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We describe and analyze CUDA simulations of hydrodynamic interactions in active dumbbell suspen-
sions. GPU-based parallel computing enables us not only to study the time-resolved collective dynamics
of up to a several hundred active dumbbell swimmers but also to test the accuracy of effective time-aver-
aged models. Our numerical results suggest that the stroke-averaged model yields a relatively accurate
description down to distances of only a few times the dumbbell’s length. This is remarkable in view of
the fact that the stroke-averaged model is based on a far-field expansion. Thus, our analysis confirms that
stroke-averaged far-field equations of motion may provide a useful starting point for the derivation of
hydrodynamic field equations.
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1. Introduction

The derivation of effective hydrodynamic equations from
microscopic or mesoscopic models presents a key problem of
non-equilibrium statistical physics [1]. Standard techniques typi-
cally involve severe approximations such as factorization of corre-
lation functions, truncation of hierarchies, and closure conditions.
Understanding the details of such approximations is crucial for
identifying the range of applicability of the resulting field equa-
tions. If a complex fluid is made up of active constituents (e.g., bac-
teria or other microorganisms) that propel themselves by quasi-
periodic swimming mechanisms [2,3], then one usually faces the
additional task of approximating the explicitly time-dependent
microscopic dynamics with a set of coarse-grained, time-averaged
equations of motion. Aiming at a better quantitative understanding
of this commonly employed approximation, the present paper pro-
vides a detailed comparison between the microscopic dynamics of
actively driven, spring-based dumbbells and those of a time-aver-
aged analytic model derived from far-field expansion [4,5].

Owing to the fact that hydrodynamic interactions are long-
range, simulations of the full time-resolved dynamics of S = N/2
dumbbells (each consisting of two spheres) are numerically expen-
sive, scaling as N2. However, in the deterministic limit case and/or
additive-noise limit [6], the dynamics is well suited to parallel
computations. Very recently, GPU-based codes have been used
for various statistical mechanics problems, yielding speed-ups on
the order of 20–100 times a CPU-only solution [7–10]. Here, we
implement a straightforward N2 solution of the hydrodynamic
B.V.
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equations of motion, a communications-intensive task which is
difficult to parallelize in traditional clusters. For a moderate popu-
lation size (up to a few thousand particles), this method decreases
the computation time by a factor of 100 compared with conven-
tional CPU simulations on standard consumer hardware. Hence,
we identify GPU computing as a promising approach for future
simulations of active particle suspensions (details of the numerical
implementation are summarized in Section 5).

Passive (non-driven) dumbbell models have been widely inves-
tigated in polymer science and related fields over the past decades
(see, e.g., Refs. [11–17]). Very recently, several authors [4,5,18]
considered active, internally driven dumbbells as prototype sys-
tems for collective swimming at zero Reynolds number, R ¼ 0.
Loosely speaking, one can say that active dumbbell systems consti-
tute a sort of ‘Ising model’ of collective swimming, i.e., they repre-
sent strongly simplified models which can be treated by analytical
means, thus providing useful insights. Active dumbbells are partic-
ularly well suited to identifying the role of hydrodynamic long-
range interactions in collective micro-swimming. This is because
isolated deterministic dumbbells are prevented from self-motility
by Purcell’s scallop theorem [2]. Hence, any effective motion in
deterministic dumbbell systems is caused by hydrodynamic inter-
actions between different dumbbells.

In a recent paper, Alexander and Yeomans [5] have derived ana-
lytical expressions for the effective far-field interactions of sym-
metric, active dumbbells in three dimensions (3d). Specifically,
they showed that the effective hydrodynamic pair interaction de-
cays with distance jDj as jDj�4. Considering 1d motions, Lauga and
Bartolo [4] extended this result to asymmetric dumbbells and
found that in this case the hydrodynamic interaction decays less
strongly as jDj�3. While these studies have led to novel insights into
interplay between swimmer symmetry and effective long-distance
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interaction scaling, a detailed comparison of microscopic and
stroke-averaged models is still lacking. The present paper intends
to close this gap with respect to symmetric dumbbells.

For this purpose, we shall first introduce a microscopic spring-
based dumbbell model (Section 2) that can be readily implemented
in GPU-based computer simulations. In the limit of an infinitely
stiff spring, our model reduces to a shape-driven dumbbell model
as considered in Refs. [4,5]. The corresponding 3d stroke-averaged
equations of motion will be discussed in Section 3. After having
confirmed that the stroke-averaged model reproduces the main
features of the microscopic model simulations in 1d, we perform
similar comparative studies for 3d arrays of symmetric dumbbells.
Generally, we find that the stroke-averaged dynamics yields rela-
tively accurate description of the microscopic model down to dis-
tances of only a few times the dumbbells’ length. This is
remarkable in view of the fact that the stroke-averaged model is
based on a far-field expansion. Thus, at least for the model consid-
ered here, our results suggest that stroke-averaged far-field inter-
action models may indeed provide a useful starting point for the
derivation of hydrodynamic field equations.

2. Microscopic modeling of active dumbbells

We shall begin by summarizing the ‘‘microscopic” model equa-
tions of the spring-based dumbbells simulated in our computer
experiments. The corresponding stroke-averaged equations of mo-
tion will be discussed in Section 3. To keep the discussion in this
part as general as possible – and as reference for future work –
we shall formulate the model for ‘‘Brownian” dumbbells, even
though the discussion in the subsequent sections will be restricted
to the deterministic limit.

We consider a system of S identical dumbbells. Each dumbbell
consists of two spheres, of radius a. At very low Reynolds numbers,
inertia is negligible and the state of the system at time t is
completely described by the spheres’ position coordinates {Xa} =
{X(ai)(t)} with a = 1, . . . ,2S labeling the spheres, and i = 1, 2, 3 the
space dimension (throughout, we adopt the Einstein summation
convention for repeated lower Latin indices). Neglecting rotations
of the spheres, the dynamics is governed by the Ito-Langevin equa-
tions [19–22,15,23]
_XðaiÞðtÞ ¼

X
b

HðaiÞðbjÞFðbjÞ þ
X

b

ðkBT Þ1=2CðaiÞðbkÞnðbkÞðtÞ; ð1aÞ

where kB denotes the Boltzmann constant and T the temperature of
the surrounding fluid ð _X :¼ dX=dt). Eq. (1a) corresponds to the over-
damped limit of Stokesian dynamics [24]. The Gaussian white noise
n(ck)(t) models stochastic interactions with the surrounding liquid
molecules and is characterized by [25]

hnðaiÞðtÞi ¼ 0; ð1bÞ
hnðaiÞðtÞnðbjÞðt0Þi ¼ dabdijdðt � t0Þ: ð1cÞ
The hydrodynamic interaction tensor H couples the deterministic
force components F(bi) that act on the individual spheres. Generally,
the vector F = {F(bi)} comprises contributions from internal forces,
e.g., those required to bind and oscillate spheres in an active dumb-
bell, as well as from external force fields (gravity, etc.).

The amplitude of the noise force is determined by the fluctua-
tion dissipation theorem, which is satisfied if C is constructed from
H by Cholesky decomposition, i.e.,

2HðaiÞðbjÞ ¼
X

c
CðaiÞðckÞCðbjÞðckÞ: ð2Þ

In our numerical simulations, H is given by the Rotne–Prager–
Yamakawa–Mazur tensor [26–30]

HðaiÞðajÞ ¼
dij

ca
¼ dij

6pla
ð3aÞ
HðaiÞðbjÞ ¼
1

8plrab
dij þ

rabirabj

r2
ab

 !
þ 2a2

24plr3
ab

dij � 3
rabirabj

r2
ab

 !
; ð3bÞ

where rabi :¼ xai � xbi, a – b, and rab :¼ jxa � xbj. Analytical formulas
presented below are based on an Oseen approximation, which ne-
glects the second line in Eq. (3b). The diagonal components (3a) de-
scribe Stokesian friction in a fluid of viscosity l. The off-diagonal
components (3b) model hydrodynamic interactions between differ-
ent spheres. Note that H is positive definite for rab > 2a and diver-
gence-free, @ðbjÞHðaiÞðbjÞ � 0 with @(bi) :¼ @/@x(bi), implying that the
Cholesky decomposition (2) is well-defined.

To completely specify the model, we still need to fix the intra-
dumbbell force. To this end, consider the dumbbell r, formed by
spheres a = 2r � 1 and b = 2r, and denote its length by
dr(t) :¼ jXb(t) � Xa(t)j. Neglecting external force fields from now
on, we shall assume that the two spheres are connected by a har-
monic spring of variable length Lr(t), i.e., F(bi) = �@(bi)U where

U ¼
X
r

Ur; Urðt;drÞ ¼ k0

2
½dr � LrðtÞ�2; ð4Þ

with Lr(t) = ‘ + ksin(xt + ur) denoting the time-dependent equilib-
rium length of the spring, and ‘the mean length such that ‘ > 2a + k.
The dumbbell swimmer is called passive if the stroke amplitude
k = 0, and active if jkj > 0. As discussed below, the phase parameter
ur is important for the interaction between two or more dumbbells.

For the overdamped description (1) to remain valid, the driving
must be sufficiently slow. More precisely, we have to impose that
Tc� T0� T, where T :¼ 2p/x is the driving period, T0 :¼ 2p=ffiffiffiffiffiffiffiffiffiffiffiffi

k0=M
p

the oscillator period for a sphere of mass M, and Tc :¼M/
c the characteristic damping time. This restriction ensures that
the dumbbells behave similar to shape-driven swimmers, i.e.,
dr ’ Lr(t) is a useful approximation in analytical calculations.

With the above assumptions, the N-particle PDF f(t, {x(ai)}) of the
stochastic process {X(ai)(t)} from Eq. (1) is governed by the Kirk-
wood–Smoluchowski equation

@tf ¼
X
a;b

@ðaiÞHðaiÞðbjÞf½@ðbjÞU�f þ kBT @ðbjÞfg: ð5Þ

For time-independent potentials, the stationary solution of this
equation is given by the Boltzmann distribution, f / e�U=ðkBT Þ. How-
ever, in the remainder, we shall focus on the deterministic limit
case, formally obtained by putting T ¼ 0 in Eq. (1a), which is justi-
fied for sufficiently big spheres.

3. Stroke-averaged hydrodynamic pair interactions

In this part we will summarize the stroke-averaged equations of
motion for the case of 3d symmetric, deterministic dumbbell
swimmers (a detailed derivation, which differs slightly from that
in Ref. [5] but yields equivalent results, is given in the Appendix
A). In Section 4, the dynamics resulting from these effective equa-
tions of motion for the dumbbell positions and orientations will be
compared with numerical simulations of the microscopic model
Eq. (1). From now on all consideration refers to the deterministic
limit case.

3.1. General stroke-averaging procedure

We characterize each dumbbell by its direction vector

eNrðtÞ ¼ X2r � X2r�1

jX2r � X2r�1j
; r ¼ 1; . . . ; S ð6aÞ

and its geometric center

eRrðtÞ :¼ 1
2
ðX2r þ X2r�1Þ: ð6bÞ
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Note that for symmetric dumbbells the geometric center coincides
with the center of hydrodynamic stress [29,18].

The basic idea of the stroke-averaging procedure [4,5,23] is to
focus on the dynamics of averaged position and orientation coordi-
nates R(t) and Nr(t), which are defined by

NrðtÞ :¼ 1
T

Z tþT=2

t�T=2
dueNrðuÞ; ð7aÞ

RrðtÞ :¼ 1
T

Z tþT=2

t�T=2
dueRrðuÞ: ð7bÞ

Here T = 2p/x denotes the period of a swimming stroke. By assum-
ing that eNrðtÞ and eRrðtÞ are slowly varying functions of time, one
can further approximate

_Nr ’ _eNr; _Rr ’ _eRr; ð8aÞ
1
T

Z tþT=2

t�T=2
dsf ðeNrðsÞ; eRrðsÞÞ ’ f ðNrðtÞ;RrðtÞÞ ð8bÞ

for any sufficiently well-behaved function f.

3.2. Stroke-averaged equations of motion

Using the approximations (8b), one can derive from the micro-
scopic model Eq. (1) with T ¼ 0 the corresponding deterministic,
stroke-averaged, far-field equations of motion [4,5,23], by making
the following simplifying assumptions:

(i) The dumbbells are force-free and torque-free1 and approxi-
mately shape-driven, i.e., dr :¼ jX2r � X2r�1j ’ ‘ + ksin(xt +
ur).

(ii) The dumbbells are slender, i.e., sphere radius a and stroke
amplitude k have about the same size, but are much smaller
than the dumbbell’s mean length ‘.

(iii) The ensemble is dilute, meaning that the distance
Drq :¼ jDrqj :¼ jRr � Rqj between dumbbells r and q is
much larger than ‘.

Adopting (i)–(iii) and restricting to two-body interactions, one
finds the effective equations of motion

_Rr
i ¼

X
q–r

Jrq
i ; ð9aÞ

_Nr
i ¼ �ðdik � Nr

i Nr
k Þ
X
q–r

Krq
k ; ð9bÞ

where the stroke-averaged hydrodynamic interaction terms to
leading order in k/‘ are given by

Jrq
i ¼ ax sinður �uqÞ 9

64
k
‘

� �2
‘

jDrqj

� �4

� fNr
i ð2sþ 4qr � 10sr2Þ

þ bDrq
i ð1þ 2q2 � 5s2 � 5r2 � 20qsr þ 35s2r2Þg; ð9cÞ

Krq
k ¼ x sinður �uqÞ15

64
a
‘

� � k
‘

� �2
‘

jDrqj

� �5

� bDrq
k ð3sþ 6rq

þ 6sq2 � 7s3 � 21sr2 � 42qs2r þ 63s3r2Þ: ð9dÞ

Here, the unit vector bDrq :¼ Drq= j Drq j gives the orientation of the
distance vector Drq = Rr � Rq, and s, r, q abbreviate the projections

s :¼ bDrq
j Nr

j ; r :¼ bDrq
j Nq

j ; q :¼ Nr
j Nq

j : ð9eÞ
1 If the internal forces required to contract the dumbbell are central forces, then the
force-constraint implies that the torque-free constraint is automatically fulfilled.
One readily observes the following prominent features: (i) the effec-
tive translational interactions scale as /jDrqj�4. (ii) The effective
rotational interactions scale as /jDrqj�5. (iii) The stroke-averaged
interaction terms J, K vanish if the phases ur and uq differ by mul-
tiples of p [5]. This illustrates the importance of phase (de) tuning in
the collective swimming at zero Reynolds number.

4. Microscopic vs. stroke-averaged dynamics

We next compare the predictions of the stroke-averaged equa-
tions (9) with numerical results obtained from CUDA simulations
of the microscopic spring-based dumbbell model from Section 2.
For this purpose, we first consider 1d aligned dumbbell pairs sim-
ilar to those studied by Lauga and Bartolo [4]. The rotational inter-
action of two dumbbells will be analyzed in Section 4.2. Finally, we
also study the collective motion of 3d grids of dumbbells (Section
4.3). In all cases, the swimmers are assumed to be in an infinite
body of fluid initially at rest, i.e., no additional boundary conditions
(periodic or otherwise) are imposed.

4.1. Aligned dumbbell pairs

As long as thermal fluctuations are negligible, aligned dumb-
bells do not change their orientation and Eq. (9a) reduces to (see
Appendix A.1 for an explicit derivation)

_Rr ¼ 9
16

ax
X
q–r

sinður �uqÞ k
‘

� �2
‘

jDrqj

� �4 bDrq; ð10Þ

where _Rr denotes the coordinates along the common axis. The lines
in Fig. 1 (a) and (b) represent the dynamics of aligned dumbbell
pairs (S = 2) as predicted by Eq. (10). Symbols were obtained from
microscopic simulations of the corresponding spring-based model
described in Section 2. Following Lauga and Bartolo [4], we quantify
collective motion of the dumbbell pairs in terms of their mean col-
lective displacement (solid lines/filled symbols in Fig. 1),

R21ðtÞ ¼ 1
2
½R2ðtÞ þ R1ðtÞ�; ð11aÞ

and their mean relative distance (dashed lines/unfilled symbols in
Fig. 1),

DR21ðtÞ ¼ R2ðtÞ � R1ðtÞ: ð11bÞ

The quantity R21ðtÞ characterizes the net motion of the dumbbell
pair, whereas DR21(t) indicates whether the dumbbells the move to-
wards or away from each other.

As is evident from Fig. 1(a), symmetric dumbbells move in the
same direction with identical speeds; the direction of the motion
is determined by the phase difference u2 � u1. As predicted by
Eq. (10), the collective displacement over a swimming stroke varies
as jDrqj�4 with the distance between the dumbbells, see Fig. 1 (b).
Even though the stroke-averaged equations (10) are based on a far-
field expansion, they describe the microscopic dynamics of aligned
dumbbells well down to distances of a few body lengths.

In this context, it is worthwhile to note that the quantitative dif-
ference between the stroke-averaged dynamics (solid lines) and
the microscopic simulations (symbols) in Fig. 1(a) and (b), is due
to the relatively large parameter ratio a/‘ = 0.2 used in these simu-
lations. As shown explicitly in the Appendix A, the stroke-averaged
equations of motion (10) become more accurate in the limit a/
‘? 0. This is confirmed by the numerical results shown in
Fig. 1(c). This diagram depicts the ratio of the average collective
swimming speeds (i.e., the collective displacements after a stroke
period) obtained by either method for different values of a/‘at con-
stant stroke amplitude k. We readily observe that this ratio ap-
proaches unity in the limit a/‘? 0. However, in view of the fact



Fig. 1. Comparison of exact microscopic motion and effective stroke-averaged dynamics for an aligned dumbbell pair. Lines were obtained by numerical integration of the
stroke-averaged equation (10), whereas symbols show the simulation results for the microscopic spring-based dumbbell model described in Section 2. Solid lines and filled
symbols depict the mean displacement R21ðtÞ � R21ð0Þ ¼ f½R2ðtÞ þ R1ðtÞ� � ½R2ð0Þ þ R1ð0Þ�g=2 of the geometric centers. Dashed lines and unfilled symbols indicate the relative
separation DR21(t) � DR 21(0) = [R2(t) � R 1(t)] � [R2(0) � R 1 (0)]. (a) Symmetric dumbbells do not change their relative separation and move linearly in time depending on the
phase difference Du = u2 � u 1. Simulation parameters are comparable to those of Lauga and Bartolo [4]: Initial separation DR21(0) = R2(0) � R1(0) = 10‘, mean dumbbell
length ‘ = 5 lm, driving frequency x = 500 s�1 (time on the x-axis is given in units of the stroke period T = 2p/x), stroke amplitude k = 0.1‘, a = 0.2‘, phase difference
u2 � u1 = p/2. For the microscopic model: spring constants k0 = 0.001 kg/s2, viscosity l = 10�3 kg/(ms), particle mass density . = 103 kg/m3, simulation time-step Dt � 10�4T.
(b) Distance dependance of the collective motion and separation for aligned dumbbell pairs during a stroke period T. Line styles and symbols correspond to the same
configurations and simulation parameters as used in (a). Remarkably, the stroke-averaged far-field equation (10) describes the microscopic dumbbell dynamics well down to
distances of a few body lengths; however, the deviations from the time-resolved microscopic dynamics accumulate over time, as is evident from (a). The difference between
the stroke-averaged dynamics (solid lines) and the microscopic simulations (symbols) in (a) and (b) is due to the choice of a relatively large parameter ratio a/‘ = 0.2 in these
simulations; the results of both methods agree in the limit a/‘? 0 as illustrated in diagram (c), which shows the ratio of mean swimmer displacements obtained from the
microscopic (‘Mic’) and stroke-averaged (‘SA’) dynamics at constant k = 0.1‘ and various choices of a/‘.
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that the collective swimming speed is approximately proportional
to the sphere radius a, see Eq. (10), we opted for a moderate value
a/‘ = 0.2 in all our simulations in order to observe noticeable swim-
ming effects.
Fig. 2. Rotational motion of dumbbell pairs; symbols indicate numeric data while
lines represent analytics. hbD is the angle between a line connecting the dumbbell’s
geometric centers and the x-axis; Dq(5T) :¼ q(5T) � q(0) where q(t) is the projection
of the swimmer orientations qðtÞ ¼ N1

j ðtÞN
2
j ðtÞ. Initial configurations: (a) q(0) = 0

and (b) q(0) = 1 with an initial radial separation of 5‘. One readily observes the good
agreement between the microscopic simulations and the analytics.
4.2. Two-dimensional rotation of dumbbell pairs

Dumbbells that are arranged in an aligned 1d configuration do
not change their orientation. This is different for non-aligned
configurations in higher dimensions where hydrodynamic pair
interactions can induce rotations. To test the accuracy of the
stroke-averaged equation (9b) for the rotational motions in two
dimensions, we conducted a series of simulations using the follow-
ing setup: the first dumbbell (labelled by r) was placed at the ori-
gin oriented along the x-axis, and a second dumbbell (q) was
placed such that the geometric centers were separated by a dis-
tance of 5‘. By varying the starting position of the second dumbbell
along a circle, while keeping the initial projection constant, we can
compare numeric and analytic results for various projections s(t),
r(t), q(t), as defined in Eq. (9e).

Fig. 2 depicts the change of the dumbbells’ relative orientation

DqðtÞ :¼ qðtÞ � qð0Þ; qðtÞ :¼ Nr
j ðtÞN

q
j ðtÞ ð12Þ

after five swimming strokes t = 5T for two different initial projec-
tions (a) q(0) = 0 and (b) q(0) = 1. As evident from the diagrams, in
both cases the stroke-averaged description (9b) correctly repro-
duces the rotational dynamics of the microscopic spring-based
model.

We may thus briefly summarize: the results in Figs. 1 and 2
show that the stroke-averaged equations (9) satisfactorily capture
the main features of effective pair interactions in the spring-based
microscopic model at moderate-to-low densities (large distances).
This corroborates that equations of the type (9) can provide a con-
venient mesoscopic description which, for example, can be used as
a starting point for derivation of coarse-grained macroscopic field
theories [31]. Conversely, the good agreement between the aver-
aged dynamics (9) and the microscopic model simulation provides
a helpful confirmation that our CUDA algorithm works correctly
even at relatively low densities, when hydrodynamic interactions
effects are relatively weak and algorithms may become prone to
numerical instabilities.
In the remainder, we shall focus on 3d many-swimmer simula-
tions that fully exploit the virtues of the CUDA parallelization
scheme.

4.3. Collective swimming of three-dimensional dumbbell arrays

In this section we will compare the predictions of the stroke-
averaged far-field equations (9) with simulations of spring-based
dumbbells for 3d dumbbell configurations.

In our simulation the dumbbells’ geometric centers Rr(0) are
initially placed on a cubic (x � x � x)-lattice with equidistant spac-
ing q�1/3, where q is the number density of the configuration.



Fig. 4. Scaling of the mean square displacement per particle over a period with
dumbbell number S at constant density. The diagram depicts the simulation results
for collections of dumbbells arranged on a cubic (x � x � x)-lattice with x = 3, 5, 7, 9
and spacing 10‘, averaged over W = 10 different random initial orientations.
Symbols refer to the spring-based model and lines to the far-field stroke-averaged
model (9), beginning from the same initial conditions. Increasing the number of
swimmers while keeping the number density constant produces only minimal
gains in translational speed. The collective mean square displacement is smallest
for (3 � 3 � 3) = 27 swimmers, which is due to the relatively large number of
swimmers with an incomplete set of ‘‘nearest neighbors” in this case. We also
observe that for an ‘‘optimized” phase distribution (filled symbols/solid lines) the
effective mean square displacement is larger than for a uniformly random phase
distribution (empty symbols/dashed lines). Again, the shift between lines and
symbols, caused by the relatively large parameter ratio a/‘ = 0.2 used in these
simulations, is consistent with the value expected from Fig. 1 (c).
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Initial orientations Nr(0) are sampled uniformly from the unit
sphere. For the lattice size we consider values x = 3, 5, 7, 9 corre-
sponding to a total dumbbell number S = 33, 53, 73, 93, respectively.
To characterize the collective motion, we measure in our simula-
tions the mean square displacement per particle averaged over dif-
ferent initial conditions, i.e.,

hhRðtÞ2ii :¼ 1
W

XW
w¼1

1
S

XS

r¼1

½Rrðt; wÞ � Rrð0; wÞ�2; ð13Þ

where the variable w = 1, . . . ,W labels different initial conditions.
We distinguish two classes of initial conditions:

(i) An ‘‘optimized” phase distribution: Phases were set such
that each dumbbell had a phase of 0 or p/2 with all nearest
neighbors having the alternate phase in the manner of a 3d
‘‘checkerboard”. The corresponding results for the micro-
scopic simulation and the stroke-averaged model are indi-
cated by filled symbols and solid lines in Figs. 3 and 4,
respectively.

(ii) A randomized phase distribution: phases were set to ran-
dom values evenly distributed on the interval [0,2p), with
a different distribution for each run. The corresponding
results are indicated by unfilled symbols and dashed lines
in Figs. 3 and 4, respectively.

Fig. 3 illustrates how the mean square displacement over a per-
iod, hhR(T)2ii, varies with density q – or equivalently with grid
spacing – for an array of (5 � 5 � 5) = 125 dumbbells. As evident
Fig. 3. (a) Scaling of the mean square displacement per particle (measured over a
period) with number density for two different phase distributions. The diagram
depicts the simulation results for a cubic array of (5 � 5 � 5) = 125 dumbbells,
averaged over W = 100 different runs, each with random initial orientations.
Symbols refer to the spring-based model and lines to the stroke-averaged model
(9). The collective mean square displacement is proportional to (‘q1/3)2m with an
exponent m = �4. (b) Mean square displacement rescaled (i.e., multiplied) by q�8/3.
We observe that for an ‘‘optimized” phase distribution (filled symbols/solid lines)
the effective mean square displacement is larger than for a uniformly random phase
distribution (empty symbols/dashed lines). On this scale, statistical error bars (not
shown) are smaller than the size of the symbols. The shift between lines and
symbols, caused by the relatively large parameter ratio a/‘ = 0.2 used in these
simulations, is consistent with the value expected from Fig. 1 (c).
from the diagram, the prediction from the stroke-averaged model
(9) is in good agreement with the scaling behavior measured for
the microscopic model. Furthermore, by comparing filled with un-
filled symbols and solid with dashed lines, we note that the collec-
tive displacement hhR(T)2ii is generally smaller for the randomized
phase distribution, corroborating the fact that optimizing the
phase distributions can considerably enhance the effectiveness of
collective motions [32].

Fig. 4 shows how the quantity hhR(T)2ii scales with the total
number S of the dumbbells at fixed density q. After a slight initial
jump from the (3 � 3 � 3) case, adding more swimmers at fixed
density q produces only a minimal increase in displacement, and
the effect appears for both optimized or randomized phase distri-
butions. Again, collective displacement is generally smaller for ran-
domized phase distributions than for optimal phase distributions.
5. Computational aspects

The numerical results were obtained from parallelized simula-
tions run on graphics processing units (GPUs) using Nvidia’s
Compute Unified Device Architecture (CUDA). Compared to con-
ventional CPU programs, GPU algorithms may yield significant
speed-ups (up to factors of a few hundreds) whenever a problem
can be naturally parallelized [7–10], on relatively low-cost con-
sumer-grade hardware. In cases where the problem is small en-
ough to fit on a single device, the resulting software is simpler,
easier to test, less costly to implement, and much faster than tradi-
tional cluster-based methods. This is the case for deterministic
many-swimmer simulations, for stochastic single-swimmer simu-
lations, and also for stochastic many-swimmer simulations with
purely additive noise, corresponding to a constant matrix C in Eq.
(1).

Most OðN2Þ problems such as N-body simulations with pair
interactions involve enough data communication that they are
difficult to distribute efficiently, or are costly enough that they
must be recast in more numerically tractable forms such as Ewald
summation [33–35]. For cases of a few hundred swimmers,
CUDA-based implementations of straightforward OðN2Þ problems
present an excellent method for numerical simulation. We use a
simple direct computation of sphere–sphere interactions via the
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Rotne–Prager–Yamakawa–Mazur tensor, disregarding lubrication
forces and close-range interactions due to the dilute nature of
the suspensions and slender structure of the dumbbells.

We tested our GPU code on an AMD Phenom X4 940 system
running Fedora Linux, using a consumer-level Nvidia GTX 295
GPU and a more research-oriented Tesla C1060 GPU; other tests
took place on an Intel i7 860 running Gentoo Linux and a con-
sumer-level GTX 276 GPU. All hardware was capable of double-
precision calculation and used version 2.3 of the CUDA toolkit.

Initial testing of a similar but simpler problem (colloids moving
under constant applied force, using Oseen interactions and single
precision) showed very large benchmarked speed-ups compared
with a C-based CPU simulation. For example, with �2000 particles,
we measured up to a �450� speed-up when calculating the full
hydrodynamic interaction tensor and �800� speed-up using an
un-optimized version of the elegant tiled method described in
[36]. We did not benchmark the current simulation, but estimate
the speed-up, while still being significant, to be considerably less
due to the complexity of the multi-swimmer problem, additional
data transfers from the GPU, and the use of double precision.

Despite the speed advantage of the tiled method, we decided to
compute the full hydrodynamic interaction tensor in our simula-
tions, primarily to maintain congruence with existing C code in a
battery of automated unit tests and to keep the code as simple as
possible. Future implementations will likely reintroduce the tiled
calculation to further improve computational efficiency. Generally,
it is encouraging that even a relatively straightforward CUDA sim-
ulation of the multi-swimmer problem exhibits compelling speed
advantages over a CPU-based solution.

The use of double precision is unfortunate in that single preci-
sion calculations on CUDA processors show significant perfor-
mance increases due to better hardware support and memory
performance. However, in the case of collective dumbbell motion,
the distance moved in each time-step is very small compared to
the length of the dumbbells or their position, which caused initial
calculations using single precision to fail, as the position incremen-
tal during a single time-step fell below the threshold of machine
precision. To allow for standardized testing, we elected to use dou-
ble precision and to accept decreased performance rather than
implementing a better accumulation algorithm (such as Kahan
summation) based on single precision. For reasons of accuracy,
we also chose not to enable Nvidia’s fast-math optimizations.
The latter can significantly accelerate the computation of certain
numeric functions (particularly trigonometric functions) but this
gain comes at the cost of some precision. However, this might rep-
resent another opportunity for performance optimization in the
future.

Another important issue is the choice of the integrator due to
accumulation of errors and the stiffness of the problem. A variety
of methods were tested, including Euler, Adams–Bashforth–Moul-
ton, and Runge–Kutta integrators. The approach eventually used
was a one-step Heun predictor–corrector method, which produced
excellent results and can easily incorporate additive noise for sto-
chastic simulations. The time-step for the simulations was chosen
based on the smallest dynamical time scale in the problem (given
by the spring frequency T0 ¼ 2p=

ffiffiffiffiffiffiffiffiffiffiffiffi
k0=M

p
, see discussion in Section

2) and then manually reduced until numerical errors were accept-
able by ensuring that single dumbbells did not translate and nu-
meric fluctuations were orders of magnitude below the expected
motion caused due to hydrodynamic interactions.

The use of a spring-based model created an additional compli-
cation: after prescribing the initial position, orientation, and phase
of the dumbbell we initially placed the spheres centered at the po-
tential minima. However, numerical integration and finite poten-
tial strengths caused the sphere positions to lag very slightly
behind the potentials once they began moving periodically. Since
the hydrodynamically induced dumbbell motion is of a very small
scale compared to the dumbbell size, this initial settling caused a
large anomalous motion during the first period of simulation. To
rectify this, it was necessary to discard the first period and begin
measurements after the lag was established and dumbbell transla-
tion was approximately linear. This did cause miniscule deviations
of the dumbbells’ mean length ‘, amplitude k, and phase u from the
values specified by the initial conditions, but tuning the potential
spring constant to be sufficiently stiff reduced these deviations to
acceptable values of a few percent.

While the results shown here are purely deterministic, incorpo-
rating noise is relatively straightforward, as the system hydrody-
namic tensor H may be numerically decomposed via Cholesky
decomposition [37,38]. However, even with GPU acceleration this
decomposition is prohibitively expensive; in the case of slender
dumbbells and dilute suspensions, we advocate a simple additive
noise with a constant matrix C as a reasonable approximation in
the dilute limit as the off-diagonal terms in Eq. (3) are negligible.
We compared the full Cholesky decomposition and an additive-
noise approximation in various test runs and found that the results
for the collective mean square displacement differed by only a few
percent.
6. Conclusions

We have examined the stroke-averaged, far-field equations of
motion for symmetric dumbbells, and verified the general proper-
ties of this coarse-grained model by comparing with microscopic
numerical simulations at relatively low densities. Remarkably,
the microscopic and coarse-grained simulations agree well even
at intermediate-to-high swimmer densities, where the effective
equations of motion are expected to become less accurate. How-
ever, it should be kept in mind that at very high densities, when
collisions (i.e., steric effects) become relevant, lubrication effects
as well as near-field hydrodynamics must be modeled more
carefully.

In the case of dumbbells arranged on a 3d grid, the translational
speed due to hydrodynamic interaction between dumbbells varies
predictably with spacing, tending toward jDj�4 decay, where jDj is
the distance between dumbbell centers. Due the short range of the
effective hydrodynamic interactions for symmetric dumbbells,
adding more swimmers at a fixed density has only a minimal im-
pact on dumbbell translational speed. On the other hand, the col-
lective swimming speed can be noticeably increased by replacing
a randomized phase distribution with an ordered, ‘‘optimal” distri-
bution of phases such that the difference in phase between a peri-
odically-driven dumbbell and its nearest neighbors is p/2.

Generally, our numerical investigations illustrate that GPU-
based simulations of multi-swimmer systems can provide a valu-
able tool for studying collective motions at very low Reynolds
number. Moreover, the CUDA algorithm used in our computer
experiments can be readily adapted to simulate hydrodynamic
interactions between colloids that can be trapped and manipulated
by means of optical tweezers [39]. Such theoretical investigations
can help to create more efficient micropumps, e.g., by optimizing
the phase relations in oscillating arrays of colloids.

Finally, another long-term objective is to compare many-swim-
mer simulations with predictions of effective field theories [40].
Our above results suggest that the most promising approach to-
wards achieving this goal may be a two-step procedure: (step 1)
one should try to derive stroke-averaged equations of motion that
correctly capture the phase dependence on the level of effective
two-particle interactions. As our above discussion has shown, such
coarse-grained models can correctly reproduce many of the main
features of the microscopic model. Thus, it is sufficient for many
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purposes to implement the coarse-grained equations into a CUDA
environment (step 2). Compared to simulations of the full micro-
scopic dynamics, this may reduce the effective simulation time
by an additional factor of 100 or more since the analytic stroke-
averaging procedure makes it unnecessary to numerically resolve
the smallest dynamical time scales in the system. We hope that
our analysis may provide useful guidance for future efforts in this
direction.
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Appendix A. Stroke-averaging

We derive the stroke-averaged effective interactions between
two symmetric, quasi-shape-driven dumbbell swimmers. Each
dumbbell consists of two spheres of radius a. The swimming stroke
of an individual dumbbell is assumed to be both force-free and tor-
que-free.

A.1. One-dimensional case

In one space dimension (1d) we denote the position of the
spheres belonging to dumbbell r by Xr

s , s = 1, 2. To characterize po-
sition and orientation of the dumbbell, we may introduce center-
of-mass and relative coordinates by

Rr ¼ 1
2
ðXr

1 þ Xr
2 Þ; ðA:1aÞ

Sr ¼ Xr
2 � Xr

1 ; ðA:1bÞ
Nr ¼ ðXr

2 � Xr
1 Þ=jX

r
2 � Xr

1 j; ðA:1cÞ

hence,

Xr
1 ¼ Rr � Sr=2; Xr

2 ¼ Rr þ Sr=2; ðA:1dÞ

which may also be written as

Xr
s ¼ Rr þ ð�1ÞsSr=2: ðA:1eÞ

Furthermore, we define the vector connecting two swimmers r and
q by

Drq :¼ Rr � Rq; ðA:2aÞbDrq :¼ ðRr � RqÞ=jRr � Rqj: ðA:2bÞ

The force-free constraint for the dumbbell r can be written as

Fr
1 ¼ �Fr

2 ¼: f r; ðA:3Þ

with Fr
s denoting the internal forces acting on the first and the sec-

ond sphere during a swimming stroke. Neglecting thermal fluctua-
tions, the 1d equations of motion can be written as

_Xr
s ¼

X
q;r

Hrq
sr Fq

r : ðA:4Þ

Here, we sum over all swimmers q = 1, . . . ,S and the spheres r = 1, 2
of each swimmer. Our goal is to derive from Eq. (A.4) a stroke-aver-
aged effective equation of motion for Rr (for shape-driven dumb-
bells the motion of Sr is trivial in 1d).

The ‘‘diagonal” components of the hydrodynamic interaction
tensor H are given by the inverse Stokes friction coefficient
Hrr
ss ¼ c�1 ¼ ð6plaÞ�1

: ðA:5Þ
Adopting the Oseen approximation, the ‘‘off-diagonal” components
(s – r) read

Hrr
sr ¼

j
jSrj

; Hrq
sr ¼

j
jXr

s � Xq
r j
; ðA:6Þ

where j = (4pl)�1. It is useful to rewrite

Xr
s � Xq

r ¼ Drq þ Yrq
sr ; ðA:7aÞ

where

Yrq
sr :¼ 1

2
½ð�1ÞsSr � ð�1ÞrSq�: ðA:7bÞ

Using the force-free condition (A.3), we obtain from Eq. (A.4)

_Rr ¼
X
q

1
2
½ðHrq

11 � Hrq
12 Þ þ ðH

rq
21 � Hrq

22 Þ�f q ¼:
X
q

Arqf q ðA:8aÞ

and

_Sr ¼
X
q
½ðHrq

21 � Hrq
22 Þ � ðH

rq
11 � Hrq

12 Þ�f q ¼:
X
q

Brqf q: ðA:8bÞ

Considering approximately shape-driven dumbbells, we have.

Sr ¼ LrðtÞNr;

jSrj ¼ LrðtÞ;
_Sr ¼ _LrðtÞNr;

ðA:9Þ

where the periodic function Lr(t) > 0 describes the shape (length) of
the dumbbell at time t. Hence, inverting (A.8b) we obtain the force
as a function of the shape

f q ¼
X

m
ðB�1Þqm _LmðtÞNm; ðA:10Þ

where B�1 denotes the inverse of the (S � S)-matrix B :¼ (Brq) de-
fined in (A.8b). Substituting this result into Eq. (A.8a) yields the fol-
lowing closed equations for the position coordinates

_Rr ¼
X
q;m

ArqðB�1Þqm _LmðtÞNm: ðA:11Þ

By means of Eq. (A.9), we can rewrite the off-diagonal components
of the Oseen tensor as

Hrr
sr ¼

j
Lr ; Hrq

sr ¼
j

jDrq þ Yrq
sr j

; ðA:12aÞ

where

Yrq
sr ¼

1
2
½ð�1ÞsLrðtÞNr � ð�1ÞrLqðtÞNq�: ðA:12bÞ

For a system consisting of more than two dumbbells (S > 2), the
r.h.s. of Eq. (A.10) contains not only two-body, but also three-body,
four-body, . . . ,S-body contributions. However, focussing only on the
dominant two-body contributions, B :¼ (Brq) can be exactly in-
verted and the r.h.s. of Eq. (A.11) can be expanded in the low-den-
sity limit corresponding to jDrqj?1. Averaging the resulting
power series over a stroke period [t � T/2, t + T/2] as described in
Section 3.1 and keeping only the leading order contribution, we find
the following 1d stroke-averaged equation of motion in two-body
approximation

_Rr ’ 9
16

ax
X
q

sinður �uqÞ k
‘

� �2
‘

jDrqj

� �4 bDrq:
A.2. Three-dimensional case

In the 3d case, the derivation of stroke-averaged equations be-
comes more complicated due to the additional rotational degrees
of freedom.
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As before, we consider a dilute suspension of r = 1, . . . ,N geo-
metrically identical dumbbells of prescribed length Lr(t). To char-
acterize the motion of the dumbbells, we define position and
orientation vectors by

RrðtÞ :¼ 1
2
ðXr1 þ Xr2Þ;

NrðtÞ :¼ Sr

jSrj
;

ðA:13Þ

with Sr denoting the non-normalized orientation vector, i.e., for a
shape-driven dumbbell we can write

SrðtÞ :¼ Xr2 � Xr1 ¼ LrðtÞNr; ðA:14aÞ
SrðtÞ :¼ jSrj ¼ Lr: ðA:14bÞ

Similar to Eq. (A.1e), we can recover the bead coordinates {Xr1,Xr2}
from {Rr,Nr} by means of

Xrs ¼ Rr þ ð�1ÞsNrLr=2: ðA:14cÞ

As before, we consider shape-driven dumbbells with
Lr(t) = ‘ + ksin(xt + ur). From the definition (A.13), one then finds
that the exact equations of motion for {Rr,Nr} are given by

_Rr
i ¼

1
2

X
s;q;r

HðrsÞðqrÞ
ij Fqr

j ; ðA:15aÞ

_Nr
i ¼ ðdik � Nr

i Nr
k Þ �

1
Lr

X
q–r;r
½Hðr2ÞðqrÞ

kj � Hðr1ÞðqrÞ
kj �Fqr

j : ðA:15bÞ

The indices s, r 2 {1,2} label the spheres and, throughout, we use the
sum convention HijFj :¼

P
jHijFj for spatial tensor indices. Restrict-

ing ourselves to dilute suspensions of slender dumbbells, we adopt
the Oseen approximation for the hydrodynamic interaction tensor,
i.e.,

HðrsÞðrsÞ
ij ¼ ð6plaÞ�1dij; ðA:16aÞ

HðrsÞðrrÞ
ij ¼ j

Lr ðdij þ Nr
i Nr

j Þ; ðA:16bÞ

HðrsÞðqrÞ
ij ¼ j

jXrs � Xqrj

� dij þ
ðXrs

i � Xqr
i ÞðX

rs
j � Xqr

j Þ
jXrs � Xqrj2

" #
; ðA:16cÞ

where j = (8pl)�1. To obtain from Eq. (A.15b) closed stroke-aver-
aged equations for {Rr,Nr}, we must

(a) perform a far-field expansion of the hydrodynamic interac-
tion tensor;

(b) determine the internal forces Frs, required to maintain the
dumbbells’ prescribed shape Lr(t);

(c) expand the resulting equations in powers of (k/‘) and aver-
age over a stroke period [t, t + T].

A.2.1. Far-field expansion
The Oseen tensor components Hij given in Eq. (A.16) are func-

tions of the sphere separation vectors Xrs � Xqr. By means of Eq.
(A.14c), we may decompose

Xrs � Xqr ¼ Drq þ Y ðrsÞðqrÞ; ðA:17Þ

where similar to Eq. (A.12b) we have defined

Drq :¼ Rr � Rq; ðA:18aÞ

Y ðrsÞðqrÞ :¼ 1
2
½ð�1ÞsNrLr � ð�1ÞrNqLq� ðA:18bÞ

Then, for r – q, the Oseen tensor components (A.16c) take the form
Hij :¼ j
jDþ Y j dij þ

Di þ Yi

jDþ Y j
Dj þ Yj

jDþ Y j

� �
: ðA:19Þ

For clarity, we dropped superscripts here using the abbreviations
Y :¼ Y(rs)(qr) and D :¼ Drq. In the dilute limit, corresponding to
jYj � jDj we may perform a far-field (Taylor) expansion of the ten-
sor components Hij. For this purpose we define

H0
ij :¼ HijðY ¼ 0Þ ¼ j

jDj ðdij þ bDi
bDjÞ; ðA:20aÞ

where

bDi :¼ Di

jDj ðA:20bÞ

is the unit vector in the direction of D. Reinstating upper indices, the
formal Taylor expansion of HðrsÞðqrÞ

ij at Y = 0 can be expressed as

HðrsÞðqrÞ
ij ¼

X1
q¼0

Hrq
ij;kq ...k1

Y ðrsÞðqrÞ
k1

	 	 	Y ðrsÞðqrÞ
kq

; ðA:21aÞ

where

Hrq
ij;kq 			k1

:¼ 1
q!
@k1
	 	 	 @kq H0

ijjD¼Drq ðA:21bÞ

and @kj
:¼ @=@Dkj

. Explicit expressions for the expansion coefficients
Hij;kq 			k1 with q = 1, 2, 3, 4 are summarized in Appendix B. The expan-
sion (A.21a) will be used in the next part to compute the interaction
forces Frs, and, later on, it will also be inserted into the exact equa-
tions of motion (A.15b).

A.2.2. Internal forces in two-particle approximation
We wish to determine the internal forces Frs in Eq. (A.15b) by

means of an iterative procedure, restricting ourselves to two-body
interactions and assuming, as usual, that individual dumbbell
swimmers are both force-free and torque-free, i.e.,

0�!
X

s

Frs
i ; ðA:22aÞ

0�! Tr
i ðyÞ :¼

X
s

�ijkðXrs
j � yjÞF

rs
k ; ðA:22bÞ

where y = (yj) is an arbitrary reference point. Substituting Eq.
(A.22a) into Eq. (A.22b) we find that

0 � �ijkðXr1
j � Xr2

j ÞF
r1
k ;

or equivalently

0 � �ijkNr
j Fr1

k : ðA:23Þ

This implies that Frs must be of the form

Frs ¼ f rsNr; f r2 ¼ �f r1: ðA:24Þ

It thus remains to express the N unknown functions fr1 in terms of
{Rr,Nr}.

Shape-constraints – To determine the unknown functions fr1, we
exploit the N independent shape constraints

_Lr¼! Nr
i ð _Xr2

i � _Xr1
i Þ: ðA:25Þ

Inserting the equations of motion for Xrs, we find the explicit
condition

_Lr¼!
X
q;r

Nr
i ½H

ðr2ÞðqrÞ
ij � Hðr1ÞðqrÞ

ij �Nq
j f qr : ðA:26Þ

Introducing the convenient abbreviation

hðrsÞðqrÞ
:¼ Nr

i HðrsÞðqrÞ
ij Nq

j ; ðA:27Þ

we can write Eq. (A.26) as
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_Lr¼!
X

r

½hðr2ÞðrrÞ � hðr1ÞðrrÞ�f rr þ
X
q–r;r
½hðr2ÞðqrÞ � hðr1ÞðqrÞ�f qr: ðA:28Þ

Here, we have separated interactions within the dumbbell r from
those with other swimmers q – r. Using the force-free constraint
(A.24), Eq. (A.28) takes the form

_Lr¼! brrf r1 þ
X
q–r

brqf q1; ðA:29aÞ

with coefficient functions

brq
:¼ hðr2Þðq1Þ þ hðr1Þðq2Þ � ½hðr2Þðq2Þ þ hðr1Þðq1Þ� ðA:29bÞ

The N linear equations (A.29a) determine the N unknown functions
fq1 by means of an iterative procedure.

Iteration scheme – Rewriting Eq. (A.29a) in the form

f r1 ¼
_Lr

brr �
X
q–r

brq

brr f q1 ðA:30Þ

we obtain the following recursive sequence

f r1
ðnÞ ¼

_Lr

brr �
X
q–r

brq

brr f q1
ðn�1Þ: ðA:31Þ

Starting from the initial condition f q1
ð0Þ ¼ 0, the first iteration gives

the force generated by an isolated, shape-driven dumbbell

f r1
ð1Þ ¼

_Lr

brr : ðA:32Þ

The second iteration yields a correction due to pair interactions
with other dumbbells,

f r1
ð2Þ ¼

_Lr

brr � m
q–r

brq

brr

_Lq

bqq ¼ f r1
ð1Þ �

X
q–r

brq

brr

_Lq

bqq : ðA:33Þ

Similarly, one obtains from the third iteration

f r1
ð3Þ ¼

_Lr

brr �
X
q–r

brq

brr

_Lq

bqq �
X
m–q

bqm

bqq

_‘m

bmm

" #

¼ f r1
ð2Þ þ

X
q–r

X
m–q

brq

brr
bqm

bqq

_‘m

bmm : ðA:34Þ

The last term can be interpreted as a three-particle interaction cor-
rection. Let us assume that the system contains r = 1, . . . ,N dumb-
bells. Then, as evident from the ‘exclusive’ summation in Eq.
(A.34), the iteration will approach a fixed point after N iterations,

f r1
ðNþ1Þ ¼ f r1

ðNÞ: ðA:35Þ

The fixed point f(N) corresponds to the exact solution, i.e., f(N) is the
internal force generated by a dumbbell in order to maintain its pre-
scribed shape in the presence hydrodynamic forces of N � 1 other
dumbbells. In the remainder, we shall restrict ourselves to consid-
ering one-particle and two-particle interactions, corresponding to
f r1
ð1Þ and f r1

ð2Þ .
Coefficients brq – We still need to determine the coefficients brq

from (A.29b). The ‘diagonal’ coefficients brr can be calculated ex-
actly by noting that

hðrsÞðrsÞ ¼ ð6plaÞ�1 ¼ 4j
3a

ðA:36aÞ

hðr1Þðr2Þ ¼ hðr2Þðr1Þ ¼ 2j
Lr ðA:36bÞ

We thus have

brr ¼ 4j
Lr 1� 2Lr

3a

� �
: ðA:37Þ

In order to determine the coefficients brq with q – r, we need to
use the far-field expansion (A.21a). Defining the contraction
hrq
kq 			k1

:¼ Nr
i Nq

j Hrq
ij;kq 			k1

ðA:38Þ

allows us to write

brq ¼
X1
q¼0

brq
q ; ðA:39aÞ

where

brq
q ¼ hrq

kq 			k1
� fY ðr1Þðq2Þ

k1
	 	 	Y ðr1Þðq2Þ

kq
þ Y ðr2Þðq1Þ

k1
	 	 	Y ðr2Þðq1Þ

kq

� ½Y ðr1Þðq1Þ
k1

	 	 	Y ðr1Þðq1Þ
kq

þ Y ðr2Þðq2Þ
k1

	 	 	Y ðr2Þðq2Þ
kq

�g: ðA:39bÞ

We define

Nrq
k1k2

:¼ Nr
k1

Nq
k2
þ Nr

k2
Nq

k1
; ðA:40aÞ

Nrrq
k1k2k3

:¼ Nr
k1

Nr
k2

Nq
k3
þ Nr

k1
Nr

k3
Nq

k2
þ Nr

k2
Nr

k3
Nq

k1
; ðA:40bÞ

Nrrqq
k1k2k3k4

:¼ Nr
k1

Nr
k2

Nq
k3

Nq
k4
þ Nr

k1
Nr

k3
Nq

k2
Nq

k4
þ Nr

k1
Nr

k4
Nq

k2
Nq

k3

þ Nr
k2

Nr
k3

Nq
k1

Nq
k4
þ Nr

k2
Nr

k4
Nq

k1
Nq

k3
þ Nr

k3
Nr

k4
Nq

k1
Nq

k2
; ðA:40cÞ

Nrrrq
k1k2k3k4

:

¼ Nr
k1

Nr
k2

Nr
k3

Nq
k4
þ Nr

k1
Nr

k2
Nr

k4
Nq

k3
þ Nr

k1
Nr

k3
Nr

k4
Nq

k2

þ Nr
k2

Nr
k3

Nr
k4

Nq
k1
: ðA:40dÞ

With these abbreviations we find

brq
0 ¼ 0; ðA:41aÞ

brq
1 ¼ 0; ðA:41bÞ

brq
2 ¼ hrq

k2k1
LrLqNrq

k1k2
; ðA:41cÞ

brq
3 ¼ 0; ðA:41dÞ

brq
4 ¼

1
4

hrq
k4k3k2k1

½LrLrLrLqNrrrq
k1k2k3k4

þ LqLqLqLrNqqqr
k1k2k3k4

�; ðA:41eÞ

which can be used in (A.33).

A.2.3. Stroke-averaging
Translational motion – Inserting the ansatz (A.24) into Eq.

(A.15b), the motion of the position coordinate is determined by

_Rr
i ¼

1
2

X
s;q;r

HðrsÞðqrÞ
ij f qrNq

j : ðA:42Þ

It is convenient to consider ‘internal’ and external contributions
separately by writing

_Rr
i ¼ Nr

i Ir þ
X
q–r

Jrq
i ðA:43aÞ

where

Ir :¼ 1
2

X
s;r

hðrsÞðrrÞf rr; ðA:43bÞ

Jrq
i :¼ 1

2

X
s;r

HðrsÞðqrÞ
ij f qrNq

j : ðA:43cÞ

Here we have used that

HðrsÞðrrÞ
ij Nr

j ¼ hðrsÞðrrÞNr
i :

Using the force-free constraint and Eq. (A.36b), we find

Ir ¼ 0; ðA:44Þ

i.e., the only contribution to the translation of swimmer r comes
from interactions with the other dumbbells q – r. Hence, we still
need to determine the second contribution Jrq

i from Eq. (A.43c),
which can be written in the form
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Jrq
i ¼ Nrq

ij Nq
j f q1; ðA:45aÞ

where

Nrq
ij :¼ 1

2
½Hðr1Þðq1Þ

ij � Hðr1Þðq2Þ
ij � þ 1

2
½Hðr2Þðq1Þ

ij � Hðr2Þðq2Þ
ij �: ðA:45bÞ

Inserting the far-field expansion for the Oseen tensor, we obtain

Nrq
ij ¼

X1
q¼0

Hrq
ij;kq 			k1

Prq
k1 			kq
ðYÞ ðA:46aÞ

with polynomials Prq
k1 			kq

given by

Prq
k1 			kq
ðYÞ :¼ 1

2
Y ðr1Þðq1Þ

k1
	 	 	Y ðr1Þðq1Þ

kq
� 1

2
Y ðr1Þðq2Þ

k1
	 	 	Y ðr1Þðq2Þ

kq

þ 1
2

Y ðr2Þðq1Þ
k1

	 	 	Y ðr2Þðq1Þ
kq

� 1
2

Y ðr2Þðq2Þ
k1

	 	 	Y ðr2Þðq2Þ
kq

: ðA:46bÞ

In particular, for q = 0 we have Prq = 0 and for q P 1

Prq
k1
¼ LqNq

k1
; ðA:47aÞ

Prq
k1k2
¼ 0; ðA:47bÞ

Prq
k1k2k3

¼ 1
4
½LrLrLqNrrq

k1k2k3
þ LqLqLqNq

k1
Nq

k2
Nq

k3
�; ðA:47cÞ

Prq
k1 			k4

¼ 0: ðA:47dÞ

Since Eq. (A.43a) already contains a sum over q, neglecting three-
body effects means that, in order to compute Jrq

i , we should use
f q1 ’ f q1

ð1Þ ¼ _Lq=bqq in Eq. (A.45a). After averaging (A.45a) over peri-
od, we obtain at leading order of (‘/jDj)

Jrq
i ’

1
4

Nq
j Hrq

ij;k3k2k1
Nrq

k1k2k3

ðLrÞ2Lq _Lq

bqq ; ðA:48Þ

where to leading order in k

ðLrÞ2Lq _Lq

bqq ’ �xa
3‘2k2

8j
sinður �uqÞ: ðA:49aÞ

The contraction is obtained as

1
4

Nq
j Hrq

knlN
rq
lnk ¼ �

3j
8jDj4

fNr
i ð2sþ 4qr � 10sr2Þ

þ bDið1þ 2q2 � 5s2 � 5r2 � 20qsr þ 35s2r2Þg;ðA:49bÞ

where D :¼ Drq :¼ Rr � Rq; bD :¼ Drq= j Drq j and

s ¼ bDrq
j Nr

j ; r ¼ bDrq
j Nq

j ; q ¼ Nr
j Nq

j

denote the three possible pairwise projections of the relevant unit
vectors Nr, Nq, and bDrq. Inserting Eq. (A.49) into (A.48) yields the
expression for Jrq

i that is given in Eq. (9d).
Change of orientation – The exact equations of motion for the

orientation vectors Nr read

_Nr
i ¼ ðdik � Nr

i Nr
k Þ
X
q–r

Grq
k ; ðA:50aÞ

where

Grq
k :¼ Nq

j

X
b

½Hðr2ÞðqbÞ
kj � Hðr1ÞðqbÞ

kj � f
qb

Lr : ðA:50bÞ

Using the force-free constraint (A.22a), one obtains explicitly

Grq
k ¼ Nq

j ½�Hðr1Þðq1Þ
kj þ Hðr1Þðq2Þ

kj þ Hðr2Þðq1Þ
kj � Hðr2Þðq2Þ

kj � f
q1

Lr : ðA:51Þ

Inserting the expansion for hydrodynamic tensor gives
�Hðr1Þðq1Þ
ij þ Hydðr1Þðq2Þ

ij þ Hðr2Þðq1Þ
ij � Hðr2Þðq2Þ

ij

¼
X1
q¼0

Hrq
ij;kq ...k1

� ½�Y ðr1Þðq1Þ
k1

	 	 	Y ðr1Þðq1Þ
kq

þ Y ðr1Þðq2Þ
k1

	 	 	Y ðr1Þðq2Þ
kq

þ Y ðr2Þðq1Þ
k1

	 	 	Y ðr2Þðq1Þ
kq

� Y ðr2Þðq2Þ
k1

	 	 	Y ðr2Þðq2Þ
kq

�:

The polynomial terms in brackets are exactly those encountered
earlier in Eq. (A.39b). Hence, the first two non-vanishing contribu-
tions come from q = 2 and q = 4. Neglecting three-body effects
means that, similar to above, we should use f q1 ’ f q1

ð1Þ ¼ _Lq=bqq.
Hence, truncating after q = 4 we have

Grq
i ’ Nq

j Hrq
ij;k2k1

Nrq
k1k2

Lq _Lq

bqq þ Nq
j Hrq

ij;k4k3k2k1
� 1

4
½Nrq

k1k2k3k4
ðLrÞ2Lq

þ Nqr
k1k2k3k4

ðLqÞ3�
_Lq

bqq :

Averaging this expression over a period, we find

Grq
i ¼

1
4

Nq
j Hrq

ij;k4k3k2k1
Nrq

k1k2k3k4

ðLrÞ2Lq _Lq

bqq : ðA:52Þ

The time average on the r.h.s. is the same as in (A.49a). Exploiting
the symmetry of lower indices of Nrq

mlnk, we obtain

1
4

Nq
j Hij;knlmNrq

mlnk ¼
j

4jDj5
� fNr

i ð�3þ 6q2 þ 15s2 þ 15r2 � 105s2r2

þ 60srqÞ þ 5bDið3sþ 6rqþ 6sq2 � 7s3 � 21sr2

� 42qs2r þ 63s3r2Þg:

Contracting with the orthogonal projector ðdki � Nr
k Nr

i Þ, see Eq.
(A.50a), eliminates terms proportional to Nr

i , thus yielding Eq. (9b).
Appendix B. Partial derivatives of the Oseen tensor

This part summarizes the partial derivatives of the Oseen tensor
that are required in the derivation of the far-field, stroke-averaged
equations of motion (9), see Eq. (A.21a) in Appendix A.2.

Consider the distance vector D = (Dk), its associated unit vector
ðbDkÞ and orthogonal projector (Pik), given by

bDk :¼ Dk

jDj ; Pik :¼ dik � bDi
bDk: ðB:1Þ

We wish to compute the partial derivatives of the Oseen tensor

Hij :¼ j
jDj ð1þ

bDi
bDjÞ; ðB:2Þ

where j :¼ (8pl)�1. Abbreviating @k :¼ @/@Dk, we have

@kjDj ¼
Dk

jDj ¼
bDk; ðB:3aÞ

@k
bDi ¼

dik

jDj �
DkDi

jDj3
¼ Pik

jDj ; ðB:3bÞ

@nPik ¼ �
1
jDj ð

bDiPnk þ bDkPniÞ: ðB:3cÞ

First order derivatives – A straightforward calculation gives

Hij;k :¼ @kHij ¼ �
bDk

jDjHij þ
j
jDj2
ðPik

bDj þPjk
bDiÞ

¼ j
jDj2
ð�bDkdij þ bDjdik þ bDidjk � 3� bDk

bDi
bDjÞ: ðB:4Þ

Second order derivatives – The second order derivatives, normalized
by n! with n = 2, are defined by
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Hij;kn :¼ 1
2!
@n@kHij

and read explicitly

Hij;kn ¼
j

2!jDj3
½�dnkdij þ dnjdik þ dnidjk þ 3� ðbDn

bDkdij

� bDn
bDjdik � bDn

bDidjk � bDi
bDjdnk � bDk

bDjdni � bDi
bDkdnjÞ

þ 3� 5� bDn
bDk
bDi
bDj�: ðB:5Þ

Third order derivatives – Similarly we find for the third order
derivatives

Hij;knl :¼ 1
3!
@l@n@kHij

the explicit representation

Hij;knl ¼
j

3!jDj4
f3�½bDlðdnkdij� dnjdik� dnidjkÞþ bDnðdlkdij� dljdik� dlidjkÞ

þ bDkðdlndij� dljdni� dlidnjÞ� bDiðdlndjkþ dljdnkþ dlkdnjÞ
� bDjðdlkdniþ dlndikþ dlidnkÞ�þ3�5�ð�bDl

bDn
bDkdijþ bDl

bDn
bDjdik

þ bDl
bDn
bDidjkþ bDl

bDi
bDjdnkþ bDl

bDk
bDjdniþ bDl

bDi
bDkdnj

þ bDk
bDi
bDjdlnþ bDn

bDi
bDjdlkþ bDn

bDk
bDjdli

þ bDn
bDk
bDidljÞ�3�5�7bDl

bDn
bDk
bDi
bDjg: ðB:6Þ

Fourth order partial derivatives – Finally, the fourth order derivatives,
defined by

Hij;knlm :¼ 1
4!
@m@ l@n@kHij

are obtained as

Hij;knlm ¼
j

4!jDj5
3� ½dmlðdnkdij� dnjdik� dnidjkÞþ dmnðdlkdij� dljdik� dlidjkÞ
�

þdmkðdlndij� dljdni� dlidnjÞ� dmiðdlndjkþ dljdnkþ dlkdnjÞ
�dmjðdlkdniþ dlndikþ dlidnkÞ�þ3�5� ½bDm

bDiðdlndjkþ dljdnkþ dlkdnjÞ
þbDm

bDjðdlkdniþ dlndikþ dlidnkÞþ bDl
bDiðdmndjkþ dmjdnkþ dmkdnjÞ

þbDl
bDjðdmndikþ dmidnkþ dmkdniÞþ bDn

bDiðdmldjkþ dmjdlkþ dmkdljÞ
þbDn

bDjðdmldikþ dmidlkþ dmkdliÞþ bDk
bDiðdmldjnþ dmjdlnþ dmndljÞ

þbDk
bDjðdmldinþ dmidlnþ dmndliÞþ bDi

bDjðdmldknþ dmkdlnþ dmndlkÞ
�bDm

bDlðdnkdij� dnjdik� dnidjkÞ� bDm
bDnðdlkdij� dljdik� dlidjkÞ

�bDm
bDkðdlndij� dljdni� dlidnjÞ� bDn

bDkðdmldij� dmidlj� dlidmjÞ
�bDl

bDkðdmndij� dmidnj� dnidmjÞ� bDl
bDnðdmkdij� dmidjk� dikdmjÞ�

þ3�5�7� ½bDm
bDl
bDn
bDkdij� bDm

bDl
bDn
bDjdik� bDm

bDl
bDn
bDidjk

�bDm
bDl
bDi
bDjdnk� bDm

bDl
bDk
bDjdni� bDm

bDl
bDi
bDkdnj� bDm

bDk
bDi
bDjdln

�bDm
bDn
bDi
bDjdlk� bDm

bDn
bDk
bDjdli� bDm

bDn
bDk
bDidlj� dml

bDn
bDk
bDi
bDj

�dmn
bDl
bDk
bDi
bDj� dmk

bDl
bDn
bDi
bDj� dmi

bDl
bDn
bDk
bDj� dmj

bDl
bDn
bDk
bDi�

þ3�5�7�9� bDm
bDl
bDn
bDk
bDi
bDj

o
:
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