbers that don’t happen to lie on the real number line.2 We’re going to look at the
algebra, geometry and, most important for us, the exponentiation of complex numbers.

Before starting a systematic exposition of complex numbers, we’ll work a simple example.

Example. Solve the equation z2 + z + 1 = 0.

Solution: We can apply the quadratic formula to get

z =
−1±

√
1− 4

2
=
−1±

√
−3

2
=
−1±

√
3
√
−1

2
=
−1±

√
3 i

2
.

Q: Do you know how to solve quadratic equations by completing the square? This is how
the quadratic formula is derived and is well worth knowing!

2.2 Fundamental theorem of algebra

One of the reasons for using complex numbers is because allowing complex roots means
every polynomial has exactly the expected number of roots. This is the fundamental
theorem of algebra:

A polynomial of degree n has exactly n complex roots (repeated roots are counted with
multiplicity).

In a few weeks, we will be able to prove this theorem as a remarkably simple consequence
of one of our main theorems.

1Engineers typically use j instead of i. We’ll follow mathematical custom in 18.04.
2Our motivation for using complex numbers is not the same as the historical motivation. Historically,

mathematicians were willing to say x2 = −1 had no solutions. The issue that pushed them to accept complex
numbers had to do with the formula for the roots of cubics. Cubics always have at least one real root, and
when square roots of negative numbers appeared in this formula, even for the real roots, mathematicians
were forced to take a closer look at these (seemingly) exotic objects.
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2.3 Terminology and basic arithmetic

Definitions

• Complex numbers are defined as the set of all numbers

z = x+ yi,

where x and y are real numbers.

• We denote the set of all complex numbers by C. (On the blackboard we will usually
write C –this font is called blackboard bold.)

• We call x the real part of z. This is denoted by x = Re(z).

• We call y the imaginary part of z. This is denoted by y = Im(z).

Important: The imaginary part of z is a real number. It does not include the i.

The basic arithmetic operations follow the standard rules. All you have to remember is
that i2 = −1. We will go through these quickly using some simple examples. It almost goes
without saying that in 18.04 it is essential that you become fluent with these manipulations.

• Addition: (3 + 4i) + (7 + 11i) = 10 + 15i

• Subtraction: (3 + 4i)− (7 + 11i) = −4− 7i

• Multiplication:

(3 + 4i)(7 + 11i) = 21 + 28i+ 33i+ 44i2 = −23 + 61i

Here we have used the fact that 44i2 = −44.

Before talking about division and absolute value we introduce a new operation called con-
jugation. It will prove useful to have a name and symbol for this, since we will use it
frequently.

Complex conjugation is denoted with a bar and defined by

x+ iy = x− iy.

If z = x+ iy then its conjugate is z = x− iy and we read this as “z-bar = x− iy”.

Example.
3 + 5i = 3− 5i

The following is a very useful property of conjugation: If z = x+ iy then

zz = (x+ iy)(x− iy) = x2 + y2

is real. We will use it in the next example to help with division.

Example. (Division.) Write
3 + 4i

1 + 2i
in the standard form x+ iy.
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Solution: We use the useful property of conjugation to clear the denominator:

3 + 4i

1 + 2i
=

3 + 4i

1 + 2i
· 1− 2i

1− 2i
=

11− 2i

5
=

11

5
− 2

5
i.

In the next section we will discuss the geometry of complex numbers, which give some
insight into the meaning of the magnitude of a complex number. For now we just give the
definition.

Definition. The magnitude of the complex number x+ iy is defined as

|z| =
√
x2 + y2.

The magnitude is also called the absolute value, norm or modulus.

Example. The norm of 3 + 5i =
√

9 + 25 =
√

34.
Important. The norm is the sum of x2 and y2. It does not include the i and is
therefore always positive.

2.4 The complex plane

2.4.1 The geometry of complex numbers

Because it takes two numbers x and y to describe the complex number z = x + iy we
can visualize complex numbers as points in the xy-plane. When we do this we call it the
complex plane. Since x is the real part of z we call the x-axis the real axis. Likewise, the
y-axis is the imaginary axis.

Real axis

Imaginary axis

r

z = x+ iy = (x, y)

x

y

θ Real axis

Imaginary axis

r

z = x+ iy = (x, y)

r

z = x− iy = (x,−y)

θ
−θ

2.4.2 The triangle inequality

The triangle inequality says that for a triangle the sum of the lengths of any two legs is
greater than the length of the third leg.

A

B

C

Triangle inequality: |AB|+ |BC| > |AC|
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For complex numbers the triangle inequality translates to a statement about complex
magnitudes. Precisely: for complex numbers z1, z2

|z1|+ |z2| ≥ |z1 + z2|
with equality only if one of them is 0 or arg(z1) = arg(z2). This is illustrated in the following
figure.

x

y

z1

z2

z1 + z2

Triangle inequality: |z1|+ |z2| ≥ |z1 + z2|

We get equality only if z1 and z2 are on the same ray from the origin.

2.5 Polar coordinates

In the figures above we have marked the length r and polar angle θ of the vector from the
origin to the point z = x+ iy. These are the same polar coordinates you saw in 18.02 and
18.03. There are a number of synonyms for both r and θ

r = |z| = magnitude = length = norm = absolute value = modulus

θ = arg(z) = argument of z = polar angle of z

As in 18.02 you should be able to visualize polar coordinates by thinking about the distance
r from the origin and the angle θ with the x-axis.

Example. Let’s make a table of z, r and θ for some complex numbers. Notice that θ is
not uniquely defined since we can always add a multiple of 2π to θ and still be at the same
point in the plane.
z = a+ bi r θ

1 1 0, 2π, 4π, . . . Argument = 0, means z is along the x-axis
i 1 π/2, π/2 + 2π . . . Argument = π/2, means z is along the y-axis

1 + i
√

2 π/4, π/4 + 2π . . . Argument = π/4, means z is along the ray at 45◦ to the x-axis

Real axis

Imaginary axis
i

1

1 + i
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When we want to be clear which value of θ is meant, we will specify a branch of arg.
For example, 0 ≤ θ < 2π or −π < θ ≤ π. This will be discussed in much more detail in the
coming weeks. Keeping careful track of the branches of arg will turn out to be one of the
key requirements of complex analysis.

2.6 Euler’s Formula

Euler’s (pronounced ‘oilers’) formula connects complex exponentials, polar coordinates, and
sines and cosines. It turns messy trig identities into tidy rules for exponentials. We will use
it a lot. The formula is the following:

eiθ = cos(θ) + i sin(θ). (1)

There are many ways to approach Euler’s formula. Our approach is to simply take Equation
1 as the definition of complex exponentials. This is legal, but does not show that it’s a good
definition. To do that we need to show the eiθ obeys all the rules we expect of an exponential.
To do that we go systematically through the properties of exponentials and check that they
hold for complex exponentials.

2.6.1 eiθ behaves like a true exponential

P1. eit differentiates as expected:
deit

dt
= ieit

Proof. This follows directly from the definition:

deit

dt
=

d

dt
(cos(t) + i sin(t)) = − sin(t) + i cos(t) = i(cos(t) + i sin(t)) = ieit

P2. ei·0 = 1.
Proof.

ei·0 = cos(0) + i sin(0) = 1

P3. The usual rules of exponents hold:

eiaeib = ei(a+b)

Proof. This relies on the cosine and sine addition formulas.

eia · eib = (cos(a) + i sin(a)) · (cos(b) + i sin(b))

= cos(a) cos(b)− sin(a) sin(b) + i (cos(a) sin(b) + sin(a) cos(b))

= cos(a+ b) + i sin(a+ b) = ei(a+b).

P4. The definition of eiθ is consistent with the power series for ex.

11



Proof. To see this we have to recall the power series for ex, cos(x) and sin(x). They are

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ . . . (2a)

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ . . . (2b)

sinx = x− x3

3!
+
x5

5!
+ . . . (2c)

Now we can write the power series for eiθ and then split it into the power series for sine
and cosine:

eiθ =
∞∑
0

(iθ)n

n!

=

∞∑
0

(−1)k
θ2k

(2k)!
+ i

∞∑
0

(−1)k
θ2k+1

(2k + 1)!

= cos(θ) + i sin(θ).

So the Euler formula definition is consistent with the usual power series for ex.
Properties P1-P4 should convince you that eiθ behaves like an exponential.

2.6.2 Complex exponentials and polar form

Now let’s turn to the relation between polar coordinates and complex exponentials.
Suppose z = x + iy has polar coordinates r and θ. That is, we have x = r cos(θ) and

y = r sin(θ). Thus, we get the important relationship

z = x+ iy = r cos(θ) + ir sin(θ) = r(cos(θ) + i sin(θ)) = reiθ.

This is so important you shouldn’t proceed without understanding. We also record it
without the intermediate equation.

z = x+ iy = reiθ. (3)

Because r and θ are the polar coordinates of (x, y) we call z = reiθ the polar form of z. We
next show that

Magnitude, argument, conjugate, multiplication and division are easy in polar
form.

Magnitude. |eiθ| = 1.
Proof.

|eiθ| = | cos(θ) + i sin(θ)| =
√

cos2(θ) + sin2(θ) = 1

In words, this says that eiθ is always on the unit circle – this is useful to remember! Likewise,
if z = reiθ then |z| = r. You can calculate this, but it should be clear from the definitions:
|z| is the distance from z to the origin, which is exactly the same definition as for r.

12



Argument. If z = reiθ then arg(z) = θ.
Proof. This is again the definition: the argument is the polar angle θ.

Conjugate. (reiθ) = re−iθ.
Proof.

(reiθ) = r(cos(θ) + i sin(θ)) = r(cos(θ)− i sin(θ)) = r(cos(−θ) + i sin(−θ)) = re−iθ.

Thus, complex conjugation changes the sign of the argument.
Multiplication. If z1 = r1eiθ1 and z2 = r2eiθ2 then

z1z2 = r1r2ei(θ1+θ2)

This is what mathematicians call trivial to see, just write the multiplication down. In words,
the formula says the for z1z2 the magnitudes multiply and the arguments add.
Division. Again it’s trivial that

r1eiθ1

r2eiθ2
=
r1

r2
ei(θ1−θ2)

Example. (Multiplication by 2i) Here’s a simple but important example. By looking at
the graph we see that the number 2i has magnitude 2 and argument π/2. So in polar
coordinates it equals 2eiπ/2. This means that multiplication by 2i multiplies lengths by 2
and adds π/2 to arguments, i.e. rotates by 90◦. The effect is shown in the figures below

Re

Im

2i = 2eiπ/2

π/2

|2i| = 2, arg(2i) = π/2

Re

Im

Re

Im× 2i

Multiplication by 2i rotates by π/2 and scales by 2

Example. (Raising to a power) Let’s compute (1 + i)6 and
(

1+i
√

3
2

)3
.

Solution: 1 + i has magnitude =
√

2 and arg = π/4, so 1 + i =
√

2eiπ/4. Raising to a power
is now easy:

(1 + i)6 =
(√

2eiπ/4
)6

= 8e6iπ/4 = 8e3iπ/2 = −8i

Similarly,
1 + i

√
3

2
= eiπ/3, so

(
1 + i

√
3

2

)3

= (1 · eiπ/3)3 = eiπ = −1

13



2.6.3 Complexification or complex replacement

In the next example we will illustrate the technique of complexification or complex replace-
ment. This can be used to simplify a trigonometric integral. It will come in handy when
we need to compute certain integrals.

Example. Use complex replacement to compute

I =

∫
dx ex cos(2x)

Solution: We have Euler’s formula

e2ix = cos(2x) + i sin(2x)

so cos(2x) = Re(e2ix). The complex replacement trick is to replace cos(2x) by e2ix. We get
(justification below)

Ic =

∫
dx (ex cos 2x+ iex sin 2x) , I = Re(Ic).

Computing Ic is straightforward:

Ic =

∫
dx exei2x =

∫
dx ex(1+2i) =

ex(1+2i)

1 + 2i
.

Here we will do the computation first in rectangular coordinates3

Ic =
ex(1+2i)

1 + 2i
· 1− 2i

1− 2i

=
ex(cos(2x) + i sin(2x))(1− 2i)

5

=
1

5
ex(cos(2x) + 2 sin(2x) + i(−2 cos(2x) + sin(2x)))

So,

I = Re(Ic) =
1

5
ex(cos(2x) + 2 sin(2x)).

Justification of complex replacement. The trick comes by cleverly adding a new

integral to I as follows. Let J =

∫
ex sin(2x) dx. Then we let

Ic = I + iJ =

∫
dx ex(cos(2x) + i sin(2x)) =

∫
dx exe2ix

Clearly, by construction, Re(Ic) = I as claimed above.

3In applications, for example throughout 18.03, polar form is often preferred because it is easier and gives
the answer in a more useable form.
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We can use polar coordinates to simplify the expression for Ic: In polar form, we have
1 + 2i = reiφ, where r =

√
5 and φ = arg(1 + 2i) = tan−1(2) in the first quadrant. Then:

Ic =
ex(1+2i)

√
5eiφ

=
ex√

5
ei(2x−φ) =

ex√
5

(cos(2x− φ) + i sin(2x− φ)).

Thus,

I = Re(Ic) =
ex√

5
cos(2x− φ)

2.6.4 Nth roots

We are going to need to be able to find the nth roots of complex numbers, i.e., solve
equations of the form

zN = c

where c is a given complex number. This can be done most conveniently by expressing c
and z in polar form, c = Reiφ and z = reiθ. Then, upon substituting, we have to solve

rNeiNθ = Reiφ

For the complex numbers on the left and right to be equal, their absolute values must be
same and the arguments can only differ by an integer-multiple of 2π, which gives

r = R1/N , Nθ = φ+ 2πn , n = 0,±1,±2, . . . (4)

Solving for θ, we have

θ =
φ

N
+ 2π

n

N
. (5)

Example. Find all 5 fifth roots of 2.

Solution: For c = 2, we have R = 2 and φ = 0, so the fifth roots of 2 are

zn = 21/5e2nπi/5, where n = 0,±1,±2, . . .

Looking at the right hand side we see that for n = 5 we have 21/5e2πi which is exactly the
same as the root when n = 0, i.e. 21/5e0i. Likewise n = 6 gives exactly the same root as
n = 1, and so on. This means, we have 5 different roots corresponding to n = 0, 1, 2, 3, 4.

zn = 21/5, 21/5e2πi/5, 21/5e4πi/5, 21/5e6πi/5, 21/5e8πi/5

Similarly we can say that in general c = Reiφ has N distinct Nth roots:

zn = r1/Neiφ/N+i 2π(n/N) for n = 0, 1, 2, . . . N − 1.
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Example. Find the 4 fourth roots of 1.

Solution: Need to solve z4 = 1, so φ = 0. So the 4 distinct fourth roots are in polar form

zn = 1, eiπ/2, eiπ, ei3π/2

and in Cartesian representation
zn = 1, i, −1, −i

Example. Find the 3 cube roots of -1.

Solution: z2 = −1 = ei π+i 2πn. So, zn = ei π/3+i 2π(n/3) and the 3 cube roots are eiπ/3, eiπ, ei5π/3.
Since π/3 radians is 60◦ we can simpify:

eiπ/3 = cos(π/3) + i sin(π/3) =
1

2
+ i

√
3

2
⇒ zn = −1,

1

2
± i
√

3

2

Example. Find the 5 fifth roots of 1 + i.

Solution: z5 = 1 + i =
√

2ei(π/4+2nπ), for n = 0, 1, 2, . . .. So, the 5 fifth roots are

21/10eiπ/20, 21/10ei9π/20, 21/10ei17π/20, 21/10ei25π/20, 21/10ei33π/20.

Using a calculator we could write these numerically as a+ bi, but there is no easy simplifi-
cation.

Example. We should check that our technique works as expected for a simple problem.
Find the 2 square roots of 4.

Solution: z2 = 4ei 2πn. So, zn = 2ei πn with n = 0, 1. So the two roots are 2e0 = +2 and
2eiπ = −2 as expected.

2.6.5 The geometry of Nth roots

Looking at the examples above we see that roots are always spaced evenly around a circle
centered at the origin. For example, the fifth roots of 1+ i are spaced at increments of 2π/5
radians around the circle of radius 21/5.

Note also that the roots of real numbers always come in conjugate pairs.

x

y

1
2 + i

√
3

2

1
2 − i

√
3

2

−1

Cube roots of -1

x

y

1 + i

Fifth roots of 1 + i
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2.7 Inverse Euler formula

Euler’s formula gives a complex exponential in terms of sines and cosines. We can turn this
around to get the inverse Euler formulas. Euler’s formula says:

eit = cos(t) + i sin(t) and e−it = cos(t)− i sin(t).

By adding and subtracting we get:

cos(t) =
eit + e−it

2
and sin(t) =

eit − e−it

2i
.

Please take note of these formulas we will use them frequently!

2.8 de Moivre’s formula

For positive integers n we have de Moivre’s formula:

(cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ)

Proof. This is a simple consequence of Euler’s formula:

(cos(θ) + i sin(θ))n = (eiθ)n = einθ = cos(nθ) + i sin(nθ)

The reason this simple fact has a name is that historically de Moivre stated it before Euler’s
formula was known. Without Euler’s formula there is not such a simple proof.

2.9 Representing complex multiplication as matrix multiplication

Consider two complex numbers z1 = a+ bi and z2 = x+ yi and their product

z1z2 = (a+ bi)(x+ iy) = (ax− by) + i(bx+ ay) =: w (6)

Now let’s define two matrices

Z1 =

[
a −b
b a

]
, Z2 =

[
x −y
y x

]
(7)

Note that these matrices store the same information as z1 and z2, respectively. Let’s
compute their matrix product

Z1Z2 =

[
a −b
b a

] [
x −y
y x

]
=

[
ax− by −(bx+ ay)
bx+ ay ax− by

]
= W (8)

Comparing with Eq. (6), we see that W is indeed the matrix corresponding to the complex
number w = z1z2. Thus, we can represent any complex number z equivalently by the matrix

Z =

[
Re z − Im z
Im z Re z

]
(9)
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and complex multiplication then simply becomes matrix multiplication. Further note that
we can write

Z = Re z

[
1 0
0 1

]
+ Im z

[
0 −1
1 0

]
, (10)

i.e., the imaginary unit i corresponds to the matrix

[
0 −1
1 0

]
and i2 = −1 becomes

[
0 −1
1 0

] [
0 −1
1 0

]
= −

[
1 0
0 1

]
. (11)

Polar form (decomposition). Writing z = reiθ = r(cos θ + i sin θ), we find

Z = r

[
cos θ − sin θ
sin θ cos θ

]
=

[
cos θ − sin θ
sin θ cos θ

] [
r 0
0 r

]
(12)

corresponding to a 2D rotation matrix multiplied by the stretch factor r. In particular,
multiplication by i corresponds to the rotation with angle θ = π/2 and r = 1.

3 Complex functions

3.1 The exponential function

We have Euler’s formula: eiθ = cos(θ) + i sin(θ). We can extend this to the complex
exponential function ez.

Definition. For z = x+ iy the complex exponential function is defined as

ez = ex+iy = exeiy = ex(cos(y) + i sin(y)).

In this definition ex is the usual exponential function for a real variable x. It is easy to see
that all the usual rules of exponents hold:

1. e0 = 1

2. ez1+z2 = ez1ez2

3. (ez)n = enz for positive integers n.

4. (ez)−1 = e−z

5. ez 6= 0

It will turn out that the property
dez

dz
= ez also holds, but we can’t prove this yet

because we haven’t defined what we mean by the complex derivative
d

dz
.

Here are some more simple, but extremely important properties of ez. You should
become fluent in their use and know how to prove them.
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6. |eiθ| = 1

Proof.

|eiθ| = | cos(θ) + i sin(θ)| =
√

cos2(θ) + sin2(θ) = 1.

7. |ex+iy| = ex (as usual z = x+ iy and x, y are real).

Proof. You should be able to supply this. If not: ask a teacher or TA.

8. The path eit for 0 < t <∞ wraps counterclockwise around the unit circle. It does so
infinitely many times. This is illustrated in the following picture.

t
0 π

4
π
2

3π
4

π 5π
4

3π
2

7π
4

2π 9π
4

5π
2

11π
4

3π 13π
4

7π
2

15π
4

4π
e0 = e2πi = e4πi

eπi/4 = e9πi/4

eπi/2 = e5πi/2

3eπi/4 = e11πi/4

eπi = e3πi

5eπi/4 = e13πi/4

e3πi/2 = e7πi/2

7eπi/4 = e15πi/4

z = eit

The map t→ eit wraps the real axis around the unit circle.

3.2 Complex functions as mappings

A complex function w = f(z) is hard to graph because it takes 4 dimensions: 2 for z and
2 for w. So, to visualize them we will think of complex functions as mappings. That is we
will think of w = f(z) as taking a point in the complex z-plane and sending it to a point in
the complex w-plane.

We will use the following terms and symbols to discuss mappings.

• A function w = f(z) will also be called a mapping of z to w.

• Alternatively we will write z 7→ w or z 7→ f(z). This is read as “z maps to w”.

• We will say that “w is the image of z under the mapping” or more simply “w is the
image of z”.

• If we have a set of points in the z-plane we will talk of the image of that set under the
mapping. For example, under the mapping z 7→ iz the image of the imaginary z-axis
is the real w-axis.
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Re(z)

Im(z)

i

Re(w)

Im(w)

−1

z 7→ w = iz

The image of the imaginary axis under z 7→ iz.

Next, we’ll illustrate visualizing mappings with some examples:

Example. The mapping w = z2. We visualize this by putting the z-plane on the left and
the w-plane on the right. We then draw various curves and regions in the z-plane and the
corresponding image under z2 in the w-plane.

In the first figure we show that rays from the origin are mapped by z2 to rays from the
origin. We see that

1. The ray L2 at π/4 radians is mapped to the ray f(L2) at π/2 radians.
2. The rays L2 and L6 are both mapped to the same ray. This is true for each pair of

diametrically opposed rays.
3. A ray at angle θ is mapped to the ray at angle 2θ.

Re(z)

Im(z)

L1

L2

L3L4

L5

L6

L7

L8

f(L1)& f(L5)

f(L2)& f(L6)

f(L3)& f(L7)

f(L4)& f(L8)

z 7→ w = z2

f(z) = z2 maps rays from the origin to rays from the origin.

The next figure gives another view of the mapping. Here we see vertical stripes in the first
quadrant are mapped to parabolic stripes that live in the first and second quadrants.
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Re(z)

Im(z)

0.5 1 2 3 4

0.5

1

2

3

4

Re(w)

Im(w)

1 2 4 6 88 10 12 14 16

8

16

24

32

z 7→ w = z2

z2 = (x2 − y2) + i2xy maps vertical lines to left facing parabolas.

The next figure is similar to the previous one, except in this figure we look at vertical stripes
in both the first and second quadrants. We see that they map to parabolic stripes that live
in all four quadrants.

Re(z)

Im(z)

0.5 1 2 3 4−1−2−3−4 Re(w)

Im(w)

1 2 4 6 88 10 12 14 16

8

16

24

32

z 7→ w = z2

f(z) = z2 maps the first two quadrants to the entire plane.

The next figure shows the mapping of stripes in the first and fourth quadrants. The image
map is identical to the previous figure. This is because the fourth quadrant is minus the
second quadrant, but z2 = (−z)2.
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Re(z)

Im(z)

0.5 1 2 3 4
Re(w)

Im(w)

1 2 4 6 88 10 12 14 16

8

16

24

32

z 7→ w = z2

Vertical stripes in quadrant 4 are mapped identically to vertical stripes in quadrant 2.

Re(z)

Im(z)

Re(w)

Im(w)

z 7→ w = z2

Simplified view of the first quadrant being mapped to the first two quadrants.

Re(z)

Im(z)

Re(z)

Im(z)

z 7→ w = z2

Simplified view of the first two quadrants being mapped to the entire plane.
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Example. The mapping w = ez. Here we present a series of plots showing how the
exponential function maps z to w.

Re(z)

Im(z)

×

×

×

×

0 1 2−1

πi/2

2πi 1 + 2πi

1 + πi/2

Re(w)

Im(w)

1

×

e1 e2

×

z 7→ w = ez

Notice that vertical lines are mapped to circles and horizontal lines to rays from the origin.

The next four figures all show essentially the same thing: the exponential function maps
horizontal stripes to circular sectors. Any horizontal stripe of width 2π gets mapped to the
entire plane minus the origin,

Because the plane minus the origin comes up frequently we give it a name:

Definition. The punctured plane is the complex plane minus the origin. In symbols we
can write it as C− {0} or C/{0}.

Re(z)

Im(z)

0 1 2−1

πi/2

2πi

πi

−πi

Re(w)

Im(w)

1 e1 e2

z 7→ w = ez

The horizontal strip 0 ≤ y < 2π is mapped to the punctured plane
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Re(z)

Im(z)

0 1 2−1

πi/2

2πi

πi

−πi

Re(w)

Im(w)

1 e1 e2

z 7→ w = ez

The horizontal strip −π < y ≤ π is mapped to the punctured plane

Re(z)

Im(z)

0

πi

2πi

Re(w)

Im(w)

z 7→ w = ez

Simplified view showing ez maps the horizontal stripe 0 ≤ y < 2π to the punctured plane.

Re(z)

Im(z)

0

πi

−πi

Re(w)

Im(w)z 7→ w = ez

Simplified view showing ez maps the horizontal stripe −π < y ≤ π to the punctured plane.

3.3 The function arg(z)

3.3.1 Many-to-one functions

The function f(z) = z2 maps ±z to the same value, e.g. f(2) = f(−2) = 4. We say that
f(z) is a 2-to-1 function. That is, it maps 2 different points to each value. (Technically,

24



it only maps one point to 0, but we will gloss over that for now.) Here are some other
examples of many-to-one functions.
Example 1. w = z3 is a 3-to-1 function. For example, 3 different z values get mapped to
w = 1:

13 =

(
−1 +

√
3 i

2

)3

=

(
−1−

√
3 i

2

)3

= 1

Example 2. The function w = ez maps infinitely many points to each value. For example

e0 = e2πi = e4πi = . . . = en2πi = . . . = 1

eiπ/2 = eiπ/2+2πi = eiπ/2+4πi = . . . = eiπ/2+n2πi = . . . = i

In general, ez+n 2πi has the same value for every integer n.

3.3.2 Branches of arg(z)

Important note. You should master this section. Branches of arg(z) are the key that
really underlies all our other examples. Fortunately it is reasonably straightforward.

The key point is that the argument is only defined up to multiples of 2πi so every z
produces infinitely many values for arg(z). Because of this we will say that arg(z) is a
multiple-valued function.

Note. In general a function should take just one value. What that means in practice is
that whenever we use such a function will have to be careful to specify which of the possible
values we mean. This is known as specifying a branch of the function.

Definition. By a branch of the argument function we mean a choice of range so that it
becomes single-valued. By specifying a branch we are saying that we will take the single
value of arg(z) that lies in the branch. Let’s look at several different branches to understand
how they work:

(i) If we specify the branch as 0 ≤ arg(z) < 2π then we have the following arguments.

arg(1) = 0; arg(i) = π/2; arg(−1) = π; arg(−i) = 3π/2

This branch and these points are shown graphically in Figure (i) below.
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x

y

arg = 0

arg = π/4

arg = π/2

arg = 3π/4

arg = π

arg = 5π/4

arg = 3π/2

arg = 7π/4

arg ≈ 2πarg ≈ π

Figure (i): The branch 0 ≤ arg(z) < 2π of arg(z).

Notice that if we start at z = 1 on the positive real axis we have arg(z) = 0. Then arg(z)
increases as we move counterclockwise around the circle. The argument is continuous until
we get back to the positive real axis. There it jumps from almost 2π back to 0.

There is no getting around (no pun intended) this discontinuity. If we need arg(z) to
be continuous we will need to remove (cut) the points of discontinuity out of the domain.
The branch cut for this branch of arg(z) is shown as a thick orange line in the figure. If
we make the branch cut then the domain for arg(z) is the plane minus the cut, i.e. we will
only consider arg(z) for z not on the cut.

For future reference you should note that, on this branch, arg(z) is continuous near the
negative real axis, i.e. the arguments of nearby points are close to each other.

(ii) If we specify the branch as −π < arg(z) ≤ π then we have the following arguments:

arg(1) = 0; arg(i) = π/2; arg(−1) = π; arg(−i) = −π/2
This branch and these points are shown graphically in Figure (ii) below.

x

y

arg = 0

arg = π/4

arg = π/2

arg = 3π/4

arg = π

arg = −3π/4

arg = −π/2

arg = −π/4

arg ≈ 0arg ≈ −π

Figure (ii): The branch −π < arg(z) ≤ π of arg(z).
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Compare Figure (ii) with Figure (i). The values of arg(z) are the same in the upper half
plane, but in the lower half plane they differ by 2π.

For this branch the branch cut is along the negative real axis. As we cross the branch
cut the value of arg(z) jumps from π to something close to −π.

(iii) Figure (iii) shows the branch of arg(z) with π/4 ≤ arg(z) < 9π/4.

x

y

arg = 2π

arg = π/4

arg = π/2

arg = 3π/4

arg = π

arg = 5π/4

arg = 3π/2

arg = 7π/4

arg ≈ 2πarg ≈ π

arg ≈ 9π/4

Figure (iii): The branch π/4 ≤ arg(z) < 9π/4 of arg(z).

Notice that on this branch arg(z) is continuous at both the positive and negative real axes.
The jump of 2π occurs along the ray at angle π/4.

(iv) Obviously, there are many many possible branches. For example,

42 < arg(z) ≤ 42 + 2π.

(v) We won’t make use of this in 18.04, but, in fact, the branch cut doesn’t have to be a
straight line. Any curve that goes from the origin to infinity will do. The argument will be
continuous except for a jump by 2π when z crosses the branch cut.

3.3.3 The principal branch of arg(z)

Branch (ii) in the previous section is singled out and given a name:

Definition. The branch −π < arg(z) ≤ π is called the principal branch of arg(z). We will
use the notation Arg(z) (capital A) to indicate that we are using the principal branch. (Of
course, in cases where we don’t want there to be any doubt we will say explicitly that we
are using the principal branch.)
Note. The examples above show that there is no getting around the jump of 2π as we
cross the branch cut. This means that when we need arg(z) to be continuous we will have
to restrict its domain to the plane minus a branch cut.
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3.4 Concise summary of branches and branch cuts

We discussed branches and branch cuts for arg(z). Before talking about log(z) and its
branches and branch cuts we will give a short review of what these terms mean. You should
probably scan this section now and then come back to it after reading about log(z).

Consider the function w = f(z). Suppose that z = x+ iy and w = u+ iv.

Domain. The domain of f is the set of z where we are allowed to compute f(z).

Range. The range (image) of f is the set of all f(z) for z in the domain, i.e. the set of all
w reached by f .

Branch. For a multiple-valued function, a branch is a choice of range for the function. We
choose the range to exclude all but one possible value for each element of the domain.

Branch cut. A branch cut removes (cuts) points out of the domain. This is done to remove
points where the function is discontinuous.

3.5 The function log(z)

Our goal in this section is to define the log function. We want log(z) to be the inverse of
ez. That is, we want elog(z) = z. We will see that log(z) is multiple-valued, so when we use
it we will have to specify a branch.

We start by looking at the simplest example which illustrates that log(z) is multiple-
valued.

Example. Find log(1).

Solution: We know that e0 = 1, so log(1) = 0 is one answer. We also know that e2πi = 1,
so log(1) = 2πi is another possible answer. In fact, we can choose any multiple of 2πi:

log(1) = n 2πi, where n is any integer

This example leads us to consider the polar form for z as we try to define log(z). If z = reiθ

then one possible value for log(z) is

log(z) = log(reiθ) = log(r) + iθ,

here log(r) is the usual logarithm of a real positive number. For completeness we show
explicitly that with this definition elog(z) = z:

elog(z) = elog(r)+iθ = elog(r)eiθ = reiθ = z.

Since r = |z| and θ = arg(z) we have arrived at our definition.

Definition. The function log(z) is defined as

log(z) = log(|z|) + i arg(z),

where log(|z|) is the usual natural logarithm of a positive real number.
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Remarks.

1. Since arg(z) has infinitely many possible values, so does log(z).

2. log(0) is not defined. (Both because arg(0) is not defined and log(|0|) is not defined.)

3. Choosing a branch for arg(z) makes log(z) single valued. The usual terminology is to
say we have chosen a branch of the log function.

4. The principal branch of log comes from the principal branch of arg. That is,

log(z) = log(|z|) + i arg(z), where − π < arg(z) ≤ π (principal branch).

Example. Compute all the values of log(i). Specify which one comes from the principal
branch.

Solution: We have that |i| = 1 and arg(i) =
π

2
+ 2πn, so

log(i) = log(1) + i
π

2
+ i2πn = i

π

2
+ i2πn, where n is any integer.

The principal branch of arg(z) is between −π and π, so Arg(i) = π/2. The value of log(i)
from the principal branch is therefore iπ/2.

Example. Compute all the values of log(−1 −
√

3 i). Specify which one comes from the
principal branch.

Solution: Let z = −1 −
√

3 i. Then |z| = 2 and in the principal branch Arg(z) = −2π/3.
So all the values of log(z) are

log(z) = log(2)− i2π
3

+ i2πn.

The value from the principal branch is log(z) = log(2)− i2π/3.

3.5.1 Figures showing w = log(z) as a mapping

The figures below show different aspects of the mapping given by log(z).
In the first figure we see that a point z is mapped to (infinitely) many values of w. In

this case we show log(1) (blue dots), log(4) (red dots), log(i) (blue cross), and log(4i) (red
cross). The values in the principal branch are inside the shaded region in the w-plane. Note
that the values of log(z) for a given z are placed at intervals of 2πi in the w-plane.
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Re(z)

Im(z)

×

×

1 2 4
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Re(w)

Im(w)
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× ×
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−4π

−4

−2π

−2

2π

2

4π

4

π

−π

z 7→ w = log(z)

z = ew ←w

Mapping log(z): log(1), log(4), log(i), log(4i)

The next figure illustrates that the principal branch of log maps the punctured plane to the
horizontal strip −π < Im(w) ≤ π. We again show the values of log(1), log(4), log(i) and
log(4i). Since we’ve chosen a branch, there is only one value shown for each log.

Re(z)

Im(z)

×

×

1 2 4

2

4

Re(w)

Im(w)

× ×

−4π

−4

−2π

−2

2π

2

4π

4

π

−π

z 7→ w = log(z)

z = ew ←w

Mapping log(z): the principal branch and the punctured plane
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The third figure shows how circles centered on 0 are mapped to vertical lines, and rays
from the origin are mapped to horizontal lines. If we restrict ourselves to the principal
branch the circles are mapped to vertical line segments and rays to a single horizontal line
in the principal (shaded) region of the w-plane.

Re(z)

Im(z)

2 4

2

4

Re(w)

Im(w)

−4π

−4

−2π

−2

2π

2

4π

4

π

−π

z 7→ w = log(z)

z = ew ←w

Mapping log(z): mapping circles and rays

3.5.2 Complex powers

We can use the log function to define complex powers.

Definition. Let z and a be complex numbers then the power za is defined as

za = ea log(z).

This is generally multiple-valued, so to specify a single value requires choosing a branch of
log(z).

Example. Compute all the values of
√

2i. Give the value associated to the principal branch
of log(z).

Solution: We have
log(2i) = log(2e

iπ
2 ) = log(2) + i

π

2
+ i2nπ

So, √
2i = (2i)1/2 = e

log(2i)
2 = e

log(2)
2

+ iπ
4

+inπ =
√

2e
iπ
4

+inπ.

(As usual n is an integer.) As we saw earlier, this only gives two distinct values. The
principal branch has Arg(2i) = π/2, so

√
2i =

√
2e( iπ4 ) =

√
2

(1 + i)√
2

= 1 + i.

The other distinct value is when n = 1 and gives minus the value just above.
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Example. Cube roots: Compute all the cube roots of i. Give the value which comes from
the principal branch of log(z).

Solution: We have log(i) = i
π

2
+ i2πn, where n is any integer. So,

i1/3 = e
log(i)

3 = ei
π
6

+i 2nπ
3

This gives only three distinct values

eiπ/6, ei5π/6, ei9π/6

On the principal branch log(i) = i
π

2
, so the value of i1/3 which comes from this is

eiπ/6 =

√
3

2
+
i

2
.

Example. Compute all the values of 1i. What is the value from the principal branch?

Solution: This is similar to the problems above. log(1) = 2nπi, so

1i = ei log(1) = ei2nπi = e−2nπ, where n is an integer.

The principal branch has log(1) = 0 so 1i = 1.

4 Analytic functions

The main goal of this section is to define and give some of the important properties of
complex analytic functions. A function f(z) is analytic if it has a complex derivative f ′(z).
In general, the rules for computing derivatives will be familiar to you from single variable
calculus. However, a much richer set of conclusions can be drawn about a complex analytic
function than is generally true about real differentiable functions.

4.1 The derivative: preliminaries

In calculus we defined the derivative as a limit. In complex analysis we will do the same.

f ′(z) = lim
∆z→0

∆f

∆z
= lim

∆z→0

f(z + ∆z)− f(z)

∆z
.

Before giving the derivative our full attention we are going to have to spend some time
exploring and understanding limits. To motivate this we’ll first look at two simple examples
– one positive and one negative.

Example 4.1. Find the derivative of f(z) = z2.

Solution: We compute using the definition of the derivative as a limit.

lim
∆z→0

(z + ∆z)2 − z2

∆z
= lim

∆z→0

z2 + 2z∆z + (∆z)2 − z2

∆z
= lim

∆z→0
2z + ∆z = 2z.
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That was a positive example. Here’s a negative one which shows that we need a careful
understanding of limits.

Example 4.2. Let f(z) = z. Show that the limit for f ′(0) does not converge.

Solution: Let’s try to compute f ′(0) using a limit:

f ′(0) = lim
∆z→0

f(∆z)− f(0)

∆z
= lim

∆z→0

∆z

∆z
=

∆x− i∆y
∆x+ i∆y

.

Here we used ∆z = ∆x+ i∆y.
Now, ∆z → 0 means both ∆x and ∆y have to go to 0. There are lots of ways to do

this. For example, if we let ∆z go to 0 along the x-axis then, ∆y = 0 while ∆x goes to 0.
In this case, we would have

f ′(0) = lim
∆x→0

∆x

∆x
= 1.

On the other hand, if we let ∆z go to 0 along the positive y-axis then

f ′(0) = lim
∆y→0

−i∆y
i∆y

= −1.

The limits don’t agree! The problem is that the limit depends on how ∆z approaches 0.
If we came from other directions we’d get other values. This means that the limit does not
exist.

We next explore limits in more detail.

4.2 Open disks, open deleted disks, open regions

Definition. The open disk of radius r around z0 is the set of points z with |z − z0| < r,
i.e. all points within distance r of z0.

The open deleted disk of radius r around z0 is the set of points z with 0 < |z − z0| < r.
That is, we remove the center z0 from the open disk. A deleted disk is also called a punctured
disk.

z0

r

z0

r

Left: an open disk around z0; right: a deleted open disk around z0

Definition. An open region in the complex plane is a set A with the property that every
point in A can be be surrounded by an open disk that lies entirely in A. We will often drop
the word open and simply call A a region.

In the figure below, the set A on the left is an open region because for every point in A
we can draw a little circle around the point that is completely in A. (The dashed boundary
line indicates that the boundary of A is not part of A.) In contrast, the set B is not an
open region. Notice the point z shown is on the boundary, so every disk around z contains
points outside B.

33



Left: an open region A; right: B is not an open region

4.3 Limits and continuous functions

Definition. If f(z) is defined on a punctured disk around z0 then we say

lim
z→z0

f(z) = w0

if f(z) goes to w0 no matter what direction z approaches z0.
The figure below shows several sequences of points that approach z0. If limz→z0 f(z) = w0

then f(z) must go to w0 along each of these sequences.

Sequences going to z0 are mapped to sequences going to w0.

Example 4.3. Many functions have obvious limits. For example:

lim
z→2

z2 = 4

and
lim
z→2

(z2 + 2)/(z3 + 1) = 6/9

Here is an example where the limit doesn’t exist because different sequences give different
limits.

Example 4.4. (No limit) Show that

lim
z→0

z

z
= lim

z→0

x+ iy

x− iy
does not exist.

Solution: On the real axis we have
z

z
=
x

x
= 1,
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so the limit as z → 0 along the real axis is 1. By contrast, on the imaginary axis we have

z

z
=

iy

−iy = −1,

so the limit as z → 0 along the imaginary axis is -1. Since the two limits do not agree the
limit as z → 0 does not exist!

4.3.1 Properties of limits

We have the usual properties of limits. Suppose

lim
z→z0

f(z) = w1 and lim
z→z0

g(z) = w2

then

• lim
z→z0

f(z) + g(z) = w1 + w2.

• lim
z→z0

f(z)g(z) = w1 · w2.

• If w2 6= 0 then lim
z→z0

f(z)/g(z) = w1/w2

• If h(z) is continuous and defined on a neighborhood of w1 then lim
z→z0

h(f(z)) = h(w1)

(Note: we will give the official definition of continuity in the next section.)

We won’t give a proof of these properties. As a challenge, you can try to supply it using
the formal definition of limits given in the appendix.

We can restate the definition of limit in terms of functions of (x, y). To this end, let’s write

f(z) = f(x+ iy) = u(x, y) + iv(x, y)

and abbreviate
P = (x, y) , P0 = (x0, y0) , w0 = u0 + iv0

Then

lim
z→z0

f(z) = w0 iff

{
limP→P0 u(x, y) = u0

limP→P0 v(x, y) = v0.

Note. The term ‘iff’ stands for ‘if and only if’ which is another way of saying ‘is equivalent
to’.

4.3.2 Continuous functions

A function is continuous if it doesn’t have any sudden jumps. This is the gist of the following
definition.

Definition. If the function f(z) is defined on an open disk around z0 and lim
z→z0

f(z) = f(z0)

then we say f is continuous at z0. If f is defined on an open region A then the phrase ‘f is
continuous on A’ means that f is continuous at every point in A.
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As usual, we can rephrase this in terms of functions of (x, y):

Fact. f(z) = u(x, y) + iv(x, y) is continuous iff u(x, y) and v(x, y) are continuous as
functions of two variables.

Example 4.5. (Some continuous functions)
(i) A polynomial

P (z) = a0 + a1z + a2z
2 + . . .+ anz

n

is continuous on the entire plane. Reason: it is clear that each power (x+ iy)k is continuous
as a function of (x, y).
(ii) The exponential function is continuous on the entire plane. Reason:

ez = ex+iy = ex cos(y) + iex sin(y),

so the both the real and imaginary parts are clearly continuous as a function of (x, y).
(iii) The principal branch Arg(z) is continuous on the plane minus the non-positive real
axis. Reason: this is clear and is the reason we defined branch cuts for arg. We have to
remove the negative real axis because Arg(z) jumps by 2π when you cross it. We also have
to remove z = 0 because Arg(z) is not even defined at 0.
(iv) The principal branch of the function log(z) is continuous on the plane minus the non-
positive real axis. Reason: the principal branch of log has

log(z) = log(r) + iArg(z),

so the continuity of log(z) follows from the continuity of Arg(z).

4.3.3 Properties of continuous functions

Since continuity is defined in terms of limits, we have the following properties of continuous
functions.

Suppose f(z) and g(z) are continuous on a region A. Then

• f(z) + g(z) is continuous on A.

• f(z)g(z) is continuous on A.

• f(z)/g(z) is continuous on A except (possibly) at points where g(z) = 0.

• If h is continuous on f(A) then h(f(z)) is continuous on A.

Using these properties we can claim continuity for each of the following functions:

• ez
2

• cos(z) = (eiz + e−iz)/2

• If P (z) and Q(z) are polynomials then P (z)/Q(z) is continuous except at roots of
Q(z).
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4.4 The point at infinity

By definition the extended complex plane = C∪{∞}. That is, we have one point at infinity
to be thought of in a limiting sense described as follows.

A sequence of points {zn} goes to infinity if |zn| goes to infinity. This “point at infinity”
is approached in any direction we go. All of the sequences shown in the figure below are
growing, so they all go to the (same) “point at infinity”.

Various sequences all going to infinity.

If we draw a large circle around 0 in the plane, then we call the region outside this circle
a neighborhood of infinity.

R

Re(z)

Im(z)

The shaded region outside the circle of radius R is a neighborhood of infinity.

4.4.1 Limits involving infinity

The key idea is 1/∞ = 0. By this we mean

lim
z→∞

1

z
= 0

We then have the following facts:

• lim
z→z0

f(z) =∞ ⇔ lim
z→z0

1/f(z) = 0

• lim
z→∞

f(z) = w0 ⇔ lim
z→0

f(1/z) = w0

• lim
z→∞

f(z) =∞ ⇔ lim
z→0

1

f(1/z)
= 0
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Example 4.6. lim
z→∞

ez is not defined because it has different values if we go to infinity in

different directions, e.g. we have ez = exeiy and

lim
x→−∞

exeiy = 0

lim
x→+∞

exeiy =∞

lim
y→+∞

exeiy is not defined, since x is constant, so exeiy loops in a circle indefinitely.

Example 4.7. Show lim
z→∞

zn =∞ (for n a positive integer).

Solution: We need to show that |zn| gets large as |z| gets large. Write z = Reiθ, then

|zn| = |Rneinθ| = Rn = |z|n

Clearly, as |z| = R→∞ also |z|n = Rn →∞.

4.4.2 Stereographic projection from the Riemann sphere

This is a lovely section and we suggest you read it. However it will be a while before we
use it in 18.04.

One way to visualize the point at ∞ is by using a (unit) Riemann sphere and the
associated stereographic projection. The figure below shows a sphere whose equator is the
unit circle in the complex plane.

Stereographic projection from the sphere to the plane.

Stereographic projection from the sphere to the plane is accomplished by drawing the secant
line from the north pole N through a point on the sphere and seeing where it intersects the
plane. This gives a 1-1 correspondence between a point on the sphere P and a point in the
complex plane z. It is easy to see show that the formula for stereographic projection is

P = (a, b, c) 7→ z =
a

1− c + i
b

1− c .

The point N = (0, 0, 1) is special, the secant lines from N through P become tangent lines
to the sphere at N which never intersect the plane. We consider N the point at infinity.

In the figure above, the region outside the large circle through the point z is a neigh-
borhood of infinity. It corresponds to the small circular cap around N on the sphere. That
is, the small cap around N is a neighborhood of the point at infinity on the sphere!

38



The figure below shows another common version of stereographic projection. In this
figure the sphere sits with its south pole at the origin. We still project using secant lines
from the north pole.

4.5 Derivatives

The definition of the complex derivative of a complex function is similar to that of a real
derivative of a real function: For a function f(z) the derivative f at z0 is defined as

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

Provided, of course, that the limit exists. If the limit exists we say f is analytic at z0 or f
is differentiable at z0.

Remember: The limit has to exist and be the same no matter how you approach z0!

If f is analytic at all the points in an open region A then we say f is analytic on A. As
usual with derivatives there are several alternative notations. For example, if w = f(z) we
can write

f ′(z0) =
dw

dz

∣∣∣∣
z0

= lim
z→z0

f(z)− f(z0)

z − z0
= lim

∆z→0

∆w

∆z

Example 4.8. Find the derivative of f(z) = z2.

Solution: We did this above in Example 4.1. Take a look at that now. Of course, f ′(z) = 2z.

Example 4.9. Show f(z) = z is not differentiable at any point z.

Solution: We did this above in Example 4.2. Take a look at that now.

Challenge. Use polar coordinates to show the limit in the previous example can be any
value with modulus 1 depending on the angle at which z approaches z0.

4.5.1 Derivative rules

It wouldn’t be much fun to compute every derivative using limits. Fortunately, we have the
same differentiation formulas as for real-valued functions. That is, assuming f and g are
differentiable we have:

• Sum rule:
d

dz
(f(z) + g(z)) = f ′ + g′
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• Product rule:
d

dz
(f(z)g(z)) = f ′g + fg′

• Quotient rule:
d

dz
(f(z)/g(z)) =

f ′g − fg′
g2

• Chain rule:
d

dz
g(f(z)) = g′(f(z))f ′(z)

• Inverse rule:
df−1(z)

dz
=

1

f ′(f−1(z))

To give you the flavor of these arguments we’ll prove the product rule.

d

dz
(f(z)g(z)) = lim

z→z0

f(z)g(z)− f(z0)g(z0)

z − z0

= lim
z→z0

(f(z)− f(z0))g(z) + f(z0)(g(z)− g(z0))

z − z0

= lim
z→z0

f(z)− f(z0)

z − z0
g(z) + f(z0)

(g(z)− g(z0))

z − z0

= f ′(z0)g(z0) + f(z0)g′(z0)

Here is an important fact that you would have guessed. We will prove it in the next section.

Theorem. If f(z) is defined and differentiable on an open disk and f ′(z) = 0 on the disk
then f(z) is constant.

4.6 Cauchy-Riemann equations

The Cauchy-Riemann equations are our first consequence of the fact that the limit defining
f(z) must be the same no matter which direction you approach z from. The Cauchy-
Riemann equations will be one of the most important tools in our toolbox.

4.6.1 Partial derivatives as limits

Before getting to the Cauchy-Riemann equations we remind you about partial derivatives.
If u(x, y) is a function of two variables then the partial derivatives of u are defined as

∂u

∂x
(x, y) = lim

∆x→0

u(x+ ∆x, y)− u(x, y)

∆x

i.e. the derivative of u holding y constant.

∂u

∂y
(x, y) = lim

∆y→0

u(x, y + ∆y)− u(x, y)

∆y

i.e. the derivative of u holding x constant.
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4.6.2 The Cauchy-Riemann equations

The Cauchy-Riemann equations use the partial derivatives of u and v to do two things:
first, to check if f has a complex derivative and second, how to compute that derivative.
We start by stating the equations as a theorem.

Theorem. (Cauchy-Riemann equations) If f(z) = u(x, y) + iv(x, y) is analytic (complex
differentiable) then

f ′(z) =
∂u

∂x
+ i

∂v

∂x
=
∂v

∂y
− i∂u

∂y

In particular,
∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

This last set of partial differential equations is what is usually meant by the Cauchy-Riemann
equations. Here is the short form of the Cauchy-Riemann equations:

ux = vy

uy = −vx

Proof. Let’s suppose that f(z) is differentiable in some region A and

f(z) = f(x+ iy) = u(x, y) + iv(x, y).

We’ll compute f ′(z) by approaching z first from the horizontal direction and then from the
vertical direction. We’ll use the formula

f ′(z) = lim
∆z→0

f(z + ∆z)− f(z)

∆z
,

where ∆z = ∆x+ i∆y.
Horizontal direction: ∆y = 0, ∆z = ∆x

f ′(z) = lim
∆z→0

f(z + ∆z)− f(z)

∆z

= lim
∆x→0

f(x+ ∆x+ iy)− f(x+ iy)

∆x

= lim
∆x→0

(u(x+ ∆x, y) + iv(x+ ∆x, y))− (u(x, y) + iv(x, y))

∆x

= lim
∆x→0

u(x+ ∆x, y)− u(x, y)

∆x
+ i

v(x+ ∆x, y)− v(x, y)

∆x

=
∂u

∂x
(x, y) + i

∂v

∂x
(x, y)
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Vertical direction: ∆x = 0, ∆z = i∆y (We’ll do this one a little faster.)

f ′(z) = lim
∆z→0

f(z + ∆z)− f(z)

∆z

= lim
∆y→0

(u(x, y + ∆y) + iv(x, y + ∆y))− (u(x, y) + iv(x, y))

i∆y

= lim
∆y→0

u(x, y + ∆y)− u(x, y)

i∆y
+ i

v(x, y + ∆y)− v(x, y)

i∆y

=
1

i

∂u

∂y
(x, y) +

∂v

∂y
(x, y)

=
∂v

∂y
(x, y)− i∂u

∂y
(x, y)

We have found two different representations of f ′(z) in terms of the partials of u and v. If
put them together we have the Cauchy-Riemann equations:

f ′(z) =
∂u

∂x
+ i

∂v

∂x
=
∂v

∂y
− i∂u

∂y
⇒ ∂u

∂x
=
∂v

∂y
, and − ∂u

∂y
=
∂v

∂x
.

It turns out that the converse is true and will be very useful to us.

Theorem. Consider the function f(z) = u(x, y) + iv(x, y) defined on a region A. If u
and v satisfy the Cauchy-Riemann equations and have continuous partials then f(z) is
differentiable on A.

The proof of this is a tricky exercise in analysis. It is somewhat beyond the scope of this
class, so we will skip it.

4.6.3 Using the Cauchy-Riemann equations

The Cauchy-Riemann equations provide us with a direct way of checking that a function is
differentiable and computing its derivative.

Example 4.10. Use the Cauchy-Riemann equations to show that ez is differentiable and
its derivative is ez.

Solution: We write ez = ex+iy = ex cos(y) + iex sin(y). So

u(x, y) = ex cos(y) and v(x, y) = ex sin(y).

Computing partial derivatives we have

ux = ex cos(y) , uy = −ex sin(y)

vx = ex sin(y) , vy = ex cos(y)

We see that ux = vy and uy = −vx, so the Cauchy-Riemann equations are satisfied. Thus,
ez is differentiable and

d

dz
ez = ux + ivx = ex cos(y) + iex sin(y) = ez.
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Example 4.11. Use the Cauchy-Riemann equations to show that f(z) = z is not differen-
tiable.

Solution: f(x+ iy) = x− iy, so u(x, y) = x, v(x, y) = −y. Taking partial derivatives

ux = 1, uy = 0, vx = 0, vy = −1

Since ux 6= vy the Cauchy-Riemann equations are not satisfied and therefore f is not
differentiable.

Theorem. If f(z) is differentiable on a disk and f ′(z) = 0 on the disk then f(z) is constant.
Proof. Since f is differentiable and f ′(z) ≡ 0, the Cauchy-Riemann equations show that

ux(x, y) = uy(x, y) = vx(x, y) = vy(x, y) = 0

We know from multivariable calculus that a function of (x, y) with both partials identically
zero is constant. Thus u and v are constant, and therefore so is f .

4.6.4 f ′(z) as a 2× 2 matrix

Recall that we could represent a complex number a+ ib as a 2× 2 matrix

a+ ib ↔
[
a −b
b a

]
. (13)

Now if we write f(z) in terms of (x, y) we have

f(z) = f(x+ iy) = u(x, y) + iv(x, y) ↔ f(x, y) = (u(x, y), v(x, y))

We have
f ′(z) = ux + ivx

so we can represent f ′(z) as [
ux −vx
vx ux

]
Using the Cauchy-Riemann equations we can replace −vx by uy and ux by vy which gives
us the representation

f ′(z) ↔
[
ux uy
vx vy

]
i.e. f ′(z) is just the Jacobian of f(x, y).

For me, it is easier to remember the Jacobian than the Cauchy-Riemann equations.
Since f ′(z) is a complex number I can use the matrix representation in Equation (13) to
remember the Cauchy-Riemann equations!
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4.7 Geometric interpretation & linear elasticity theory

Consider a mapping R2 → R2

z = (x, y) → w = f(z) = (u(x, y), v(x, y)) (14)

We can interpret w = f(z) as the (in general nonlinear) deformation map of a two-
dimensional planar continuum body – that is, an infinite flat elastic sheet. Let’s consider
small deformations, corresponding to the assumption that the displacement field

d(z) := f(z)− z (15)

is small,

|d(z)| = |f(z)− z| � 1 (16)

In terms of the components d1 and d2 of d, this means that

d1(x, y) = u(x, y)− x and d2(x, y) = v(x, y)− y (17)

are small everywhere. Picking some point z, we can Taylor-expand d(z) at z + ε, where

ε = (δx, δy)

is a small shift vector. Defining

x1 = x , x2 = y , di,j =
∂

∂xj
di(x1, x2)

and adopting Einstein’s summation convention, aibi =
∑2

i=1 aibi, the Taylor expansion
reads

di(z + ε) = di(z) + di,j(z)εj + O(ε2). (18)

The coefficients di,j(z) of the linear term are the elements of the Jacobian matrix of the
displacement map d(z),

(di,j) =

(
ux − 1 uy
vx vy − 1

)
=

(
ux uy
vx vy

)
− I (19)

where the first matrix on the right-hand side is the Jacobian of the deformation f(z) and
I = (δij) the 2 × 2 identity matrix. By splitting into symmetric and antisymmetric parts,
we can decompose this matrix into the form

di,j =
1

2
(di,j + dj,i) +

1

2
(di,j − dj,i)− δij

=
1

2
di,iδij +

1

2
[(di,j + dj,i)− di,iδij ] +

1

2
(di,j − dj,i)− δij (20)

In the second line, we have still split off the trace from the symmetric part. Substituting
back u(x, y) and v(x, y), we have

(di,j) =
1

2
(ux + vy)I +

1

2

(
ux − vy uy + vx
vx + uy vy − ux

)
−
{
I +

1

2
(uy − vx)

(
0 −1
1 0

)}
(21)
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Now recall that an infinitesimal rotation is represented by the matrix

R(φ) =

(
cosφ − sinφ
sinφ cosφ

)
≈ I + φ

(
0 −1
1 0

)
(22)

we can interpret the contributions in terms of intuitive fundamental deformations:

• The first term

1

2
(ux + vy)I =

1

2
(∇ · d)I (23a)

represents stretching or compression.

• The last term term {
I +

1

2
(uy − vx)

(
0 −1
1 0

)}
(23b)

represents an infinitesimal rotation by an angle φ = 1
2(uy − vx) = 1

2∇∧ d.

• The middle term

1

2

(
ux − vy vx + uy
vx + uy −(ux − vy)

)
=

1

2
(ux − vy)

(
1 0
0 −1

)
+

1

2
(vx + uy)

(
0 1
1 0

)
(23c)

is the sum of a scaled reflection (via the diagonal components) and shear strain (via
the off-diagonal components).

Thus, deformations that preserve orientation and angles locally must satisfy

ux = vy , uy = −vx (24)

But these are just the Cauchy-Riemann conditions !

4.8 Cauchy-Riemann all the way down

We’ve defined an analytic function as one having a complex derivative. The following theo-
rem shows that if f is analytic then so is f ′. Thus, there are derivatives all the way down!

Theorem 4.12.Assume the second order partials of u and v exist. If f(z) = u + iv is
analytic, then so is f ′(z).

Proof. To show this we have to prove that f ′(z) satisfies the Cauchy-Riemann equations.
If f = u+ iv we know

ux = vy , uy = −vx , f ′ = ux + ivx

Let’s write
f ′ = U + iV
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so
U = ux = vy , V = vx = −uy

We want to show that Ux = Vy and Uy = −Vx. We do them one at a time.
To prove Ux = Vy, we note that

Ux = vyx , Vy = vxy

Since vxy = vyx, we have Ux = Vy.
Similarly, to show Uy = −Vx, we compute

Uy = uxy , Vx = −uyx.

Thus, Uy = −Vx.

Technical point. We’ve assumed as many partials as we need. So far we can’t guarantee
that all the partials exist. Soon we will have a theorem which says that an analytic function
has derivatives of all order. We’ll just assume that for now. In any case, in most examples
this will be obvious.

4.9 Gallery of functions

In this section we’ll look at many of the functions you know and love as functions of z. For
each one we’ll have to do three things.

1. Define how to compute it.

2. Specify a branch (if necessary) giving its range.

3. Specify a domain (with branch cut if necessary) where it is analytic.

4. Compute its derivative.

Most often, we can compute the derivatives of a function using the algebraic rules like the
quotient rule. If necessary we can use the Cauchy-Riemann equations or, as a last resort,
even the definition of the derivative as a limit.

Before we start on the gallery we define the term “entire function”.
Definition. A function that is analytic at every point in the complex plane is called an
entire function. We will see that ez, zn, sin(z) are all entire functions.

4.9.1 Gallery of functions, derivatives and properties

The following is a concise list of a number of functions and their complex derivatives. None
of the derivatives will surprise you. We also give important properties for some of the
functions. The proofs for each follow below.

1. f(z) = ez = ex cos(y) + iex sin(y).

Domain = all of C (f is entire).

f ′(z) = ez.
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2. f(z) ≡ c (constant)

Domain = all of C (f is entire).

f ′(z) = 0.

3. f(z) = zn (n an integer ≥ 0)

Domain = all of C (f is entire).

f ′(z) = nzn−1.

4. P (z) (polynomial)

A polynomial has the form P (z) = anz
n + an−1z

n−1 + . . .+ a0.

Domain = all of C (P (z) is entire).

P ′(z) = nanz
n−1 + (n− 1)an−1z

n−1 + . . .+ 2a2z + a1.

5. f(z) = 1/z

Domain = C− {0} (the punctured plane).

f ′(z) = −1/z2.

6. f(z) = P (z)/Q(z) (rational function).

When P and Q are polynomials P (z)/Q(z) is called a rational function.

If we assume that P and Q have no common roots, then:

Domain = C− {roots of Q}

f ′(z) =
P ′Q− PQ′

Q2
.

7. sin(z), cos(z)

Definition. cos(z) =
eiz + e−iz

2
, sin(z) =

eiz − e−iz

2i

(By Euler’s formula we know this is consistent with cos(x) and sin(x) when z = x is
real.)

Domain: these functions are entire.

d cos(z)

dz
= − sin(z),

d sin(z)

dz
= cos(z).

Other key properties of sin and cos:

- cos2(z) + sin2(z) = 1

- ez = cos(z) + i sin(z)

- Periodic in x with period 2π, e.g. sin(x+ 2π + iy) = sin(x+ iy).

- They are not bounded!
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- In the form f(z) = u(x, y) + iv(x, y) we have

cos(z) = cos(x) cosh(y)− i sin(x) sinh(y)

sin(z) = sin(x) cosh(y) + i cos(x) sinh(y)

(cosh and sinh are defined below.)

- The zeros of sin(z) are z = nπ for n any integer.
The zeros of cos(z) are z = π/2 + nπ for n any integer.
(That is, they have only real zeros that you learned about in your trig. class.)

8. Other trig functions cot(z), s(z) etc.

Definition. The same as for the real versions of these function, e.g. cot(z) =
cos(z)/ sin(z), s(z) = 1/ cos(z).

Domain: The entire plane minus the zeros of the denominator.

Derivative: Compute using the quotient rule, e.g.

d tan(z)

dz
=

d

dz

(
sin(z)

cos(z)

)
=

cos(z) cos(z)− sin(z)(− sin(z))

cos2(z)
=

1

cos2(z)
= s2z

(No surprises there!)

9. sinh(z), cosh(z) (hyperbolic sine and cosine)

Definition.

cosh(z) =
ez + e−z

2
, sinh(z) =

ez − e−z

2

Domain: these functions are entire.

d cosh(z)

dz
= sinh(z),

d sinh(z)

dz
= cosh(z)

Other key properties of cosh and sinh:

- cosh2(z)− sinh2(z) = 1

- For real x, cosh(x) is real and positive, sinh(x) is real.

- cosh(iz) = cos(z), sinh(z) = −i sin(iz).

10. log(z) (See Topic 1.)

Definition. log(z) = log(|z|) + i arg(z).

Branch: Any branch of arg(z).

Domain: C minus a branch cut where the chosen branch of arg(z) is discontinuous.

d

dz
log(z) =

1

z
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11. za (any complex a) (See Topic 1.)

Definition. za = ea log(z).

Branch: Any branch of log(z).

Domain: Generally the domain is C minus a branch cut of log. If a is an integer ≥ 0
then za is entire. If a is a negative integer then za is defined and analytic on C−{0}.

dza

dz
= aza−1.

12. sin−1(z)

Definition. sin−1(z) = −i log(iz +
√

1− z2).

The definition is chosen so that sin(sin−1(z)) = z. The derivation of the formula is as
follows. Let w = sin−1(z), so z = sin(w). Then,

z =
eiw − e−iw

2i
⇒ e2iw − 2izeiw − 1 = 0

Solving the quadratic in eiw gives

eiw =
2iz +

√
−4z2 + 4

2
= iz +

√
1− z2.

Taking the log gives

iw = log(iz +
√

1− z2) ⇔ w = −i log(iz +
√

1− z2).

From the definition we can compute the derivative:

d

dz
sin−1(z) =

1√
1− z2

.

Choosing a branch is tricky because both the square root and the log require choices.
We will look at this more carefully in the future.

For now, the following discussion and figure are for your amusement.

Sine (likewise cosine) is not a 1-1 function, so if we want sin−1(z) to be single-valued
then we have to choose a region where sin(z) is 1-1. (This will be a branch of sin−1(z),
i.e. a range for the image,) The figure below shows a domain where sin(z) is 1-1. The
domain consists of the vertical strip z = x + iy with −π/2 < x < π/2 together with
the two rays on boundary where y ≥ 0 (show as red lines). The figure indicates how
the regions making up the domain in the z-plane are mapped to the quadrants in the
w-plane.
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A domain where z 7→ w = sin(z) is one-to-one

4.9.2 A few proofs

Here we prove at least some of the facts stated in the list just above.

1. f(z) = ez. This was done in Example 4.10 using the Cauchy-Riemann equations.

2. f(z) ≡ c (constant). This case is trivial.

3. f(z) = zn (n an integer ≥ 0): show f ′(z) = nzn−1

It’s probably easiest to use the definition of derivative directly. Before doing that we
note the factorization

zn − zn0 = (z − z0)(zn−1 + zn−2z0 + zn−3z2
0 + . . .+ z2zn−3

0 + zzn−2
0 + zn−1

0 )

Now

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
= lim

z→z0

zn − zn0
z − z0

= lim
z→z0

(zn−1 + zn−2z0 + zn−3z2
0 + . . .+ z2zn−3

0 + zzn−2
0 + zn−1

0 )

= nzn−1
0 .

Since we showed directly that the derivative exists for all z, the function must be
entire4.

4. P (z) (polynomial). Since a polynomial is a sum of monomials, the formula for the
derivative follows from the derivative rule for sums and the case f(z) = zn. Likewise
the fact the P (z) is entire.

5. f(z) = 1/z. This follows from the quotient rule.

6. f(z) = P (z)/Q(z). This also follows from the quotient rule.

7. sin(z), cos(z). All the facts about sin(z) and cos(z) follow from their definition in
terms of exponentials.

4An entire function is a complex-valued function that is complex differentiable at all finite points over
the whole complex plane.
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8. Other trig functions cot(z), s(z) etc. Since these are all defined in terms of cos and
sin, all the facts about these functions follow from the derivative rules.

9. sinh(z), cosh(z). All the facts about sinh(z) and cosh(z) follow from their definition
in terms of exponentials.

10. log(z). The derivative of log(z) can be found by differentiating the relation elog(z) = z
using the chain rule. Let w = log(z), so ew = z and

d

dz
ew =

dz

dz
= 1 ⇒ dew

dw

dw

dz
= 1 ⇒ ew

dw

dz
= 1 ⇒ dw

dz
=

1

ew

Using w = log(z) we get
d log(z)

dz
=

1

z

11. za (any complex a). The derivative for this follows from the formula

za = ea log(z) ⇒ dza

dz
= ea log(z) · a

z
=
aza

z
= aza−1

4.10 Branch cuts and function composition

We often compose functions, i.e. f(g(z)). In general in this case we have the chain rule to
compute the derivative. However we need to specify the domain for z where the function is
analytic. And when branches and branch cuts are involved we need to take care.

Example 4.13. Let f(z) = ez
2
. Since ez and z2 are both entire functions, so is f(z) = ez

2
.

The chain rule gives us
f ′(z) = ez

2
(2z).

Example 4.14. Let f(z) = ez and g(z) = 1/z. f(z) is entire and g(z) is analytic everywhere
but 0. So f(g(z)) is analytic except at 0 and

df(g(z))

dz
= f ′(g(z))g′(z) = e1/z · −1

z2
.

Example 4.15. Let h(z) = 1/(ez − 1). Clearly h is entire except where the denominator
is 0. The denominator is 0 when ez − 1 = 0. That is, when z = 2πni for any integer n.
Thus, h(z) is analytic on the set

C− {2πni, where n is any integer}

The quotient rule gives h′(z) = −ez/(ez − 1)2. A little more formally: h(z) = f(g(z)).
where f(w) = 1/w and w = g(z) = ez−1. We know that g(z) is entire and f(w) is analytic
everywhere except w = 0. Therefore, f(g(z)) is analytic everywhere except where g(z) = 0.

Example 4.16. It can happen that the derivative has a larger domain where it is analytic
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than the original function. The main example is f(z) = log(z). This is analytic on C minus
a branch cut. However

d

dz
log(z) =

1

z

is analytic on C− {0}. The converse can’t happen.

Example 4.17. Define a region where
√

1− z is analytic.

Solution: Choosing the principal branch of argument, we have
√
w is analytic on

C− {x ≤ 0, y = 0}, (see figure below.).

So
√

1− z is analytic except where w = 1− z is on the branch cut, i.e. where w = 1− z is
real and ≤ 0. It’s easy to see that

w = 1− z is real and ≤ 0 ⇔ z is real and ≥ 1.

So
√

1− z is analytic on the region (see figure below)

C− {x ≥ 1, y = 0}

Note. A different branch choice for
√
w would lead to a different region where

√
1− z is

analytic.
The figure below shows the domains with branch cuts for this example.

Re(w)

Im(w)

Re(z)

Im(z)

1

domain for
√
w domain for

√
1− z

Example 4.18. Define a region where f(z) =
√

1 + ez is analytic.

Solution: Again, let’s take
√
w to be analytic on the region

C− {x ≤ 0, y = 0}

So, f(z) is analytic except where 1 + ez is real and ≤ 0. That is, except where ez is real
and ≤ −1. Now, ez = exeiy is real only when y is a multiple of π. It is negative only when
y is an odd mutltiple of π. It has magnitude greater than 1 only when x > 0. Therefore
f(z) is analytic on the region

C− {x ≥ 0, y = odd multiple of π}
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The figure below shows the domains with branch cuts for this example.

Re(w)

Im(w)

Re(z)

Im(z)

−3πi

−πi

πi

3πi

domain for
√
w domain for

√
ez + 1

4.11 Appendix: Limits

The intuitive idea behind limits is relatively simple. Still, in the 19th century mathemati-
cians were troubled by the lack of rigor, so they set about putting limits and analysis on
a firm footing with careful definitions and proofs. In this appendix we give you the for-
mal definition and connect it to the intuitive idea. In 18.04 we will not need this level of
formality. Still, it’s nice to know the foundations are solid, and some of you may find this
interesting.

4.11.1 Limits of sequences

Intuitively, we say a sequence of complex numbers z1, z2, . . . converges to a if for large n, zn
is really close to a. To be a little more precise, if we put a small circle of radius ε around a
then eventually the sequence should stay inside the circle. Let’s refer to this as the sequence
being captured by the circle. This has to be true for any circle no matter how small, though
it may take longer for the sequence to be ‘captured’ by a smaller circle.

This is illustrated in the figure below. The sequence is strung along the curve shown
heading towards a. The bigger circle of radius ε2 captures the sequence by the time n = 47,
the smaller circle doesn’t capture it till n = 59. Note that z25 is inside the larger circle, but
since later points are outside the circle we don’t say the sequence is captured at n = 25
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A sequence of points converging to a

Definition. The sequence z1, z2, z3, . . . converges to the value a if for every ε > 0 there is
a number Nε such that |zn − a| < ε for all n > Nε. We write this as

lim
n→∞

zn = a.

Again, the definition just says that eventually the sequence is within ε of a, no matter how
small you choose ε.

Example 4.19. Show that the sequence zn = (1/n+ i)2 has limit -1.

Solution: This is clear because 1/n → 0. For practice, let’s phrase it in terms of epsilons:
given ε > 0 we have to choose Nε such that

|zn − (−1)| < ε for all n > Nε

One strategy is to look at |zn + 1| and see what Nε should be. We have

|zn − (−1)| =
∣∣∣∣∣
(

1

n
+ i

)2

+ 1

∣∣∣∣∣ =

∣∣∣∣ 1

n2
+

2i

n

∣∣∣∣ < 1

n2
+

2

n

So all we have to do is pick Nε large enough that

1

N2
ε

+
2

Nε
< ε

Since this can clearly be done we have proved that zn → i.
This was clearly more work than we want to do for every limit. Fortunately, most of

the time we can apply general rules to determine a limit without resorting to epsilons!

Remarks.

1. In 18.04 we will be able to spot the limit of most concrete examples of sequences. The
formal definition is needed when dealing abstractly with sequences.

2. To mathematicians ε is one of the go-to symbols for a small number. The prominent
and rather eccentric mathematician Paul Erdos used to refer to children as epsilons,
as in ‘How are the epsilons doing?’
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3. The term ‘captured by the circle’ is not in common usage, but it does capture what
is happening.

4.11.2 lim
z→z0

f(z)

Sometimes we need limits of the form lim
z→z0

f(z) = a. Again, the intuitive meaning is clear:

as z gets close to z0 we should see f(z) get close to a. Here is the technical definition

Definition. Suppose f(z) is defined on a punctured disk 0 < |z − z0| < r around z0. We
say lim

z→z0
f(z) = a if for every ε > 0 there is a δ such that

|f(z)− a| < ε whenever 0 < |z − z0| < δ

This says exactly that as z gets closer (within δ) to z0 we have f(z) is close (within ε) to a.
Since ε can be made as small as we want, f(z) must go to a.

Remarks.

1. Using the punctured disk (also called a deleted neighborhood) means that f(z) does
not have to be defined at z0 and, if it is then f(z0) does not necessarily equal a. If
f(z0) = a then we say the f is continuous at z0.

2. Ask any mathematician to complete the phrase “For every ε” and the odds are that
they will respond “there is a δ . . . ”

4.11.3 Connection between limits of sequences and limits of functions

Here’s an equivalent way to define limits of functions: the limit lim
z→z0

f(z) = a if, for every

sequence of points {zn} with limit z0 the sequence {f(zn)} has limit a.

5 Line integrals and Cauchy’s theorem

The basic theme here is that complex line integrals will mirror much of what we’ve seen for
multivariable calculus line integrals. But, just like working with eiθ is easier than working
with sine and cosine, complex line integrals are easier to work with than their multivariable
analogs. At the same time they will give deep insight into the workings of these integrals.

To define complex line integrals, we will need the following ingredients

• The complex plane: z = x+ iy

• The complex differential dz = dx+ idy

• A curve in the complex plane: γ(t) = x(t) + iy(t), defined for a ≤ t ≤ b.

• A complex function: f(z) = u(x, y) + iv(x, y)

55



5.1 Complex line integrals

Line integrals are also called path or contour integrals. Given the above ingredients, we
define the complex line integral by∫

γ
f(z) dz :=

∫ b

a
f(γ(t))γ′(t) dt. (25a)

You should note that this notation looks just like integrals of a real variable. We don’t need
the vectors and dot products of line integrals in R2. Also, make sure you understand that
the product f(γ(t))γ′(t) is just a product of complex numbers.

An alternative notation uses dz = dx+ idy to write∫
γ
f(z) dz =

∫
γ
(u+ iv)(dx+ idy) (25b)

Let’s check that Equations (25a) and (25b) are the same. Equation (25b) is really a multi-
variable calculus expression, so thinking of γ(t) as (x(t), y(t)) it becomes∫

γ
f(z) dz =

∫ b

a
[u(x(t), y(t)) + iv(x(t), y(t)]

(
x′(t) + iy′(t)

)
dt

But,
u(x(t), y(t)) + iv(x(t), y(t)) = f(γ(t))

and
x′(t) + iy′(t) = γ′(t)

so the right hand side of this equation is∫ b

a
f(γ(t))γ′(t) dt.

That is, it is exactly the same as the expression in Equation (25a).

Example 5.1. Compute
∫
γ z

2dz along the straight line from 0 to 1 + i.

Solution: We parametrize the curve as γ(t) = t(1 + i) with 0 ≤ t ≤ 1. So γ′(t) = 1 + i. The
line integral is ∫

z2dz =

∫ 1

0
t2(1 + i)2(1 + i) dt =

2i(1 + i)

3
.

Example 5.2. Compute
∫
γ z dz along the straight line from 0 to 1 + i.

Solution: We can use the same parametrization as in the previous example. So,∫
γ
z dz =

∫ 1

0
t(1− i)(1 + i) dt = 1
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Example 5.3. Compute
∫
γ z

2 dz along the unit circle.

Solution: We parametrize the unit circle by γ(θ) = eiθ, where 0 ≤ θ ≤ 2π. We have
γ′(θ) = ieiθ. So, the integral becomes∫

γ
z2 dz =

∫ 2π

0
e2iθieiθ dθ =

∫ 2π

0
ie3iθ dθ =

ei3θ

3

∣∣∣∣2π
0

= 0.

Example 5.4. Compute

∫
z dz along the unit circle.

Solution: Parametrize C: γ(t) = eit, with 0 ≤ t ≤ 2π. So, γ′(t) = ieit. Putting this into
the integral gives ∫

C
z dz =

∫ 2π

0
eit i eit dt =

∫ 2π

0
i dt = 2πi.

5.2 Fundamental theorem for complex line integrals

This is exactly analogous to the fundamental theorem of calculus.

Theorem 5.5. (Fundamental theorem of complex line integrals) If f(z) is a complex
analytic function and γ is a curve from z0 to z1 then∫

γ
f ′(z) dz = f(z1)− f(z0).

Proof. This is an application of the chain rule. We have

df(γ(t))

dt
= f ′(γ(t)) γ′(t).

So ∫
γ
f ′(z) dz =

∫ z1

z0

f ′(γ(t)) γ′(t) dt =

∫ z1

z0

df(γ(t))

dt
dt = f(γ(t))

∣∣∣∣z1
z0

= f(z1)− f(z0).

Another equivalent way to state the fundamental theorem is: if f has an antiderivative F ,
i.e. F ′ = f then ∫

γ
f(z) dz = F (z1)− F (z0).

Example 5.6. Redo
∫
γ z

2 dz, with γ the straight line from 0 to 1 + i.

Solution: We can check by inspection that z2 has an antiderivative F (z) = z3/3. Therefore
the fundamental theorem implies∫

γ
z2 dz =

z3

3

∣∣∣∣1+i

0

=
(1 + i)3

3
=

2i(1 + i)

3
.
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Example 5.7. Redo
∫
γ z

2 dz, with γ the unit circle.

Solution: Again, since z2 had antiderivative z3/3 we can evaluate the integral by plugging
the endpoints of γ into the z3/3. Since the endpoints are the same the resulting difference
will be 0!

5.3 Path independence

We say the integral
∫
γ f(z) dz is path independent if it has the same value for any two paths

with the same endpoints. More precisely, if f(z) is defined on a region A then
∫
γ f(z) dz

is path independent in A, if it has the same value for any two paths in A with the same
endpoints. This statement follows directly from the fundamental theorem.

Theorem 5.8. (Path independence) If f(z) has an antiderivative in a simply connected
open region A, then the path integral

∫
γ f(z) dz is path independent for all paths in A.

Proof. Since f(z) has an antiderivative of f(z), the fundamental theorem tells us that the
integral only depends on the endpoint of γ, i.e.∫

γ
f(z) dz = F (z1)− F (z0)

where z0 and z1 are the beginning and end point of γ.

An alternative way to express path independence uses closed paths.

Theorem 5.9. The following two things are equivalent.

1. The integral

∫
γ
f(z) dz is path independent.

2. The integral

∫
γ
f(z) dz around any closed path is 0.

Proof. This is essentially identical to the corresponding multivariable proof. We have to
show two things:

(i) Path independence implies the line integral around any closed path is 0.

(ii) If the line integral around all closed paths is 0 then we have path independence.

To see (i), assume path independence and consider the closed path C shown in figure (i)
below. Since the starting point z0 is the same as the endpoint z1 the line integral

∫
C f(z) dz

must have the same value as the line integral over the curve consisting of the single point
z0. Since that is clearly 0 we must have the integral over C is 0.

To see (ii), assume
∫
C f(z) dz = 0 for any closed curve. Consider the two curves C1 and

C2 shown in figure (ii). Both start at z0 and end at z1. By the assumption that integrals

58



over closed paths are 0 we have

∫
C1−C2

f(z) dz = 0. So,

∫
C1

f(z) dz =

∫
C2

f(z) dz.

That is, any two paths from z0 to z1 have the same line integral. This shows that the line
integrals are path independent.

x

y

Cc

P = Q

Figure (i)

x

y

C2

C1

P

Q

Figure (ii)

5.4 Examples

Example 5.10. Why can’t we compute

∫
γ
z dz using the fundamental theorem.

Solution: Because z doesn’t have an antiderivative. We can also see this by noting that if

z had an antiderivative, then its integral around the unit circle would have to be 0. But,
we saw in Example 5.4 that this is not the case.

Example 5.11. Compute

∫
γ
z−1 dz over several contours

(i) The line from 1 to 1 + i.
(ii) The circle of radius 1 around z = 3.
(iii) The unit circle.

Solution: For parts (i) and (ii) there is no problem using the antiderivative log(z) because
these curves are contained in a simply connected region that doesn’t contain the origin.

(i) ∫
γ

1

z
dz = log(1 + i)− log(1) = log(

√
2) + i

π

4

(ii) Since the beginning and end points are the same∫
γ

1

z
dz = 0
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(iii) We parametrize the unit circle by γ(θ) = eiθ with 0 ≤ θ ≤ 2π. We compute γ′(θ) = ieiθ.
So the integral becomes ∫

γ

1

z
dz =

∫ 2π

0

1

eiθ
ieiθ dt =

∫ 2π

0
i dt = 2πi

Notice that we could use log(z) if we were careful to let the argument increase by 2π as it
went around the origin once.

Example 5.12. Compute
∫
γ z
−2 dz, where γ is the unit circle in two ways.

(i) Using the fundamental theorem.

(ii) Directly from the definition.

Solution: (i) Let f(z) = −1/z. Since f ′(z) = 1/z2, the fundamental theorem says∫
γ

1

z2
dz =

∫
γ
f ′(z) dz = f(endpoint)− f(start point) = 0.

It equals 0 because the start and endpoints are the same.
(ii) As usual, we parametrize the unit circle as γ(θ) = eiθ with 0 ≤ θ ≤ 2π. So,

γ′(θ) = ieiθ and the integral becomes∫
γ

1

z2
dz =

∫ 2π

0

1

e2iθ
ieiθ dθ =

∫ 2π

0
ie−iθ dθ = −e−iθ

∣∣∣2π
0

= 0.

5.5 Cauchy’s theorem

Cauchy’s theorem is analogous to Green’s theorem for curl free vector fields.

Theorem 5.13. (Cauchy’s theorem) Suppose A is a simply connected region, f(z) is
analytic on A and C is a simple closed curve in A. Then the following three things hold:

(i) ∫
C
f(z) dz = 0

(i′) We can drop the requirement that C is simple in part (i).

(ii) Integrals of f on paths within A are path independent. That is, two paths with same
endpoints integrate to the same value.

(iii) f has an antiderivative in A.

Proof. We will prove (i) using Green’s theorem – we could give a proof that didn’t rely on
Green’s, but it would be quite similar in flavor to the proof of Green’s theorem.

Let R be the region inside the curve. And write f = u + iv. Now we write out the
integral as follows∫

C
f(z) dz =

∫
C

(u+ iv) (dx+ idy) =

∫
C

(u dx− v dy) + i(v dx+ u dy).
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Let’s apply Green’s theorem to the real and imaginary pieces separately. First the real
piece: ∫

C
u dx− v dy =

∫
R

(−vx − uy) dx dy = 0.

We get 0 because the Cauchy-Riemann equations say uy = −vx, so −vx − uy = 0.
Likewise for the imaginary piece:∫

C
v dx+ u dy =

∫
R

(ux − vy) dx dy = 0.

We get 0 because the Cauchy-Riemann equations say ux = vy, so ux − vy = 0.
To see part (i′) you should draw a few curves that intersect themselves and convince

yourself that they can be broken into a sum of simple closed curves. Thus, (i′) follows
from (i).5

Part (ii) follows from (i) and Theorem 5.9.
To see (iii), pick a base point z0 ∈ A and let

F (z) =

∫ z

z0

f(w) dw.

Here the integral is over any path in A connecting z0 to z. By part (ii), F (z) is well defined.
If we can show that F ′(z) = f(z) then we’ll be done. Doing this amounts to managing the
notation to apply the fundamental theorem of calculus and the Cauchy-Riemann equations.
Let’s write

f(z) = u(x, y) + iv(x, y) , F (z) = U(x, y) + iV (x, y)

Then we can write
∂f

∂x
= ux + ivx, etc.

We can formulate the Cauchy-Riemann equations for F (z) as

F ′(z) =
∂F

∂x
=

1

i

∂F

∂y
(26a)

i.e.

F ′(z) = Ux + iVx =
1

i
(Uy + iVy) = Vy − iUy. (26b)

For reference, we note that using the path γ(t) = x(t) + iy(t), with γ(0) = z0 and γ(b) = z
we have

F (z) =

∫ z

z0

f(w) dw =

∫ z

z0

(u(x, y) + iv(x, y))(dx+ idy)

=

∫ b

0
(u(x(t), y(t)) + iv(x(t), y(t))(x′(t) + iy′(t)) dt. (27)

5In order to truly prove part (i′) we would need a more technically precise definition of simply connected
so we could say that all closed curves within A can be continuously deformed to each other.
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Our goal now is to prove that the Cauchy-Riemann equations given in Equation (27) hold
for F (z). The figure below shows an arbitrary path from z0 to z, which can be used to
compute F (z). To compute the partials of F we’ll need the straight lines that continue C
to z + h or z + ih.

A

z0

z z + h

z + ih

C

Cx

Cy

Paths for proof of Cauchy’s theorem

To prepare the rest of the argument we remind you that the fundamental theorem of calculus
implies

lim
h→0

∫ h
0 g(t) dt

h
= g(0). (28)

(That is, the derivative of the integral is the original function.)

First we’ll look at
∂F

∂x
. So, fix z = x+ iy. Looking at the paths in the figure above we

have

F (z + h)− F (z) =

∫
C+Cx

f(w) dw −
∫
C
f(w) dw =

∫
Cx

f(w) dw.

The curve Cx is parametrized by γ(t) = x+ t+ iy, with 0 ≤ t ≤ h. So,

∂F

∂x
= lim

h→0

F (z + h)− F (z)

h
= lim

h→0

∫
Cx
f(w) dw

h

= lim
h→0

∫ h
0 u(x+ t, y) + iv(x+ t, y) dt

h

= u(x, y) + iv(x, y)

= f(z) (29)

The second to last equality follows from Equation (28).
Similarly, we get (remember: w = z + it, so dw = i dt)

1

i

∂F

∂y
= lim

h→0

F (z + ih)− F (z)

ih
= lim

h→0

∫
Cy
f(w) dw

ih

= lim
h→0

∫ h
0 u(x, y + t) + iv(x, y + t) i dt

ih

= u(x, y) + iv(x, y)

= f(z). (30)
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Together Equations (29) and (30) show

f(z) =
∂F

∂x
=

1

i

∂F

∂y

By Equation (26) we have shown that F is analytic and F ′ = f . �

5.6 Extensions of Cauchy’s theorem

Cauchy’s theorem requires that the function f(z) be analytic on a simply connected region.
In cases where it is not, we can extend it in a useful way.

Suppose R is the region between the two simple closed curves C1 and C2. Note, both
C1 and C2 are oriented in a counterclockwise direction.

Theorem 5.14. (Extended Cauchy’s theorem) If f(z) is analytic on R then∫
C1−C2

f(z) dz = 0.

Proof. The proof is based on the following figure. We ‘cut’ both C1 and C2 and connect
them by two copies of C3, one in each direction. (In the figure we have drawn the two
copies of C3 as separate curves, in reality they are the same curve traversed in opposite
directions.)

With C3 acting as a cut, the region enclosed by C1 +C3−C2−C3 is simply connected,
so Cauchy’s Theorem 5.13 applies. We get∫

C1+C3−C2−C3

f(z) dz = 0

The contributions of C3 and −C3 cancel, which leaves

∫
C1−C2

f(z) dz = 0. �

Note. This clearly implies

∫
C1

f(z) dz =

∫
C2

f(z) dz.
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Example 5.15. Let f(z) = 1/z. f(z) is defined and analytic on the punctured plane.

x

y

Punctured plane: C− {0}

What values can

∫
C
f(z) dz take for C a simple closed curve (positively oriented) in the

plane?

Solution: We have two cases (i) C1 not around 0, and (ii), C2 around 0

x

y

C1R
C2

Case (i): Cauchy’s theorem applies directly because the interior does not contain the prob-
lem point at the origin. Thus, ∫

C1

f(z) dz = 0

Case (ii): we will show that ∫
C2

f(z) dz = 2πi

Let C3 be a small circle of radius a centered at 0 and entirely inside C2.

x

y

C2C3
R

Figure for part (ii)

By the extended Cauchy theorem we have∫
C2

f(z) dz =

∫
C3

f(z) dz.
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Using the usual parametrization of a circle we can easily compute that the line integral is∫
C2

f(z) dz =

∫
C3

f(z) dz =

∫ 2π

0
i dt = 2πi

We can extend this answer in the following way:

If C is not simple, then the possible values of∫
C
f(z) dz

are 2πni, where n is the number of times C goes (counterclockwise) around the origin 0.

Definition. n is called the winding number of C around 0. n also equals the number of
times C crosses the positive x-axis, counting +1 for crossing from below and −1 for crossing
from above.

x

y

C

A curve with winding number 2 around the origin.

Example 5.16. A further extension: using the same trick of cutting the region by curves
to make it simply connected we can show that if f is analytic in the region R shown below
then ∫

C1−C2−C3−C4

f(z) dz = 0.

C1

C2 C3 C4

R

That is, C1 − C2 − C3 − C4 is the boundary of the region R.

Orientation. It is important to get the orientation of the curves correct. One way to do
this is to make sure that the region R is always to the left as you traverse the curve. In
the above example. The region is to the right as you traverse C2, C3 or C4 in the direction
indicated. This is why we put a minus sign on each when describing the boundary.
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6 Cauchy’s integral formula

Cauchy’s theorem is a big theorem which we will use almost daily from here on out. Right
away it will reveal a number of interesting and useful properties of analytic functions. More
will follow as the course progresses. If you learn just one theorem this week it should be
Cauchy’s integral formula! We start with a statement of the theorem for functions. After
some examples, we’ll give a generalization to all derivatives of a function. After some more
examples we will prove the theorems. After that we will see some remarkable consequences
that follow fairly directly from the Cauchy’s formula.

6.1 Cauchy’s integral for functions

Theorem 6.1. (Cauchy’s integral formula) Suppose C is a simple closed curve and the
function f(z) is analytic on a region containing C and its interior. We assume C is oriented
counterclockwise. Then for any z0 inside C:

f(z0) =
1

2πi

∫
C

f(z)

z − z0
dz (31)

Re(z)

Im(z)

z0

C

A

Cauchy’s integral formula: simple closed curve C, f(z) analytic on and inside C.

This is remarkable: it says that knowing the values of f on the boundary curve C means we
know everything about f inside C!! This is probably unlike anything you’ve encountered
with functions of real variables.

Aside 1. With a slight change of notation (z becomes w and z0 becomes z) we often write
the formula as

f(z) =
1

2πi

∫
C

f(w)

w − z dw (32)

Aside 2. We’re not being entirely fair to functions of real variables. We will see that for
f = u+ iv the real and imaginary parts u and v have many similar remarkable properties.
u and v are called conjugate harmonic functions.

Example 6.2. Compute

∫
c

ez
2

z − 2
dz, where C is the curve shown.
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Re(z)

Im(z)

C

2

Solution: Let f(z) = ez
2
. f(z) is entire. Since C is a simple closed curve (counterclockwise)

and z = 2 is inside C, Cauchy’s integral formula says that the integral is 2πif(2) = 2πie4.

Example 6.3. Do the same integral as the previous example with C the curve shown.

Re(z)

Im(z)

C

2

Solution: Since f(z) = ez
2
/(z − 2) is analytic on and inside C, Cauchy’s theorem says that

the integral is 0.

Example 6.4. Do the same integral as the previous examples with C the curve shown.

Re(z)

Im(z)

C

2

Solution: This one is trickier. Let f(z) = ez
2
. The curve C goes around 2 twice in the

clockwise direction, so we break C into C1 + C2 as shown in the next figure.

Re(z)

Im(z)

C1

C1

C2

2

These are both simple closed curves, so we can apply the Cauchy integral formula to each
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separately. (The negative signs are because they go clockwise around z = 2.)∫
C

f(z)

z − 2
dz =

∫
C1

f(z)

z − 2
dz +

∫
C2

f(z)

z − 2
dz = −2πif(2)− 2πif(2) = −4πif(2)

6.2 Cauchy’s integral formula for derivatives

Cauchy’s integral formula is worth repeating several times. So, now we give it for all
derivatives f (n)(z) of f . This will include the formula for functions as a special case.

Theorem 6.5. Cauchy’s integral formula for derivatives. If f(z) and C satisfy the same
hypotheses as for Cauchy’s integral formula then, for all z inside C we have

f (n)(z) =
n!

2πi

∫
C

f(w)

(w − z)n+1
dw, n = 0, 1, 2, . . . (33)

where, C is a simple closed curve, oriented counterclockwise, z is inside C and f(w) is
analytic on and inside C.

Example 6.6. Evaluate I =

∫
C

e2z

z4
dz where C : |z| = 1.

Solution: With Cauchy’s formula for derivatives this is easy. Let f(z) = e2z. Then,

I =

∫
C

f(z)

z4
dz =

2πi

3!
f ′′′(0) =

8

3
πi.

Example 6.7. Now Let C be the contour shown below and evaluate the same integral as
in the previous example.

Re

Im

C

Solution: Again this is easy: the integral is the same as the previous example, i.e. I =
8

3
πi.
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6.2.1 Another approach to some basic examples

Suppose C is a simple closed curve around 0. We have seen that∫
C

1

z
dz = 2πi

The Cauchy integral formula gives the same result. That is, let f(z) = 1, then the formula
says

1

2πi

∫
C

f(z)

z − 0
dz = f(0) = 1.

Likewise Cauchy’s formula for derivatives shows∫
C

1

(z)n
dz =

∫
C

f(z)

zn+1
dz = f (n)(0) = 0, (34)

for integers n > 1

6.2.2 More examples

Example 6.8. Compute

∫
C

cos(z)

z(z2 + 8)
dz over the contour shown.

Im(z)

Im(z)
2i

−2i

C

Solution: Let f(z) = cos(z)/(z2 + 8). f(z) is analytic on and inside the curve C. That is,

the roots of z2 + 8 are outside the curve. So, we rewrite the integral as∫
C

cos(z)/(z2 + 8)

z
dz =

∫
C

f(z)

z
dz = 2πif(0) = 2πi

1

8
=
πi

4
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Example 6.9. Compute

∫
C

1

(z2 + 4)2
dz over the contour shown.

Re(z)

Im(z)

C

i

2i

−i

−2i

Solution: We factor the denominator as

1

(z2 + 4)2
=

1

(z − 2i)2(z + 2i)2

Let

f(z) =
1

(z + 2i)2

Clearly f(z) is analytic inside C. So, by Cauchy’s formula for derivatives:∫
C

1

(z2 + 4)2
dz =

∫
C

f(z)

(z − 2i)2
= 2πif ′(2i) = 2πi

[ −2

(z + 2i)3

]
z=2i

=
4πi

64i
=

π

16

Example 6.10. Compute

∫
C

z

z2 + 4
dz over the curve C shown below.

Re(z)

Im(z)

C
i

2i

−i

−2i
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Solution: The integrand has singularities at ±2i and the curve C encloses them both. The
solution to the previous solution won’t work because we can’t find an appropriate f(z) that
is analytic on the whole interior of C. Our solution is to split the curve into two pieces.
Notice that C3 is traversed both forward and backward.

Re(z)

Im(z)

C1C1

C3

C2C2

−C3

i

2i

−i

−2i

Split the original curve C into 2 pieces that each surround just one singularity.

We have
z

z2 + 4
=

z

(z − 2i)(z + 2i)

We let
f1(z) =

z

(z + 2i)
f2(z) =

z

(z − 2i)

So
z

z2 + 4
=

f1(z)

z − 2i
=

f2(z)

z + 2i

The integral, can be written out as∫
C

z

z2 + 4
dz =

∫
C1+C3−C3+C2

z

z2 + 4
dz =

∫
C1+C3

f1(z)

z − 2i
dz +

∫
C2−C3

f2(z)

z + 2i
dz

Since f1 is analytic inside the simple closed curve C1 + C3 and f2 is analytic inside the
simple closed curve C2−C3, Cauchy’s formula applies to both integrals. The total integral
equals

2πi(f1(2i) + f2(−2i)) = 2πi(1/2 + 1/2) = 2πi.

Remarks. 1. We could also have done this problem using partial fractions

z

(z − 2i)(z + 2i)
=

A

z − 2i
+

B

z + 2i
.

It will turn out that A = f1(2i) and B = f2(−2i). It is easy to apply the Cauchy integral
formula to both terms.
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2. Important note. In an upcoming topic we will formulate the Cauchy residue
theorem. This will allow us to compute the integrals in Examples 6.8-6.10 in an easier and
less ad hoc manner.

6.2.3 The triangle inequality for integrals

We discussed the triangle inequality in the Topic 1 notes. It says that

|z1 + z2| ≤ |z1|+ |z2|,

with equality if and only if z1 and z2 lie on the same ray from the origin.
Since an integral is basically a sum, this translates to the triangle inequality for integrals.

We’ll state it in two ways that will be useful to us.

Theorem 6.11. (Triangle inequality for integrals I) Suppose g(t) is a complex valued
function of a real variable, defined on a ≤ t ≤ b. Then∣∣∣∣∫ b

a
g(t) dt

∣∣∣∣ ≤ ∫ b

a
|g(t))| dt,

with equality if and only if the values of g(t) all lie on the same ray from the origin.

Proof. This follows by approximating the integral as a Riemann sum.∣∣∣∣∫ b

a
g(t) dt

∣∣∣∣ ≈ ∣∣∣∑ g(tk)∆t
∣∣∣ ≤∑ |g(tk)|∆t ≈

∫ b

a
|g(t)| dt.

The middle inequality is just the standard triangle inequality for sums of complex num-
bers. �

Theorem 6.12. (Triangle inequality for integrals II) For any function f(z) and any curve
γ, we have ∣∣∣∣∫

γ
f(z) dz

∣∣∣∣ ≤ ∫
γ
|f(z)| |dz|.

Here dz = γ′(t) dt and |dz| = |γ′(t)| dt.

Proof. This follows immediately from the previous theorem:∣∣∣∣∫
γ
f(z) dz

∣∣∣∣ =

∣∣∣∣∫ b

a
f(γ(t))γ′(t) dt

∣∣∣∣ ≤ ∫ b

a
|f(γ(t))||γ′(t)| dt =

∫
γ
|f(z)| |dz|.

Corollary. If |f(z)| < M on C then∣∣∣∣∫
C
f(z) dz

∣∣∣∣ ≤M · (length of C)
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Proof. Let γ(t), with a ≤ t ≤ b, be a parametrization of C. Using the triangle inequality∣∣∣∣∫
C
f(z) dz

∣∣∣∣ ≤ ∫
C
|f(z)| |dz| =

∫ b

a
|f(γ(t))| |γ′(t)| dt ≤

∫ b

a
M |γ′(t)| dt = M · (length of C).

Here we have used that
|γ′(t)| dt =

√
(x′)2 + (y′)2 dt = ds,

the arclength element. �

Example 6.13. Compute the real integral

I =

∫ ∞
−∞

1

(x2 + 1)2
dx

Solution: The trick is to integrate f(z) = 1/(z2 + 1)2 over the closed contour C1 + CR
shown, and then show that the contribution of CR to this integral vanishes as R goes to∞.

Re(z)

Im(z)

CRCR

C1 R−R

i

The only singularity of

f(z) =
1

(z + i)2(z − i)2

inside the contour is at z = i. Let

g(z) =
1

(z + i)2

Since g is analytic on and inside the contour, Cauchy’s formula gives∫
C1+CR

f(z) dz =

∫
C1+CR

g(z)

(z − i)2
dz = 2πig′(i) = 2πi

−2

(2i)3
=
π

2
.

We parametrize C1 by
γ(x) = x , −R ≤ x ≤ R

So ∫
C1

f(z) dz =

∫ R

−R

1

(x2 + 1)2
dx.

This goes to I (the value we want to compute) as R→∞. Next, we parametrize CR by

γ(θ) = Reiθ , 0 ≤ θ ≤ π
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So ∫
CR

f(z) dz =

∫ π

0

1

(R2e2iθ + 1)2
iReiθ dθ

By the triangle inequality for integrals, if R > 1∣∣∣∣∫
CR

f(z) dz

∣∣∣∣ ≤ ∫ π

0

∣∣∣∣ 1

(R2e2iθ + 1)2
iReiθ

∣∣∣∣ dθ. (35)

From the triangle equality for complex numbers

R2 = |R2e2iθ| = |R2e2iθ + 1 + (−1)| ≤ |R2e2iθ + 1|+ | − 1| = |R2e2iθ + 1|+ 1

we get
|R2e2iθ + 1| ≥ R2 − 1

Thus
1

|R2e2iθ + 1|2 ≤
1

(R2 − 1)2

Using Equation (35), we then have∣∣∣∣∫
CR

f(z) dz

∣∣∣∣ ≤ ∫ π

0

∣∣∣∣ 1

(R2e2iθ + 1)2
iReiθ

∣∣∣∣ dθ ≤ ∫ π

0

R

(R2 − 1)2
dθ =

πR

(R2 − 1)2

Clearly this goes to 0 as R→∞. Thus, the integral over the contour C1 +CR goes to I as
R gets large. But ∫

C1+CR

f(z) dz = π/2

for all R > 1. We can therefore conclude that I = π/2.
As a sanity check, we note that our answer is real and positive as it needs to be.

6.3 Proof of Cauchy’s integral formula

6.3.1 A useful theorem

Before proving the theorem we’ll need a theorem that will be useful in its own right.

Theorem 6.14. (A second extension of Cauchy’s theorem) Suppose that A is a simply
connected region containing the point z0. Suppose g is a function which is

1. Analytic on A− {z0}

2. Continuous on A. (In particular, g does not blow up at z0.)

Then, ∫
C
g(z) dz = 0

for all closed curves C in A.
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Proof. The extended version of Cauchy’s theorem tells us that∫
C
g(z) dz =

∫
Cr

g(z) dz,

where Cr is a circle of radius r around z0.

Re(z)

Im(z)

z0

C

A

Cr

Since g(z) is continuous we know that |g(z)| is bounded inside Cr. Say, |g(z)| < M . The
corollary to the triangle inequality says that∣∣∣∣∫

Cr

g(z) dz

∣∣∣∣ ≤M (length of Cr) = M 2πr.

Since r can be as small as we want, this implies that∫
Cr

g(z) dz = 0

Note. Using this, we can show that g(z) is, in fact, analytic at z0. The proof will be the
same as in our proof of Cauchy’s theorem that g(z) has an antiderivative.

6.3.2 Proof of Cauchy’s integral formula

We reiterate Cauchy’s integral formula from Equation (31): f(z0) =
1

2πi

∫
C

f(z)

z − z0
dz

Re(z)

Im(z)

z0

C

A

Proof. (of Cauchy’s integral formula) We use a trick that is useful enough to be worth
remembering. Let

g(z) =
f(z)− f(z0)

z − z0
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Since f(z) is analytic on A, we know that g(z) is analytic on A−{z0}. Since the derivative
of f exists at z0, we know that

lim
z→z0

g(z) = f ′(z0)

That is, if we define g(z0) = f ′(z0) then g is continuous at z0. From the extension of
Cauchy’s theorem just above, we have∫

C
g(z) dz = 0, i.e.

∫
C

f(z)− f(z0)

z − z0
dz = 0

Thus ∫
C

f(z)

z − z0
dz =

∫
C

f(z0)

z − z0
dz = f(z0)

∫
C

1

z − z0
dz = 2πif(z0).

The last equality follows from our, by now, well known integral of 1/(z − z0) on a loop
around z0.

6.4 Proof of Cauchy’s integral formula for derivatives

Recall that Cauchy’s integral formula in Equation (33) says

f (n)(z) =
n!

2πi

∫
C

f(w)

(w − z)n+1
dw, n = 0, 1, 2, . . .

First we’ll offer a quick proof which captures the reason behind the formula, and then a
formal proof.

Quick proof: We have an integral representation for f(z), z ∈ A, we use that to find an
integral representation for f ′(z), z ∈ A.

f ′(z) =
d

dz

[
1

2πi

∫
C

f(w)

w − z dw
]

=
1

2πi

∫
C

d

dz

(
f(w)

w − z

)
dw =

1

2πi

∫
C

f(w)

(w − z)2
dw

(Note, since z ∈ A and w ∈ C, we know that w − z 6= 0) Thus,

f ′(z) =
1

2πi

∫
C

f(w)

(w − z)2
dw

Now, by iterating this process, i.e. by mathematical induction, we can show the formula
for higher order derivatives.

Formal proof: We do this by taking the limit of

lim
∆z→0

f(z + ∆z)− f(z)

∆z

using the integral representation of both terms:

f(z + ∆z) =
1

2πi

∫
C

f(w)

w − z −∆z
dw , f(z) =

1

2πi

∫
C

f(w)

w − z dw
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Now, using a little algebraic manipulation we get

f(z + ∆z)− f(z)

∆z
=

1

2πi∆z

∫
C

f(w)

w − z −∆z
− f(w)

w − z dw

=
1

2πi∆z

∫
C

f(w)∆z

(w − z −∆z)(w − z) dw

=
1

2πi

∫
C

f(w)

(w − z)2 −∆z(w − z) dw

Letting ∆z go to 0, we get Cauchy’s formula for f ′(z)

f ′(z) =
1

2πi

∫
C

f(w)

(w − z)2
dw

There is no problem taking the limit under the integral sign because everything is continuous
and the denominator is never 0. �

6.5 Consequences of Cauchy’s integral formula

6.5.1 Existence of derivatives

Theorem. Suppose f(z) is analytic on a region A. Then, f has derivatives of all order.

Proof. This follows from Cauchy’s integral formula for derivatives. That is, we have a
formula for all the derivatives, so in particular the derivatives all exist. A little more
precisely: for any point z in A we can put a small disk around z0 that is entirely contained
in A. Let C be the boundary of the disk, then Cauchy’s formula gives a formula for all the
derivatives f (n)(z0) in terms of integrals over C. In particular, those derivatives exist. �

Remark. If you look at the proof of Cauchy’s formula for derivatives you’ll see that f
having derivatives of all orders boils down to 1/(w − z) having derivatives of all orders for
w on a curve not containing z.

Important remark. We have at times assumed that for f = u+ iv analytic, u and v have
continuous higher order partial derivatives. This theorem confirms that fact. In particular,
uxy = uyx, etc.

6.5.2 Cauchy’s inequality

Theorem 6.15. (Cauchy’s inequality) Let CR be the circle |z−z0| = R. Assume that f(z)
is analytic on CR and its interior, i.e. on the disk |z− z0| ≤ R. Finally let MR = max |f(z)|
over z on CR. Then

|f (n)(z0)| ≤ n!MR

Rn
, n = 1, 2, 3, . . . (36)

Proof. Using Cauchy’s integral formula for derivatives (Equation 33) we have

|f (n)(z0)| ≤ n!

2π

∫
CR

|f(w)|
|w − z0|n+1

|dw| ≤ n!

2π

MR

Rn+1

∫
CR

|dw| = n!

2π

MR

Rn+1
· 2πR
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6.5.3 Liouville’s theorem

Theorem 6.16. (Liouville’s theorem) Assume f(z) is entire and suppose it is bounded in
the complex plane, namely |f(z)| < M for all z ∈ C then f(z) is constant.

Proof. For any circle of radius R around z0 the Cauchy inequality says |f ′(z0)| ≤ M

R
. But,

R can be as large as we like so we conclude that |f ′(z0)| = 0 for every z0 ∈ C. Since the
derivative is 0, the function itself is constant.

In short:

If f is entire and bounded then f is constant.

Note. P (z) = anz
n + . . .+ a0, sin(z), ez are all entire but not bounded.

Now, practically for free, we get the fundamental theorem of algebra.

Corollary. (Fundamental theorem of algebra) Any polynomial P of degree n ≥ 1, i.e.

P (z) = a0 + a1z + . . .+ anz
n, an 6= 0,

has exactly n roots.

Proof. There are two parts to the proof.
Hard part: Show that P has at least one root.
This is done by contradiction, together with Liouville’s theorem. Suppose P (z) does

not have a zero. Then
1. f(z) = 1/P (z) is entire. This is obvious because (by assumption) P (z) has no zeros.
2. f(z) is bounded. This follows because 1/P (z) goes to 0 as |z| goes to ∞.

Im(z)

Im(z)

R

CR

M = max of |1/P (z)| in here.

|1/P (z)| small out here.

(It is clear that |1/P (z)| goes to 0 as z goes to infinity, i.e. |1/P (z)| is small outside a large
circle. So |1/P (z)| is bounded by M .)

So, by Liouville’s theorem f(z) is constant, and therefore P (z) must be constant as well.
But this a contradiction, so P must have a zero.
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Easy part: P has exactly n zeros. Let z0 be one zero. We can factor P (z) = (z−z0)Q(z).
Q(z) has degree n− 1. If n− 1 > 0, then we can apply the result to Q(z). We can continue
this process until the degree of Q is 0.

6.5.4 Maximum modulus principle

Briefly, the maximum modulus principle states that if f is analytic and not constant in
a domain A then |f(z)| has no relative maximum in A and the absolute maximum of |f |
occurs on the boundary of A.

In order to prove the maximum modulus principle we will first prove the mean value
property. This will give you a good feel for the maximum modulus principle. It is also
important and interesting in its own right.

Theorem 6.17. (Mean value property) Suppose f(z) is analytic on the closed disk of
radius r centered at z0, i.e. the set |z − z0| ≤ r. Then,

f(z0) =
1

2π

∫ 2π

0
f(z0 + reiθ) dθ (37)

Proof. This is an application of Cauchy’s integral formula on the disk Dr = |z − z0| ≤ r.

Re(z)

Im(z)

z0

r Cr

We can parametrize Cr, the boundary of Dr, as

γ(t) = z0 + reiθ, with 0 ≤ θ ≤ 2π, so γ′(θ) = ireiθ.

By Cauchy’s formula we have

f(z0) =
1

2πi

∫
Cr

f(z)

z − z0
dz =

1

2πi

∫ 2π

0

f(z0 + reiθ)

reiθ
ireiθ dθ =

1

2π

∫ 2π

0
f(z0 + reiθ) dθ

This proves the property. �
In words, the mean value property says f(z0) is the arithmetic mean of the values on

the circle.
We can now prove maximum modulus principle.

Theorem 6.18. (Maximum modulus principle) Suppose f(z) is analytic in a connected
region A and z0 is a point in A.

1. If |f | has a relative maximum at z0 then f(z) is constant in a neighborhood of z0.

2. If A is bounded and connected, and f is continuous on A and its boundary, then either
f is constant or the absolute maximum of |f | occurs only on the boundary of A.

79



Proof. Part (1): The argument for is a little fussy. We will use the mean value property
and the triangle inequality from Theorem 6.11.

Since z0 is a relative maximum of |f |, for every small enough circle C : |z − z0| = r
around z0 we have |f(z)| ≤ |f(z0)| for z on C. Therefore, by the mean value property and
the triangle inequality

|f(z0)| =
∣∣∣∣ 1

2π

∫ 2π

0
f(z0 + reiθ) dθ

∣∣∣∣ (mean value property)

≤ 1

2π

∫ 2π

0
|f(z0 + reiθ)| dθ (triangle inequality)

≤ 1

2π

∫ 2π

0
|f(z0)| dθ (|f(z0 + reiθ)| ≤ |f(z0)|)

= |f(z0)|

Since the beginning and end of the above are both |f(z0)| all the inequalities in the chain
must be equalities.

The first inequality can only be an equality if for all θ, f(z0 + reiθ) lie on the same ray
from the origin, i.e. have the same argument or are 0.

The second inequality can only be an equality if all |f(z0 + reiθ)| = |f(z0)|. So we have
all f(z0 + reiθ) have the same magnitude and the same argumeny. This implies they are all
the same.

Finally, if f(z) is constant along the circle and f(z0) is the average of f(z) over the
circle then f(z) = f(z0), i.e. f is constant on a small disk around z0.

Part (2): The assumptions that A is bounded and f is continuous on A and its boundary
serve to guarantee that |f | has an absolute maximum (on A combined with its boundary).
Part (1) guarantees that the absolute maximum can not lie in the interior of the region A
unless f is constant. (This requires a bit more argument. Do you see why?) If the absolute
maximum is not in the interior it must be on the boundary.�

Example 6.19. Find the maximum modulus of ez on the unit square with 0 ≤ x, y ≤ 1.
Solution:

|ex+iy| = ex

so the maximum is when x = 1, 0 ≤ y ≤ 1 is arbitrary. This is indeed on the boundary of
the unit square

Example 6.20. Find the maximum modulus for sin(z) on the square [0, 2π] × [0, 2π].
Solution: We use the formula

sin(z) = sinx cosh y + i cosx sinh y

So

| sin(z)|2 = sin2 x cosh2 y + cos2 x sinh2 y

= sin2 x cosh2 y + (1− sin2 x) sinh2 y

= sin2 x+ sinh2 y
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We know the maximum over x of sin2(x) is at x = π/2 and x = 3π/2. The maximum
of sinh2 y is at y = 2π. So maximum modulus is√

1 + sinh2(2π) =

√
cosh2(2π) = cosh(2π)

This occurs at the points

z = x+ iy =
π

2
+ 2πi , z =

3π

2
+ 2πi

Both these points are on the boundary of the region.

Example 6.21. Suppose f(z) is entire. Show that if lim
z→∞

f(z) = 0 then f(z) ≡ 0.

Solution: This is a standard use of the maximum modulus principle. The strategy is to show
that the maximum of |f(z)| is not on the boundary (of the appropriately chosen region), so
f(z) must be constant.

Fix z0. For R > |z0| let MR be the maximum of |f(z)| on the circle |z| = R. The
maximum modulus theorem says that |f(z0)| < MR. Since f(z) goes to 0, as R goes to
infinity, we must have MR also goes to 0. This means |f(z0)| = 0. Since this is true for any
z0, we have f(z) ≡ 0.

Example 6.22. Here is an example of why you need A to be bounded in the maximum
modulus theorem. Let A be the upper half-plane

Im(z) > 0

So the boundary of A is the real axis.
Let f(z) = e−iz. We have

|f(x)| = |e−ix| = 1

for x along the real axis. Since |f(2i)| = |e2| > 1, we see |f | cannot take its maximum along
the boundary of A.

Of course, it can’t take its maximum in the interior of A either. What happens here
is that f(z) doesn’t have a maximum modulus. Indeed |f(z)| goes to infinity along the
positive imaginary axis.

7 Introduction to harmonic functions

Harmonic functions appear regularly and play a fundamental role in math, physics and
engineering. In this topic we’ll learn the definition, some key properties and their tight
connection to complex analysis. The key connection to 18.04 is that both the real and
imaginary parts of analytic functions are harmonic. We will see that this is a simple
consequence of the Cauchy-Riemann equations. In the next topic we will look at some
applications to hydrodynamics.
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7.1 Harmonic functions

We start by defining harmonic functions and looking at some of their properties.

Definition 7.1. A function u(x, y) is called harmonic if it is twice continuously differen-
tiable and satisfies the following partial differential equation:

∇2u = uxx + uyy = 0. (38)

Equation (38) is called Laplace’s equation. So a function is harmonic if it satisfies Laplace’s
equation. The operator ∇2 is called the Laplacian and ∇2u is called the Laplacian of u.

7.2 Del notation

Here’s a quick reminder on the use of the notation ∇. For a function u(x, y) and a vector
field F(x, y) = (u, v), we have

(i) ∇ =
(
∂
∂x ,

∂
∂y

)
in Cartesian coordinates

(ii) gradu = ∇u = (ux, uy)

(iii) curl F = ∇× F = (vx − uy)

(iv) div F = ∇ · F = ux + vy

(v) div gradu = ∇ ·∇u = ∇2u = uxx + uyy

(vi) curl gradu = ∇×∇u = 0

7.2.1 Analytic functions have harmonic pieces

The connection between analytic and harmonic functions is very strong. In many respects
it mirrors the connection between ez and sine and cosine.

Let z = x+ iy and write f(z) = u(x, y) + iv(x, y).

Theorem 7.2. If f(z) = u(x, y) + iv(x, y) is analytic on a region A then both u and v are
harmonic functions on A.

Proof. This is a simple consequence of the Cauchy-Riemann equations. Since ux = vy we
have

uxx = vyx

Likewise, uy = −vx implies
uyy = −vxy

Since vxy = vyx we have
uxx + uyy = vyx − vxy = 0

Therefore u is harmonic. We can handle v similarly. �

Note. Since we know an analytic function is infinitely differentiable we know u and v have
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the required two continuous partial derivatives. This also ensures that the mixed partials
agree, i.e. vxy = vyx.

To complete the tight connection between analytic and harmonic functions we show that
any harmonic function is the real part of an analytic function.

Theorem 7.3. If u(x, y) is harmonic on a simply connected region A, then u is the real
part of an analytic function f(z) = u(x, y) + iv(x, y).

Proof. This is similar to our proof that an analytic function has an antiderivative. First we
come up with a candidate for f(z) and then show it has the properties we need. Here are
the details broken down into steps 1-4.

1. Find a candidate, call it g(z), for f ′(z):

If we had an analytic f with f = u+iv, then Cauchy-Riemann says that f ′ = ux−iuy.
So, let’s define

g = ux − iuy
This is our candidate for f ′.

2. Show that g(z) is analytic:

Write g = φ + iψ, where φ = ux and ψ = −uy. Checking the Cauchy-Riemann
equations we have [

φx φy
ψx ψy

]
=

[
uxx uxy
−uyx −uyy

]
Since u is harmonic we know uxx = −uyy, so φx = ψy. It is clear that φy = −ψx.
Thus g satisfies the Cauchy-Riemann equations, so it is analytic.

3. Let f be an antiderivative of g:

Since A is simply connected our statement of Cauchy’s theorem guarantees that g(z)
has an antiderivative in A. We’ll need to fuss a little to get the constant of integration
exactly right. So, pick a base point z0 in A. Define the antiderivative of g(z) by

f(z) =

∫ z

z0

g(z) dz + u(x0, y0).

(Again, by Cauchy’s theorem this integral can be along any path in A from z0 to z.)

4. Show that the real part of f is u.

Let’s write f = U + iV . So, f ′(z) = Ux − iUy. By construction

f ′(z) = g(z) = ux − iuy
This means the first partials of U and u are the same, so U and u differ by at most a
constant. However, also by construction,

f(z0) = u(x0, y0) = U(x0, y0) + iV (x0, y0)

So, U(x0, y0) = u(x0, y0) (and V (x0, y0) = 0). Since they agree at one point we must
have U = u, i.e. the real part of f is u as we wanted to prove.
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Important corollary. u is infinitely differentiable.

Proof. By definition we only require a harmonic function u to have continuous second
partials. Since the analytic f is infinitely differentiable, we have shown that so is u!

7.2.2 Harmonic conjugates

Definition. If u and v are the real and imaginary parts of an analytic function, then we
say u and v are harmonic conjugates.

Note. If f(z) = u + iv is analytic then so is if(z) = −v + iu. So, u and v are harmonic
conjugates and so are u and −v.

7.3 A second proof that u and v are harmonic

This fact is important enough that we will give a second proof using Cauchy’s integral
formula. One benefit of this proof is that it reminds us that Cauchy’s integral formula can
transfer a general question on analytic functions to a question about the function 1/z. We
start with an easy to derive fact.

Fact. The real and imaginary parts of f(z) = 1/z are harmonic away from the origin.
Likewise for

g(z) = f(z − a) =
1

z − a
away from the point z = a.

Proof. We have
1

z
=

x

x2 + y2
− i y

x2 + y2

It is a simple matter to apply the Laplacian and see that you get 0. We’ll leave the algebra
to you! The statement about g(z) follows in either exactly the same way, or by noting that
the Laplacian is translation invariant.

Second proof that f analytic implies u and v are harmonic. We are proving that if
f = u+ iv is analytic then u and v are harmonic. So, suppose f is analytic at the point z0.
This means there is a disk of some radius, say r, around z0 where f is analytic. Cauchy’s
formula says

f(z) =
1

2πi

∫
Cr

f(w)

w − z dw,

where Cr is the circle |w − z0| = r and z is in the disk |z − z0| < r.
Now, since the real and imaginary parts of 1/(w − z) are harmonic, the same must be

true of the integral, which is limit of linear combinations of such functions. Since the circle
is finite and f is continuous, interchanging the order of integration and differentiation is
not a problem.
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7.4 Maximum principle and mean value property

These are similar to the corresponding properties of analytic functions. Indeed, we deduce
them from those corresponding properties.

Theorem. (Mean value property) If u is a harmonic function then u satisfies the mean
value property. That is, suppose u is harmonic on and inside a circle of radius r centered
at z0 = x0 + iy0 then

u(x0, y0) =
1

2π

∫ 2π

0
u(z0 + reiθ) dθ

Proof. Let f = u + iv be an analytic function with u as its real part. The mean value
property for f says

u(x0, y0) + iv(x0, y0) = f(z0) =
1

2π

∫ 2π

0
f(z0 + reiθ) dθ

=
1

2π

∫ 2π

0
u(z0 + reiθ) + iv(z0 + reiθ) dθ

Looking at the real parts of this equation proves the theorem.

Theorem. (Maximum principle) Suppose u(x, y) is harmonic on a open region A.

(i) Suppose z0 is in A. If u has a relative maximum or minimum at z0 then u is constant
on a disk centered at z0.

(ii) If A is bounded and connected and u is continuous on the boundary of A then the
absolute maximum and absolute minimum of u occur on the boundary.

Proof. The proof for maxima is identical to the one for the maximum modulus principle.
The proof for minima comes by looking at the maxima of −u.

Note. For analytic functions we only talked about maxima because we had to use the
modulus in order to have real values. Since | − f | = |f | we couldn’t use the trick of turning
minima into maxima by using a minus sign.

7.5 Orthogonality of curves

An important property of harmonic conjugates u and v is that their level curves are orthog-
onal. We start by showing their gradients are orthogonal.

Lemma 7.4. Let z = x + iy and suppose that f(z) = u(x, y) + iv(x, y) is analytic. Then
the dot product of their gradients is 0, i.e.

∇u ·∇v = 0.

Proof. The proof is an easy application of the Cauchy-Riemann equations.

∇u ·∇v = (ux, uy) · (vx, vy) = uxvx + uyvy = vyvx − vxvy = 0
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In the last step we used the Cauchy-Riemann equations to substitute vy for ux and −vx
for uy.�

The lemma holds whether or not the gradients are 0. To guarantee that the level curves
are smooth the next theorem requires that f ′(z) 6= 0.

Theorem. Let z = x+ iy and suppose that

f(z) = u(x, y) + iv(x, y)

is analytic. If f ′(z) 6= 0 then the level curve of u through (x, y) is orthogonal to the level
curve v through (x, y).

Proof. The technical requirement that f ′(z) 6= 0 is needed to be sure that the level curves
are smooth. We need smoothness so that it even makes sense to ask if the curves are
orthogonal. We’ll discuss this below. Assuming the curves are smooth the proof of the
theorem is trivial: We know from 18.02 that the gradient ∇u is orthogonal to the level
curves of u and the same is true for ∇v and the level curves of v. Since, by Lemma 7.4, the
gradients are orthogonal this implies the curves are orthogonal.

Finally, we show that f ′(z) 6= 0 means the curves are smooth. First note that

f ′(z) = ux(x, y)− iuy(x, y) = vy(x, y) + ivx(x, y).

Now, since f ′(z) 6= 0 we know that

∇u = (ux, uy) 6= 0

Likewise, ∇v 6= 0. Thus, the gradients are not zero and the level curves must be smooth.
�

Example 7.5. The figures below show level curves of u and v for a number of functions.
In all cases, the level curves of u are in orange and those of v are in blue. For each case we
show the level curves separately and then overlayed on each other.
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Example 7.6. Let’s work out the gradients in a few simple examples.

(i) Let
f(z) = z2 = (x2 − y2) + i2xy

So
∇u = (2x,−2y) and ∇v = (2y, 2x).

It’s trivial to check that ∇u ·∇v = 0, so they are orthogonal.

(ii) Let

f(z) =
1

z
=

x

r2
− i y

r2

So, it’s easy to compute

∇u =

(
y2 − x2

r4
,
−2xy

r4

)
and ∇v =

(
2xy

r4
,
y2 − x2

r4

)
.

Again it’s trivial to check that ∇u ·∇v = 0, so they are orthogonal.

Example 7.7. (Degenerate points: f ′(z) = 0.) Consider

f(z) = z2

From the previous example we have

u(x, y) = x2 − y2, v(x, y) = 2xy, ∇u = (2x,−2y), ∇v = (2y, 2x).

At z = 0, the gradients are both 0 so the theorem on orthogonality doesn’t apply.
Let’s look at the level curves through the origin. The level curve (really the ‘level set’)

for
u = x2 − y2 = 0

is the pair of lines y = ±x. At the origin this is not a smooth curve.
Look at the figures for z2 above. It does appear that away from the origin the level

curves of u intersect the lines where v = 0 at right angles. The same is true for the level
curves of v and the lines where u = 0. You can see the degeneracy forming at the origin:
as the level curves head towards 0 they get pointier and more right angled. So the level
curve u = 0 is more properly thought of as four right angles. The level curve of u = 0, not
knowing which leg of v = 0 to intersect orthogonally takes the average and comes into the
origin at 45◦.

8 Two dimensional hydrodynamics and complex potentials

Laplace’s equation and harmonic functions show up in many physical models. As we have
just seen, harmonic functions in two dimensions are closely linked with complex analytic
functions. In this section we will exploit this connection to look at two dimensional hydro-
dynamics, i.e. fluid flow.

Since static electric fields and steady state temperature distributions are also harmonic,
the ideas and pictures we use can be repurposed to cover these topics as well.
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8.1 Velocity fields

Suppose we have water flowing in a region A of the plane. Then at every point (x, y) in A
the water has a velocity. In general, this velocity will change with time. We’ll let F stand
for the velocity vector field and we can write

F(x, y, t) = (u(x, y, t), v(x, y, t)).

The arguments (x, y, t) indicate that the velocity depends on these three variables. In
general, we will shorten the name to velocity field.

A beautiful and mesmerizing example of a velocity field is at http://hint.fm/wind/

index.html. This shows the current velocity of the wind at all points in the continental
U.S.

8.2 Stationary flows

If the velocity field is unchanging in time we call the flow a stationary flow. In this case,
we can drop t as an argument and write:

F(x, y) = (u(x, y), v(x, y))

Here are a few examples. These pictures show the streamlines from similar figures in
topic 5. We’ve added arrows to indicate the direction of flow.

Example 8.1. Uniform flow. F = (1, 0).

Example 8.2. Eddy (vortex) F = (−y/r2, x/r2)
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Example 8.3. Source F = (x/r2, y/r2)

8.3 Physical assumptions, mathematical consequences

This is a wordy section, so we’ll start by listing the mathematical properties that will follow
from our assumptions about the velocity field F = u+ iv.

(A) F = F(x, y) is a function of x,y, but not time t (stationary).

(B) div F = 0 (divergence free).

(C) curl F = 0 (curl free).

8.3.1 Physical assumptions

We will make some standard physical assumptions. These don’t apply to all flows, but they
do apply to a good number of them and they are a good starting point for understanding
fluid flow more generally. More important to 18.04, these are the flows that are readily
susceptible to complex analysis. Our three assumptions are that the flow is stationary ,
incompressible and irrotational. We have already discussed stationarity in Sec. 8.2, so let’s
still discuss the other two properties.

Incompressibility. We will assume throughout that the fluid is incompressible. This
means that the density of the fluid is constant across the domain. Mathematically this says
that the velocity field F must be divergence free, i.e. for F = (u, v):

divF ≡∇ · F = ux + vy = 0.

To understand this, recall that the divergence measures the infinitesimal flux of the field.
If the flux is not zero at a point (x0, y0) then near that point the field looks like

Left: Divergent field: divF > 0, right: Convergent field: divF < 0

If the field is diverging or converging then the density must be changing! That is, the flow
is not incompressible.
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As a fluid flow the left hand picture represents a source and the right represents a sink.
In electrostatics where F expresses the electric field, the left hand picture is the field of a
positive charge density and the right is that of a negative charge density.

If you prefer a non-infinitesimal explanation, we can recall Green’s theorem in flux form.
It says that for a simple closed curve C and a field F = (u, v), differentiable on and inside
C, the flux of F through C satisfies

Flux of F across C =

∫
C

F · n ds =

∫ ∫
R

divF dx dy,

where R is the region inside C. Now, suppose that divF(x0, y0) > 0, then divF(x, y) > 0
for all (x, y) close to (x0, y0). So, choose a small curve C around (x0, y0) such that divF > 0
on and inside C. By Green’s theorem

Flux of F through C =

∫ ∫
R

divF dx dy > 0.

Clearly, if there is a net flux out of the region the density is decreasing and the flow is
not incompressible. The same argument would hold if divF(x0, y0) < 0. We conclude that
incompressible is equivalent to divergence free.

Irrotational flow. We will assume that the fluid is irrotational. This means that the
there are no infinitesimal vortices in A. Mathematically this says that the velocity field F
must be curl free, i.e. for F = (u, v):

curlF ≡∇× F = vx − uy = 0.

To understand this, recall that the curl measures the infinitesimal rotation of the field.
Physically this means that a small paddle placed in the flow will not spin as it moves with
the flow.

8.3.2 Examples

Example 8.4. The eddy is irrotational! The eddy from Example 8.2 is irrotational. The
vortex at the origin is not in A = C−{0} and you can easily check that curlF = 0 everywhere
in A. This is not physically impossible: if you placed a small paddle wheel in the flow it
would travel around the origin without spinning!

Example 8.5. Shearing flows are rotational. Here’s an example of a vector field that has
rotation, though not necessarily swirling.

Re(z)

Im(z)

Shearing flow: box turns because current is faster at the top.

The field F = (ay, 0) is horizontal, but curlF = −a 6= 0. Because the top moves faster than
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the bottom it will rotate a square parcel of fluid. The minus sign tells you the parcel will
rotate clockwise! This is called a shearing flow. The water at one level will be sheared away
from the level above it.

8.3.3 Summary

(A) Stationary: F depends on x, y, but not t, i.e.,

F(x, y) = (u(x, y), v(x, y))

(B) Incompressible: divergence free

divF = ux + vy = 0

(C) Irrotational: curl free
curlF = vx − uy = 0

For future reference we put the last two equalities in a numbered equation:

ux = −vy and uy = vx (39)

These look almost like the Cauchy-Riemann equations (with sign differences)!

8.4 Complex potentials

There are different ways to do this. We’ll start by seeing that every complex analytic
function leads to an irrotational, incompressible flow. Then we’ll go backwards and see that
all such flows lead to an analytic function. We will learn to call the analytic function the
complex potential of the flow.

Annoyingly, we are going to have to switch notation. Because u and v are already taken
by the vector field F, we will call our complex potential

Φ = φ+ iψ

8.4.1 Analytic functions give us incompressible, irrotational flows

Let Φ(z) be an analytic function on a region A. For z = x+ iy we write

Φ(z) = φ(x, y) + iψ(x, y).

From this we can define a vector field

F = ∇φ = (φx, φy) =: (u, v),

here we mean that u and v are defined by φx and φy.
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From our work on analytic and harmonic functions we can make a list of properties of
these functions.

1. φ and ψ are both harmonic.

2. The level curves of φ and ψ are orthogonal.

3. Φ′ = φx − iφy.

4. F is divergence and curl free (proof just below). That is, the analytic function Φ has
given us an incompressible, irrotational vector field F.

It is standard terminology to call φ a potential function for the vector field F. We will also
call Φ a complex potential function for F. The function ψ will be called the stream function
of F (the name will be explained soon). The function Φ′ will be called the complex velocity.

Proof. (F is curl and divergence free.) This is an easy consequence of the definition. We
find

curlF = vx − uy = φyx − φxy = 0

divF = ux + vy = φxx + φyy = 0 (since φ is harmonic).

We’ll postpone examples until after deriving the complex potential from the flow.

8.4.2 Incompressible, irrotational flows always have complex potential func-
tions

For technical reasons we need to add the assumption that A is simply connected. This is
not usually a problem because we often work locally in a disk around a point (x0, y0).

Theorem. Assume F = (u, v) is an incompressible, irrotational field on a simply connected
region A. Then there is an analytic function Φ which is a complex potential function for F.

Proof. We have done all the heavy lifting for this in previous topics. The key is to use the
property Φ′ = u− iv to guess Φ′. Working carefully we define

g(z) = u− iv

Step 1: Show that g is analytic. Keeping the signs straight, the Cauchy Riemann equations
are

ux = (−v)y and uy = −(−v)x = vx.

But, these are exactly the equations in Equation (39). Thus g(z) is analytic.

Step 2: Since A is simply connected, Cauchy’s theorem says that g(z) has an antiderivative
on A. We call the antiderivative Φ(z).
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Step 3: Show that Φ(z) is a complex potential function for F. This means we have to show
that if we write Φ = φ+ iψ, then F = ∇φ. To do this we just unwind the definitions.

Φ′ = φx − iφy (standard formula for Φ′)

Φ′ = g = u− iv (definition of Φ and g)

Comparing these equations we get

φx = u, φy = v.

But this says precisely that ∇φ = F. �

Example 8.6. Source fields. The vector field

F = a
( x
r2
,
y

r2

)
models a source pushing out water or the 2D electric field of a positive charge at the origin.
If you prefer a 3D model, it is the field of an infinite wire with uniform charge density along
the z-axis. Show that F is curl-free and divergence-free and find its complex potential.

We could compute directly that this is curl-free and divergence-free away from 0. An
alternative method is to look for a complex potential Φ. If we can find one then this will
show F is curl and divergence free and find φ and ψ all at once. If there is no such Φ then
we’ll know that F is not both curl and divergence free.

One standard method is to use the formula for Φ′:

Φ′ = u− iv = a
(x− iy)

r2
= a

z

(zz)
=
a

z
.

This is analytic and we have
Φ(z) = a log(z)

8.5 Stream functions

In everything we did above poor old ψ just tagged along as the harmonic conjugate of
the potential function φ. Let’s turn our attention to it and see why it’s called the stream
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function.

Theorem. Suppose that
Φ = φ+ iψ

is the complex potential for a velocity field F. Then the fluid flows along the level curves
of ψ. That is, the F is everywhere tangent to the level curves of ψ. The level curves of ψ
are called streamlines and ψ is called the stream function.

Proof. Again we have already done most of the heavy lifting to prove this. Since F is
the velocity of the flow at each point, the flow is always tangent to F. You also need to
remember that ∇φ is perpendicular to the level curves of φ. So we have:

1. The flow is parallel to F.

2. F = ∇φ, so the flow is orthogonal to the level curves of φ.

3. Since φ and ψ are harmonic conjugates, the level curves of ψ are orthogonal to the
level curves of φ.

Combining 2 and 3 we see that the flow must be along the level curves of ψ.

8.5.1 Examples

We’ll illustrate the streamlines in a series of examples that start by defining the complex
potential for a vector field.

Example 8.7. Uniform flow. Let
Φ(z) = z.

Find F and draw a plot of the streamlines. Indicate the direction of the flow.

Solution: Write
Φ = x+ iy.

So
φ = x , F = ∇φ = (1, 0)

which says the flow has uniform velocity and points to the right. We also have

ψ = y,

so the streamlines are the horizontal lines y = constant.
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Uniform flow to the right.

Note that another way to see that the flow is to the right is to check the direction that the
potential φ increases. The previous section showed pictures of this complex potential which
show both the streamlines and the equipotential lines.

Example 8.8. Linear source. Let

Φ(z) = log(z).

Find F and draw a plot of the streamlines. Indicate the direction of the flow.

Solution: Write
Φ = log(r) + iθ

So
φ = log(r) , F = ∇φ = (x/r2, y/r2)

which says the flow is radial and decreases in speed as it gets farther from the origin. The
field is not defined at z = 0. We also have

ψ = θ

so the streamlines are rays from the origin.

Linear source: radial flow from the origin.
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8.5.2 Stagnation points

A stagnation point is one where the velocity field is 0.

Stagnation points. If Φ is the complex potential for a field F then the stagnation points
F = 0 are exactly the points z where Φ′(z) = 0.

Proof. This is clear since F = (φx, φy) and Φ′ = φx − iφy.

Example 8.9. Stagnation points. Draw the streamlines and identify the stagnation points
for the potential Φ(z) = z2.

Solution: (We drew the level curves for this in the previous section.) We have

Φ = (x2 − y2) + i2xy

So the streamlines are the hyperbolas: 2xy = constant. Since φ = x2 − y2 increases as |x|
increases and decreases as |y| increases, the arrows, which point in the direction of increasing
φ, are as shown on the figure below.

Stagnation flow: stagnation point at z = 0.

The stagnation points are the zeros of

Φ′(z) = 2z

i.e. the only stagnation point is at the z = 0.

Note. The stagnation points are what we called the critical points of a vector field in 18.03.

8.6 More examples

Example 8.10. Linear vortex. Analyze the flow with complex potential function

Φ(z) = i log(z).

Solution: Multiplying by i switches the real and imaginary parts of log(z) (with a sign
change). We have

Φ = −θ + i log(r)

The stream lines are the curves log(r) = constant, i.e. circles with center at z = 0. The
flow is clockwise because the potential φ = −θ increases in the clockwise direction.
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Linear vortex.

This flow is called a linear vortex. We can find F using Φ′.

Φ′ =
i

z
=

y

r2
+ i

x

r2
= φx − iφy.

So
F = (φx, φy) = (y/r2,−x/r2)

By now this should be a familiar vector field. There are no stagnation points, but there is
a singularity at the origin.

Example 8.11. Double source. Analyze the flow with complex potential function

Φ(z) = log(z − 1) + log(z + 1)

Solution: This is a flow with linear sources at ±1. We used Octave to plot the level curves
of ψ = Im(Φ).

Two sources.

We can analyze this flow further as follows.

• Near each source the flow looks like a linear source.

• On the y-axis the flow is along the axis. That is, the y-axis is a streamline. It’s worth
seeing three different ways of arriving at this conclusion.

Reason 1: By symmetry of vector fields associated with each linear source, the x components
cancel and the combined field points along the y-axis.
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Reason 2: We can write

Φ(z) = log(z − 1) + log(z + 1) = log((z − 1)(z + 1)) = log(z2 − 1).

So

Φ′(z) =
2z

z2 − 1

On the imaginary axis

Φ′(iy) =
2iy

−y2 − 1

Thus,

F =

(
0,

2y

y2 + 1

)
which is along the axis.
Reason 3: On the imaginary axis Φ(iy) = log(−y2 − 1). Since this has constant imaginary
part, the axis is a streamline.

Because of the branch cut for log(z) we should probably be a little more careful here.
First note that the vector field F comes from Φ′ = 2z/(z2−1), which doesn’t have a branch
cut. So we shouldn’t really have a problem. Now, as z approaches the y-axis from one
side or the other, the argument of log(z2 − 1) approaches either π or −π. That is, as such
limits, the imaginary part is constant. So the streamline on the y-axis is the limit case of
streamlines near the axis.

Since Φ′(z) = 0 when z = 0, the origin is a stagnation point. This is where the fields
from the two sources exactly cancel each other.

Example 8.12. A source in uniform flow. Consider the flow with complex potential

Φ(z) = z +
Q

2π
log(z).

This is a combination of uniform flow to the right and a source at the origin. The figure
below was drawn using Octave. It shows that the flow looks like a source near the origin.
Farther away from the origin the flow stops being radial and is pushed to the right by the
uniform flow.

A source in uniform flow.

Since the components of Φ′ and F are the same except for signs, we can understand the
flow by considering

Φ′(z) = 1 +
Q

2πz
.
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Near z = 0 the singularity of 1/z is most important and

Φ′ ≈ Q/(2πz)
So, the vector field looks a linear source. Far away from the origin the 1/z term is small
and Φ′(z) ≈ 1, so the field looks like uniform flow.

Setting Φ′(z) = 0 we find one stagnation point

z = −Q/(2π)

It is the point on the x-axis where the flow from the source exactly balances that from
the uniform flow. For bigger values of Q the source pushes fluid farther out before being
overwhelmed by the uniform flow. That is why Q is called the source strength.

Example 8.13. Source + sink. Consider the flow with complex potential

Φ(z) = log(z − 2)− log(z + 2).

This is a combination of source (log(z − 2)) at z = 2 and a sink (− log(z + 2)) at z = −2.

A source plus a sink.

9 Taylor and Laurent series

We originally defined an analytic function as one where the derivative, defined as a limit
of ratios, existed. We went on to prove Cauchy’s theorem and Cauchy’s integral formula.
These revealed some deep properties of analytic functions, e.g. the existence of derivatives
of all orders.

Our goal in this topic is to express analytic functions as infinite power series. This will
lead us to Taylor series. When a complex function has an isolated singularity at a point
we will replace Taylor series by Laurent series. Not surprisingly we will derive these series
from Cauchy’s integral formula.

Although we come to power series representations after exploring other properties of
analytic functions, they will be one of our main tools in understanding and computing with
analytic functions.
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9.1 Geometric series

Having a detailed understanding of geometric series will enable us to use Cauchy’s integral
formula to understand power series representations of analytic functions. We start with the
definition:

Definition. A finite geometric series has one of the following (all equivalent) forms.

Sn = a(1 + r + r2 + r3 + . . .+ rn)

= a+ ar + ar2 + ar3 + . . .+ arn

=
n∑
j=0

arj

= a

n∑
j=0

rj

The number r is called the ratio of the geometric series because it is the ratio of consecutive
terms of the series.

Theorem. The sum of a finite geometric series is given by

Sn = a(1 + r + r2 + r3 + . . .+ rn) =
a(1− rn+1)

1− r . (40)

Proof. This is a standard trick that you’ve probably seen before.

Sn = a+ ar + ar2 + . . .+ arn

rSn = ar + ar2 + . . .+ arn +arn+1

When we subtract these two equations most terms cancel and we get

Sn − rSn = a− arn+1

Some simple algebra now gives us the formula in Equation (40).

Definition. An infinite geometric series has the same form as the finite geometric series

except there is no last term:

S = a+ ar + ar2 + . . . = a

∞∑
j=0

rj .

Note. We will usually simply say ‘geometric series’ instead of ‘infinite geometric series’.

Theorem. If |r| < 1 then the infinite geometric series converges to

S = a

∞∑
j=0

rj =
a

1− r (41)

If |r| ≥ 1 then the series does not converge.

Proof. This is an easy consequence of the formula for the sum of a finite geometric series.
Simply let n→∞ in Equation (40).
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9.1.1 Connection to Cauchy’s integral formula

Cauchy’s integral formula says

f(z) =
1

2πi

∫
C

f(w)

w − z dw

Inside the integral we have the expression

1

w − z
which looks a lot like the sum of a geometric series. We will make frequent use of the
following manipulations of this expression.

1

w − z =
1

w
· 1

1− z/w =
1

w

(
1 + (z/w) + (z/w)2 + . . .

)
(42)

The geometric series in this equation has ratio z/w. Therefore, the series converges, i.e. the
formula is valid, whenever |z/w| < 1, or equivalently when

|z| < |w|

Similarly

1

w − z = −1

z
· 1

1− w/z = −1

z

(
1 + (w/z) + (w/z)2 + . . .

)
(43)

The series converges, i.e. the formula is valid, whenever |w/z| < 1, or equivalently when

|z| > |w|

9.2 Convergence of power series

When we include powers of the variable z in the series we will call it a power series. In this
section we’ll state the main theorem we need about the convergence of power series.

Theorem 9.1. Consider the power series

f(z) =

∞∑
n=0

an(z − z0)n

There is a number R ≥ 0 such that:

1. If R > 0 then the series converges absolutely to an analytic function for |z − z0| < R.

2. The series diverges for |z − z0| > R. R is called the radius of convergence. The disk
|z − z0| < R is called the disk of convergence.

3. The derivative is given by term-by-term differentiation

f ′(z) =

∞∑
n=0

nan(z − z0)n−1

The series for f ′ also has radius of convergence R.
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4. If γ is a bounded curve inside the disk of convergence then the integral is given by
term-by-term integration ∫

γ
f(z) dz =

∞∑
n=0

∫
γ
an(z − z0)n

Notes.

• The theorem doesn’t say what happens when |z − z0| = R.

• If R =∞ the function f(z) is entire.

• If R = 0 the series only converges at the point z = z0. In this case, the series does
not represent an analytic function on any disk around z0.

• Often (not always) we can find R using the ratio test.

9.2.1 Ratio test and root test

Here are two standard tests from calculus on the convergence of infinite series.

Ratio test. Consider the series
∑∞

0 cn. If L = limn→∞ |cn+1/cn| exists, then:

1. If L < 1 then the series converges absolutely.

2. If L > 1 then the series diverges.

3. If L = 1 then the test gives no information.

Note. In words, L is the limit of the absolute ratios of consecutive terms.

Example 9.2. Consider the geometric series 1+z+z2 +z3 + . . .. The limit of the absolute
ratios of consecutive terms is

L = lim
n→∞

|zn+1|
|zn| = |z|

Thus, the ratio test agrees that the geometric series converges when |z| < 1. We know this
converges to 1/(1− z). Note, the disk of convergence ends exactly at the singularity z = 1.

Example 9.3. Consider the series f(z) =
∞∑
n=0

zn

n!
. The limit from the ratio test is

L = lim
n→∞

|zn+1|/(n+ 1)!

|zn|/n!
= lim

|z|
n+ 1

= 0.

Since L < 1 this series converges for every z. Thus, by Theorem 9.1, the radius of conver-
gence for this series is ∞. That is, f(z) is entire. Of course we know that f(z) = ez.

Root test. Consider the series
∑∞

0 cn. If L = limn→∞ |cn|1/n exists, then:

1. If L < 1 then the series converges absolutely.
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2. If L > 1 then the series diverges.

3. If L = 1 then the test gives no information .

Note. In words, L is the limit of the nth roots of the (absolute value) of the terms.

The geometric series is so fundamental that we should check the root test on it.

Example 9.4. Consider the geometric series 1 + z + z2 + z3 + . . .. The limit of the nth
roots of the terms is

L = lim
n→∞

|zn|1/n = lim |z| = |z|

Happily, the root test agrees that the geometric series converges when |z| < 1.

9.3 Taylor series

The previous section showed that a power series converges to an analytic function inside its
disk of convergence. Taylor’s theorem completes the story by giving the converse: around
each point of analyticity an analytic function equals a convergent power series.

Theorem 9.5. (Taylor’s theorem) Suppose f(z) is an analytic function in a region A. Let
z0 ∈ A. Then,

f(z) =
∞∑
n=0

an(z − z0)n,

where the series converges on any disk |z − z0| < r contained in A. Furthermore, we have
formulas for the coefficients

an =
f (n)(z0)

n!
=

1

2πi

∫
γ

f(z)

(z − z0)n+1
dz. (44)

(Where γ is any simple closed curve in A around z0, with its interior entirely in A.)

We call the series the power series representing f around z0.

The proof will be given below. First we look at some consequences of Taylor’s theorem.

Corollary. The power series representing an analytic function around a point z0 is unique.
That is, the coefficients are uniquely determined by the function f(z).

Proof. Taylor’s theorem gives a formula for the coefficients.

9.3.1 Order of a zero

Theorem. Suppose f(z) is analytic on the disk |z − z0| < r and f is not identically 0.
Then there is an integer k ≥ 0 such that ak 6= 0 and f has Taylor series around z0 given by

f(z) = (z − z0)k(ak + ak+1(z − z0) + . . .) = (z − z0)k
∞∑
n=k

an(z − z0)n−k. (45)
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Proof. Since f(z) is not identically 0, not all the Taylor coefficients are zero. So, we take k
to be the index of the first nonzero coefficient.

Theorem 9.6. Zeros are isolated. If f(z) is analytic and not identically zero then the zeros
of f are isolated (by isolated we mean that we can draw a small disk around any zeros that
doesn’t contain any other zeros).

Isolated zero at z0: f(z0) = 0, f(z) 6= 0 elsewhere in the disk.

Proof. Suppose f(z0) = 0. Write f as in Equation (45). There are two factors:

(z − z0)k

and
g(z) = ak + ak+1(z − z0) + . . .

Clearly (z − z0)k 6= 0 if z 6= z0. We have g(z0) = ak 6= 0, so g(z) is not 0 on some small
neighborhood of z0. We conclude that on this neighborhood the product is only zero when
z = z0, i.e. z0 is an isolated 0.

Definition. The integer k in Theorem 9.6 is called the order of the zero of f at z0.

Note, if f(z0) 6= 0 then z0 is a zero of order 0.

9.3.2 Taylor series examples

The uniqueness of Taylor series along with the fact that they converge on any disk around
z0 where the function is analytic allows us to use lots of computational tricks to find the
series and be sure that it converges.

Example 9.7. Use the formula for the coefficients in terms of derivatives to give the Taylor
series of f(z) = ez around z = 0.

Solution: Since f ′(z) = ez, we have f (n)(0) = e0 = 1. So,

ez = 1 + z +
z2

2!
+
z3

3!
+ . . . =

∞∑
n=0

zn

n!
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Example 9.8. Expand f(z) = z8e3z in a Taylor series around z = 0.

Solution: Let w = 3z. So,

e3z = ew =
∞∑
n=0

wn

n!
=
∞∑
k=0

3n

n!
zn

Thus,

f(z) =

∞∑
n=0

3n

n!
zn+8.

Example 9.9. Find the Taylor series of sin(z) around z = 0 (Sometimes the Taylor series
around 0 is called the Maclaurin series.)

Solution: We give two methods for doing this.
Method 1.

f (n)(0) =
dn sin(z)

dzn
=

{
(−1)m for n = 2m+ 1 = odd, m = 0, 1, 2, . . .

0 for n even

Method 2. Using

sin(z) =
eiz − e−iz

2i

we have

sin(z) =
1

2i

[ ∞∑
n=0

(iz)n

n!
−
∞∑
n=0

(−iz)n
n!

]
=

1

2i

∞∑
n=0

[(1− (−1)n)]
inzn

n!

(We need absolute convergence to add series like this.)
Conclusion:

sin(z) =
∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
,

which converges for |z| <∞.
Example 9.10. Expand the rational function

f(z) =
1 + 2z2

z3 + z5

around z = 0.

Solution: Note that f has a singularity at 0, so we can’t expect a convergent Taylor series
expansion. We’ll aim for the next best thing using the following shortcut.

f(z) =
1

z3

2(1 + z2)− 1

1 + z2
=

1

z3

[
2− 1

1 + z2

]
.

Using the geometric series we have

1

1 + z2
=

1

1− (−z2)
=

∞∑
n=0

(−z2)n = 1− z2 + z4 − z6 + . . .
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Putting it all together

f(z) =
1

z3

(
2− 1 + z2 − z4 + . . .

)
=

(
1

z3
+

1

z

)
−
∞∑
n=0

(−1)nz2n+1

Note. The first terms are called the singular part, i.e. those with negative powers of z. The
summation is called the regular or analytic part. Since the geometric series for 1/(1 + z2)
converges for |z| < 1, the entire series is valid in 0 < |z| < 1

Example 9.11. Find the Taylor series for

f(z) =
ez

1− z
around z = 0. Give the radius of convergence.

Solution: We start by writing the Taylor series for each of the factors and then multiply
them out.

f(z) =

(
1 + z +

z2

2!
+
z3

3!
+ . . .

)(
1 + z + z2 + z3 + . . .

)
= 1 + (1 + 1)z +

(
1 + 1 +

1

2!

)
z2 +

(
1 + 1 +

1

2!
+

1

3!

)
z3 + . . .

The biggest disk around z = 0 where f is analytic is |z| < 1. Therefore, by Taylor’s theorem,
the radius of convergence is R = 1.

f(z) is analytic on |z| < 1 and has a singularity at z = 1.

Example 9.12. Find the Taylor series for

f(z) =
1

1− z
around z = 5. Give the radius of convergence.

Solution: We have to manipulate this into standard geometric series form.

f(z) =
1

−4(1 + (z − 5)/4)
= −1

4

(
1−

(
z − 5

4

)
+

(
z − 5

4

)2

−
(
z − 5

4

)3

+ . . .

)
Since f(z) has a singularity at z = 1 the radius of convergence is R = 4. We can also see
this by considering the geometric series. The geometric series ratio is (z − 5)/4. So the
series converges when |z − 5|/4 < 1, i.e. when |z − 5| < 4, i.e. R = 4.
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Disk of convergence stops at the singularity at z = 1.

Example 9.13. Find the Taylor series for

f(z) = log(1 + z)

around z = 0. Give the radius of convergence.

Solution: We know that f is analytic for |z| < 1 and not analytic at z = −1. So, the radius
of convergence is R = 1. To find the series representation we take the derivative and use
the geometric series.

f ′(z) =
1

1 + z
= 1− z + z2 − z3 + z4 − . . .

Integrating term by term (allowed by Theorem 9.1) we have

f(z) = a0 + z − z2

2
+
z3

3
− z4

4
+ . . . = a0 +

∞∑
n=1

(−1)n−1 z
n

n

Here a0 is the constant of integration. We find it by evalating at z = 0.

f(0) = a0 = log(1) = 0.

Disk of convergence for log(1 + z) around z = 0.

Example 9.14. Can the series ∑
an(z − 2)n

converge at z = 0 and diverge at z = 3.

Solution: No! We have z0 = 2. We know the series diverges everywhere outside its radius
of convergence. So, if the series converges at z = 0, then the radius of convergence is at
least 2. Since |3− z0| < 2 we would also have that z = 3 is inside the disk of convergence.
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9.3.3 Proof of Taylor’s theorem

For convenience we restate Taylor’s Theorem 9.5.

Taylor’s theorem. (Taylor series) Suppose f(z) is an analytic function in a region A. Let
z0 ∈ A. Then,

f(z) =
∞∑
n=0

an(z − z0)n,

where the series converges on any disk |z − z0| < r contained in A. Furthermore, we have
formulas for the coefficients

an =
f (n)(z0)

n!
=

1

2πi

∫
γ

f(z)

(z − z0)n+1
dz (46)

Proof. In order to handle convergence issues we fix 0 < r1 < r2 < r. We let γ be the circle
|w − z0| = r2 (traversed counterclockise).

Disk of convergence extends to the boundary of A
r1 < r2 < r, but r1 and r2 can be arbitrarily close to r.

Take z inside the disk |z − z0| < r1. We want to express f(z) as a power series around z0.
To do this we start with the Cauchy integral formula and then use the geometric series.

As preparation we note that for w on γ and |z − z0| < r1 we have

|z − z0| < r1 < r2 = |w − z0|

so
|z − z0|
|w − z0|

< 1.

Therefore,

1

w − z =
1

w − z0
· 1

1− z−z0
w−z0

=
1

w − z0

∞∑
n=0

(
z − z0

w − z0

)n
=

∞∑
n=0

(z − z0)n

(w − z0)n+1

110



Using this and the Cauchy formula gives

f(z) =
1

2πi

∫
γ

f(w)

w − z dw

=
1

2πi

∫
γ

∞∑
n=0

f(w)

(w − z0)n+1
(z − z0)n dw

=
∞∑
n=0

(
1

2πi

∫
γ

f(w)

(w − z0)n+1
dw

)
(z − z0)n

=

∞∑
n=0

f (n)(z0)

n!
(z − z0)n

The last equality follows from Cauchy’s formula for derivatives. Taken together the last
two equalities give Taylor’s formula. �

9.4 Singularities

Definition. A function f(z) is singular at a point z0 if it is not analytic at z0

Definition. For a function f(z), the singularity z0 is an isolated singularity if f is analytic

on the deleted disk 0 < |z − z0| < r for some r > 0.

Example 9.15. f(z) =
z + 1

z3(z2 + 1)
has isolated singularities at z = 0,±i.

Example 9.16. f(z) = e1/z has an isolated singularity at z = 0.

Example 9.17. f(z) = log(z) has a singularity at z = 0, but it is not isolated because a
branch cut, starting at z = 0, is needed to have a region where f is analytic.

Example 9.18. f(z) =
1

sin(π/z)
has singularities at z = 0 and z = 1/n for n = ±1,±2, . . .

The singularities at ±1/n are isolated, but the one at z = 0 is not isolated.

Every neighborhood of 0 contains zeros at 1/n for large n.

9.5 Laurent series

Theorem 9.19. (Laurent series). Suppose that f(z) is analytic on the annulus

A : r1 < |z − z0| < r2
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Then f(z) can be expressed as a series

f(z) =
∞∑
n=1

bn
(z − z0)n

+
∞∑
n=0

an(z − z0)n.

The coefficients have the formulus

an =
1

2πi

∫
γ

f(w)

(w − z0)n+1
dw

bn =
1

2πi

∫
γ
f(w)(w − z0)n−1 dw,

where γ is any circle |w − z0| = r inside the annulus, i.e. r1 < r < r2.
Furthermore

• The series

∞∑
n=0

an(z − z0)n converges to an analytic function for |z − z0| < r2.

• The series

∞∑
n=1

bn
(z − z0)n

converges to an analytic function for |z − z0| > r1.

• Together, the series both converge on the annulus A where f is analytic.

The proof is given below. First we define a few terms.

Definition. The entire series is called the Laurent series for f around z0. The series

∞∑
n=0

an(z − z0)n

is called the analytic or regular part of the Laurent series. The series

∞∑
n=1

bn
(z − z0)n

is called the singular or principal part of the Laurent series.

Note. Since f(z) may not be analytic (or even defined) at z0 we don’t have any formulas
for the coefficients using derivatives.

Proof. (Laurent series). Choose a point z in A. Now set circles C1 and C3 close enough to
the boundary that z is inside C1 +C2−C3−C2 as shown. Since this curve and its interior
are contained in A, Cauchy’s integral formula says

f(z) =
1

2πi

∫
C1+C2−C3−C2

f(w)

w − z dw
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The contour used for proving the formulas for Laurent series.

The integrals over C2 cancel, so we have

f(z) =
1

2πi

∫
C1−C3

f(w)

w − z dw.

Next, we divide this into two pieces and use our trick of converting to a geometric series.
The calculuations are just like the proof of Taylor’s theorem. On C1 we have

|z − z0|
|w − z0|

< 1

so

1

2πi

∫
C1

f(w)

w − z dw =
1

2πi

∫
C1

f(w)

w − z0
· 1(

1− z−z0
w−z0

) dw
=

1

2πi

∫
C1

∞∑
n=0

f(w)

(w − z0)n+1
(z − z0)n dw

=
∞∑
n=0

(
1

2πi

∫
C1

f(w)

(w − z0)n+1
dw

)
(z − z0)n

=
∞∑
n=0

an(z − z0)n

Here an is defined by the integral formula given in the statement of the theorem. Examining
the above argument we see that the only requirement on z is that |z − z0| < r2. So, this
series converges for all such z.

Similarly on C3 we have
|w − z0|
|z − z0|

< 1
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so

1

2πi

∫
C3

f(w)

w − z dw =
1

2πi

∫
C3

− f(w)

z − z0
· 1(

1− w−z0
z−z0

) dw
= − 1

2πi

∫
C3

∞∑
n=0

f(w)
(w − z0)n

(z − z0)n+1
dw

= − 1

2πi

∞∑
n=0

(∫
C1

f(w)(w − z0)n dw

)
(z − z0)−n−1

= −
∞∑
n=1

bn
(z − z0)n

In the last equality we changed the indexing to match the indexing in the statement of the
theorem. Here bn is defined by the integral formula given in the statement of the theorem.
Examining the above argument we see that the only requirement on z is that |z − z0| > r1.
So, this series converges for all such z.

Combining these two formulas we have

f(z) =
1

2πi

∫
C1−C3

f(w)

w − z dw =
∞∑
n=1

bn
(z − z0)n

+
∞∑
n=0

an(z − z0)n

The last thing to note is that the integrals defining an and bn do not depend on the exact
radius of the circle of integration. Any circle inside A will produce the same values. We
have proved all the statements in the theorem on Laurent series. �

9.5.1 Examples of Laurent series

In general, the integral formulas are not a practical way of computing the Laurent coef-
ficients. Instead we use various algebraic tricks. Even better, as we shall see, is the fact
that often we don’t really need all the coefficients and we will develop more techniques to
compute those that we do need.

Example 9.20. Find the Laurent series for

f(z) =
z + 1

z

around z0 = 0. Give the region where it is valid.

Solution: The answer is simply

f(z) = 1 +
1

z

This is a Laurent series, valid on the infinite region 0 < |z| <∞.

Example 9.21. Find the Laurent series for

f(z) =
z

z2 + 1
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around z0 = i. Give the region where your answer is valid. Identify the singular (principal)
part.

Solution: Using partial fractions we have

f(z) =
1

2
· 1

z − i +
1

2
· 1

z + i

Since
1

z + i
is analytic at z = i it has a Taylor series expansion. We find it using geometric

series:
1

z + i
=

1

2i
· 1

1 + (z − i)/(2i) =
1

2i

∞∑
n=0

(
−z − i

2i

)n
So the Laurent series is

f(z) =
1

2
· 1

z − i +
1

4i

∞∑
n=0

(
−z − i

2i

)n
The singular (principal) part is given by the first term. The region of convergence is
0 < |z − i| < 2.

Note. We could have looked at f(z) on the region 2 < |z − i| < ∞. This would have
produced a different Laurent series. We discuss this further in an upcoming example.

Example 9.22. Compute the Laurent series for

f(z) =
z + 1

z3(z2 + 1)

on the region A : 0 < |z| < 1 centered at z = 0.

Solution: This function has isolated singularities at z = 0,±i. Therefore it is analytic on

the region A.

f(z) has singularities at z = 0,±i.

At z = 0 we have

f(z) =
1

z3
(1 + z)(1− z2 + z4 − z6 + . . .)

Multiplying this out we get

f(z) =
1

z3
+

1

z2
− 1

z
− 1 + z + z2 − z3 − . . . .
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The following example shows that the Laurent series depends on the region under consid-
eration.

Example 9.23. Find the Laurent series around z = 0 for f(z) =
1

z(z − 1)
in each of the

following regions:

• (i) the region A1 : 0 < |z| < 1

• (ii) the region A2 : 1 < |z| <∞.

Solution: For (i)

f(z) = −1

z
· 1

1− z = −1

z
(1 + z + z2 + . . .) = −1

z
− 1− z − z2 − . . .

For (ii): Since the usual geometric series for 1/(1 − z) does not converge on A2 we need a
different form,

f(z) =
1

z
· 1

z(1− 1/z)
=

1

z2

(
1 +

1

z
+

1

z2
+ . . .

)
Since |1/z| < 1 on A2 our use of the geometric series is justified.

One lesson from this example is that the Laurent series depends on the region as well
as the formula for the function.

9.6 Digression to differential equations

Here is a standard use of series for solving differential equations.

Example 9.24. Find a power series solution to the equation

f ′(x) = f(x) + 2 , f(0) = 0

Solution: We look for a solution of the form

f(x) =
∞∑
n=0

anx
n.

Using the initial condition we find f(0) = 0 = a0. Substituting the series into the differential
equation we get

f ′(x) = a1 + 2a2x+ 3a3x
3 + . . . = f(x) + 2 = a0 + 2 + a1x+ a2x

2 + . . .

Equating coefficients and using a0 = 0 we have

a1 = a0 + 2 ⇒ a1 = 2

2a2 = a1 ⇒ a2 = a1/2 = 1

3a3 = a2 ⇒ a3 = 1/3

4a4 = a3 ⇒ a4 = 1/(3 · 4)
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In general

(n+ 1)an+1 = an ⇒ an+1 =
an

(n+ 1)
=

1

3 · 4 · 5 · · · (n+ 1)
.

You can check using the ratio test that this function is entire.

9.7 Poles

Poles refer to isolated singularities. So, we suppose f(z) is analytic on 0 < |z − z0| < r and
has Laurent series

f(z) =
∞∑
n=1

bn
(z − z0)n

+
∞∑
n=0

an(z − z0)n.
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Definition of poles. If only a finite number of the coefficients bn are nonzero we say
z0 is a finite pole of f . In this case, if bk 6= 0 and bn = 0 for all n > k then we say z0 is a
pole of order k.

• If z0 is a pole of order 1 we say it is a simple pole of f .

• If an infinite number of the bn are nonzero we say that z0 is an essential singularity
or a pole of infinite order of f .

• If all the bn are 0, then z0 is called a removable singularity. That is, if we define
f(z0) = a0 then f is analytic on the disk |z − z0| < r.

The terminology can be a bit confusing. So, imagine that I tell you that f is defined and
analytic on the punctured disk 0 < |z−z0| < r. Then, a priori we assume f has a singularity
at z0. But, if after computing the Laurent series we see there is no singular part we can
extend the definition of f to the full disk, thereby ‘removing the singularity’.

We can explain the term essential singularity as follows. If f(z) has a pole of order k
at z0 then (z − z0)kf(z) is analytic (has a removable singularity) at z0. So, f(z) itself is
not much harder to work with than an analytic function. On the other hand, if z0 is an
essential singularity then no algebraic trick will change f(z) into an analytic function at z0.

9.7.1 Examples of poles

We’ll go back through many of the examples from the previous sections.

Example 9.25. The rational function

f(z) =
1 + 2z2

z3 + z5

expanded to

f(z) =

(
1

z3
+

1

z

)
−
∞∑
n=0

(−1)nz2n+1.

Thus, z = 0 is a pole of order 3.

Example 9.26. Consider

f(z) =
z + 1

z
= 1 +

1

z

Thus, z = 0 is a pole of order 1, i.e. a simple pole.

Example 9.27. Consider

f(z) =
z

z2 + 1
=

1

2
· 1

z − i + g(z),

where g(z) is analytic at z = i. So, z = i is a simple pole.
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Example 9.28. The function

f(z) =
1

z(z − 1)

has isolated singularities at z = 0 and z = 1. Show that both are simple poles.

Solution: In a neighborhood of z = 0 we can write

f(z) =
g(z)

z
, g(z) =

1

z − 1

Since g(z) is analytic at 0, z = 0 is a finite pole. Since g(0) 6= 0, the pole has order 1, i.e.
it is simple.

Likewise, in a neighborhood of z = 1,

f(z) =
h(z)

z − 1
, h(z) =

1

z

Since h is analytic at z = 1, f has a finite pole there. Since h(1) 6= 0 it is simple.

Example 9.29. Consider

e1/z = 1 +
1

z
+

1

2!z2
+

1

3!z3
+ . . .

So, z = 0 is an essential singularity.

Example 9.30. log(z) has a singularity at z = 0. Since the singularity is not isolated, it
can’t be classified as either a pole or an essential singularity.

9.7.2 Residues

In preparation for discussing the residue theorem in the next topic we give the definition
and an example here.

Note well, residues have to do with isolated singularites.

Definition 9.31. Consider the function f(z) with an isolated singularity at z0, i.e. defined
on 0 < |z − z0| < r and with Laurent series

f(z) =
∞∑
n=1

bn
(z − z0)n

+
∞∑
n=0

an(z − z0)n.

The residue of f at z0 is b1. This is denoted

Res(f, z0) or Res
z=z0

f = b1.

What is the importance of the residue? If γ is a small, simple closed curve that goes
counterclockwise around z0 then ∫

γ
f(z) = 2πib1.
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γ is small enough to be inside |z − z0| < r, and surround z0.

This is easy to see by integrating the Laurent series term by term. The only nonzero integral
comes from the term b1/z.

Example 9.32. The function

f(z) = e1/(2z) = 1 +
1

2z
+

1

2(2z)2
+ . . .

has an isolated singularity at 0. From the Laurent series we see that

Res(f, 0) =
1

2

10 Residue Theorem

10.1 Poles and zeros

We remind you of the following terminology: Suppose f(z) is analytic at z0 and

f(z) = an(z − z0)n + an+1(z − z0)n+1 + . . .

with an 6= 0. Then we say f has a zero of order n at z0. If n = 1 we say z0 is a simple zero.
Suppose f has an isolated singularity at z0 and Laurent series

f(z) =
bn

(z − z0)n
+

bn−1

(z − z0)n−1
+ . . .+

b1
z − z0

+ a0 + a1(z − z0) + . . .

which converges on 0 < |z − z0| < R and with bn 6= 0. Then we say f has a pole of order
n at z0. If n = 1 we say z0 is a simple pole. There were several examples in the previous
section. Here is one more

Example 10.1.

f(z) =
z + 1

z3(z2 + 1)

has isolated singularities at z = 0,±i and a zero at z = −1. We will show that z = 0 is a
pole of order 3, z = ±i are poles of order 1 and z = −1 is a zero of order 1. The style of
argument is the same in each case.
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At z = 0:

f(z) =
1

z3
· z + 1

z2 + 1

Call the second factor g(z). Since g(z) is analytic at z = 0 and g(0) = 1, it has a Taylor
series

g(z) =
z + 1

z2 + 1
= 1 + a1z + a2z

2 + . . .

Therefore

f(z) =
1

z3
+
a1

z2
+
a2

z
+ . . .

This shows z = 0 is a pole of order 3.
At z = i:

f(z) =
1

z − i ·
z + 1

z3(z + i)

Call the second factor g(z). Since g(z) is analytic at z = i, it has a Taylor series

g(z) =
z + 1

z3(z + i)
= a0 + a1(z − i) + a2(z − i)2 + . . .

where a0 = g(i) 6= 0. Therefore

f(z) =
a0

z − i + a1 + a2(z − i) + . . .

This shows z = i is a pole of order 1.
The arguments for z = −i and z = −1 are similar.

10.2 Words: Holomorphic and meromorphic

Definition. A function that is analytic on a region A is called holomorphic on A.
A function that is analytic on A except for a set of poles of finite order is called meromorphic
on A.

Example 10.2. Let

f(z) =
z + z2 + z3

(z − 2)(z − 3)(z − 4)(z − 5)
.

This is meromorphic on C with (simple) poles at z = 2, 3, 4, 5.

10.3 Behavior of functions near zeros and poles

The basic idea is that near a zero of order n, a function behaves like (z − z0)n and near a
pole of order n, a function behaves like 1/(z − z0)n. The following make this a little more
precise.

Behavior near a zero. If f has a zero of order n at z0 then near z0,

f(z) ≈ an(z − z0)n

for some constant an.
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Proof. By definition f has a Taylor series around z0 of the form

f(z) = an(z − z0)n + an+1(z − z0)n+1 + . . .

= an(z − z0)n
(

1 +
an+1

an
(z − z0) +

an+2

an
(z − z0)2 + . . .

)
Since the second factor equals 1 at z0, the claim follows.

Behavior near a finite pole. If f has a pole of order n at z0 then near z0,

f(z) ≈ bn
(z − z0)n

,

for some constant bn.

Proof. This is nearly identical to the previous argument. By definition f has a Laurent
series around z0 of the form

f(z) =
bn

(z − z0)n
+

bn−1

(z − z0)n−1
+ . . .+

b1
z − z0

+ a0 + . . .

=
bn

(z − z0)n

(
1 +

bn−1

bn
(z − z0) +

bn−2

bn
(z − z0)2 + . . .

)
Since the second factor equals 1 at z0, the claim follows.

10.3.1 Picard’s theorem and essential singularities

Near an essential singularity we have Picard’s theorem. We won’t prove or make use of this
theorem in 18.04. Still, we feel it is pretty enough to warrant showing to you.

Picard’s theorem. If f(z) has an essential singularity at z0 then in every neighborhood
of z0, f(z) takes on all possible values infinitely many times, with the possible exception of
one value.

Example 10.3. It is easy to see that in any neighborhood of z = 0 the function w = e1/z

takes every value except w = 0.

10.3.2 Quotients of functions

We have the following statement about quotients of functions. We could make similar
statements if one or both functions has a pole instead of a zero.

Theorem. Suppose f has a zero of order m at z0 and g has a zero of order n at z0. Let

h(z) =
f(z)

g(z)
.
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Then

• If n > m then h(z) has a pole of order n−m at z0.

• If n < m then h(z) has a zero of order m− n at z0.

• If n = m then h(z) is analytic and nonzero at z0.

We can paraphrase this as h(z) has ‘pole’ of order n −m at z0. If n −m is negative then
the ‘pole’ is actually a zero.

Proof. You should be able to supply the proof. It is nearly identical to the proofs above:
express f and g as Taylor series and take the quotient.

Example 10.4. Let

h(z) =
sin(z)

z2

We know sin(z) has a zero of order 1 at z = 0 and z2 has a zero of order 2. So, h(z) has a
pole of order 1 at z = 0. Of course, we can see this easily using Taylor series

h(z) =
1

z2

(
z − z3

3!
+ . . .

)

10.4 Residues

In this section we’ll explore calculating residues. We’ve seen enough already to know that
this will be useful. We will see that even more clearly when we look at the residue theorem
in the next section.

We introduced residues in the previous topic. We repeat the definition here for com-
pleteness.

Definition. Consider the function f(z) with an isolated singularity at z0, i.e. defined on
the region 0 < |z − z0| < r and with Laurent series (on that region)

f(z) =
∞∑
n=1

bn
(z − z0)n

+
∞∑
n=0

an(z − z0)n.

The residue of f at z0 is b1. This is denoted

Res(f, z0) = b1 or Res
z=z0

f = b1.

What is the importance of the residue? If γ is a small, simple closed curve that goes
counterclockwise around b1 then ∫

γ
f(z) = 2πib1.
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γ small enough to be inside |z− z0| < r, surround z0 and contain no other singularity of f .
This is easy to see by integrating the Laurent series term by term. The only nonzero

integral comes from the term b1/z.

Example 10.5.

f(z) = e1/2z = 1 +
1

2z
+

1

2(2z)2
+ . . .

has an isolated singularity at 0. From the Laurent series we see that Res(f, 0) = 1/2.

Example 10.6.

(i) Let

f(z) =
1

z3
+

2

z2
+

4

z
+ 5 + 6z

f has a pole of order 3 at z = 0 and Res(f, 0) = 4.

(ii) Suppose

f(z) =
2

z
+ g(z)

where g is analytic at z = 0. Then, f has a simple pole at 0 and Res(f, 0) = 2.

(iii) Let
f(z) = cos(z) = 1− z2/2! + . . .

Then f is analytic at z = 0 and Res(f, 0) = 0.

(iv) Let

f(z) =
sin(z)

z
=

1

z

(
z − z3

3!
+ . . .

)
= 1− z2

3!
+ . . .

So, f has a removable singularity at z = 0 and Res(f, 0) = 0.

Example 10.7. Using partial fractions. Let

f(z) =
z

z2 + 1

Find the poles and residues of f .

Solution: Using partial fractions we write

f(z) =
z

(z − i)(z + i)
=

1

2
· 1

z − i +
1

2
· 1

z + i
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The poles are at z = ±i. We compute the residues at each pole:
At z = i:

f(z) =
1

2
· 1

z − i + something analytic at i

Therefore the pole is simple and Res(f, i) = 1/2.
At z = −i:

f(z) =
1

2
· 1

z + i
+ something analytic at − i

Therefore the pole is simple and Res(f,−i) = 1/2.

Example 10.8. Mild warning! Let

f(z) = − 1

z(1− z)

then we have the following Laurent expansions for f around z = 0.
On 0 < |z| < 1:

f(z) = −1

z
· 1

1− z = −1

z
(1 + z + z2 + . . .)

Therefore the pole at z = 0 is simple and Res(f, 0) = −1.
On 1 < |z| <∞:

f(z) =
1

z2
· 1

1− 1/z
=

1

z2

(
1 +

1

z
+

1

z2
+ . . .

)
Even though this is a valid Laurent expansion you must not use it to compute the residue
at 0. This is because the definition of residue requires that we use the Laurent series on the
region 0 < |z − z0| < r.

Example 10.9. Let
f(z) = log(1 + z)

This has a singularity at z = −1, but it is not isolated, so not a pole and therefore there is
no residue at z = −1.

10.4.1 Residues at simple poles

Simple poles occur frequently enough that we’ll study computing their residues in some
detail. Here are a number of ways to spot a simple pole and compute its residue. The
justification for all of them goes back to Laurent series.

Suppose f(z) has an isolated singularity at z = z0. Then we have the following properties.

Property 1. If the Laurent series for f(z) has the form

b1
z − z0

+ a0 + a1(z − z0) + . . .

then f has a simple pole at z0 and Res(f, z0) = b1.
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Property 2 If
g(z) = (z − z0)f(z)

is analytic at z0 then z0 is either a simple pole or a removable singularity. In either case
Res(f, z0) = g(z0). (In the removable singularity case the residue is 0.)

Proof. Directly from the Laurent series for f around z0.

Property 3. If f has a simple pole at z0 then

lim
z→z0

(z − z0)f(z) = Res(f, z0)

This says that the limit exists and equals the residue. Conversely, if the limit exists then
either the pole is simple, or f is analytic at z0. In both cases the limit equals the residue.

Proof. Directly from the Laurent series for f around z0.

Property 4. If f has a simple pole at z0 and g(z) is analytic at z0 then

Res(fg, z0) = g(z0) Res(f, z0)

If g(z0) 6= 0 then

Res(f/g, z0) =
1

g(z0)
Res(f, z0)

Proof. Since z0 is a simple pole,

f(z) =
b1

z − z0
+ a0 + a1(z − z0)

Since g is analytic,
g(z) = c0 + c1(z − z0) + . . . ,

where c0 = g(z0). Multiplying these series together it is clear that

Res(fg, z0) = c0b1 = g(z0) Res(f, z0). �

The statement about quotients f/g follows from the proof for products because 1/g is
analytic at z0.

Property 5. If g(z) has a simple zero at z0 then 1/g(z) has a simple pole at z0 and

Res(1/g, z0) =
1

g′(z0)

Proof. The algebra for this is similar to what we’ve done several times above. The Taylor
expansion for g is

g(z) = a1(z − z0) + a2(z − z0)2 + . . . ,
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where a1 = g′(z0). So

1

g(z)
=

1

a1(z − z0)

(
1

1 + a2
a1

(z − z0) + . . .

)

The second factor on the right is analytic at z0 and equals 1 at z0. Therefore we know the
Laurent expansion of 1/g is

1

g(z)
=

1

a1(z − z0)
(1 + c1(z − z0) + . . .)

Clearly the residue is 1/a1 = 1/g′(z0). �

Example 10.10. Let

f(z) =
2 + z + z2

(z − 2)(z − 3)(z − 4)(z − 5)
.

Show all the poles are simple and compute their residues.

Solution: The poles are at z = 2, 3, 4, 5. They are all isolated. We’ll look at z = 2 the
others are similar. Multiplying by z − 2 we get

g(z) = (z − 2)f(z) =
2 + z + z2

(z − 3)(z − 4)(z − 5)
.

This is analytic at z = 2 and g(2) =
8

−6
= −4

3
. So the pole is simple and Res(f, 2) = −4/3.

Example 10.11. Let

f(z) =
1

sin(z)

Find all the poles and their residues.

Solution: The poles of f(z) are the zeros of sin(z), i.e. nπ for n an integer. Since the
derivative

sin′(nπ) = cos(nπ) 6= 0

the zeros are simple and by Property 5 above

Res(f, nπ) =
1

cos(nπ)
= (−1)n

Example 10.12. Let

f(z) =
1

z(z2 + 1)(z − 2)2

Identify all the poles and say which ones are simple.

Solution: Clearly the poles are at z = 0,±i, 2.
At z = 0:

g(z) = zf(z)
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is analytic at 0 and g(0) = 1/4. So the pole is simple and the residue is g(0) = 1/4.
At z = i:

g(z) = (z − i)f(z) =
1

z(z + i)(z − 2)2

is analytic at i, the pole is simple and the residue is g(i).
At z = −i: This is similar to the case z = i. The pole is simple.
At z = 2:

g(z) = (z − 2)f(z) =
1

z(z2 + 1)(z − 2)

is not analytic at 2, so the pole is not simple. (It should be obvious that it’s a pole of order
2.)

Example 10.13. Let p(z), q(z) be analytic at z = z0. Assume p(z0) 6= 0, q(z0) = 0,
q′(z0) 6= 0. Find

Res
z=z0

p(z)

q(z)

Solution: Since q′(z0) 6= 0, q has a simple zero at z0. So 1/q has a simple pole at z0 and

Res(1/q, z0) =
1

q′(z0)

Since p(z0) 6= 0 we know

Res(p/q, z0) = p(z0) Res(1/q, z0) =
p(z0)

q′(z0)

10.4.2 Residues at finite poles

For higher-order poles we can make statements similar to those for simple poles, but the
formulas and computations are more involved. The general principle is the following

Higher order poles. If f(z) has a pole of order k at z0 then

g(z) = (z − z0)kf(z)

is analytic at z0 and if
g(z) = a0 + a1(z − z0) + . . .

then

Res(f, z0) = ak−1 =
g(k−1)(z0)

(k − 1)!

Proof. This is clear using Taylor and Laurent series for g and f .

Example 10.14. Let

f(z) =
sinh(z)

z5

128



find the residue at z = 0.

Solution: We know the Taylor series for

sinh(z) = z + z3/3! + z5/5! + . . .

(You can find this using sinh(z) = (ez − e−z)/2 and the Taylor series for ez.) Therefore,

f(z) =
1

z4
+

1

3!z2
+

1

5!
+ . . .

We see Res(f, 0) = 0.
Note, we could have seen this by realizing that f(z) is an even function.

Example 10.15. Let

f(z) =
sinh(z)ez

z5

Find the residue at z = 0.

Solution: It is clear that Res(f, 0) equals the coefficient of z4 in the Taylor expansion of
sinh(z)ez. We compute this directly as

sinh(z)ez =

(
z +

z3

3!
+ . . .

)(
1 + z +

z2

2
+
z3

3!
+ . . .

)
= . . .+

(
1

4!
+

1

3!

)
z4 + . . .

So

Res(f, 0) =
1

4!
+

1

3!
=

5

24

Example 10.16. Find the residue of

f(z) =
1

z(z2 + 1)(z − 2)2

at z = 2.

Solution:

g(z) = (z − 2)2f(z) =
1

z(z2 + 1)

is analytic at z = 2. So, the residue we want is the a1 term in its Taylor series, i.e. g′(2).
This is easy, if dull, to compute

Res(f, 2) = g′(2) = − 13

100

10.4.3 cot(z)

The function cot(z) turns out to be very useful in applications. This stems largely from the
fact that it has simple poles at all multiples of π and the residue is 1 at each pole. We show
that first.
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Fact. f(z) = cot(z) has simple poles at nπ for n an integer and Res(f, nπ) = 1.

Proof.

f(z) =
cos(z)

sin(z)

This has poles at the zeros of sin, i.e. at z = nπ. At poles f is of the form p/q where q has
a simple zero at z0 and p(z0) 6= 0. Thus we can use the formula

Res(f, z0) =
p(z0)

q′(z0)
.

In our case, we have

Res(f, nπ) =
cos(nπ)

cos(nπ)
= 1

as claimed.
Sometimes we need more terms in the Laurent expansion of cot(z). There is no known

easy formula for the terms, but we can easily compute as many as we need using the
following technique.

Example 10.17. Compute the first several terms of the Laurent expansion of cot(z) around
z = 0.

Solution: Since cot(z) has a simple pole at 0 we know

cot(z) =
b1
z

+ a0 + a1z + a2z
2 + . . .

We also know

cot(z) =
cos(z)

sin(z)
=

1− z2/2 + z4/4!− . . .
z − z3/3! + z5/5!− . . .

Cross multiplying the two expressions we get(
b1
z

+ a0 + a1z + a2z
2 + . . .

)(
z − z3

3!
+
z5

5!
− . . .

)
= 1− z2

2
+
z4

4!
− . . .

We can do the multiplication and equate the coefficients of like powers of z.

b1 + a0z +

(
−b1

3!
+ a1

)
z2 +

(
−a0

3!
+ a2

)
z3 +

(
b1
5!
− a1

3!
+ a3

)
z4 = 1− z2

2!
+
z4

4!

So,

b1 = 1 , a0 = 0

−b1/3! + a1 = −1/2! ⇒ a1 = −1/3

−a0/3! + a2 = 0 ⇒ a2 = 0

b1/5!− a1/3! + a3 = 1/4! ⇒ a3 = −1/45

As noted above, all the even terms are 0 as they should be. We have

cot(z) =
1

z
− z

3
− z3

45
+ . . .
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10.5 Cauchy Residue Theorem

This is one of the major theorems in 18.04. It will allow us to make systematic our previous
somewhat ad hoc approach to computing integrals on contours that surround singularities.

Theorem. (Cauchy’s residue theorem) Suppose f(z) is analytic in the region A except
for a set of isolated singularities. Also suppose C is a simple closed curve in A that doesn’t
go through any of the singularities of f and is oriented counterclockwise. Then∫

C
f(z) dz = 2πi

∑
residues of f inside C

Proof. The proof is based of the following figures. They only show a curve with two singu-
larities inside it, but the generalization to any number of signularities is straightforward. In
what follows we are going to abuse language and say pole when we mean isolated singularity,
i.e. a finite order pole or an essential singularity (‘infinite order pole’).

The left figure shows the curve C surrounding two poles z1 and z2 of f . The right figure
shows the same curve with some cuts and small circles added. It is chosen so that there are
no poles of f inside it and so that the little circles around each of the poles are so small
that there are no other poles inside them. The right hand curve is

C̃ = C1 + C2 − C3 − C2 + C4 + C5 − C6 − C5

The left hand curve is C = C1 +C4. Since there are no poles inside C̃ we have, by Cauchy’s
theorem, ∫

C̃
f(z) dz =

∫
C1+C2−C3−C2+C4+C5−C6−C5

f(z) dz = 0

Dropping C2 and C5, which are both added and subtracted, this becomes∫
C1+C4

f(z) dz =

∫
C3+C6

f(z) dz (47)

If

f(z) = . . .+
b2

(z − z1)2
+

b1
z − z1

+ a0 + a1(z − z1) + . . .
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is the Laurent expansion of f around z1 then∫
C3

f(z) dz =

∫
C3

. . .+
b2

(z − z1)2
+

b1
z − z1

+ a0 + a1(z − z1) + . . . dz = 2πib1

= 2πiRes(f, z1)

Likewise ∫
C6

f(z) dz = 2πiRes(f, z2)

Using these residues and the fact that C = C1 + C4, Equation (47) becomes∫
C
f(z) dz = 2πi [Res(f, z1) + Res(f, z2)]

That proves the residue theorem for the case of two poles. As we said, generalizing to any
number of poles is straightforward.

Example 10.18. Let

f(z) =
1

z(z2 + 1)

Compute

∫
f(z) dz over each of the contours C1, C2, C3, C4 shown.

Solution: The poles of f(z) are at z = 0,±i. Using the residue theorem we just need to
compute the residues of each of these poles.
At z = 0:

g(z) = zf(z) =
1

z2 + 1

is analytic at 0 so the pole is simple and

Res(f, 0) = g(0) = 1

At z = i:

g(z) = (z − i)f(z) =
1

z(z + i)
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is analytic at i so the pole is simple and

Res(f, i) = g(i) = −1/2

At z = −i:
g(z) = (z + i)f(z) =

1

z(z − i)
is analytic at −i so the pole is simple and

Res(f,−i) = g(−i) = −1/2

Using the residue theorem we have∫
C1

f(z) dz = 0 (since f is analytic inside C1)∫
C2

f(z) dz = 2πiRes(f, i) = −πi∫
C3

f(z) dz = 2πi [Res(f, i) + Res(f, 0)] = πi∫
C4

f(z) dz = 2πi [Res(f, i) + Res(f, 0) + Res(f,−i)] = 0

Example 10.19. Compute ∫
|z|=2

5z − 2

z(z − 1)
dz

Solution: Let

f(z) =
5z − 2

z(z − 1)

The poles of f are at z = 0, 1 and the contour encloses them both.

At z = 0:

g(z) = zf(z) =
5z − 2

(z − 1)

is analytic at 0 so the pole is simple and

Res(f, 0) = g(0) = 2
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At z = 1:

g(z) = (z − 1)f(z) =
5z − 2

z

is analytic at 1 so the pole is simple and

Res(f, 1) = g(1) = 3

Finally ∫
C

5z − 2

z(z − 1)
dz = 2πi [Res(f, 0) + Res(f, 1)] = 10πi

.

Example 10.20. Compute ∫
|z|=1

z2 sin(1/z) dz

Solution: Let
f(z) = z2 sin(1/z)

f has an isolated singularity at z = 0. Using the Taylor series for sin(w) we get

z2 sin(1/z) = z2

(
1

z
− 1

3!z3
+

1

5!z5
− . . .

)
= z − 1/6

z
+ . . .

So, Res(f, 0) = b1 = −1/6. Thus the residue theorem gives∫
|z|=1

z2 sin(1/z) dz = 2πiRes(f, 0) = − iπ
3
.

Example 10.21. Compute ∫
C

dz

z(z − 2)4
dz

where C : |z − 2| = 1.

Solution: Let

f(z) =
1

z(z − 2)4

The singularity at z = 0 is outside the contour of integration so it doesn’t contribute to the
integral.
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To use the residue theorem we need to find the residue of f at z = 2. There are a
number of ways to do this. Here’s one:

1

z
=

1

2 + (z − 2)

=
1

2
· 1

1 + (z − 2)/2

=
1

2

(
1− z − 2

2
+

(z − 2)2

4
− (z − 2)3

8
+ . . .

)
This is valid on 0 < |z − 2| < 2. So,

f(z) =
1

(z − 2)4
· 1

z
=

1

2(z − 2)4
− 1

4(z − 2)3
+

1

8(z − 2)2
− 1

16(z − 2)
+ . . .

Thus, Res(f, 2) = −1/16 and∫
C
f(z) dz = 2πiRes(f, 2) = −πi

8

Example 10.22. Compute ∫
C

1

sin(z)
dz

over the contour C shown.

Solution: Let
f(z) = 1/ sin(z)

There are 3 poles of f inside C at 0, π and 2π. We can find the residues by taking the limit
of (z− z0)f(z). Each of the limits is computed using L’Hospital’s rule. (This is valid, since
the rule is just a statement about power series. We could also have used Property 5 from
the section on residues of simple poles above.)
At z = 0:

lim
z→0

z

sin(z)
= lim

z→0

1

cos(z)
= 1

Since the limit exists, z = 0 is a simple pole and

Res(f, 0) = 1
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At z = π:

lim
z→π

z − π
sin(z)

= lim
z→π

1

cos(z)
= −1

Since the limit exists, z = π is a simple pole and

Res(f, π) = −1

At z = 2π: The same argument shows

Res(f, 2π) = 1

Now, by the residue theorem∫
C
f(z) dz = 2πi [Res(f, 0) + Res(f, π) + Res(f, 2π)] = 2πi.

10.6 Residue at ∞
The residue at∞ is a clever device that can sometimes allow us to replace the computation
of many residues with the computation of a single residue.

Suppose that f is analytic in C except for a finite number of singularities. Let C be a
positively oriented curve that is large enough to contain all the singularities.

All the poles of f are inside C

Definition. We define the residue of f at infinity by

Res(f,∞) = − 1

2πi

∫
C
f(z) dz.

We should first explain the idea here. The interior of a simple closed curve is everything
to left as you traverse the curve. The curve C is oriented counterclockwise, so its interior
contains all the poles of f . The residue theorem says the integral over C is determined by
the residues of these poles.

On the other hand, the interior of the curve −C is everything outside of C. There are
no poles of f in that region. If we want the residue theorem to hold (which we do –it’s that
important) then the only option is to have a residue at ∞ and define it as we did.

The definition of the residue at infinity assumes all the poles of f are inside C. Therefore
the residue theorem implies

Res(f,∞) = −
∑

the residues of f .
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To make this useful we need a way to compute the residue directly. This is given by the
following theorem.

Theorem. If f is analytic in C except for a finite number of singularities then

Res(f,∞) = −Res

(
1

w2
f(1/w), 0

)
.

Proof. The proof is just a change of variables: w = 1/z.

Change of variable: w = 1/z

First note that z = 1/w and
dz = −(1/w2) dw

Next, note that the map w = 1/z carries the positively oriented z-circle of radius R to the
negatively oriented w-circle of radius 1/R. (To see the orientiation, follow the circled points
1, 2, 3, 4 on C in the z-plane as they are mapped to points on C̃ in the w-plane.) Thus,

Res(f,∞) = − 1

2πi

∫
C
f(z) dz =

1

2πi

∫
C̃
f(1/w)

1

w2
dw

Finally, note that z = 1/w maps all the poles inside the circle C to points outside the
circle C̃. So the only possible pole of (1/w2)f(1/w) that is inside C̃ is at w = 0. Now, since
C̃ is oriented clockwise, the residue theorem says

1

2πi

∫
C̃
f(1/w)

1

w2
dw = −Res

(
1

w2
f(1/w), 0

)
Comparing this with the equation just above finishes the proof.

Example 10.23. Let

f(z) =
5z − 2

z(z − 1)

Earlier we computed ∫
|z|=2

f(z) dz = 10πi

by computing residues at z = 0 and z = 1. Recompute this integral by computing a single
residue at infinity.
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Solution:
1

w2
f(1/w) =

1

w2

5/w − 2

(1/w)(1/w − 1)
=

5− 2w

w(1− w)

We easily compute that

Res(f,∞) = −Res

(
1

w2
f(1/w), 0

)
= −5.

Since |z| = 2 contains all the singularities of f we have∫
|z|=2

f(z) dz = −2πiRes(f,∞) = 10πi.

This is the same answer we got before!

11 Definite integrals using the residue theorem

In this topic we’ll use the residue theorem to compute some real definite integrals.∫ b

a
f(x) dx

The general approach is always the same

1. Find a complex analytic function g(z) which either equals f on the real axis or which
is closely connected to f , e.g. f(x) = cos(x), g(z) = eiz.

2. Pick a closed contour C that includes the part of the real axis in the integral.

3. The contour will be made up of pieces. It should be such that we can compute∫
g(z) dz over each of the pieces except the part on the real axis.

4. Use the residue theorem to compute

∫
C
g(z) dz.

5. Combine the previous steps to deduce the value of the integral we want.

11.1 Integrals of functions that decay

The theorems in this section will guide us in choosing the closed contour C described in the
introduction.

The first theorem is for functions that decay faster than 1/z.

Theorem 11.1. (a) Suppose f(z) is defined in the upper half-plane. If there is an a > 1
and M > 0 such that

|f(z)| < M

|z|a
for |z| large then

lim
R→∞

∫
CR

f(z) dz = 0,
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where CR is the semicircle shown below on the left.

Re(z)

Im(z)

R−R

CR

Re(z)

Im(z)
R−R

CR

Semicircles: left: Reiθ, 0 < θ < π right: Reiθ, π < θ < 2π.

(b) If f(z) is defined in the lower half-plane and

|f(z)| < M

|z|a ,

where a > 1 then

lim
R→∞

∫
CR

f(z) dz = 0,

where CR is the semicircle shown above on the right.

Proof. We prove (a), (b) is essentially the same. We use the triangle inequality for integrals
and the estimate given in the hypothesis. For R large∣∣∣∣∫

CR

f(z) dz

∣∣∣∣ ≤ ∫
CR

|f(z)| |dz| ≤
∫
CR

M

|z|a |dz| =
∫ π

0

M

Ra
Rdθ =

Mπ

Ra−1
.

Since a > 1 this clearly goes to 0 as R→∞. �

The next theorem is for functions that decay like 1/z. It requires some more care to state
and prove.

Theorem 11.2. (a) Suppose f(z) is defined in the upper half-plane. If there is an M > 0
such that

|f(z)| < M

|z|
for |z| large then for a > 0

lim
x1→∞, x2→∞

∫
C1+C2+C3

f(z)eiaz dz = 0,

where C1 + C2 + C3 is the rectangular path shown below on the left.

Re(z)

Im(z)

x1−x2

i(x1 + x2)
C1

C2

C3

Re(z)

Im(z)
x1−x2

−i(x1 + x2)

C1

C2

C3
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Rectangular paths of height and width x1 + x2.

(b) Similarly, if a < 0 then

lim
x1→∞, x2→∞

∫
C1+C2+C3

f(z)eiaz dz = 0,

where C1 + C2 + C3 is the rectangular path shown above on the right.

Note. In contrast to Theorem 11.1 this theorem needs to include the factor eiaz.

Proof. (a) We start by parametrizing C1, C2, C3.

C1: γ1(t) = x1 + it, t from 0 to x1 + x2

C2: γ2(t) = t+ i(x1 + x2), t from x1 to −x2

C3: γ3(t) = −x2 + it, t from x1 + x2 to 0.

Next we look at each integral in turn. We assume x1 and x2 are large enough that

|f(z)| < M

|z|
on each of the curves Cj .∣∣∣∣∫

C1

f(z)eiaz dz

∣∣∣∣ ≤ ∫
C1

|f(z)eiaz| |dz| ≤
∫
C1

M

|z| |e
iaz| |dz|

=

∫ x1+x2

0

M√
x2

1 + t2
|eiax1−at| dt

≤ M

x1

∫ x1+x2

0
e−at dt

=
M

x1
(1− e−a(x1+x2))/a.

Since a > 0, it is clear that this last expression goes to 0 as x1 and x2 go to ∞.

∣∣∣∣∫
C2

f(z)eiaz dz

∣∣∣∣ ≤ ∫
C2

|f(z)eiaz| |dz| ≤
∫
C2

M

|z| |e
iaz| |dz|

=

∫ x1

−x2

M√
t2 + (x1 + x2)2

|eiat−a(x1+x2)| dt

≤ Me−a(x1+x2)

x1 + x2

∫ x1+x2

0
dt

≤Me−a(x1+x2)

Again, clearly this last expression goes to 0 as x1 and x2 go to ∞.
The argument for C3 is essentially the same as for C1, so we leave it to the reader.
The proof for part (b) is the same. You need to keep track of the sign in the exponentials

and make sure it is negative.

Example. See Example 11.16 below for an example using Theorem 11.2.
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11.2 Integrals

∫ ∞
−∞

and

∫ ∞
0

Example 11.3. Compute

I =

∫ ∞
−∞

1

(1 + x2)2
dx

Solution: Let
f(z) = 1/(1 + z2)2

It is clear that for z large
f(z) ≈ 1/z4

In particular, the hypothesis of Theorem 11.1 is satisfied. Using the contour shown below
we have, by the residue theorem,∫

C1+CR

f(z) dz = 2πi
∑

residues of f inside the contour. (48)

Re(z)

Im(z)

R−R

CR

C1

i

We examine each of the pieces in the above equation.∫
CR

f(z) dz: By Theorem 11.1(a),

lim
R→∞

∫
CR

f(z) dz = 0.

∫
C1

f(z) dz: Directly, we see that

lim
R→∞

∫
C1

f(z) dz = lim
R→∞

∫ R

−R
f(x) dx =

∫ ∞
−∞

f(x) dx = I.

So letting R→∞, Eq. (48) becomes

I =

∫ ∞
−∞

f(x) dx = 2πi
∑

residues of f inside the contour.

Finally, we compute the needed residues: f(z) has poles of order 2 at ±i. Only z = i is
inside the contour, so we compute the residue there. Let

g(z) = (z − i)2f(z) =
1

(z + i)2
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Then

Res(f, i) = g′(i) = − 2

(2i)3
=

1

4i

So,

I = 2πiRes(f, i) =
π

2

Example 11.4. Compute

I =

∫ ∞
−∞

1

x4 + 1
dx

Solution: Let f(z) = 1/(1 + z4). We use the same contour as in the previous example

Re(z)

Im(z)

R−R

CR

C1

eiπ/4ei3π/4

As in the previous example,

lim
R→∞

∫
CR

f(z) dz = 0

and

lim
R→∞

∫
C1

f(z) dz =

∫ ∞
−∞

f(x) dx = I

So, by the residue theorem

I = lim
R→∞

∫
C1+CR

f(z) dz = 2πi
∑

residues of f inside the contour.

The poles of f are all simple and at

eiπ/4, ei3π/4, ei5π/4 ei7π/4

Only eiπ/4 and ei3π/4 are inside the contour. We compute their residues as limits using
L’Hospital’s rule. For z1 = eiπ/4 :

Res(f, z1) = lim
z→z1

(z − z1)f(z) = lim
z→z1

z − z1

1 + z4
= lim

z→z1

1

4z3
=

1

4ei3π/4
=

e−i3π/4

4

and for z2 = ei3π/4 :

Res(f, z2) = lim
z→z2

(z − z2)f(z) = lim
z→z2

z − z2

1 + z4
= lim

z→z2

1

4z3
=

1

4ei9π/4
=

e−iπ/4

4
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So,

I = 2πi(Res(f, z1) + Res(f, z2)) = 2πi

(−1− i
4
√

2
+

1− i
4
√

2

)
= 2πi

(
− 2i

4
√

2

)
= π

√
2

2

Example 11.5. Suppose b > 0. Show∫ ∞
0

cos(x)

x2 + b2
dx =

πe−b

2b

Solution: The first thing to note is that the integrand is even, so

I =
1

2

∫ ∞
−∞

cos(x)

x2 + b2
.

Also note that the square in the denominator tells us the integral is absolutely convergent.
We have to be careful because cos(z) goes to infinity in either half-plane, so the hy-

potheses of Theorem 11.1 are not satisfied. The trick is to replace cos(x) by eix, so

Ĩ =

∫ ∞
−∞

eix

x2 + b2
dx with I =

1

2
Re(Ĩ)

Now let

f(z) =
eiz

z2 + b2

For z = x+ iy with y > 0 we have

|f(z)| = |e
i(x+iy)|
|z2 + b2| =

e−y

|z2 + b2| .

Since e−y < 1, f(z) satisfies the hypotheses of Theorem 11.1 in the upper half-plane. Now
we can use the same contour as in the previous examples

Re(z)

Im(z)

R−R

CR

C1

ib

We have

lim
R→∞

∫
CR

f(z) dz = 0

and

lim
R→∞

∫
C1

f(z) dz =

∫ ∞
−∞

f(x) dx = Ĩ
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So, by the residue theorem

Ĩ = lim
R→∞

∫
C1+CR

f(z) dz = 2πi
∑

residues of f inside the contour.

The poles of f are at ±bi and both are simple. Only bi is inside the contour. We compute
the residue as a limit using L’Hospital’s rule

Res(f, bi) = lim
z→bi

(z − bi) eiz

z2 + b2
=

e−b

2bi
.

So,

Ĩ = 2πiRes(f, bi) =
πe−b

b

Finally,

I =
1

2
Re(Ĩ) =

πe−b

2b
,

as claimed.
Warning: Be careful when replacing cos(z) by eiz that it is appropriate. A key point

in the above example was that I = 1
2 Re(Ĩ). This is needed to make the replacement useful.

11.3 Trigonometric integrals

The trick here is to put together some elementary properties of z = eiθ on the unit circle.

1. e−iθ = 1/z.

2. cos(θ) =
eiθ + e−iθ

2
=
z + 1/z

2
.

3. sin(θ) =
eiθ − e−iθ

2i
=
z − 1/z

2i
.

We start with an example. After that we’ll state a more general theorem.

Example 11.6. Compute ∫ 2π

0

dθ

1 + a2 − 2a cos(θ)

Assume that |a| 6= 1.

Solution: Notice that [0, 2π] is the interval used to parametrize the unit circle as z = eiθ.

We need to make two substitutions:

cos(θ) =
z + 1/z

2

dz = ieiθ dθ ⇔ dθ =
dz

iz
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Making these substitutions we get

I =

∫ 2π

0

dθ

1 + a2 − 2a cos(θ)

=

∫
|z|=1

1

1 + a2 − 2a(z + 1/z)/2
· dz
iz

=

∫
|z|=1

1

i((1 + a2)z − a(z2 + 1))
dz

So, let

f(z) =
1

i((1 + a2)z − a(z2 + 1))

The residue theorem implies

I = 2πi
∑

residues of f inside the unit circle.

We can factor the denominator:

f(z) =
−1

ia(z − a)(z − 1/a)

The poles are at a, 1/a. One is inside the unit circle and one is outside.

If |a| > 1 then 1/a is inside the unit circle and Res(f, 1/a) =
1

i(a2 − 1)

If |a| < 1 then a is inside the unit circle and Res(f, a) =
1

i(1− a2)

We have

I =

{
2π
a2−1

if |a| > 1
2π

1−a2 if |a| < 1

The example illustrates a general technique which we state now.

Theorem 11.7. Suppose R(x, y) is a rational function with no poles on the circle

x2 + y2 = 1

then for

f(z) =
1

iz
R

(
z + 1/z

2
,
z − 1/z

2i

)
we have ∫ 2π

0
R(cos(θ), sin(θ)) dθ = 2πi

∑
residues of f inside |z| = 1.

Proof. We make the same substitutions as in Example 11.6. So,∫ 2π

0
R(cos(θ), sin(θ)) dθ =

∫
|z|=1

R

(
z + 1/z

2
,
z − 1/z

2i

)
dz

iz

The assumption about poles means that f has no poles on the contour |z| = 1. The residue
theorem now implies the theorem.
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11.4 Integrands with branch cuts

Example 11.8. Compute

I =

∫ ∞
0

x1/3

1 + x2
dx

Solution: Let

f(x) =
x1/3

1 + x2

Since this is asymptotically comparable to x−5/3, the integral is absolutely convergent. As
a complex function

f(z) =
z1/3

1 + z2

needs a branch cut to be analytic (or even continuous), so we will need to take that into
account with our choice of contour.

First, choose the following branch cut along the positive real axis. That is, for z = reiθ

not on the axis, we have 0 < θ < 2π.
Next, we use the contour C1 + CR − C2 − Cr shown below.

Re(z)

Im(z)

CR

C1

−C2

−Cr

i

−i

Contour around branch cut: inner circle of radius r, outer of radius R.

We put convenient signs on the pieces so that the integrals are parametrized in a natural
way. You should read this contour as having r so small that C1 and C2 are essentially on
the x-axis. Note well, that, since C1 and C2 are on opposite sides of the branch cut, the
integral ∫

C1−C2

f(z) dz 6= 0

First we analyze the integral over each piece of the curve.
On CR: Theorem 11.1 says that

lim
R→∞

∫
CR

f(z) dz = 0
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On Cr: For concreteness, assume r < 1/2. We have |z| = r, so

|f(z)| = |z1/3|
|1 + z2| ≤

r1/3

1− r2
≤ (1/2)1/3

3/4
.

Call the last number in the above equation M . We have shown that, for small r, |f(z)| < M .
So, ∣∣∣∣∫

Cr

f(z) dz

∣∣∣∣ ≤ ∫ 2π

0
|f(reiθ)||ireiθ| dθ ≤

∫ 2π

0
Mr dθ = 2πMr.

Clearly this goes to zero as r → 0.
On C1:

lim
r→0, R→∞

∫
C1

f(z) dz =

∫ ∞
0

f(x) dx = I

On C2: We have (essentially) θ = 2π, so z1/3 = ei2π/3|z|1/3. Thus,

lim
r→0, R→∞

∫
C2

f(z) dz = ei2π/3
∫ ∞

0
f(x) dx = ei2π/3I.

The poles of f(z) are at ±i. Since f is meromorphic inside our contour the residue
theorem says ∫

C1+CR−C2−Cr
f(z) dz = 2πi(Res(f, i) + Res(f,−i)).

Letting r → 0 and R→∞ the analysis above shows

(1− ei2π/3)I = 2πi(Res(f, i) + Res(f,−i))

All that’s left is to compute the residues using the chosen branch of z1/3

Res(f,−i) =
(−i)1/3

−2i
=

(ei3π/2)1/3

2ei3π/2
=

e−iπ

2
= −1

2

Res(f, i) =
i1/3

2i
=

eiπ/6

2eiπ/2
=

e−iπ/3

2

A little more algebra gives

(1− ei2π/3)I = 2πi · −1 + e−iπ/3

2
= πi(−1 + 1/2− i

√
3/2) = −πieiπ/3.

Continuing

I =
−πieiπ/3
1− ei2π/3

=
πi

eiπ/3 − e−πi/3
=

π/2

(eiπ/3 − e−iπ/3)/2i
=

π/2

sin(π/3)
=

π√
3

Whew! (Note: a sanity check is that the result is real, which it had to be.)
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Example 11.9. Compute

I =

∫ ∞
1

dx

x
√
x2 − 1

Solution: Let

f(z) =
1

z
√
z2 − 1

The first thing we’ll show is that the integral∫ ∞
1

f(x) dx

is absolutely convergent. To do this we split it into two integrals∫ ∞
1

dx

x
√
x2 − 1

=

∫ 2

1

dx

x
√
x2 − 1

+

∫ ∞
2

dx

x
√
x2 − 1

The first integral on the right can be rewritten as∫ 2

1

1

x
√
x+ 1

· 1√
x− 1

dx ≤
∫ 2

1

1√
2
· 1√

x− 1
dx =

2√
2

√
x− 1

∣∣∣∣2
1

This shows the first integral is absolutely convergent.

The function f(x) is asymptotically comparable to 1/x2, so the integral from 2 to∞ is also
absolutely convergent.

We can conclude that the original integral is absolutely convergent.

Next, we use the following contour. Here we assume the big circles have radius R and the
small ones have radius r.

Re(z)

Im(z)

R

rr

C1

C2 −C3

−C4

C5

−C6

−C7

1−1

C8

We use the branch cut for square root that removes the positive real axis. In this branch

0 < arg(z) < 2π and 0 < arg(
√
w) < π
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For f(z), this necessitates the branch cut that removes the rays [1,∞) and (−∞,−1] from
the complex plane.

The pole at z = 0 is the only singularity of f(z) inside the contour. It is easy to compute
that

Res(f, 0) =
1√
−1

=
1

i
= −i.

So, the residue theorem gives us∫
C1+C2−C3−C4+C5−C6−C7+C8

f(z) dz = 2πiRes(f, 0) = 2π. (49)

In a moment we will show the following limits

lim
R→∞

∫
C1

f(z) dz = lim
R→∞

∫
C5

f(z) dz = 0

lim
r→0

∫
C3

f(z) dz = lim
r→0

∫
C7

f(z) dz = 0.

We will also show

lim
R→∞, r→0

∫
C2

f(z) dz = lim
R→∞, r→0

∫
−C4

f(z) dz

= lim
R→∞, r→0

∫
−C6

f(z) dz = lim
R→∞, r→0

∫
C8

f(z) dz = I.

Using these limits, Equation (49) implies 4I = 2π, i.e.

I = π/2

All that’s left is to prove the limits asserted above.

The limits for C1 and C5 follow from Theorem 11.1 because

|f(z)| ≈ 1/|z|3/2

for large z.

We get the limit for C3 as follows. Suppose r is small, say much less than 1. If

z = −1 + reiθ

is on C3 then,

|f(z)| = 1

|z
√
z − 1

√
z + 1| =

1

| − 1 + reiθ|
√
| − 2 + reiθ|√r

≤ M√
r
.

where M is chosen to be bigger than

1

| − 1 + reiθ|
√
| − 2 + reiθ|
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for all small r.

Thus, ∣∣∣∣∫
C3

f(z) dz

∣∣∣∣ ≤ ∫
C3

M√
r
|dz| ≤ M√

r
· 2πr = 2πM

√
r.

This last expression clearly goes to 0 as r → 0.

The limit for the integral over C7 is similar.

We can parameterize the straight line C8 by

z = x+ iε

where ε is a small positive number and x goes from (approximately) 1 to ∞. Thus, on C8,
we have

arg(z2 − 1) ≈ 0 and f(z) ≈ f(x)

All these approximations become exact as r → 0. Thus,

lim
R→∞, r→0

∫
C8

f(z) dz =

∫ ∞
1

f(x) dx = I.

We can parameterize −C6 by
z = x− iε

where x goes from ∞ to 1. Thus, on C6, we have

arg(z2 − 1) ≈ 2π,

so √
z2 − 1 ≈ −

√
x2 − 1

This implies

f(z) ≈ − 1

x
√
x2 − 1

= −f(x)

Thus,

lim
R→∞, r→0

∫
−C6

f(z) dz =

∫ 1

∞
−f(x) dx =

∫ ∞
1

f(x) dx = I.

We can parameterize C2 by z = −x+ iε where x goes from ∞ to 1. Thus, on C2, we have

arg(z2 − 1) ≈ 2π

so √
z2 − 1 ≈ −

√
x2 − 1

This implies

f(z) ≈ 1

(−x)(−
√
x2 − 1)

= f(x)
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Thus,

lim
R→∞, r→0

∫
C2

f(z) dz =

∫ 1

∞
f(x) (−dx) =

∫ ∞
1

f(x) dx = I.

The last curve −C4 is handled similarly.

11.5 Cauchy principal value

First an example to motivate defining the principal value of an integral. We’ll actually
compute the integral in the next section.

Example 11.10. Let

I =

∫ ∞
0

sin(x)

x
dx

This integral is not absolutely convergent, but it is conditionally convergent. Formally, of
course, we mean

I = lim
R→∞

∫ R

0

sin(x)

x
dx

We can proceed as in Example 11.5. First note that sin(x)/x is even, so

I =
1

2

∫ ∞
−∞

sin(x)

x
dx.

Next, to avoid the problem that sin(z) goes to infinity in both the upper and lower half-

planes we replace the integrand by eix

x .

We’ve changed the problem to computing

Ĩ =

∫ ∞
−∞

eix

x
dx.

The problems with this integral are caused by the pole at 0. The biggest problem is that the
integral doesn’t converge! The other problem is that when we try to use our usual strategy
of choosing a closed contour we can’t use one that includes z = 0 on the real axis. This is
our motivation for defining principal value. We will come back to this example below.

Definition. Suppose we have a function f(x) that is continuous on the real line except at

the point x1, then we define the Cauchy principal value as

p.v.

∫ ∞
−∞

f(x) dx = lim
R→∞, r1→0

∫ x1−r1

−R
f(x) dx+

∫ R

x1+r1

f(x) dx.

Provided the limit converges. You should notice that the intervals around x1 and around
∞ are symmetric. Of course, if the integral∫ ∞

−∞
f(x) dx

converges, then so does the principal value and they give the same value. We can make the
definition more flexible by including the following cases.
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1. If f(x) is continuous on the entire real line then we define the principal value as

p.v.

∫ ∞
−∞

f(x) dx = lim
R→∞

∫ R

−R
f(x) dx

2. If we have multiple points of discontinuity, x1 < x2 < x3 < . . . < xn, then

p.v.

∫ ∞
−∞

f(x) dx = lim

∫ x1−r1

−R
f(x) dx+

∫ x2−r2

x1+r1

+

∫ x3−r3

x2+r2

+ . . .

∫ R

xn+rn

f(x) dx.

Here the limit is taken as R→∞ and each of the rk → 0.

x
x1 x2

[ ] [ ] [ ]

−R x1 − r1 x1 + r1 x2 − r2 x2 + r2 R

Intervals of integration for principal value are symmetric around xk and ∞

The next example shows that sometimes the principal value converges when the integral
itself does not. The opposite is never true. That is, we have the following theorem.

Theorem 11.11. If f(x) has discontinuities at x1 < x2 < . . . < xn and

∫ ∞
−∞

f(x) dx

converges then so does p.v.

∫ ∞
−∞

f(x) dx.

Proof. The proof amounts to understanding the definition of convergence of integrals as
limits. The integral converges means that each of the limits

lim
R1→∞, a1→0

∫ x1−a1

−R1

f(x) dx (50)

lim
b1→0, a2→0

∫ x2−a2

x1+b1

f(x) dx

. . .

lim
R2→∞, bn→0

∫ R2

xn+bn

f(x) dx

converges. There is no symmetry requirement, i.e. R1 and R2 are completely independent,
as are a1 and b1 etc.

The principal value converges means

lim

∫ x1−r1

−R
+

∫ x2−r2

x1+r1

+

∫ x3−r3

x2+r2

+ . . .

∫ R

xn+rn

f(x) dx (51)

converges. Here the limit is taken over all the parameter R → ∞, rk → 0. This limit has
symmetry, e.g. we replaced both a1 and b1 in Equation (50) by r1 etc. Certainly if the
limits in Equation (50) converge then so do the limits in Equation (51). �
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Example 11.12. Consider both∫ ∞
−∞

1

x
dx and p.v.

∫ ∞
−∞

1

x
dx

The first integral diverges since∫ −r1
−R1

1

x
dx+

∫ R2

r2

1

x
dx = ln(r1)− ln(R1) + ln(R2)− ln(r2).

This clearly diverges as R1, R2 →∞ and r1, r2 → 0.
On the other hand the symmetric integral∫ −r

−R

1

x
dx+

∫ R

r

1

x
dx = ln(r)− ln(R) + ln(R)− ln(r) = 0.

This clearly converges to 0.
We will see that the principal value occurs naturally when we integrate on semicircles

around points. We prepare for this in the next section.

11.6 Integrals over portions of circles

We will need the following theorem in order to combine principal value and the residue
theorem.

Theorem 11.13. Suppose f(z) has a simple pole at z0. Let Cr be the semicircle γ(θ) =
z0 + reiθ, with 0 ≤ θ ≤ π. Then

lim
r→0

∫
Cr

f(z) dz = πiRes(f, z0) (52)

Re(z)

Im(z)

z0

r

Cr

Small semicircle of radius r around z0

Proof. Since we take the limit as r goes to 0, we can assume r is small enough that f(z)
has a Laurent expansion of the punctured disk of radius r centered at z0. That is, since the
pole is simple,

f(z) =
b1

z − z0
+ a0 + a1(z − z0) + . . . for 0 < |z − z0| ≤ r.

Thus,∫
Cr

f(z) dz =

∫ π

0
f(z0 + reiθ) rieiθ dθ =

∫ π

0

(
b1i+ a0ire

iθ + a1ir
2ei2θ + . . .

)
dθ
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The b1 term gives πib1. Clearly all the other terms go to 0 as r → 0. �

If the pole is not simple the theorem doesn’t hold and, in fact, the limit does not exist.

The same proof gives a slightly more general theorem.

Theorem 11.14. Suppose f(z) has a simple pole at z0. Let Cr be the circular arc
γ(θ) = z0 + reiθ, with θ0 ≤ θ ≤ θ0 + α. Then

lim
r→0

∫
Cr

f(z) dz = αiRes(f, z0)

Re(z)

Im(z)

z0
r

Cr

α

Small circular arc of radius r around z0

Example 11.15. (Return to Example 11.10.) A long time ago we left off Example 11.10
to define principal value. Let’s now use the principal value to compute

Ĩ = p.v.

∫ ∞
−∞

eix

x
dx

Solution: We use the indented contour shown below. The indentation is the little semicircle
the goes around z = 0. There are no poles inside the contour so the residue theorem implies∫

C1−Cr+C2+CR

eiz

z
dz = 0.

Re(z)

Im(z)

0

C1 C2

CR

−Cr

−R −r r R

2Ri

Next we break the contour into pieces.

lim
R→∞, r→0

∫
C1+C2

eiz

z
dz = Ĩ .
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Theorem 11.2(a) implies

lim
R→∞

∫
CR

eiz

z
dz = 0

Equation (52) in Theorem 11.13 tells us that

lim
r→0

∫
Cr

eiz

z
dz = πiRes

(
eiz

z
, 0

)
= πi

Combining all this together we have

lim
R→∞, r→0

∫
C1−Cr+C2+CR

eiz

z
dz = Ĩ − πi = 0,

so Ĩ = πi. Thus, looking back at Example 52, where I =

∫ ∞
0

sin(x)

x
dx, we have

I =
1

2
Im(Ĩ) =

π

2
.

There is a subtlety about convergence we alluded to above. That is, I is a genuine (con-
ditionally) convergent integral, but Ĩ only exists as a principal value. However since I is a
convergent integral we know that computing the principle value as we just did is sufficient
to give the value of the convergent integral.

11.7 Fourier transform

Definition. The Fourier transform of a function f(x) is defined by

f̂(ω) =

∫ ∞
−∞

f(x)e−ixω dx

This is often read as ‘f -hat’.

Theorem. (Fourier inversion formula.) We can recover the original function f(x) with the
Fourier inversion formula

f(x) =
1

2π

∫ ∞
−∞

f̂(ω)eixω dω.

So, the Fourier transform converts a function of x to a function of ω and the Fourier inversion
converts it back. Of course, everything above is dependent on the convergence of the various
integrals.

Proof. We will not give the proof here.

Example 11.16. Let

f(t) =

{
e−at for t > 0

0 for t < 0
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where a > 0. Compute f̂(ω) and verify the Fourier inversion formula in this case.

Solution: Computing f̂ is easy: For a > 0

f̂(ω) =

∫ ∞
−∞

f(t)e−iωt dt =

∫ ∞
0

e−ate−iωt dt =
1

a+ iω

We should first note that the inversion integral converges. To avoid distraction we show
this at the end of this example.

Now, let

g(z) =
1

a+ iz

Note that f̂(ω) = g(ω) and |g(z)| < M

|z| for large |z|.

To verify the inversion formula we consider the cases t > 0 and t < 0 separately. For t > 0
we use the standard contour.

Re(z)

Im(z)

x1−x2

i(x1 + x2) C1

C2

C3

C4

Theorem 11.2(a) implies that

lim
x1→∞, x2→∞

∫
C1+C2+C3

g(z)eizt dz = 0 (53)

Clearly

lim
x1→∞, x2→∞

∫
C4

g(z)eizt dz =

∫ ∞
−∞

f̂(ω) dω (54)

The only pole of g(z)eizt is at z = ia, which is in the upper half-plane. So, applying the
residue theorem to the entire closed contour, we get for large x1, x2:∫

C1+C2+C3+C4

g(z)eizt dz = 2πiRes

(
eizt

a+ iz
, ia

)
=

e−at

i
. (55)

Combining the three equations 53, 54 and 55, we have∫ ∞
−∞

f̂(ω) dω = 2πe−at for t > 0

This shows the inversion formula holds for t > 0.
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For t < 0 we use the contour

Re(z)

Im(z)

x1−x2

−i(x1 + x2) C1

C2

C3

C4

Theorem 11.2(b) implies that

lim
x1→∞, x2→∞

∫
C1+C2+C3

g(z)eizt dz = 0

Clearly

lim
x1→∞, x2→∞

1

2π

∫
C4

g(z)eizt dz =
1

2π

∫ ∞
−∞

f̂(ω) dω

Since, there are no poles of g(z)eizt in the lower half-plane, applying the residue theorem
to the entire closed contour, we get for large x1, x2:∫

C1+C2+C3+C4

g(z)eizt dz = −2πiRes

(
eizt

a+ iz
, ia

)
= 0.

Thus,
1

2π

∫ ∞
−∞

f̂(ω) dω = 0 for t < 0

This shows the inversion formula holds for t < 0.
Finally, we give the promised argument that the inversion integral converges. By defi-

nition ∫ ∞
−∞

f̂(ω)eiωt dω =

∫ ∞
−∞

eiωt

a+ iω
dω

=

∫ ∞
−∞

a cos(ωt) + ω sin(ωt)− iω cos(ωt) + ia sin(ωt)

a2 + ω2
dω

The terms without a factor of ω in the numerator converge absolutely because of the ω2 in
the denominator. The terms with a factor of ω in the numerator do not converge absolutely.
For example, since

ω sin(ωt)

a2 + ω2

decays like 1/ω, its integral is not absolutely convergent. However, we claim that the integral
does converge conditionally. That is, both limits

lim
R2→∞

∫ R2

0

ω sin(ωt)

a2 + ω2
dω and lim

R1→∞

∫ 0

−R1

ω sin(ωt)

a2 + ω2
dω
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exist and are finite. The key is that, as sin(ωt) alternates between positive and negative

arches, the function
ω

a2 + ω2
is decaying monotonically. So, in the integral, the area under

each arch adds or subtracts less than the arch before. This means that as R1 (or R2) grows
the total area under the curve oscillates with a decaying amplitude around some limiting
value.

ω

Total area oscillates with a decaying amplitude.

11.8 Solving ODEs using the Fourier transform

Let

D =
d

dt

Our goal is to see how to use the Fourier transform to solve differential equations like

P (D)y = f(t)

Here P (D) is a polynomial operator, e.g.

D2 + 8D + 7I

We first note the following formula:

D̂f(ω) = iωf̂ . (56)

Proof. This is just integration by parts:

D̂f(ω) =

∫ ∞
−∞

f ′(t)e−iωt dt

= f(t)e−iωt
∣∣∞
−∞ −

∫ ∞
−∞

f(t)(−iωe−iωt dt

= iω

∫ ∞
−∞

f(t)e−iωt dt

= iωf̂(ω)

In the third line we assumed that f decays so that f(∞) = f(−∞) = 0.
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It is a simple extension of Equation (56) to see

̂(P (D)f)(ω) = P (iω)f̂ .

We can now use this to solve some differential equations.

Example 11.17. Solve the equation

y′′(t) + 8y′(t) + 7y(t) = f(t) =

{
e−at if t > 0

0 if t < 0

Solution: In this case, we have

P (D) = D2 + 8D + 7I

so
P (s) = s2 + 8s+ 7 = (s+ 7)(s+ 1)

The ODE
P (D)y = f(t)

transforms to
P (iw)ŷ = f̂

Using the Fourier transform of f found in Example 11.16 we have

ŷ(ω) =
f̂

P (iω)
=

1

(a+ iω)(7 + iω)(1 + iω)
.

Fourier inversion says that

y(t) =
1

2π

∫ ∞
−∞

ŷ(ω)eiωt dω

As always, we want to extend ŷ to be function of a complex variable z. Let’s call it g(z):

g(z) =
1

(a+ iz)(7 + iz)(1 + iz)
.

Now we can proceed exactly as in Example 11.16. We know |g(z)| < M/|z|3 for some
constant M . Thus, the conditions of Theorem 11.2 are easily met. So, just as in Example
11.16, we have:

For t > 0, eizt is bounded in the upper half-plane, so we use the contour below on the
left.

y(t) =
1

2π

∫ ∞
−∞

ŷ(ω)eiωt dω =
1

2π
lim

x1→∞, x2→∞

∫
C4

g(z)eizt dz

=
1

2π
lim

x1→∞, x2→∞

∫
C1+C2+C3+C4

g(z)eizt dz

= i
∑

residues of eiztg(z) in the upper half-plane
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The poles of eiztg(z) are at
ia, 7i, i

These are all in the upper half-plane. The residues are respectively,

e−at

i(7− a)(1− a)
,

e−7t

i(a− 7)(−6)
,

e−t

i(a− 1)(6)

Thus, for t > 0 we have

y(t) =
e−at

(7− a)(1− a)
− e−7t

(a− 7)(6)
+

e−t

(a− 1)(6)
.

Re(z)

Im(z)

x1−x2

i(x1 + x2) C1

C2

C3

C4

Contour for t > 0

Re(z)

Im(z)

x1−x2

−i(x1 + x2) C1

C2

C3

C4

Contour for t < 0

More briefly, when t < 0 we use the contour above on the right. We get the exact same
string of equalities except the sum is over the residues of eiztg(z) in the lower half-plane.
Since there are no poles in the lower half-plane, we find that

ŷ(t) = 0

when t < 0.
Conclusion (reorganizing the signs and order of the terms):

y(t) =

{
0 for t < 0

e−at

(7−a)(1−a) + e−7t

(7−a)(6) − e−t

(1−a)(6) for t > 0.

Note. Because |g(z)| < M/|z|3, we could replace the rectangular contours by semicircles
to compute the Fourier inversion integral.

Example 11.18. Consider

y′′ + y = f(t) =

{
e−at if t > 0

0 if t < 0.

Find a solution for t > 0.

Solution: We work a little more quickly than in the previous example.
Taking the Fourier transform we get

ŷ(ω) =
f̂(ω)

P (iω)
=

f̂(ω)

1− ω2
=

1

(a+ iω)(1− ω2)
.
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(In the last expression, we used the known Fourier transform of f .)
As usual, we extend ŷ(ω) to a function of z:

g(z) =
1

(a+ iz)(1− z2)

This has simple poles at
−1, 1, ai

. Since some of the poles are on the real axis, we will need to use an indented contour along
the real axis and use principal value to compute the integral.

The contour is shown below. We assume each of the small indents is a semicircle with
radius r. The big rectangular path from (R, 0) to (−R, 0) is called CR.

Re(z)

Im(z)

1−1

ai

C1 C3 C5

CR

−C2 −C4

−R R

2Ri

For t > 0 the function eiztg(z) < M/|z|3 in the upper half-plane. Thus, we get the following
limits:

lim
R→∞

∫
CR

eiztg(z) dz = 0 (Theorem 11.2(b))

lim
R→∞, r→0

∫
C2

eiztg(z) dz = πiRes(eiztg(z),−1) (Theorem 11.14)

lim
R→∞, r→0

∫
C4

eiztg(z) dz = πiRes(eiztg(z), 1) (Theorem 11.14)

lim
R→∞, r→0

∫
C1+C3+C5

eiztg(z) dz = p.v.

∫ ∞
−∞

ŷ(t)eiωt dt

Putting this together with the residue theorem we have

lim
R→∞, r→0

∫
C1−C2+C3−C4+C5+CR

eiztg(z) dz

= p.v.

∫ ∞
−∞

ŷ(t)eiωt dt− πiRes(eiztg(z),−1)− πiRes(eiztg(z), 1)

= 2πiRes(eizt, ai).

All that’s left is to compute the residues and do some arithmetic. We don’t show the
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calculations, but give the results

Res(eiztg(z),−1) =
e−it

2(a− i)

Res(eiztg(z), 1) = − eit

2(a+ i)

Res(eiztg(z), ai) = − e−at

i(1 + a2)

We get, for t > 0,

y(t) =
1

2π
p.v.

∫ ∞
−∞

ŷ(t)eiωt dt

=
i

2
Res(eiztg(z),−1) +

i

2
Res(eiztg(z), 1) + iRes(eiztg(z), ai)

=
e−at

1 + a2
+

a

1 + a2
sin(t)− 1

1 + a2
cos(t)
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