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Living systems maintain or increase local order by working against
the second law of thermodynamics. Thermodynamic consistency
is restored as they consume free energy, thereby increasing the
net entropy of their environment. Recently introduced estima-
tors for the entropy production rate have provided major insights
into the efficiency of important cellular processes. In experiments,
however, many degrees of freedom typically remain hidden to
the observer, and, in these cases, existing methods are not opti-
mal. Here, by reformulating the problem within an optimization
framework, we are able to infer improved bounds on the rate
of entropy production from partial measurements of biological
systems. Our approach yields provably optimal estimates given
certain measurable transition statistics. In contrast to prevailing
methods, the improved estimator reveals nonzero entropy pro-
duction rates even when nonequilibrium processes appear time
symmetric and therefore may pretend to obey detailed balance.
We demonstrate the broad applicability of this framework by
providing improved bounds on the energy consumption rates
in a diverse range of biological systems including bacterial flag-
ella motors, growing microtubules, and calcium oscillations within
human embryonic kidney cells.

entropy production | bacterial motors | microtubules |
calcium oscillations | Markov processes

Thermodynamic laws place fundamental limits on the effi-
ciency and fitness of living systems (1, 2). To maintain cellular

order and perform essential biological functions such as sens-
ing (3–6), signaling (7), replication (8, 9) or locomotion (10),
organisms consume energy and dissipate heat. In doing so, they
increase the entropy of their environment (2), in agreement
with the second law of thermodynamics (11). Obtaining reliable
estimates for the energy consumption and entropy production
in living matter holds the key to understanding the physical
boundaries (12–14) that constrain the range of theoretically and
practically possible biological processes (3). Recent experimen-
tal (6, 15, 16) and theoretical (17–20) advances in the imaging
and modeling of cellular and subcellular dynamics have provided
groundbreaking insights into the thermodynamic efficiency of
molecular motors (14, 21), biochemical signaling (16, 22, 23) and
reaction (24) networks, and replication (9) and adaption (25)
phenomena. Despite such major progress, however, it is also
known that the currently available entropy production estima-
tors (26, 27) can fail under experimentally relevant conditions,
especially when only a small set of observables is experimentally
accessible or nonequilibrium transport currents (28–30) vanish.

To help overcome these limitations, we introduce here a
generic optimization framework that can produce significantly
improved bounds on the entropy production in living systems.
We will prove that these bounds are optimal given certain
measurable statistics. From a practical perspective, our method
requires observations of only a few coarse-grained state variables
of an otherwise hidden Markovian network. We demonstrate
the practical usefulness by determining improved entropy pro-
duction bounds for bacterial flagella motors (10, 31), growing
microtubules (32, 33), and calcium oscillations (7, 34) in human
embryonic kidney cells.

Generally, entropy production rates can be estimated from the
time series of stochastic observables (35). Thermal equilibrium
systems obey the principle of detailed balance, which means that
every forward trajectory is as likely to be observed as its time
reversed counterpart, neutralizing the arrow of time (36). By
contrast, living organisms operate far from equilibrium, which
means that the balance between forward and reversed trajec-
tories is broken and net fluxes may arise (1, 37–39). When all
microscopic details of a nonequilibrium system are known, one
can measure the rate of entropy production by comparing the
likelihoods of forward and reversed trajectories in sufficiently
large data samples (35, 36). However, in most if not all biophysi-
cal experiments, many degrees of freedom remain hidden to the
observer, demanding methods (28, 40, 41) that do not require
complete knowledge of the system. A powerful alternative is pro-
vided by thermodynamic uncertainty relations (TURs), which
use the mean and variance of steady-state currents to bound
entropy production rates (18, 19, 26, 42–48). Although highly
useful when currents can be measured (44–47), or when the sys-
tem can be externally manipulated (40, 49), these methods give,
by construction, trivial zero bounds for current-free nonequilib-
rium systems, such as driven one-dimensional (1D) nonperiodic
oscillators. In the absence of currents, potential asymmetries
in the forward and reverse trajectories can still be exploited to
bound the entropy production rate (29, 30, 50), but to our knowl-
edge no existing method is capable of producing nonzero bounds
when forward and reverse trajectories are statistically identi-
cal. Moreover, even though previous bounds can become tight
in some cases (51), optimal entropy production estimators for
nonequilibrium systems are in general unknown.
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Thermodynamic laws fundamentally limit the efficiency and
accuracy of living systems. To perform essential functions,
from sensing to replication and locomotion, organisms con-
sume energy and dissipate heat. The rate at which they
consume energy can be bounded, in theory, by measuring all
their internal variables. In practice, however, the entire system
is rarely experimentally observable, and many internal states
remain hidden. Here, we introduce a mathematical framework
that yields optimal bounds on the energy consumption rate
when only a small number of observables are available. Over-
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bounds even when the observed trajectories are time symmet-
ric. We demonstrate the practical usefulness of this method in
applications to a variety of recent experimental data.
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To obtain bounds that are provably optimal under reasonable
conditions on the available data, we reformulate the problem
here within an optimization framework. Formally, we consider
any steady-state Markovian dynamics for which only coarse-
grained variables are observable, where these observables may
appear non-Markovian. We then search over all possible under-
lying Markovian systems to identify the one which minimizes
the entropy production rate while obeying the observed statis-
tics. More specifically, our algorithmic implementation leverages
information about successive transitions, allowing us to discover
nonzero bounds on entropy production even when the coarse-
grained statistics appear time symmetric. We demonstrate this
for both synthetic test data and experimental data (52) for flag-
ella motors. Subsequently, we consider the entropy production
of microtubules (33), which slowly grow before rapidly shrink-
ing in steady state, to show how refined coarse graining in space
and time leads to improved bounds. The final application to
calcium oscillations in human embryonic kidney cells (34) illus-
trates how external stimulation with drugs can increase entropy
production.

Results
Theoretical Background. Due to the large number of particles
involved, classical thermodynamics can reasonably treat macro-
scopic processes, like a combustion cycle in an engine, as deter-
ministic. By contrast, theoretical descriptions of microbiological
processes such as intracellular stochastic reactions (24, 53), cel-
lular sensing (4, 25, 54), and DNA transcription and repair (55,
56) must account for fluctuations (1, 57). The most widely used
framework (17, 58, 59) for this purpose is probabilistic Markov
models that assume stochastic transitions between states (60)
(Fig. 1). Specifically, for the mesoscopic biophysical systems stud-
ied below, there is a time-scale separation between the fast
degrees of freedom of the environment, such as the positions
and momenta of the solvent molecules, and the slow degrees of
freedom of the system of interest, such as the length of a micro-
tubule or the concentration of calcium ions. This scale separation
allows for an effective description as Markovian dynamics over
the slow degrees of freedom (28). We further note that, in
this case, the non-Markovian nature of experimentally accessible
observables does not arise through measurements on time scales
close to the bath correlation time scale (61), but rather from
partial “coarse-grained” observations (Fig. 1); an underlying
Markovian description of the complete set of slow degrees of
freedom remains appropriate. Within this framework, stochastic
thermodynamics was introduced (24, 35, 57) and is now well val-
idated experimentally (62–65). Recent efforts have thus turned
to the problem of thermodynamic inference: deducing thermo-
dynamic quantities, such as the entropy production rate, from
partial observations (19, 27). The improved estimators intro-
duced here perform this inference by bounding from below the
entropy production rate of any coarse-grained Markovian sys-
tem, whether it be discrete or continuous in space (66) (SI
Appendix, section IX) or observed only at discrete times (SI
Appendix, section VII).

Exact Entropy Production Rate. Our goal is to construct an estima-
tor that comes as close as possible to the true entropy production
rate σ of the underlying Markov network, which remains hid-
den to us. The only assumptions we shall make are that the
microscopic state network is connected, that transitions between
states are reversible as required by thermodynamics (19), and
that there is no external time-dependent driving, so that the
microscopic system S will reach a unique steady state in which
it spends a fraction πi of the time in state i . A system in ther-
mal equilibrium obeys detailed balance, meaning forward and
reverse transitions are equally likely to be observed, or πiqij =
πj qji , where qij is the rate at which the system transitions from
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Fig. 1. Illustration of an underlying Markovian transition network and the
coarse-grained observed system. The microscopic Markovian system (Top)
contains nine states labeled A1, . . . C3, while the observer can only dis-
tinguish the coarse-grained macrostates A, B, C and transitions between
them. Shown are a sample trajectory on microstates of the system (Middle)
and the observed macrostate trajectory (Bottom), which in general exhibits
non-Markovian transition dynamics.

microstate i to microstate j (19). For systems in a nonequilibrium
steady state (NESS), violations of detailed balance occur at the
price of increasing entropy of their environment. The associated
rate of entropy production σ(S) is formally given by

σ= kB
∑
i 6=j

πiqij log

(
qij
qji

)
, [1]

where πiqij counts the rate of transitions i→ j , and
kB log(qij/qji) counts the entropy change for such a tran-
sition (19). In principle, given all of the states and a sufficiently
long system trajectory, we could deduce the values of πi and qij
and hence calculate σ exactly from Eq. 1. In practice, however,
one typically cannot know or observe all of the states, and
experimental time-series measurements are possible only for
severely coarse-grained macroscopic observables (Fig. 1). The
challenge is then to estimate σ from such coarse-grained data.

Coarse-Grained Observables Can Be Non-Markovian. We observe
the coarse-grained macrotrajectories of an underlying
Markovian microscopic process, which formally can be treated
as the output of a hidden Markov model (67, 68). In contrast
to the underlying Markovian system, the output need not be
Markovian, semi-Markovian, second-order Markovian, or even
N th-order Markovian for any N (29, 69, 70) (SI Appendix,
section II). The set of macroscopic observables, O(S), therefore
contains infinitely many measurements. For instance, for the
example process in Fig. 1, one could measure π̂A, the fraction
of the time spent in macrostate A, or π̂Aq̂AB , the rate at which
A→B transitions are observed, meaning that if the system was
observed for a long time T , one would expect to see T π̂Aq̂AB ,
A→B transitions (SI Appendix, section II). One could also
measure more complex quantities, like π̂Aq̂ABC ···A, the rate at
which trajectories are observed to take the arbitrarily long path
ABC · · ·A; such observables do not necessarily follow from
simpler statistics.

Bounding Entropy Production by Solving a Minimization Problem. To
reformulate the estimation of σ(S) as a tractable optimization
problem, let us first suppose that we are given all quantities in
O(S). In this case, we know that the true entropy production
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rate of the system S is at least as large as the minimum entropy
production of all systemsR with the same observed statistics

σ(S)≥min {σ(R)|O(R) =O(S)}. [2]

In particular, this bound is the best possible bound without know-
ing further details of the underlying network topology and hence
the best possible estimator.

In practice, it is only feasible to measure a select few quantities
inO, but from these we can build a similar estimator. Specifically,
given a setOk , containing a subset of the total observablesO, we
still have that

σ(S)≥min {σ(R)|Ok (R) =Ok (S)}, [3]

where the new estimator on the right-hand side is the optimal
bound given this smaller set of observables. Note that fewer
observables provide fewer restrictions on the set of possible
microsystems R, meaning that the bound in Eq. 3 is lower than
that in Eq. 2.

One-Step Estimator. A simple useful observable subset is O1 =
{π̂I q̂IJ}, containing the rates at which transitions I → J happen
for all pairs of observed macrostates (I , J ). For the specific net-
work topology in Fig. 1, the observed statistic π̂Aq̂AB ∈O1 simply
counts the rate at which A→B transitions are observed and can
be expressed in terms of the microstates as π̂Aq̂AB =πA2qA2B1 +
πA3qA3B1 . Despite having to minimize over infinitely many net-
work topologies R consistent with the O1 statistics, finding the
corresponding estimator σ1 is straightforward. This is due to the
fact that, given any network topology consistent withO1, one can
modify this topology by combining two microstates in the same
macrostate, in such a way that one preserves the O1 statistics,
while lowering the entropy production rate (SI Appendix, section
III). By repeatedly applying this procedure, the resulting system
has no hidden states, every macrostate corresponds to exactly
one microstate, and the entropy production rate of this system
can therefore be calculated directly. The estimator σ1 coin-
cides with known estimators, Ṡaff in ref. 29 and relative entropy
of 2-strings in ref. 30, but was not previously treated within
an optimization framework. However, it turns out that sub-
stantially improved entropy production bounds can be obtained
by combining information from two successive transition steps
(Fig. 2).

Two-Step Estimator. To go beyond O1 statistics, we consider the
setO2 =O1 ∪{π̂I q̂IJK}, containing the rates at which two succes-
sive transitions I → J→K occur for all triplets (I , J ,K ), so that
after a long time T , one would expect to see T π̂I q̂IJK transitions
I → J→K . Knowledge of O2 imposes stronger constraints on
the set of underlying Markov processes R, promising a better
bound on the entropy production rate. In practice, perform-
ing a direct numerical minimization to obtain the corresponding
estimator σ2 is not possible due to the arbitrary complexity of
permissible Markovian network topologies R; each macrostate
of R could contain arbitrarily many microstates and so contain
arbitrarily many transition rates to be optimized over. How-
ever, two exact analytic results, proved in SI Appendix, section
IV, enable us to find the best possible bound for the combined
entropy production across all edges connected to a state J , while
preserving the O2 statistics πI qIJ , πJqJI , πI qIJK for any dis-
tinct neighboring macrostates I ,K . Specifically, our first result
enables us to take any networkR consistent withO2 and simplify
its internal topology so that only J has hidden states and, fur-
ther, that J has no internal connections. We show (SI Appendix,
section IV) that one can always construct the simplified net-
work in such a way that the entropy production rate is lowered
while remaining consistent with theO2 statistics involving J . Our
second result proves that minimizing over this simplified topol-
ogy, with arbitrarily many internal states of J , yields the same
bound as minimizing over a system with six internal states for
each pair of neighboring macrostates (I ,K ). This fact makes
the problem numerically tractable (71, 72) (SI Appendix, section
IV). By bounding the entropy production rate across connecting
edges for every macrostate in this manner, we get a σ2 bound
for the total entropy production. This new estimator satisfies
the hierarchy σ≥σ2≥σ1 and only makes use of statistics which
can be computed by observing the states visited by a suitably
long trajectory without utilizing harder to measure statistics, such
as nonexponential waiting time distributions (29) (SI Appendix,
section VI).

Bounding Entropy Production for Time Symmetric Observables. We
demonstrate the performance of σ2 relative to other estima-
tors for a physically and biologically relevant test process, cor-
responding to a biased random walk that switches with rate
r between two modes of bias (Fig. 2). This process repre-
sents a minimal model for the discretized angular dynamics of
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Fig. 2. The two-step estimator σ2 outperforms other estimators for the switching biased random walk. (A) Diagram for the underlying Markovian dynamics,
with blue and red circles representing internal states and shaded regions representing the observed macrostates, i, . . . , i + 3. All waiting time distributions
are exponential with mean λ= 1, implying that 1 = r + p1 + q1 = r + p2 + q2. Throughout this diagram, we fix r = 0.05, so that specifying p1 and p2 is
sufficient to describe the system. (B) Sample trajectories for different values of p1 and p2 in a periodic network with four observed states. (C) σ2, σ1, and
TUR estimates versus the exact entropy production rates in the (p1, p2) plane. (D) The ratios between estimates and true values show that the σ2 estimator
provides a close fit for all values of p1 and p2, whereas the other estimators perform well only for certain combinations of transition rates. (E) In the
time-symmetric case p1 = p2 = p, the σ2 estimates closely bound the exact values, whereas the other estimators give trivial zero bounds.
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a bacterial motor that switches rotation direction (31, 73). It can
also describe a particle subjected to a flashing force (74) or, more
generally, active Brownian on a lattice (75). As shown in Fig. 2A,
when fixing the internal transition rate r and assuming exponen-
tial waiting time distributions with equal means on all internal
states, the model dynamics are controlled by the two transi-
tion rate parameters p1 and p2, describing right and left jumps,
respectively. Coarse-grained sample trajectories, corresponding
to observations of four macrostates for different combinations
of p1 and p2, are shown in Fig. 2B. In the special case p1 = 1−
r − p2, we recover a biased random walk, or Brownian clock if
made periodic (13), which has effectively no hidden states. Alter-
natively, if p1 = p2 = p, the observed system—despite being out
of equilibrium for all but one value of p—is completely time
symmetric with every forward path as likely to appear as every
reverse path, implying vanishing net fluxes.

To illustrate the benefits of leveraging multistep informa-
tion, we compare σ2 to the one-step estimator σ1 and also with
entropy production rate estimates from the TUR (18, 19, 26),
where the TUR is a general relation between the fluctuations
of, potentially coarse-grained, currents and the entropy produc-
tion rate, which can be used as an estimator (SI Appendix, section
VII). We find that in the strong-flux regime, when p1 and p2 are
sufficiently different, all estimators reasonably bound the true
entropy production rate σ from Eq. 1 (Fig. 2 C and D). How-
ever, as p1 and p2 approach each other and the net flux becomes
weaker, only σ2 gives an accurate bound (Fig. 2D). In particular,
when p1 = p2 = p, the forward and reverse observables are time
symmetric, so the relative entropy between them is zero (29).
Therefore, neither σ1, which here coincides with the estimator
ṠKLD in ref. 29, nor the TUR can yield a nontrivial (nonzero)
bound, whereas σ2 can be computed analytically in this case (SI
Appendix, section VII) and approximates the exact rate σ well for
all values of p (Fig. 2E). We next apply the two-step estimator σ2

to data from recent experiments.

Switching Trajectories of Bacterial Flagellar Motor. By rotating heli-
cal flagella, many species of bacteria can swim, reaching speeds
of tens of body lengths per second (10, 76). Each flagellum is
driven by a remarkable nanoscale motor, powered by a flux of
ions across the cytoplasmic membrane, which can achieve over
100 rotations per second (31, 76, 77). Measuring the entropy
production of the motor promises insights into the efficiency
of small self-assembled engines and microbial locomotion (10,
58, 78). Direct experimental observations of the motor dynam-

ics have become possible by tethering the cell, attaching a
bead to the flagellum, and tracking the bead trajectory through
high-resolution microscopy (31, 52, 79, 80). The motor-and-
bead system operates in a heat bath at finite temperature, and
the observed bead trajectories can be described by Markovian
Langevin-type dynamics (10). The bead trajectories are observed
only at a finite frame rate, so the exact coarse-grained transi-
tion rates cannot be measured. However, applying the estimators
σ1 and σ2 directly to the resulting coarse-grained in time sys-
tem still results in a lower bound for the entropy production rate
(SI Appendix, section VIII).

A representative bead trajectory for an Escherichia coli bac-
terium, from a recent experiment by Nirody et al. (52), is shown
in Fig. 3A. Measured trajectories typically follow approximately
circular curves in the projection plane, but certain strains will
stochastically switch their rotation direction (31). This means
that, although taking place far from equilibrium, the process may
not obviously violate time irreversibility, limiting the applicability
of previous entropy production estimators. Bead trajectories pro-
vide a coarse-grained view of the motor system—our framework
allows us to coarse grain further, dividing the total system radi-
ally into three macrostates (Fig. 3B). An accordingly discretized
trajectory is shown in Fig. 3C. From a practical perspective, hav-
ing a smaller number of states can be preferable for acquiring
precise transition statistics, especially if data are limited.

We estimated entropy production bounds for two sodium-
powered strains of E. coli, comparing the nonswitching strain
MTB24 at fuel concentrations of 10 mM Na+ and 85 mM Na+

with the switching strain MTB32 at 85 mM Na+ (Materials and
Methods). For the nonswitching MTB24 strain, which strongly
breaks time-reversal symmetry, the σ2 bound does not improve
significantly on the σ1 estimate (Fig. 3D). As expected, both esti-
mators find that a higher ion concentration increases the bound
on the entropy production rate for the nonswitching MTB24
strain, as higher-frequency rotations were observed. However,
for the switching MTB32 strain, we find that the σ1 significantly
underestimates the entropy production rate relative to σ2. More
specifically, the mean entropy production rate of MTB24 at low
fuel concentration 10 mM Na+ and MTB32 at high fuel concen-
tration 85 mM Na+ cannot be statistically distinguished under
the σ1 estimator (P < 0.05; Fig. 3D). By contrast, the σ2 estima-
tor clearly distinguishes (P < 0.01) between the two experiments,
yielding high fuel entropy production estimates that are consis-
tent for both strains (Fig. 3D). Corroborating the results from
a biased random walk test case, this application highlights the
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Fig. 3. The estimator σ2 bounds the rate of entropy production for the bacterial flagellar motor. (A) Short trajectory of bead attached to MTB32 E. coli
bacteria flagella. The bead begins rotating clockwise, but changes direction after around 30 ms, subsequently rotating counterclockwise. (B) The plane
is discretized into three regions (purple, orange, gray), and each region is made of N segments, here N = 6. A short bead trajectory is overlaid. (C) The
trajectory from B after coarse graining onto the three macrostates. (D) Box plot of entropy production rates for different strains, sodium concentrations,
and estimators. The σ1 estimator measures a similar entropy production rate for MTB24 10 mM and MTB32 85 mM, whereas the σ2 estimator can distinguish
them.
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importance of incorporating multitransition information when
estimating entropy production for a nonequilibrium system with
small net fluxes.

From a broader conceptual perspective, it is worth emphasiz-
ing that the entropy production bounds were obtained without
assuming any particular model for the motor’s dynamics, precise
measurements of ion concentrations, or a rheological charac-
terization of the medium. The rate estimates can be used to
gain insights into the working principles and fuel consumption
of bacterial motors, with σT interpreted as the minimal rate
of free energy required to maintain the out-of-equilibrium state
(detailed discussion below). For example, measurements of the
ion motive force suggest that the free energy change of a sin-
gle ion transit is around 6kBT (76). Combining this with the
estimates in Fig. 3D, we can bound the average rate of ion
consumption as ≥1, 000 s−1 for the 85-mM fuel concentrations.

Dynamic Instability of Microtubule Growth. Microtubules are a
core component of eukaryotic cells, providing structural stabil-
ity, enabling intracellular transport, and facilitating cell division
(81, 82). To fulfill these key functions, microtubules must have
the ability to rapidly remodel, for both assembly and disassembly
(81). They achieve this through dynamic instability: periods of
steady growth before switching stochastically into rapid shrink-
ing (32, 83). The rates of growth, shrinkage, and switching are
actively regulated to achieve different behaviors (33, 81, 82).
While it is known that microtubule growth requires guanosine
triphosphate (GTP) hydrolysis (83) and is therefore out of equi-
librium, several competing theoretical models of microtubule
dynamics predict different entropy production rates (84).

By applying our estimators directly to experimental in vitro
microtubule images, we can bound the entropy production rate
without assuming any particular model for microtubule dynam-
ics. From a stabilized nucleation site, at constant concentration
of tubulin and GTP, microtubules will form, grow, shrink, and
disappear before reforming some time later (Materials and Meth-
ods). Kymographs from recent experimental observations (33)
show the steady-state trajectories of the microtubule length (Fig.
4A). Since the length oscillates around its mean value along one
spatial dimension, the net flux vanishes, so that we have to use
σ2 to obtain a nontrivial entropy production bound. Similar to
before, we divide space into three periodically layered regions
(Fig. 4B), which yield coarse-grained discretized trajectories as
shown in Fig. 4C. Applying σ2, we find that a growing micro-
tubule produces entropy at a rate of at least 5kB ·min−1. Fur-
thermore, choosing a larger spatial or temporal coarse-graining
scale decreases the estimates for the entropy production rate,

as demonstrated in Fig. 4 D and E. Conversely, this means that
higher-resolution experiments promise improved bounds.

Induced Calcium Oscillations in Human Embryonic Kidney Cells. A
coherent cell response to external stimuli requires intracellular
signaling (34). One way in which cells encode and transport sig-
nal is by controlling the concentration of calcium ions within
the cytosol (7, 85). Such calcium oscillations propagate instruc-
tions for muscle contraction (86), gene expression (87), and cell
differentiation (88). These oscillations appear as calcium concen-
tration spikes, with Ca+2 ions being released into the cell before
ion pumps remove them again (7, 85). Since ion pumps move
Ca+2 from a region where the concentration is low (cytosol) to
where the concentration is high (sarcoplasmic reticulum) (85),
the system operates out of equilibrium. By measuring the ratio
of fluorescence at different wavelengths, it is possible to infer
the concentration of Ca2+ noninvasively within a single living
cell (85).

In human embryonic kidney cells, calcium oscillations can be
triggered by exposure to carbachol, with the specific response
dependent on the concentration of carbachol (85). Recent exper-
iments by Thurley et al. (34) took human embryonic cells and
exposed them to a 30-µM concentration of carbachol, which after
an initial transient resulted in a statistically steady state of oscil-
lations (Fig. 5A). After 1 h, the cells were restimulated with a
higher concentration of carbachol, resulting in a new steady state
(Fig. 5A). As before, we coarse grain by discretizing the cal-
cium trajectory into three regions, one containing the default
level, one containing intermediate values, and one containing
the peaks of the oscillations (Fig. 5A). The coarse-grained tra-
jectories are shown in Fig. 5B. Applying our σ2 estimator, we
find that prior to stimulation the rate of entropy production as
at least 4kB ·min−1. After exposing the cells to 200 µM carba-
chol, this bound increases to around 8kB ·min−1 (Fig. 5C). As in
the microtubule case, a finer coarse graining can be expected to
give improved estimates but will also require a finer temporal
resolution than currently available.

Discussion
Entropy Production without Relative Entropies. It is often implicitly
assumed that the best possible bound on entropy production rate
comes from estimating the relative entropies between forward
and reverse trajectories, either directly or through TUR (29,
47). To see that nontrivial bounds can be placed on the entropy
production rate, even when observable macrostate trajectories
appear time symmetric and so relative entropies are zero, con-
sider a simple Markov chain model of a Brownian clock on four
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microstates {1, 2, 3, 4}, with clockwise transition probabilities q+
and counterclockwise probabilities q−= 1− q+ (13). When q+>
q−, the full system is not time symmetric; for suitably long obser-
vations, a net clockwise current is observed. However, if states 2
and 4 were part of some macrostate H , we are just as likely to
observe any forward trajectory on the macrostate set {1, 3,H }
as its time reverse counterpart. To see this, consider an arbi-
trary observed trajectory, say X = (1,H , 3,H , 3,H ) of length 6.
The probability of observing this macrostate trajectory is P(X ) =∑

Y P(Y ), where the sum is taken over all microstate trajec-
tories Y consistent with the observed macrostate trajectory,
which includes Y = (1, 2, 3, 4, 3, 4). Define Ȳ to be the trajectory
where we take Y and switch states 2 and 4, so Ȳ = (1, 4, 3, 2, 3, 2)
which has the same macrostate observables. If the microscopic
trajectory Y has k clockwise transitions and n counterclock-
wise transitions, then P(Y ) = (1/4)qk

+q
n−k
− , whereas P(Ȳ ) =

(1/4)qn−k
+ qk

−. The time reversed microstate trajectory Yr has
n − k clockwise transitions and k counterclockwise and in gen-
eral has a different probability of occurring as the forward
trajectory. However, P(Yr ) +P(Ȳr ) =P(Y ) +P(Ȳ ), and so the
forward and backward macrostate trajectories are equally prob-
able, P(X ) =P(Xr ). Intuitively, from the observed statistics, we
know that no reversible Markov chain can behave that way; when
entering H from 1, trajectories enter a set of states that typically
transition to 3, and vice versa. Therefore, there must be some
internal cycles occurring—even though the relative entropy of
the macroscopic forward and backward trajectories is zero. For
the continuous-time version of this example, we can derive ana-
lytically the σ2-estimator bound, which coincides in this case with
the exact entropy production rate (SI Appendix, section V).

Thermodynamic Interpretation. As our theoretical analysis
assumed a NESS, the thermodynamic interpretation of the
bounds on σ requires us to revisit precisely whether or not this
assumption is valid under relevant experimental conditions.
While entropy can be defined more generally along a single
stochastic trajectory (17, 89), the average rate of entropy
production in a NESS represents the rate of entropy increase in
the chemical or thermal reservoirs coupled to the system, which
drive the NESS. For isothermal systems, σ=Qhk/T , where
Qhk is the housekeeping heat (35, 90), which quantifies the rate
at which heat is dissipated into the environment. Importantly,
however, σ can also be interpreted as the minimum rate at
which free energy must be consumed to maintain the NESS
(59, 90). Some of the experiments analyzed here represent
a quasistationary state (QSS) rather than a true NESS. For

instance, the concentration of Na+ is not replenished in the
bacterial motor experiments but also does not appreciably
change over the observation period. While the distinction is
subtle, the interpretation of σT as the physical heat dissipated
while maintaining the system does not hold in a QSS (90).
However, even for a QSS, σT still represents the rate at which
free energy is consumed (90), and moreover it is this quantity
which is of interest, because it represents the effective price
to hold the system away from equilibrium. Additionally, if
the system converts, say chemical free energy at rate fin , into
mechanical energy output at rate fout, then fin − fout =σT , and
so if either input or output power is known, a bound on entropy
production σ directly bounds the efficiency of this process
(35, 90).

Entropic Tradeoffs. Entropic costs limit the accuracy of biological
sensory systems (5, 91), biological clocks (92), and intrinsic noise
suppression in cells (41, 93). Beyond direct applications to exper-
imental data, the current framework can help us understand and
quantify tradeoffs between the faithful execution of a biological
function and the energy expended to do so (1, 13, 92). In par-
ticular, since our approach can establish nontrivial bounds for a
single variable with no observable net currents, it may be used
to bound the entropic cost of executing a specific function, such
as performing oscillations at some frequency and regularity. Fur-
thermore, recent work (41, 94) revealed fundamental limits for
suppressing molecular fluctuations within cells through negative
feedback loops, finding a tradeoff between control and molecule
numbers without making specific assumptions on the nature
of the feedback loops. Similarly, the model-agnostic estimators
introduced here could be used to infer additional thermody-
namic costs of regulating molecular fluctuations by quantifying
the entropic tradeoffs cells are forced to make.

Outlook. A practical benefit of the above framework lies in the
fact that the coarse-graining level can be adapted to the quality
and volume of the available experimental data. In the appli-
cations above, we focused coarse graining to a small network
with only three remaining states, which makes it easier to col-
lect precise statistics for the transition rates. In general, with
increasing data resolution and trajectory length, finer coarse
graining of space and time will lead to better bounds. Extrap-
olating the impressive progress of imaging techniques over the
last decade, one can expect that σ2-based estimation applied
to higher-resolution data will enable rapidly improving entropy
production rate estimates in the near future.

6 of 8 | PNAS
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Conclusions
Living systems resist their decay into thermal equilibrium by
expending entropy to maintain essential cellular processes and
functions (41, 53). A quantitative understanding of the associ-
ated thermodynamic costs hinges on our ability to infer entropy
production rates from partial experimental observations (29). By
recasting this inference problem within an optimization frame-
work, we have constructed an improved rate estimator that can
be directly applied to coarse-grained observations of steady-
state nonequilibrium systems. Our analysis of recent experi-
mental data shows that this approach places more accurate
bounds on the entropy production rates without making spe-
cific modeling assumptions. By leveraging information contained
in successive transitions, the derived two-step estimator over-
comes a key limitation of previous estimation schemes that
require statistically distinguishable forward and reversed trajec-
tories. As a result, we were able to obtain improved bounds on
the entropy production of bacterial motors (52), microtubules
(33), and calcium oscillations (34). These successful applica-
tions provide guidance for how model-agnostic inference can
be used to extract fundamental information from single-variable
observations of otherwise hidden intracellular and intercellular
processes.

Materials and Methods
Bacteria Flagella Motor. Bacterial flagella bead trajectories were provided
by Jasmine Nirody and obtained similarly to the procedure in Nirody et
al. (52). In their recent experiments, E. coli bacteria were immobilized on
a coverslip, and a bead (1 µm) was attached to their shortened flagella.
The bead position is found using back focal-plane interferometry (31, 52,
80). The strains MTB24 and MTB32 were used, with the motor powered by
sodium ions in both cases. Concentrations were 10-mM and 85 mM Na+

for MTB24 and 85 mM Na+ for MTB32. A single trajectory of length
20 s was taken from each experiment, where each 20-s window contained at
least 400 rotations, and was sufficiently long to estimate the transition rates.
For each trajectory, the origin was taken as the trajectory center of mass in
the xy plane. The plane was then divided into three regions made from
3N segments, with N chosen for each trajectory to maximize the entropy

production rate bound. In total, we analyzed 7 MTB24 10-mM trajectories,
25 MTB24 85-mM trajectories, and 10 MTB32 85-mM trajectories.

Microtubule Dynamic Instability. Experimentally measured microtubule tra-
jectories were provided by Benjamin Lacroix, Institut Jacques Monod,
CNRS & Université Paris Diderot, France. Stabilized guanylyl 5′-α,
β-methylenediphosphonate (GMPCPP) seeds were attached to a function-
alized surface and served as nucleation sites. They were placed in a solution
of 7 µM tubulin and 1-mM GTP at a temperature of 35 ◦C. The growing
microtubules were imaged by total internal reflection fluorescence (TIRF)
microscopy, and kymographs were automatically extracted, from which the
microtubule length was calculated. Data from two experiments performed
under identical conditions were used in our analysis, with 1,200 min of total
observation time, and both experiments were combined to estimate the
transition rates.

Calcium Oscillations. The calcium concentration trajectories were taken
from recent experiments by Thurley et al. (34), with 20 trajectories for the
protocol of 30-µM carbachol stimulation followed by 100-µM carbachol res-
timulation and 14 trajectories for 30-µM carbachol stimulation followed by
200-µM carbachol restimulation. Trajectories under the same experimental
conditions were combined to estimate transition rates. The same concentra-
tion coarse graining into three regions was applied to data taken at 30-µM
and 100-µM carbachol. The coarse-grained states were adapted for data
corresponding to the 200-µM carbachol restimulation, as these tended to be
larger in amplitude and displayed higher fluorescence ratio between spikes.

Data Availability. All study data and relevant codes can be
downloaded from Github (https://github.com/Dom-Skinner/
ImprovedBoundsOnEntropyProduction).
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