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Abstract

The recent crisis in the global financial markets requires a critical review of current
regulatory practice. Corporate governance is a key issue since improper due diligence and
myopic incentive schemes for employees contributed largely to the credit bubble and the
ensuing recession. A better oversight by regulatory authorities and institutional changes
of financial firms pose political and economic challenges in their own right. In addition,
substantial efforts are required to devise efficient quantitative methods that allow one to
more reliably measure financial risks in the future. These tools should be able to detect
extreme scenarios that are very unlikely to occur but whose impact may be dramatic as
illustrated by the recent liquidity crisis of Lehman Brothers, Merrill Lynch, Fannie Mae,
Freddy Mac, AIG, and others. We report here a novel Monte-Carlo (MC) approach for the
direct and efficient computation of an important class of financial portfolio risk measures,
known as Shortfall Risk (SR). Unlike the current industry standard Value-at-Risk (VaR),
convex risk measures such as SR are sensitive to the tails of loss distributions and provide
financial institutions with incentives to diversify properly.

Portfolio models.– Risk management in practice involves two complementary tasks: the
construction of accurate portfolio models (Cre 1997, Gupton, Finger & Bhatia 1997, Gordy
2000, Frey & McNeil 2003, McNeil, Frey & Embrechts 2005, Frey, Popp & Weber 2008), and
the reliable quantification of the downside risk for these models (Artzner, Delbaen, Eber &
Heath 1999, Föllmer & Schied 2011, Frey & McNeil 2002, Tasche 2002, Weber 2006). The first
task covers both the design and the calibration of models to available data. In domains where
data are scarce, models need to be extrapolated based on an understanding of the underlying
economic mechanisms. The second task, the definition of well-defined benchmarks, is crucial
since applied risk management and financial regulation require simple summary statistics which
correctly reflect the loss exposure (Artzner et al. 1999, Frey & McNeil 2002, Tasche 2002).

A broad class of credit portfolio models (Cre 1997, Gupton et al. 1997) specify the total loss
L ≥ 0 over a fixed period (e.g., a day, month or year) by

L =

m∑
i=1

viDi. (1)

Here, m is the number of portfolio positions (obligors), vi the partial monetary loss that oc-
curs if the obligor i defaults within this period, and Di is the random default variable taking
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values 0 (‘no default’) or 1 (‘default’). Realistic models take into account that the default risk
of different positions may be interdependent (Cre 1997, Gupton et al. 1997, Gordy 2000, Frey
& McNeil 2003). Underlying mechanisms include observable and hidden economic risk factors,
global feedback effects and local interactions (Embrechts, McNeil & Straumann 2002). A prag-
matic and popular way for modeling dependences uses a factor structure (Cre 1997, Gupton
et al. 1997, Frey & McNeil 2003, Kang & Shahabuddin 2005). Within this approach default
indicators are constructed as binary functions Di = Θ(ai · Z − xi) ∈ {0, 1} with Θ denoting
the Heaviside function [Θ(z) := 0, z ≤ 0; Θ(z) := 1, z > 0] and fixed threshold parameters
(x1, . . . , xm). The random vector Z = (Z1, . . . , Zd) comprises common or individual risk factors
whose joint distribution is specified as an ingredient of the model. Potential dependences between
portfolio positions are encoded through coupling parameters ai = (aij)j=1,...,d, which have to be
deduced from historical data. For realistic models, it is usually impossible to analytically eval-
uate the full loss distribution P[L ≤ x], and numerical simulations must be employed. A naive
computer experiment would first sample the random numbers (Zj) under the model probability
measure P and subsequently calculate Di and L. By repeating this procedure several times, one
can estimate specific values of the loss distribution function, the mean loss E[L], the variance,
or other relevant quantities. Of particular interest with regard to risk estimation are quanti-
ties which characterize extreme events that cause large losses (Artzner et al. 1999, Glasserman,
Heidelberger & Shahabuddin 2002, Föllmer & Schied 2011, Giesecke, Schmidt & Weber 2008).
The recent market turmoil has clearly demonstrated that such scenarios may have serious global
consequences for the stability of the financial system as well as the real economy, but they typ-
ically occur with very low probability; i.e., reliable predictions require advanced MC simulation
techniques (Glasserman 2004). The novel method reported here allows for an efficient estimation
and sensible characterization of big-loss scenarios through convex risk measures. The approach
is generically applicable whenever the loss variable L can be sampled from a given set of rules
similar to those outlined above.

Risk measures.– The theoretical foundations for the systematic measurement of financial
risks were laid almost a decade ago (Artzner et al. 1999, Föllmer & Schied 2002); the nu-
merical implementation of well-defined risk quantification schemes is, however, still a work-in-
progress (Glasserman et al. 2002, Kang & Shahabuddin 2005). Risk measures, as specified
in Eqs. (2) or (4) below, define the monetary amount s∗ that should be available to insure
against potentially large losses. The value s∗ is called ‘capital requirement’ or ‘economic cap-
ital’ and depends on both the underlying portfolio model and the adopted risk measure. A
major responsibility of regulatory authorities consists in identifying appropriate standards for
risk measurement that prevent improper management of financial risks. Below, we describe
an efficient MC method for estimating the risk measure Shortfall Risk (SR). Unlike the current
industry standard of risk assessment Value-at-Risk (VaR) (Jorion 2000, Glasserman et al. 2002),
SR encourages diversification and is well-suited for characterizing rare big-loss scenarios. The
severe deficiencies of VaR become evident upon analyzing its definition: For a fixed loss level
λ ∈ (0, 1), VaR is defined by

VaRλ := inf{s ∈ R | P[L > s] ≤ λ}
= inf{s ∈ R | E[Θ(L− s)] ≤ λ}. (2)

Representing a quantile of the loss distribution, VaR provides the threshold value that is exceeded
by the loss L only with a small probability λ, but it ignores the shape of the loss distribution
beyond the threshold. Very large losses are systematically underestimated by VaR. Consider
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e.g. a portfolio with loss distribution

L =

{
0, with probability 99.9 % (no loss),

$1010 with probability 0.1 % (big loss).
(3)

Adopting the customary value λ = 0.01, one finds in this case VaRλ = 0, i.e., according to
this risk measure, the portfolio does not require any economic capital although there exists a
considerable chance of losing billions of dollars.

The severe deficiencies of VaR can be fixed by replacing the Θ-function in Eq. (2) with a
convex, increasing loss function ` ≥ 0, which leads to the definition of SR, see e.g. Chapter 4.9
in Föllmer & Schied (2011):

SRλ := inf{s ∈ R | E[`(L− s)] ≤ λ} (4)

where now λ > 0. Typical examples are exponential or (piecewise) polynomial loss functions,

`β(y) = exp(y/β), `α,η(y) = η−1(y/α)η Θ(y), (5)

with scale parameters α, β > 0 and η ≥ 1. The function ` determines how strongly large losses
are penalized. In the case of example (3), exponential SR with λ = 0.01 and β = 2 demands
a capital requirement s∗ = SRβ

λ(L) ≈ $109, reflecting the actual size of potentially large losses.
In contrast to VaR, SR risk measures provide a flexible tool for regulatory authorities to devise
good risk measurement schemes.

Shortfall-Risk & importance sampling.– Equation (4) implies that SR is equal to the
unique root s∗ of the function

g(s) := E[`(L− s)− λ] (6)

(see e.g. Chapter 4.9 in Föllmer & Schied (2011)).
For realistic portfolio models, the functional value g at a given argument s can only be

estimated numerically. A naive algorithm would sample n random variables Lk according to the
rules of the model, cf. Eq. (1), and compute the simple estimator ĝn(s) = n−1

∑n
k=1 Ĝ(Lk, s)

where Ĝ(Lk, s) = `(Lk − s) − λ. This procedure is often inefficient for practically relevant loss
distributions, since the variance of ĝn(s) can be large. Improved estimates can be obtained by
importance sampling (IS), defined as follows: Assume L is governed by the probability density
p(x), abbreviated by L ∼ p. For another, possibly s-dependent probability density x 7→ fs(x),
we may rewrite 1

g(s) = −λ+

∫
dx fs(x)

p(x)

fs(x)
`(x− s). (7)

Consequently, gn(s) = n−1
∑n

k=1G(Lk, s) with

G(Lk, s) := −λ+
p(Lk)

fs(Lk)
`(Lk − s), Lk ∼ f (8)

is another estimator for g(s). Compared with the naive estimator ĝn, the variance of gn can
be substantially reduced, if the IS density fs is chosen appropriately (Dunkel & Weber 2007).

1fs(x) is assumed to be non-zero if p(x)`(x− s) > 0.
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Hence, to estimate SR one could try to combine IS with conventional root finding schemes, e.g.,
by defining a recursive sequence sj = R[sj−1, . . . , s1; g(sj−1), . . . ] using the secant method (Press,
Vetterling & Flannery 2002). However, this approach suffers from drawbacks: Firstly, accurate
estimates gn(sj) of g(sj) at each point of the sequence {sj} are required which can be computa-
tionally expensive. Secondly, cross-averaging of errors for different values of s is not exploited.
The algorithm below resolves these problems and yields a direct estimate of the SR value s∗ by
combining importance sampling with a stochastic root-finding scheme (Ruppert 1988, Ruppert
1991, Polyak & Juditsky 1992).

Stochastic root-finding algorithm.– We focus here only on those aspects that are relevant
for the practical implementation; a theoretical analysis will be given elsewhere (Dunkel & Weber
2010). The proposed algorithm consists of the following steps:

1. Choose a fixed interval [a, b] that contains the root s∗. Fix an initial value s1 ∈ [a, b], and
constants γ ∈ (12 , 1] and c > 0.

2. Sample Ln from the IS density fsn and calculate

sn+1 = Π
{
sn +

c

nγ
G(Ln, sn)

}
, (9)

where Π denotes a projection on the interval [a, b], i.e., Π{x} := a if x < a, Π{x} := x if
x ∈ [a, b], and Π{x} := b if x > b.

The sequence sn defined by (9) converges to the SR value s∗ as n → ∞. More precisely, one
can prove that, if c is chosen large enough, so that c > [−2g′(s∗)]−1, then the distribution of the
rescaled quantity

Sn :=
√
nγ (sn − s∗) (10)

converges to a Gaussian normal distribution N (µ∗,Σ2
∗) with mean µ∗ = 0 and constant variance

Σ2
∗ = c2 σ2(s∗)

{
[2c g′(s∗)]−1, γ ∈ (12 , 1),

[2c g′(s∗) + 1]−1, γ = 1,
(11)

where σ2(s) is the variance of the random variable G(L, s) defined in (8). Equation (10) shows
that γ determines the rate of convergence of the algorithm to s∗. The asymptotic variance in
(11) can be improved by applying IS techniques that reduce the variance of σ2(s). This feature
is particularly important when dealing with realistic loss distributions. Numerical values for the
a priori unknown quantities σ2(s∗) and g′(s∗) can be obtained from previously stored simulation
data {(si, Li, p(Li), fsi(Li))} by using the numerically obtained root s∗ to evaluate the estimators

σ2n(s∗) =
1

ρn

n∑
i=n(1−ρ)

G(Li, si)
2, ρ ∈ (0, 1), (12)

g′n,ε(s∗) =
1

εn

n∑
i=1

[
p(Li)

fsi(Li)
`(Li − (s∗ + ε))− λ

]
(13)

for a sufficiently small ε > 0. Estimates of σ2(s∗) and g′(s∗) can be used for the construction of
confidence intervals for s∗.
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Figure 1: Comparison of risk measures for a light-tailed exponential loss distribution (15):
VaRλ (grey), exponential SRβ

λ (red), and polynomial SRα,η
λ (green) in units of the mean loss ξ

for levels λ = 0.05 (solid) and λ = 0.01 (dashed) plotted as functions of the rescaled parameters
β/ξ and α/ξ, respectively.

Variance reduction is not only important to decrease the asymptotic variance in (11), but
also for improving the finite sample properties of the algorithm. Sn shows quasi-Gaussian
behavior for much smaller values of n if IS is applied. At the same time, the estimators in (12)
and (13) perform considerably better. The optimal choice of the constant c, which minimizes
the variance in (11), is not known a priori. In practice, the optimal asymptotic variance can
thus hardly be achieved. A solution to this problem is to average the estimator sn given by (9)
over the last ρ× n sampling steps, i.e., to return the estimator

s̄n =
1

ρn

n∑
i=n(1−ρ)

si, ρ ∈ (0, 1). (14)

In this case, one can show that, for γ ∈ (12 , 1) and c > [−2g′(s∗)]−1, the distribution of the
rescaled quantity S̄n :=

√
ρn (s̄n−s∗) converges to the Gaussian distributionN (0, σ2(s∗)/[g′(s∗)]2)

as n → ∞. Apart from a factor 1/ρ, the asymptotic variance then corresponds to the optimal
choice for c in (11) in the case of an optimal convergence rate γ = 1.

Applications.– Due to the generic definition of the sequences sn and s̄n, the above scheme is
applicable to a wide range of portfolio models, and can be combined with various model-specific
variance reduction techniques (Glasserman 2004). To explicitly demonstrate the efficiency of
the algorithms and to further illustrate the advantages of SR compared with VaR, we study two
generic, stylized scenarios: a light-tailed exponential loss distribution with density

p(x) := dP[L < x]/dx = ξ−1 exp(−x/ξ)Θ(x), (15)

and a heavy-tailed power law distribution with density

pκ(x) =
(κ− 1) [(κ− 2)ξ]κ−1

[x+ (κ− 2)ξ]κ
Θ(x), κ > 2, (16)

where ξ > 0, respectively. In both cases, the mean loss is given by E[L] = ξ, but ruinous losses
are more likely to occur under the power law distribution (16).
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Figure 2: VaRλ (grey) and polynomial SRα,η
λ (colored) for the heavy-tailed distribution (16)

plotted as a function of the exponent κ. Solid (dashed) lines correspond to levels λ = 0.05
(0.01), with α = 0.5 in the case of SR. For SR with η = 5 (violet), additional curves with
α = 1.0, λ = 0.05 (dash-dotted) and α = 1.0, λ = 0.01 (dotted) are shown. In the heavy-tail
limit κ → 2, VaR tends to zero and, thus, becomes inadequate for defining securities in this
regime.

For exponentially distributed losses and loss functions (5), the risk measures VaR and SR
can be calculated analytically as

VaRλ = ξ log(λ−1),

SRβ
λ = β log[λ−1(1− ξ/β)−1], (17)

SRα,η
λ = ξ log[λ−1(ξ/α)ηΓ(η)],

with Γ denoting the Gamma function. Finite positive SR values are obtained for β > ξ and
α < ξ[Γ(η)/λ]1/η. Figure 1 compares the three risk measures (17) for two values for λ. We
plot the risk measures in units of ξ as a function of the normalized scale parameters α/ξ and
β/ξ. For the exponential loss distribution, the probability of large losses increases with its mean
value ξ. Figure 1 illustrates not only the dependence on α or β, respectively, but also how the
risk measures behave as a function of the mean loss ξ. While VaR (grey) is proportional to ξ,
polynomial SR (green) grows more than proportionally with ξ. Exponential SR (red), on the
other hand, increases for small ξ less than proportionally, but diverges rapidly as ξ approaches the
parameter β. These specific characteristics must be taken into account by regulatory authorities
and risk managers in order to devise and implement reasonable policies.

In the case of the heavy-tail distribution (16) exponential SR diverges, but VaR and poly-
nomial SR with 1 ≤ η < κ− 1 remain finite, yielding

VaRλ = (κ− 2)
(
λ−1/(κ−1) − 1

)
ξ, (18)

SRα,η
λ = (2− κ)ξ +

{
[(κ− 2)ξ]κ−1

λαη C(η, κ)

}1/(κ−1−η)
,

where C(η, κ) = Γ(κ− 1)/[Γ(η) Γ(κ− 1− η)]. As evident from Eqs. (18) and Fig. 2, VaR (grey)
vanishes in the heavy-tail limit κ→ 2, even though the tail risk is increased for smaller values of
κ. By contrast, SR (colored) provides a reasonable risk measure for the whole parameter range.
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Figure 3: Numerical SR estimates sn and s̄n as obtained from N = 104 simulation runs using
λ = 0.01; the corresponding variances are depicted in Fig. 4. Red/green symbols: Exponen-
tial/polynomial SR for a light-tailed exponential loss distribution (15), using c = 500 and direct
sampling. The estimators converge rapidly to the exact theoretical value (dotted, cf. Fig. 1)
for exponential SRβ

λ (β = 2ξ; red), while the convergence is considerably slower for polynomial
SRα,η

λ (α = 0.5ξ, η = 2; green). Blue/black symbols: Polynomial SRα,η
λ estimated for the heavy-

tail power-law distribution (16), using c = 103 and parameters α = 0.5ξ, η = 1, κ = 4, cf. Fig. 2.
Compared with direct sampling (blue), the importance sampling estimators (black) converge
much faster.

We can use the analytic expressions (17) and (18) to verify the convergence behavior of the
proposed algorithm. Figures 3 and 4 depict numerical results obtained from N = 104 sample
runs for a fixed loss level λ = 0.01 and different values of n and γ (colors correspond to those in
Figs. 1, 2). The diagrams show the sample mean values and variances of data sets {s(1)n , . . . , s

(N)
n }

and {s̄(1)n , . . . , s̄
(N)
n }, respectively. For each run (k) the initial value s(k)1 was randomly chosen

from the search interval [a, b] = [s∗−5, s∗+5] where s∗ is the exact analytical value. One readily
observes that in all examples the estimators converge to the exact values (dotted lines in Fig. 3).
The convergence speed, however, depends on the underlying loss distribution as well as on the
loss function. Generally, SR estimates based on sn or s̄n can be considered reliable when the
variance decreases with n−γ or n−1, respectively, in accordance with Gaussian asymptotics for
the rescaled quantities Sn =

√
nγ(sn − s∗) and S̄n =

√
n(s̄n − s∗). As evident from both Fig. 3

and 4, for the light-tailed exponential distribution p(x) = ξ−1 exp(−x/ξ)Θ(x) the exponential
SR estimators (red) converge very rapidly, while for polynomial SR (green) the convergence is
slower but still acceptable even without importance sampling (i.e., if Ln is directly sampled
from p).

By contrast, and not surprisingly, for the heavy-tail distribution (16) direct sampling (blue)
of Ln from pκ results in poor convergence behavior. In such cases, variance reduction techniques
like IS (black) can significantly improve the performance. As guidance for future implementa-
tions, we outline the IS procedure in more detail: Instead of sampling losses from the original
distribution pκ, we consider the following ‘shifted’ power law density

fν,s(x) =
(ν − 1) (ζ + s)ν−1

(x+ ζ)ν
Θ(x− s), (19)

where ζ > −s and 1 < ν < 2(κ − η) − 1 =: ν+. The latter condition ensures finiteness of
the second moment. We have to determine ν and ζ such that sampling from fν,s yields a
better convergence to the correct SR value s∗. To this end, we note that the likelihood ratio
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Figure 4: Sample variances of the SR estimates from Fig. 3, using the same colors/symbols.
Estimates can be considered as reliable when the variance of sn (+/×) or s̄n (◦) decreases with
n−γ or n−1, respectively. For the heavy-tail distribution (16), importance sampling (black) is
much more efficient than direct sampling (blue).

h(x) := pκ(x)/fν,s(x) takes its maximum at x− = s, representing the effective lower integral
boundary in Eq. (7), if

ζ ≥ [(κ− 2)νξ − (κ− ν)s]/κ. (20)

We fulfill this condition by fixing ζ = ν(ξ + s). One then finds that variance reduction, corre-
sponding to h(x) < 1 for x ≥ s, is achieved if

ν > ν∗(s) := −2κ1s (κ2ξ)
κ + κ2ξ (s+ κ2ξ)

κ

κ1ξ (κ2ξ)κ − κ2ξ (s+ κ2ξ)κ
, (21)

where κ2 = κ − 2, κ1 = κ − 1, and ν∗ → 1 for s → ∞. Accordingly, we sample Ln ∼ pκ
if ν∗(sn) > ν+, and Ln ∼ fν,sn with ν = 0.5[ν∗(sn) + ν+] if ν∗(sn) < ν+. Intuitively, by
sampling from fν,sn losses beyond sn become more likely, while simultaneously suppressing the
tail if ν+ > κ. As evident from Fig. 3 and 4, both aspects contribute to a vastly improved
convergence. Most importantly, however, this strategy can be extended to more general models
without much difficulty, e.g., by combining the stochastic root finding scheme with standard
variance reduction techniques (Glasserman 2004) for the factor variables Z in Eq. (1).

Summary.– Financial risk measures have been studied systematically for almost a decade
(Artzner et al. 1999, Gordy 2000, Föllmer & Schied 2002, Weber 2006, McNeil et al. 2005). The
financial industry, however, is still almost exclusively relying on the deficient risk measure Value-
at-Risk (Glasserman et al. 2002, Jorion 2000), or even less sophisticated methodologies. The
recent financial turmoil leaves little doubt about the importance of adequate risk quantification
schemes. The above discussion clarifies how well-defined, tail-sensitive shortfall risk measures
can be efficiently evaluated by combining stochastic root-approximation algorithms with variance
reduction techniques. These tools can provide a basis for more sensible risk management policies
and, thus, help to prevent future crises.
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