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Living systems operate far from thermal equilibrium by converting the chemical potential of ATP into
mechanical work to achieve growth, replication, or locomotion. Given time series observations of intra-,
inter-, or multicellular processes, a key challenge is to detect nonequilibrium behavior and quantify the rate
of free energy consumption. Obtaining reliable bounds on energy consumption and entropy production
directly from experimental data remains difficult in practice, as many degrees of freedom typically are
hidden to the observer, so that the accessible coarse-grained dynamics may not obviously violate detailed
balance. Here, we introduce a novel method for bounding the entropy production of physical and living
systems which uses only the waiting time statistics of hidden Markov processes and, hence, can be directly
applied to experimental data. By determining a universal limiting curve, we infer entropy production
bounds from experimental data for gene regulatory networks, mammalian behavioral dynamics, and
numerous other biological processes. Further considering the asymptotic limit of increasingly precise
biological timers, we estimate the necessary entropic cost of heartbeat regulation in humans, dogs,

and mice.
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Living systems break time-reversal symmetry [1,2].
Growth [3], self-replication [2], and locomotion [4] are
all irreversible processes, violating the principle of detailed
balance, which states that every forward microstate tra-
jectory is as likely to occur as its time-reversed counterpart
[1,5-7]. Irreversibility places thermodynamic constraints
on sensing [8,9], reproduction [2], and signaling [10] and
trade-offs between free energy consumption and the pre-
cision, speed, or accuracy of performing some function
[8,11]. To quantify these constraints, one has to bound the
rate at which free energy is consumed or, equivalently, the
entropy production rate (EPR) [5,12,13]. However, most
experimental measurements can observe only a small
number of degrees of freedom [13-15], making such
inference challenging. In particular, many systems are
accessible only at the coarsest possible level of two states,
such as a gene switching [16] or a molecule docking and
undocking to a sensor [9,17]. In these cases, commonly
used inference tools cannot be applied, due to the absence
of observable coarse-grained currents [18-21] and as the
forward and reverse trajectories need not be asymmetric
[22-25], even if the underlying system operates far from
equilibrium.

Here, we introduce a broadly applicable method that
makes it possible to estimate the EPR of a coarse-grained
two-state dynamics by measuring the variance of time spent
in a state. This is achieved by finding a canonical
formulation and then solving a numerical optimization
problem to obtain a universal limiting curve, above which
the EPRs of all systems with the observed waiting time
statistics must lie. We illustrate that this method
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outperforms a recently introduced thermodynamic uncer-
tainty relation (TUR) [9,18,20,26] on synthetic test data
and demonstrate its practical usefulness in applications to
experimental data for a gene regulatory network [16], the
behavioral dynamics of cows [27], and several other
biological processes (Table S1 [28]). Furthermore, by
considering a stochastic timer [29-32], we derive an
asymptotic formula relating the waiting time variance
and the EPR. This analytical result can be used to bound
the EPR required to maintain precise biophysical timing
processes, which we illustrate on data from experimental
measurements [33,34] of heartbeats of humans, dogs,
and mice.

We start from the standard assumption [5,35] that
mesoscale systems in contact with a heat bath can be
described by a Markovian stochastic dynamics on a finite
set of discrete states {1, ..., N }. Transitions from state i to
J occur at rate W;;, so a probability distribution over the
states, p;(t), evolves according to

d
EP;’ = ZPjoi’ (1)
J

with Wj; = =3 .., W;; [5,36]. Assuming that the system is
irreducible, meaning there exists a path with nonzero
probability between any two states, Eq. (1) has a unique
stationary state 7 = (x;), satisfying 0 = zW and which
every initial probability distribution tends to [37]. The EPR
at steady state z is [20]
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which for isothermal systems, when multiplied by the bath
temperature, is the rate of free energy dissipation required
to maintain the state away from equilibrium [38]. The
system is in thermal equilibrium when the EPR vanishes,
which is exactly when detailed balance is satisfied,
ﬂiWij = ”joi’ for all i and ]

Only a coarse-grained view of the system is typically
available in experiments [24,39], with the observed dynam-
ics taking place on a set of metastates, where a metastate /
may contain several underlying states i (Fig. 1). Here, we
focus on the common case where only two complementary
metastates, A and B, are accessible and the observed
trajectory jumps between them (Fig. 1). After observing
many such jumps, the distributions f,(¢) and f(7) of time
spent in A and B can be empirically reconstructed (Fig. 1).
As the coarse-grained observations are non-Markovian
[40], there may be additional information in conditional
statistics [15,39], but these are hard to measure experi-
mentally and we do not consider them here. At first glance,
the distributions f4(¢) and f(7) alone may not appear to
contain much information about the underlying system;
however, for an equilibrium system, both f,(¢) and f(7)
must decay monotonically [41], implying that the sche-
matic example in Fig. 1 reflects an out-of-equilibrium
dynamics.

To quantify the extent to which an observed two-state
system is out of equilibrium, we reformulate the problem of
EPR estimation within an optimization framework, extend-
ing the approach introduced in Ref. [39]. Calling the
underlying system S, the EPR is ¢(S), and the observed
waiting time distributions are f,(z,S) and f3(7,S). f R
describes some other underlying system with the same
observables, we cannot know which is the true system.
However, we can find a lower bound on the EPR by
minimizing over all such R:

Probability
density

Time spentin A

Probability
density

Time spentin B

FIG. 1. A Markovian process on discrete states (black circles),
observed at a coarse-grained level, with only the metastates A and
B visible to the observer (left). From observing this system, we
can deduce the distribution of time spent in metastates A and B
(right). A nonmonotonic waiting time distribution signals [41]
out-of-equilibrium dynamics.

o(S) 2 H}%H{G(R)VA(L S) = fa(t.R),
fe(t.S) = f(t. R)}, (3)

which holds, since S is contained in the set on the right. By
construction, this is the tightest possible lower bound given
the observed distributions f, and f. Limited experimental
data may prevent us from precisely measuring the full
distribution, but we can typically measure the first few
moments ("), and (r"),. We, therefore, introduce the

estimators a(T" J:

o(S) 2 H;%H{G(R)\(tkhm = ("5
forI:A,B,k:1,...,n}EO'(T"), (4)

) o . .
where a(T") < (;(T" ), since increasing n decreases the size of

the set over which minimization is performed.

Instead of specifying the transition rates of a system R,
we can alternatively specify the net transition rates,
n;; = m;W;;, for i # j, provided they satisfy mass con-
servation at each vertex, »;n;; = > _;nj;, and independ-
ently specify the stationary state r;. With n;; fixed,
modifying z; does not affect the EPR. In particular, suppose
that we have found the optimal z;, n;;, subject to the
constraints; then the fraction of time spent in A is
ra =Y iea®,» and similarly rz =) ,cp 7. Rescaling
;> 7;/2ry for i € A and z; > 7;/2rp for i € B does
not affect the EPR but makes the fraction of time spent in
each metastate exactly 1/2. The statistics are rescaled as
(t5Y, > (1/2r;)*(¢*), for I = A, B. The average time spent
in A or B in the rescaled system is 7 = ((t), + (t)5)/2. A

second rescaling n;; > tn;; with z fixed changes EPR as
o — 70, and the moments as (t*); — (¢*),/7*. Therefore,

we can rewrite Eq. (4) as

o(S) 2 Tmin{ol (1) 5 = (#)1/ s

for | =A,B,k=2,...,n}, (5)

allowing us to optimize over a single canonical system and
rescale to bound any other noncanonical system.

After the canonical rescaling, to express constraints in
terms of the transition rates, we label the states so that the
first N belong to the metastate A, with 1 <N < N, and
define (W,);; = W;; for i,j < N, so W, represents the
transitions within A. We also write 7 = (74, 7p), with 74
the first N components of the stationary distribution. For
any such Markovian process in the stationary distribution,
we have that f,(t) = myW3exp(Wpr)1T /(—z,W417)
[28,37], and similar for fz(¢). For the canonical system,
(t)ar =1, s0 =, W,1T = 1/2, and higher moment con-
straints become
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FIG. 2. Bounding the EPR from a single limiting curve. (a) All realizable systems lie above the curve A (black) which represents the
optimal variance-entropy production trade-off. Minimizing over increasing numbers of internal states leads to rapid convergence, with
results shown for up to eight internal states (green curves). Given measured values of the waiting time variance, a lower bound on
entropy production can be read off, as demonstrated here for experimental data in (b) (dashed line) and (c) (dotted line). (b) Genes
stochastically switch from being active to inactive, mRNA is produced when the gene is active, proteins are produced when mRNA is
present, and both stochastically degrade (left). The distribution of time the gene spends in the inactive state as measured in recent
experiments, for the genes glutaminase and Bmall (right; see also Fig. 2C in Ref. [16]). (c) Distribution of time cows spent lying before

standing across three experiments from Ref. [27].
(M) ar = 2(=1)klz, Wi 17, (6)

and similar for B. While this provides a general minimi-
zation framework, from now on we will only impose the
constraint on (%), , which allows us to minimize over
systems with B consisting of a single state [28]
and results in a single curve. Specifically, we minimize
over m; >0, n;; >0, subject to the linear constraints
Mii = =D iz Mijs D jziMij = D jzi Nji»  together  with
(har = (t)pr =1, and (*), fixed, finding a curve
kgA((*), ) in the & — (1*) , » plane, or, equivalently, the
o-Vart, r plane, above which all Markovian systems must
lie [Fig. 2(a)]. For arbitrary systems, this bound becomes

= [ A<V<?>ﬁ> ™

which we use throughout to bound the EPR. The function
A(x) can be computed numerically [28,42]; it converges
rapidly as the number N of internal states of A is increased
[Fig. 2(a)]. Given the tabulated values of A, we can apply
Eq. (7) directly to experimental data. Before doing so, it is
instructive to demonstrate the usefulness of o, in simu-
lations of an active sensor.

To perform vital functions like chemotaxis, cells sense
chemical concentration levels within their environment [§]
through the stochastic binding and unbinding of molecules
at surface receptors [9] [Fig. 3(a)]. Recent works [8,9,43]
showed that active sensors can overcome the equilibrium
Berg-Purcell sensing limit by expending energy, with a
trade-off between increased sensing accuracy and energy

expended. We apply Eq. (7) to a simple model of an active
sensor [9], with the receptor system modeled as a ring with
five states, one of which corresponds to an unbound
receptor, and with four internal states corresponding to a

.
,

ol
% 5 10 0 2 4
Time spent bound Exact entropy production rate

(a) [ ]
- v

()

8 a

—~
o
-~

e

b)os

o
N

0.25

Probability density
Estimated entropy
production rate

N

FIG. 3. Bounding the EPR of a model active sensor. (a) Cells
sense through receptors on their surface, which detect concen-
tration of some molecular species (black squares) by switching
between unbound (top left) and bound (bottom left) configura-
tions. We consider a simple model of a sensor, with four internal
states for the bound receptor configuration [9]. Clockwise
transitions occur at a rate W, and counterclockwise with rate
W_. (b) Distribution of time spent bound for o = 0, 1, 2, 3, 4 with
kg =1=W,, W_ < 1. (c) Estimates of the EPR as a function of
the exact EPR o, as calculated from 200 trajectories of length
T = 2000 for each value of 6. The o7 and TUR estimators are
shown with 95% range of predictions.
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bound receptor [Fig. 3(a)]. The rate of clockwise transitions
is taken to be W,, with counterclockwise transitions
occurring at rate W_ < W, resulting in an EPR of
o= (W, —-W_)log(W,/W_). The 67 bound is reason-
ably close to the exact value ¢ in intermediate regimes of
entropy production [Fig. 3(c)]. For small values of o, the
same variance could be generated by an equilibrium
process, whereas for large values the variance could be
generated at much lower cost by a system with more
internal states [28]. The original TUR [18], while a
powerful tool for inference [19,20], cannot gain nontrivial
bounds for this system, as there are no observed currents. A
more recently introduced TUR [9,28], relating the mean
and variance of the fraction of time spent in a metastate to
the EPR, is the only existing estimator of which we are
aware that can yield a nontrivial bound. Figure 3(c) shows
that the TUR bound is substantially lower and for a finite
sample size has a much larger variance, thus requiring a
large amount of data for a reliable prediction compared
to or.

As the first of many experimental applications of 67, we
consider stochastic gene regulatory networks [44,45]. Cells
regulate the intracellular concentration of proteins, chang-
ing the concentration in response to external stimuli or
maintaining a constant level by balancing production and
degradation [45]. Proteins are created by enzymes trans-
lating mRNA, which, in turn, is transcribed by enzymes
from DNA instructions or genes [46]. Genes switch
between active and inactive metastates, the rate of switch-
ing regulated by protein concentration, among other things,
and while active mRNA is transcribed [44] [Fig. 2(b)]. By
examining the distribution of times which a gene spends
inactive, we can deduce that the regulatory system is out of
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equilibrium. Recent experiments [16] on mammalian gene
transcription measured the times for which certain genes
were active or inactive. From the histogram of inactivity
periods [Fig. 2(b)] for the glutaminase gene, one finds
() o/ ()2 = 1.6 and 7= 0.9 h, so that ¢ > 2.2kp/h,
whereas for the Bmall promotor, (%)./(f)%; = 1.5 and
7= 1.1 h, resulting in ¢ > 2.4kp/h.

From complex neural networks to simple feedback loops,
living systems make decisions on which behavior to
execute, and such decision making requires the expenditure
of free energy [47]. Recent experiments identified behav-
ioral states of different organisms [48,49]. From dynamics
on these metastates, it is possible to bound the EPR [49]. By
attaching sensors to cows, the authors of Ref. [27] recorded
whether the cows were standing or lying, as well as the
waiting time distribution of each [Fig. 2(c)]. From the time
the cows spend lying (metastate A), we can calculate a
nonzero bound on the EPR. Specifically, for the three
experiments involving pregnant indoor-housed beef cows,
out-wintered beef cows, and indoor-housed dairy cows
[27], we find 67 = 4.1kg/h, 3.2k /h, and 2.4k /h, respec-
tively. Assuming kzT = 9.9 x 1072% Cal, we can therefore
deduce that the cows consume at least 2.4 x 1072! Cal/h, in
deciding whether to lie or stand. While this is a significant
underestimate, the o7y estimator does not assume any
specific model of the decision-making process and so does
not require the cows to “possess spherical symmetry” [50].

The systems considered so far could be interpreted as
timers; by paying an energetic cost, they control the time
spent in a subset of states more precisely than an equilib-
rium system would allow. Previous studies of biological
clocks assume measurements of time are performed by
counting the number of full cycles around a circular
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FIG. 4. EPR in the small variance limit. (a) Numerical optimization (green curves) is feasible only for small o, although extrapolating
to N = oo extends this range (purple line). Alternatively, the asymptotic limit of a continuous Langevin system extends beyond the range
of finite networks (dashed line). Using the asymptotic relation, we can examine the entropic cost of building an oscillator as precise as a
heartbeat across different species (gray dotted lines). (b) Typical electrocardiogram measurements of heartbeats for humans, dogs, and
mice [33,59]. (c) Distribution of time between beats, scaled so the mean time is 1, from a single experiment from each species.
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network topology [29], although such analysis can be
extended to more general biological oscillators [30,32].
However, the resulting TUR bound cannot be straightfor-
wardly converted into bounds on Vart,, and, moreover, the
networks which saturate the TUR bound do no better than
equilibrium systems at minimizing Vart, [28]. To elucidate
the relationship between ¢ and Vart,, one can neglect the
dynamics of metastate B by letting (t)z — 0, so that
o > (2kg/(t)4)A(Varty/(t)). Our particular goal is to
estimate a bound on the EPR of precise timers exhibiting
small variance Vart,/(t)3 < 1, such as heartbeats.

Unfortunately, it is not feasible to explore the limit
Vart, — 0 numerically, as, for a fixed number N of states
in A, the largest precision possible is Vart,/{f); > 1/N,
and numerical minimization becomes prohibitively expen-
sive for N 220 [28]. To gain analytical insight, we
consider the continuum limit of an infinite number of
internal states, N — oo, such that the dynamics in A can be
represented by a Langevin equation [28,51]. A continuous
system can be approximated arbitrarily well by a discrete
system [28,39,52], but a general discrete system need not
be well approximated by a continuous Langevin equation
[28,53-55], so by searching over the space of Langevin
dynamics we will find an upper bound on the true optimal
precision versus entropy trade-off curve [28]. In the limit of
infinite precision Varz, /()3 — 0, we find analytically [28]
the asymptotic relation Vart,/(f)i = 1/6 +41In5/6°+
o(In6/6%), where 6 = o(t),/2kg; achieving this in prac-
tice would require many internal states, a common trade-off
in stochastic networks [30,56,57]. We apply this asymptotic
prediction to heartbeat data [58] for humans [34] and other
species [33]. Although the precision of the observed
beating patterns renders numerical o7 estimates unfeasible,
the asymptotic formula implies entropic costs of at least
280kg /s, 480ky /s, 270k /s, and 2360k /s to maintain the
heartbeats for young humans, older humans, dogs, and
mice, respectively (Fig. 4).

In addition to the systems discussed above, nonequili-
brium waiting time distributions have been measured for
switching processes in cell fate decision making [60], dwell
times of kinesin motors [61,62], cluster lifetimes of RNA
polymerase [63], the directional switching of the bacterial
motor [41,64], swim-turn dynamics of algae and bacteria
[65,66], direction reversal in swarming bacteria [67-69],
the repolarization times of migrating cancer cells [70],
visual perception switching between metastable states [71],
and the duration of animal and insect flights [72,73]. The
framework introduced here makes it possible to bound the
extent to which these systems are out of equilibrium
(Table S1 [28]) and, thereby, to quantify the trade-offs
which biological systems are forced to make.

The source code is available online [74].
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