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Abstract. We review the concept of nonlinear Brownian motion, originally introduced by
Klimontovich, and consider several applications to real systems, including e.g. atoms, molecules
or ions laser cooling fields, charged grains in plasmas and interdisciplinary problems. In
particular, we also discuss recent developments in the field of active Brownian particles.
After summarizing the basic properties of active Brownian particle models, solutions of the
corresponding Fokker-Planck equation are analyzed for free motions as well as for motions in
confining fields. Furthermore, we study the distributions for finite systems of self-confined
particles, interacting via Morse and Coulomb potentials. Finally, applications to clusters of
atoms subject to laser cooling as well as to clusters of charged grains in dusty plasmas are
discussed.

1. Introduction
Yuri L. Klimontovich devoted a great part of his scientific work to Brownian motions. His interest
in this topic was stimulated by numerous inspiring conversations with his colleague and friend
Rouslan L. Stratonovich. In particular, he was interested in applications to plasmas, non-ideal
gases and interactions with electromagnetic radiation [1, 2, 3, 4, 5]. This way Klimontovich
developed the seminal work of Einstein, Smoluchowski, Langevin and others further. The
main difference between the standard Brownian motion considered by those pioneers and
Klimontovich’s nonlinear Brownian motion is the following: Standard Brownian motion is
characterized by a linear dissipative (Stokes) force, which acts on the Brownian particle,

F s = −mγ0v, (1)

where m is the mass and γ0 the collision frequency (mγ0 is the friction constant). In contrast, the
so-called nonlinear Brownian motion is characterized by nonlinear dissipative forces, expressed
e.g. by a collision frequency depending on the velocity and/or the spatial coordinates

F = −mγ(v, r)v. (2)

Figure 1 shows an absolute linear dissipative Stokes force for the one-dimensional case and,
for comparison, also (nonlinear) velocity-dependent friction forces representing type (2). In
particular, we show the friction force of the depot-model (SET-model) introduced in Ref. [6, 7],
and a piece-wise linear approximation to it.
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Figure 1. Velocity-dependent dissi-
pative forces for the one-dimensional
case. The two most important cases
are illustrated: (i) Passive dissipative
Stokes force, Eq. (1), with only one
zero at v = 0. (ii) Active dissipative
forces of the SET-depot model, Eq.
(9), and a piecewise linear approxi-
mation, Eq. (13), with two stable ve-
locities ±v0 and one unstable velocity
v = 0 (for the SET-curve parameter
values q = 2, d0 = c = 1 were used).

The behavior of usual Brownian particles is completely determined by the (passive) stochastic
collisions between the particles and the surrounding medium. In particular this means that
there is effectively no active transfer of energy from the medium to the particles. The energetic
equilibrium between particles and surrounding medium is expressed in terms of the fluctuation-
dissipation theorems. Klimontovich worked out in detail the theory of Brownian motions for
the case, where the friction function γ(v, r) (as well as the corresponding noise strength) is a
more or less complicated function of the variables v and r. He derived Fokker-Planck equations
and provided many special solutions, in particular, for one-dimensional systems of particles with
nonlinear friction forces, that were originally derived in the context of self-oscillating systems,
as e.g. ensembles of van der Pol oscillators. Extending the ideas of Klimontovich, we want to
generalize below to active Brownian particles, which move in 2 dimensions due to an energy
input from the surrounding [6, 7, 8, 9, 10].

As already shown by Klimontovich, there exist many applications to non-ideal plasmas and
gases [1, 3]. A group of particularly interesting applications includes clusters of atoms/molecules
confined in a trap and cooled by laser fields [11]. Naturally, such systems are described by Fokker-
Planck equations with nonlinear (non-Stokes) friction [2, 3, 5]. In particular, there exist many
recent applications to ultra-cold clusters of atoms/molecules cooled by interaction with laser
radiation [14]. Additionally, negative friction has also been observed in investigations of the
energy loss (stopping power) of charged particles moving in a plasma [15, 20]. Other interesting
applications include charged clusters in microelectronics [16, 17, 18, 19] and charged grains in
dusty plasmas [21, 22, 25]. Last but not least, simplified nonlinear Brownian motion models
have been used successfully in the past to describe active biological motion [8, 26, 27, 28, 29].
Finally, we also note interesting applications to problems of traffic [30].

2. Dissipative forces, Langevin- and Fokker-Planck equations
The motion of Brownian particles with generalized velocity- and space-dependent friction in a
position-dependent potential U(r), can be described by the following Langevin equations:

dr

dt
= v; m

dv

dt
= F −∇U(r) + F(t) (3)

Here F is a dissipative force corresponding, in general, to a nonlinear friction law as in Eq. (2).
F(t) = (F i(t)) is a stochastic force vector with strength S and δ-correlated time dependence,
i.e.

〈F(t)〉 = 0; 〈F i(t)F j(t′)〉 = 2S δij δ(t − t′). (4)
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The noise strength for the momentum, S, is related to the noise strength for the velocities, D0,
via the simple relation S = m2D0. In the case of thermal equilibrium systems, corresponding
to γ(r, v) = γ0 = const., we may assume that the loss of energy resulting from friction, and the
gain of energy resulting from the stochastic force, are compensated on average. In this case the
fluctuation-dissipation theorem (Einstein relation) reads

S = D0 m2 = mkBTγ0, (5)

where T is the temperature, kB the Boltzmann constant, and D0 is a scaled expression for the
strength of the stochastic force in velocity space. Below it is sometimes useful to refer to units
in which m = kB = γ0 = 1, since then the Einstein relation simplifies to S = D0.

Usually, when dealing with stochastic Langevin equations, one is primarily interested in a
statistical description, i.e. in the probability density P (r, v, t) for finding the particle at location
r with velocity v at time t. The distribution function, P (r, v, t), which corresponds to the
Langevin equation (3), is governed by the Fokker-Planck equation

∂P (r, v, t)
∂t

+ v
∂P (r, v, t)

∂r
+ ∇U(r)

∂P (r, v, t)
∂v

=
∂

∂v

[
γ(r, v)v P (r, v, t) + D0

∂P (r, v, t)
∂v

]
. (6)

In the special case of purely passive Stokes friction γ(r, v) = γ0, the stationary solution of Eq.
(6), denoted by P0(r, v), is the Boltzmann distribution:

P0(r, v) = N exp
{
− 1

kBT

[
m

2
v2 + U(r)

]}
. (7)

With regard to nonlinear Brownian motions, a major question is, how this well-known solution
changes if we introduce active elements. While for usual Brownian motion the dissipation
of energy caused by friction is compensated by the stochastic force, for active particles (e.g.
bacteria) there exists an additional influx of energy. In general, one can account for the latter
effect by considering more a complex friction function. During the last decade, several models
for such self–propelling mechanisms have been proposed [6, 7, 26]. Here, we restrict ourselves to
discussing purely velocity-dependent friction, γ(r, v) = γ(v), as a mechanism for accelerating
the Brownian motion of particles.

Historically, velocity-dependent friction played an important role already in very early models
related to the theory of sound, developed by Rayleigh and Helmholtz. In the simplest case, one
may assume the following friction function for the force that acts on an individual Brownian
particle (with γ1/2 being positive constants):

γ(v) = −γ1 + γ2v
2 = γ1

(
v2

v2
0

− 1

)
= γ2(v2 − v2

0). (8)

This so-called Rayleigh-Helmholtz model is a standard model, which has extensively been studied
by Klimontovich in his work on nonlinear Brownian dynamics. We note that v2

0 = γ1/γ2 defines
a special absolute velocity value, at which the friction force vanishes.

Another standard model for active friction with a characteristic zero point was empirically
found in experiments with moving cells and has been analyzed in detail by Schienbein and Gruler
[26]. As shown by these authors, this model allows to describe the active motion of several cell
types as e.g. granulocytes.

Further, we consider the so-called depot model [6, 7, 28]. This model is based on the idea
that active particles may carry energy depots. By adiabatic elimination of the energy one finds
the nonlinear four-parameter friction function (see Fig. 1)

γ(v) = γ0 −
q

c + d0v2
, (9)
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where the four parameters γ0, q, c and d0 are assumed to be nonnegative. Evidently, for the
depot model the friction function is well-behaved in the full velocity range. Qualitatively, the
behavior of the the friction function (9) changes, depending on the value of the bifurcation
parameter [8, 9]

ζ =
q

cγ0
− 1. (10)

For positive values ζ > 0 one finds that the friction force vanishes for two absolute velocity
values, given by v0 =

√
cζ/d0 (stable state) and v1 = 0 (unstable). In contrast, for ζ < 0 there

is only one stable state corresponding v1 = 0, i.e. in this sub-critical parameter region a particle
is damped until it comes to rest.

Let us concentrate on the regime of active motions, ζ > 0. If the velocities are rather small,
then we get for the friction law

γ(v) =
(

γ0 −
q

c

)
− q d0

c2
v2 + O

(
v4

)
(11)

which, by virtue of

γ1 =
q

c
− γ0; γ2 =

qd0

c2
,

corresponds to the Rayleigh-Helmholtz friction discussed above.
For ζ > 0, due to the super-critical pumping, slow particles with |v| < v0 are accelerated and

fast particles with |v| > v0 are damped. In the case of two-dimensional motions, for example,
the deterministic trajectory (S = 0) of our system is attracted by a cylinder in the 4d-space,
whose velocity-coordinate projection is given by

v2
1 + v2

2 = v2
0, (12)

where v0 is the value of the stationary absolute velocity, reading for the Rayleigh-model or the
depot model, respectively,

v2
0 =

γ1

γ2
; v2

0 =
q

γ0
− c

d0
.

With regard to analytical calculations, it is often useful to approximate arbitrary friction models,
where the dissipative force has zeros at |v| = 0 and |v| = v0, by the piecewise linear force

F = −mγ(v)v ≈ −mα

(
1 − v0

|v|

)
v. (13)

For α = γ0 this reduces to the Schienbein-Gruler model. In the general case, the constant α has
to be fitted to the slope of the nonlinear friction force at the zeros for |v| = v0 as demonstrated
in Fig. 1. The piecewise linear approximation admits sometimes simple analytical solutions;
however, this model fails to describe the dynamics around v = 0 and the transients based on
this dynamics. It would be quite interesting to study piecewise linear models with a finite slope
in v = 0.

3. Free and confined active particles
Let us study first the stationary solutions of the Fokker-Planck equation (6) for the case of free
particles. Considering the Rayleigh-model of active friction from Eq. (8) for the case case of
free motions (i.e. no external forces), one finds the stationary solution

P0(v) = N exp
[

γ1

2D0
v2 − γ2

4D0
v4

]
, (14)
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where N is a normalization constant. The shape of the distribution from Eq. (14) can be seen
in Fig. 2. For the piecewise linear model the solution is particularly simple:

P0(v) = N exp
[
− α

2D0
(|v| − v0)2

]
. (15)

Finally, for the depot-model (sometimes called SET-model) the stationary solution reads

P0(v) = N
(

1 +
d0

c
v2

)q/2D0

exp
[
− γ0

2D0
v2

]
. (16)

For strong noise, corresponding to high temperatures D0 ∼ T → ∞, the distribution (16)
approaches a Maxwellian distribution. In the opposite limit, D0 ∼ T → 0, it reduces to a
delta-distribution, peaked at |v| = v0. This limiting behavior is also characteristic for Eqs. (14)
and (15), whereas the Maxwellian limit case is not contained in Eqs. (14-15). Figure 2 shows a
comparison of the three probability density distributions from Eqs. (14), (15) and (16) for the
one-dimensional case.
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Figure 2. Stationary velocity distribu-
tion functions (14)–(16) of active Brow-
nian particles for the one-dimensional
case: (i) Rayleigh-Helmholtz model with
γ1 = γ2 = 1, (ii) Piecewise linear approxi-
mation with α = 1, and (iii) SET-depot
model with over-critical parameter-values
q = 2, d0 = c = γ0 = 1. For each curve we
have fixed D0 = N = 1.

If one considers free particles allowed to move in two spatial dimensions, then the stationary
probability density is located on a cylinder in the 4- dimensional phase space. Including a
confinement in a parabolic trap the particles start to rotate clockwise or counter-clockwise and
the probability concentrates on two ‘hula-hoop’-like 4-dimensional limit cycles, as demonstrated
in Fig. 3.

4. Clusters of atoms or molecules with active friction
Investigations of atoms or molecules confined in a trap and cooled down to very low temperatures
have attracted considerable theoretical and experimental interest over the last years [11]. Here
we will study finite clusters consisting of a small number of particles (e.g. atoms or molecules),
interacting via Morse potentials:

φ(rij) = A [exp(−arij) − 1]2 − A a > 0, A > 0, (17)

where rij is distance between two particles. Due to the attracting tail of the Morse potentials, the
particles can form clusters (self-confinement) at sufficiently low temperatures [12, 13]. Individual
particles then move in the collective field of the other molecules, which might be represented
by a (self-consistent) mean field approximation [31]. Let us assume that the cluster is subject
to laser cooling. This leads to a Fokker-Planck description with active friction very similar to
the above models [2, 5, 11, 14]. For simplicity, we shall assume here that the dissipative force
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Figure 3. A bundle of stochastic trajectories of active Brownian particles in parabolic
confinement near to the limit cycles.

has zeroes at |v| = v0 and, moreover, that the real dissipation function can be approximated
the piecewise linear function given in (13). Simulations based on this approximation show that
small Morse clusters tend to rotate clockwise or counter clockwise as illustrated in Fig. 4 [31].
Furthermore, larger ensembles of Morse molecules are decomposed into clusters of smaller sizes
which may rotate or drift as depicted in Fig. 5.
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Figure 4. The two possible stationary states of a rotating cluster of 20 particles interacting via
Morse forces. The arrows correspond to the velocities of the particles. In the presence of noise
the cluster changes from time to time the direction of rotation.

94



0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

t = 100

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

t = 250

Figure 5. Rotating and drifting clusters of 625 particles with Morse interactions.

5. Coulomb clusters with active friction
Recent investigations of the stochastic dynamics of highly charged Coulomb grains embedded
into a plasma have shown that nonlinear friction functions with additional zeroes (negative
friction) may possibly occur under very special experimental conditions [21, 22]. The energy
influx from a ‘depot’ is in this case provided by the absorption of ions by the Coulomb grains.
The rather complicated dissipation functions derived in [21, 22] can, in principle, again be
approximated by a Rayleigh-Helmholtz function or a piecewise linear Schienbein-Gruler friction
law.

Let us consider grain-grain interactions, mediated by a screened Coulomb pair interaction
potential:

ΦC
ij(r) =

Qi Qj

4πε0

1
rij

exp
(
− rij

λD

)
, (18)

where λD is the Debye screening length, and rij = |ri − rj | denotes the distance between two
grains located at ri = (xi, yi) and rj = (xj , yj), respectively. Motions perpendicular to the
horizontal x-y–plane are neglected. For simplicity, we shall confine ourselves to the case where
all grains are identical, i.e.

Qi = Q = −Ze, mi = m (19)

for i = 1, 2, . . . , N . If an ensemble of N such particles is confined by an external parabolic
potential

Φex(r) =
mgω

2
0

2
r2, (20)

then their ground-state configuration corresponds to a regular two-dimensional structure,
referred to as Coulomb crystal [17, 18, 24]. These static structures can be classified and a
‘Mendeleev’ table for the case of pure Coulomb interactions, corresponding to λD → ∞, was
presented in Ref. [16] for particle numbers N = 2, . . . , 52. An analogous analysis for screened
potentials of the type (18) can be found in [23].

In [25] we have studied the dynamics of two-dimensional Coulomb clusters confined in a
harmonic trap by using a Langevin approach. In particular, we identified the excitations that
arise in the presence of negative friction. This was achieved by numerically integrating the
Langevin equations of motion

mv̇i = F C
i + F ex

i − mγ(vi)vi + F i(t), (21)
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Figure 6. Examples of stationary active motions of Coulomb clusters with N = 3, 4, 5 grains
and D0 = 0, where the parameter κ is given by κ ≡ Z2e2/(4πε0mω2

0λ
3
D). (a) N = 3: This

attractor corresponds to an acoustical oscillation. (b) N = 4: For this stable optical excitation
the stationary orbit of a single grain is very similar to a Lissajous-pattern. (c) N = 5: Stationary
wave pattern.

where vi = ṙi denotes the grain’s velocity. In agreement with the Rayleigh-Helmholtz model,
the friction function is taken as

γ(v) = α(v2 − v2
0), α > 0. (22)

From Eq. (20), the external linear force F ex
i modeling the ion trap is obtained as

F ex
i = −∇iΦex(ri) = −mgω

2
0 ri, (23)

and the screened Coulomb force, acting on the ith grain, is given by

F C
i =

N∑
j=1,j �=i

Z2e2

4πε0

ri − rj

r3
ij

exp
(
− rij

λD

) (
1 +

rij

λD

)
. (24)

Again, in this simplified model the interaction between the grains and the surrounding plasma is
encoded in the last two terms in Eq. (21), i.e. by the friction coefficient γ(vi) and the stochastic
Langevin force F i(t).

Figure 6 shows, for the deterministic limit case D0 = 0, examples of stable stationary
excitations in actively driven Coulomb clusters with N = 3, 4, 5 grains. Each of these
excitations represents a qualitatively different dynamical attractor type of the deterministic
system. As discussed in [25], there exists a direct correspondence between the attractors in
active Coulomb systems and the so-called normal modes in purely damped Coulomb clusters,
recently investigated in experiments by Melzer et al. [32].

If the grains are additionally subject to noise, D0 > 0, the stationary dynamics of the model
system is not confined to a single attractor basin anymore. If, however, the friction parameter
α and the interaction parameter

κ ≡ Z2e2

4πε0mω2
0λ

3
D

(25)

are sufficiently large, then the stochastic trajectories are still spending a relatively long time in
the vicinity of the attractor regions of the related deterministic system (with D0 = 0). This is
illustrated in Fig. 7 (a), where a stochastic orbit for an actively driven Coulomb cluster with
N = 2 grains is shown.

Noise-induced transitions between the different attractor regions are, among others, reflected
by the probability density f(L) of the absolute angular momentum L. If active friction is
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Figure 7. (a) For D0 > 0 the two grains performs a stochastic motion around the center
of the trap. Due to the influence of the stochastic force, the system can travel between the
different attractor regions of the related deterministic system. (b) Numerically calculated
angular momentum probability density f(L) for the case N = 2 with active friction. The
peaks of the distribution are located at the L-values that characterize the attractors of the
corresponding deterministic system with D0 = 0. (c) Numerically calculated function f(L) for
purely passive friction γ(v) ≡ γ0 = 1.0; all other parameters are the same as in (b).

present, then the shape of the function f(L) essentially differs from the approximately Gaussian
shape, which is typical of systems with purely passive (positive) friction, compare Fig. 7 (b)
and (c). More precisely, as evident from Fig. 7 (b), at sufficiently low (temperature) values D0

active friction leads to a multi-peaked angular momentum probability density function f(L). The
characteristic values L1, L2, . . ., at which these peaks occur, are – in lowest order approximation –
determined by the mean angular momentum values of the attractors found for the corresponding
deterministic system (with D0 = 0).
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[18] Bolton F and Rössler U 1993, Superlatt. Microstruct 13 193
[19] Bonitz M, Golubichnyi V, Filinov A V and Lozovik Yu E 2002 Microelectronic Eng. 63 141
[20] Gericke D O, Schlanges M and Kraeft W D 1996 Phys. Lett. A 222 241
[21] Trigger S and Zagorodny A 2003 Contr. Plasma Phys. 43 381
[22] Trigger S 2003 Phys. Rev E 67 046403

97



[23] Lai Y-L and I L 1999 Phys. Rev. E 60 4743
[24] Hebner G A, Riley M E, Johnson D S, Ho P and Buss R J 2001 Phys. Rev. Lett. 87 235001
[25] Dunkel J, Ebeling W and Trigger S 2004 Phys. Rev. E 70 046406
[26] Schienbein M and Gruler H 1993 Bull. Math. Biol. 55 585
[27] Viscek T, Czirok A, Ben-Jacob E, Cohen I and Shochet O 1995 Phys. Rev. Lett. 75 1226
[28] Ebeling W, Schweitzer F and Tilch B 1999 BioSystems 49 17
[29] Derenyi I and Viscek T 1995 Phys. Rev. Lett. 75 294
[30] Helbing D, Herrmann H J, Schreckenberg M and Wolf D E 2000 Traffic and Granular Flow 99 (Berlin:

Springer)
[31] Erdmann U, Ebeling W and Anishchenko V S 2002 Phys. Rev. E 65 061106
[32] Melzer A, Klindworth M and Piel A 2001 Phys. Rev. Lett. 87 115002

98


