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Vortices play a fundamental role in the physics of two-dimensional (2D) fluids across a
range of length scales, from quantum superfluids to geophysical flows. Despite a history
dating back to Helmholtz, point vortices in a 2D fluid continue to pose interesting theoreti-
cal problems, owing to their unusual statistical mechanics. Here we show that the strongly
interacting Helmholtz-Onsager vortex systems can form statistical edge modes at low en-
ergies, extending a previously identified analogy between vortex matter and quantum Hall
systems. Through dynamical simulations, Monte-Carlo sampling, and mean-field theory,
we demonstrate that these edge modes are associated with the formation of dipoles of real
and image vortices at boundaries. The edge modes are robust, persisting in nonconvex
domains, and are in quantitative agreement with the mean-field predictions.

DOI: 10.1103/PhysRevFluids.6.064702

I. INTRODUCTION

The Helmholtz-Onsager system of point vortices [1,2] is a widely studied model for inviscid
flows in classical [3–6] and quantum [7–13] fluid dynamics. As demonstrated by Onsager [14],
the classical point vortex system can condense into superclusters, thus reproducing a key element
of two-dimensional (2D) turbulence phenomenology. This system has since emerged as a reduced
model for turbulence, describing phenomena from spin-up turbulence [4] in the classical case, to
energy cascades [10] and turbulence decay [15] in the quantum case. In addition, the quantized
point vortex equations reproduce certain phenomenological aspects of the quantum Hall effect [9].
Experimentally, the point vortex model has recently been validated in quantum fluids [16–18], where
point vortices emerge as topological defects [17,18]. More generally, point vortices have become a
minimal model for a variety of 2D turbulence phenomena, from atmospheric dynamics [14] to
biochemical signaling in cell membranes [19].

A compelling property of the point vortex system is its anomalous statistical mechanics, in which
the phase space is bounded [14] and equivalent to the configuration space. Previous important
theoretical work has focused on the statistical properties of the high-energy regime [4,20–27] in flat
space and curved space [28]. In contrast, the low-energy dynamics in the presence of boundaries
has not yet been widely explored. In this regime, Onsager’s physical picture of strong attractive
forces between vortices of opposite signs indicates the possibility of edge modes [14]. A particularly
interesting question is whether boundary induced image vortices can give rise to stable vortex local-
ization through the formation of such edge modes in convex and nonconvex domains. Additionally,
the presence of such modes would supplement previously established mappings between the point
vortex model and quantum Hall-type systems [9].

Here we investigate the formation and dynamics of statistical edge modes in confined point vortex
systems at low energy. Complementing previous studies of point vortex statistics at intermediate-
to-high energies [20,23,29,30], we examine the robustness of these edge modes in convex and
nonconvex domains. Comparing Monte Carlo sampling, dynamical simulations and mean-field

2469-990X/2021/6(6)/064702(20) 064702-1 ©2021 American Physical Society

https://orcid.org/0000-0001-8865-2369
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.6.064702&domain=pdf&date_stamp=2021-06-28
https://doi.org/10.1103/PhysRevFluids.6.064702


VISHAL P. PATIL AND JÖRN DUNKEL

theory, we find vortex edge modes in disk and bean-shaped geometries, which survive at large vortex
numbers. Strikingly, these edge modes are a robust, real-space phenomenon, despite the strongly
interacting nature of the point vortex system. Furthermore, these modes persist in nonconvex
domains, reminiscent of the edge mode signatures observed in topological systems.

II. HELMHOLTZ-ONSAGER MODEL

A. Kirchhoff equations

The point vortex model consists of a system of N point vortices in a 2D incompressible, inviscid
fluid with constant density. Each vortex has strength λa and position xa(t ) = (xa(t ), ya(t )) in a
domain �, which corresponds to the following vorticity field:

ω =
∑

a

λaδ[x − xa(t )].

The flow field u(t, x) for this vortex configuration is obtained from the streamfunction ψ (t, x)
as [14]

u = ∇ψ × ez, ∇2ψ = −ω.

The streamfunction can be written in terms of Green’s functions

ψ = −
N∑

a=1

λaG(x, xa(t )),

where the Green’s function G satisfies

∇2G(x, y) = δ(x − y), G|∂� = 0.

The boundary condition for the Green’s function arises from the fact that the boundary of the domain
must be a streamline, ψ |∂� = const. For simply connected domains, we can set this constant to 0.
Using this streamfunction as an ansatz for the inviscid vorticity equation [1,9,31]

∂ω

∂t
+ u · ∇ω = 0

yields a Hamiltonian system where xa and ya are canonically conjugate

λaẋa = ∂H
∂ya

, λaẏa = −∂H
∂xa

. (1)

The Hamiltonian is given by

H = −
∑
a<b

λaλbG(xa, xb) − 1

2

∑
a

λ2
ag(xa), (2)

where

g(xa) = lim
x→xa

(
G(x, xa) − 1

2π
log |x − xa|

)

is the regularized Green’s function. The Hamiltonian coincides with the regularized kinetic energy
of the fluid [32]

K = 1

2

∫
�

d2x |u|2 = 1

2

∫
�

d2x ∇ψ · ∇ψ = 1

2

∫
�

d2x ψω = H.

The quantities defined depend only on length L and time T : [λ] = L2/T, [H] = L4/T 2. Choosing
a reference length scale L0, we can define a timescale T0 = L2

0/(N |λ|). Since the fluid density plays
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no role in the system, this also gives energy scale E0 = L4
0/T 2

0 and angular momentum scale J0 =
L4

0/T0. In particular

E0

N2
= |λ|2, J0

NL2
0

= |λ|.

In the remainder of this paper, we consider systems of identical vortices with positive circulation,

λa ≡ λ > 0.

We choose units so that L0 = 1 and λ = 1. This fixes the timescale, T0 = 1/N , reflecting the fact
that the fluid rotates faster as the number of point vortices increases. Below we will focus on two
different domains, the unit disk D with radius L0 = 1 and a bean-shaped domain B obtained from
D by a conformal mapping specified below (see Supplemental Material [61] for movies of vortex
dynamics).

B. Disk-shaped domain

In complex coordinates, z = x + iy, the Green’s functions G and g for the disk D are [33–35]

GD(z,w) = 1

2π
log

∣∣∣ z − w

z∗w − 1

∣∣∣, gD(z) = − 1

2π
log |1 − z∗z|.

This gives a compact expression for the Hamiltonian

H = − 1

2π

∑
a<b

λ2 log

∣∣∣∣ za − zb

z∗
azb − 1

∣∣∣∣ + 1

4π

∑
a

λ2 log |1 − z∗
aza|

and the velocity

λża = −2i
∂H
∂ z̄a

= iλ2

2π

∑
b�=a

1

z∗
a − z∗

b

− iλ2

2π

∑
b

1

z∗
a − (1/zb)

.

The first sum captures the flow generated by point vortices at the locations zb, in the the absence of
boundaries. Analogously, the second sum, which includes b = a, is due to image vortices located at
the points 1/z∗

b [Fig. 1(a)]. The velocity of the whole fluid, u(t, z) = (u(t, z), v(t, z)), is

u(t, z) + iv(t, z) = iλ

2π

∑
a

[
1

z∗ − z∗
a

− 1

z∗ − (1/za)

]
.

The Hamiltonian for the unit disk can be split up into a bulk energy and a boundary energy, arising
from the interaction between real vortices and image vortices [Figs. 1(a) and 1(b)]

H = − 1

4π

∑
a �=b

λ2 log |za − zb| + 1

4π

∑
a,b

λ2 log |1 − zaz∗
b|.

The singularities of H correspond to the locations of these real and image vortices. The energy is
singular when the ath vortex approaches the real vortex at zb or the image vortex at 1/z∗

b [Figs. 1(a)
and 1(b)].

C. Nonconvex bean-shaped domain

A bean-shaped domain B can be obtained from the unit disk by a conformal mapping. Consider
the image of D under a map of the form f −1(z) = (b′z − 1)2/a′. When b′ = 1, this mapping
produces a nonconvex cardioid domain, which possesses a cusp singularity at the boundary. By
taking b′ = 0.9, we instead obtain a smooth nonconvex bean-shaped domain, B [Fig. 1(c)]. We set
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(a)

(b) (c)

N

FIG. 1. Image vortices drive boundary accumulation in symmetric and nonconvex domains. (a) A real
vortex with positive circulation inside the disk (red), gives rise to an image vortex with negative circulation
outside (blue). The position of the image can be visualized through stereographic projection. (b) At sufficiently
low energies, image dipoles form at the boundary of the disk. Streamlines demonstrate the corresponding flow
patterns. (c) Image vortex dipoles persist upon conformal mapping to a bean-shaped domain.

a′2 = 2b′2(b′2 + 2) so that B has area π , equal to the unit disk. The Green’s function in B transforms
with the conformal map f ,

GB(z,w) = GD( f (z), f (w)) = 1

2π
log

∣∣∣∣ f (z) − f (w)

f (z)∗ f (w) − 1

∣∣∣∣,
and the regularized Green’s function is

gB(z) = lim
w→z

(
1

2π
log

∣∣∣∣ f (z) − f (w)

f (z)∗ f (w) − 1

∣∣∣∣ − 1

2π
log |z − w|

)

= − 1

2π
[log |1 − f (z)∗ f (z)| − log | f ′(z)|].

As before, the form of the Hamiltonian indicates the presence of image vortices:

H = − 1

4π

∑
a �=b

λ2 log | f (za) − f (zb)| + 1

4π

∑
a,b

λ2 log |1 − f (za) f (zb)∗| − 1

4π

∑
a

λ2 log | f ′(za)|.

(3)
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The positions of real and image vortices again follow from the singularities of the Hamiltonian.
The first term is singular when za approaches the real vortex at zb, and the second term is singular
when za approaches the image vortex at f −1[1/ f (zb)∗] [Fig. 1(c)]. Furthermore, the first and third
terms of the Hamiltonian in (3) are bounded below, unlike the second term. To see this, observe that
the boundedness of the domain means that the expressions − log | f (za) − f (zb)| in the first term
are bounded below. Similarly, − log | f ′(za)| is bounded below whenever f ′(za) is bounded, as is the
case for the mappings we consider. On the other hand, the second term of (3) approaches negative
infinity when real vortices approach image vortices, although this divergence is not independent of
divergences in the first term. Nevertheless, this heuristic argument indicates that an effective image
vortex attraction at low energies will give rise to vortex clustering at the boundary of the domain.
This image vortex dipole mechanism (Fig. 1) is responsible for the formation of edge modes.

D. Conserved quantities

In addition to the energy H, an incompressible, inviscid fluid in two dimensions also has
conservation laws for linear momentum P , angular momentum A, vorticity V , and enstrophy E :

P =
∫

�

d2x u, A =
∫

�

d2x (x ∧ u), V =
∫

�

d2x ω, E =
∫

�

d2x ω2,

where the pseudoscalar x ∧ u = xv − yu corresponds to the z-component of the three-dimensional
cross-product. The linear momentum vanishes in a bounded domain, which can be shown compo-
nentwise using the streamfunction u = (ψy,−ψx ):

P · ex =
∫

�

d2x ∇ · (ψey) =
∫

∂�

dn · eyψ = 0,

where dn is the normal curve element. The second equality follows from the divergence theorem
and the final equality uses the fact that ψ |∂� is constant and ∂� is a closed curve. The vorticity and
enstrophy have straightforward expressions in terms of the vortex strengths; however, the enstrophy
is singular:

V =
∑

a

λa = Nλ, E =
∑
a,b

λaλbδ(xa − xb) = λ2
∑
a,b

δ(xa − xb).

In the systems of identical point vortices we consider here, the conservation of V is equivalent to
the conservation of particle number, V = N . The conversation law for angular momentum depends
on the pressure field p(t, x), which can be found in terms of the velocity field, u, through the Euler
equation for an inviscid fluid

−∇p = ∂u
∂t

+ u · ∇u.

Taking the cross-product of the Euler equation with x gives an equation for angular momentum
transport; integrating this transport equation and using the divergence theorem yields the conserva-
tion law for angular momentum in terms of the boundary advection of angular momentum and the
boundary torque due to pressure:

d

dt
A = −

∫
∂�

dn · u (x ∧ u) +
∫

∂�

dn ∧ x p =
∫

∂�

dn ∧ x p.

The advection term vanishes since u has no normal component on the boundary. Angular momentum
is globally conserved if the boundary torque vanishes, which occurs when the domain � has the
appropriate symmetry [14,24]. Using Stokes’ theorem, the angular momentum of the fluid can be
expressed as

A = 1

2

∫
�

d2x
[∇ ∧ (

u|x|2) − ω|x|2] = 1

2

∫
∂�

dr · u |x|2 − 1

2
J ,
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FIG. 2. Density of states for the unit disk and the bean of area π for N = 10 vortices. (a) The joint density
of states over energy, H, and angular momentum, J , in the disk reveals a strong correlation between H and J .
(b) The marginal density of states over energy exhibits distinct low-energy (green) and high-energy (purple)
regimes on either side of the mode, E∗, of the distribution (yellow). (c) The marginal density of states over
angular momentum is symmetric. (d) The density of states in the bean-shaped domain exhibits the same pattern
of low- and high-energy regimes as the disk.

where dr is the tangential curve element and

J =
∑

a

λ|xa|2.

If the domain has circular symmetry, A is conserved. In particular, when � is the unit disk D, the
circulation term can be simplified,

A = 1

2

∑
a

λa − 1

2

∑
a

λa|xa|2 = 1

2
V − 1

2
J ,

where J is the conserved vortex angular momentum. The statistical mechanics of the sys-
tem can be described in terms of the nonzero and nonsingular conserved quantities H,A,
and V .

E. Density of states

The different statistical regimes of the point vortex system can be identified through the density
of states. For the disk D, conservation of both H and J implies there is a joint density of states
W (E , J ) [Fig. 2(a)]. Defining ξ = (x1, y1, x2, y2, . . . , xN , yN ), we have

W (E , J ) = 1

πN

∫
DN

dξ δ[H(ξ ) − E ]δ[J (ξ ) − J].

The marginal densities WH(E ) and WJ (J ) over energy and angular momentum follow from the joint
density by [Fig. 2(b) and 2(c)]

WH(E ) = 1

πN

∫
DN

dξ δ[H(ξ ) − E ],

WJ (J ) = 1

πN

∫
DN

dξ δ[J (ξ ) − J].

Flows where J is large in magnitude must involve a concentration of vortices at the boundary,
and thus J -conservation may be thought of as an angular momentum barrier. However, due to the
correlation between H and J [Fig. 1(a)], it is hard to disentangle this effect from the low-energy
boundary attraction described above.

As is typical of a generic bounded domain, the bean-shaped domain has no additional
conserved quantities, so there is only a density of states over energy [Fig. 2(d)]. This
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FIG. 3. Monte Carlo sampling for the disk agrees with time-averaged Hamiltonian dynamics at low,
intermediate and high energies (N = 10). (a) Streamlines demonstrate the flow patterns of sample points in
phase space with given energy. (b) Monte Carlo sampling at fixed energy, and varying angular momentum
reveals low-energy edge modes and high-energy vortex clustering in the disk; sample size >104 configurations.
(c) The time-averaged dynamics of the vortex system agrees with the Monte Carlo predicted statistical states.
Energy from left to right in (a), (b), and (c): E = 0.0, 0.8, 2.0. Angular momentum from left to right in (c):
J = 5.8, 4.9, 4.0. Simulation time: T = 105T0.

density, WH(E ), has a maximum at some energy, E = E∗, which arises from the fact that
the phase space is bounded [Figs. 2(b) and 2(d)]. Here we focus on the low-energy regime,
E < E∗.

III. MONTE CARLO SIMULATIONS AND HAMILTONIAN DYNAMICS PREDICT EDGE MODES

Boundary attraction through image vortices leads to the formation of a low-energy statistical edge
mode in both the disk (Fig. 3) and the bean (Fig. 4) at small vortex number. As discussed above,
the Hamiltonian for a general domain, obtained from the image of the unit disk under a conformal
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FIG. 4. Monte Carlo sampling for the bean also agrees with time-averaged Hamiltonian dynamics at low,
intermediate, and high energies (N = 10). (a) Streamlines demonstrate the flow patterns of sample points in
phase space with given energy. (b) Monte Carlo sampling reveals low-energy edge modes and high-energy
clustering in the bean; sample size >104 configurations. (c) The time-averaged dynamics of the vortex system
agrees with the Monte Carlo predicted statistical states. Energy from left to right [(a), (b), and (c)]: E =
0.0, 0.8, 2.0. Simulation time: T = 105T0.

mapping f −1, is

H = − 1

4π

∑
a �=b

λ2 log | f (za) − f (zb)| + 1

4π

∑
a,b

λ2 log |1 − f (za) f (zb)∗| − 1

4π

∑
a

λ2 log | f ′(za)|.

Only the second term is unbounded below, so states with sufficiently low energy are typically
only produced when f (za) f (zb)∗ is close to 1 for enough pairs of vortices, or equivalently, when
enough vortices are close to the boundary. For the disk, such a configuration will have large angular
momentum, J = ∑

a λ|xa|2, which explains the H − J correlation [Fig. 2(a)]. The agreement
between the distributions produced by time-averaged Hamiltonian dynamics and Monte Carlo
sampling (Figs. 3 and 4) also suggests that a mean-field approach can be used to formalize the
above heuristic argument for edge modes.
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IV. MEAN-FIELD LIMIT

A. Edge modes persist in the mean-field limit

To identify the low-energy regime for large N and understand the corresponding statistical states,
we return to the density of states for a general bounded domain

WH(E ) = 1

πN

∫
�N

dξ δ[H(ξ ) − E ].

The function WH(E ) can also be understood as the probability density function (pdf) of the energy
when N points are chosen uniformly at random in the domain. Let Za = Xa + iYa be a collection of
such uniform random variables for a = 1 to N . The energy is now a random variable Ĥ :

Ĥ = − 1

4π

∑
a �=b

G(Za, Zb) + 1

4π

∑
a

g(Za),

where the first sum contains N (N − 1) terms, the second sum contains N terms, and the strength of
each vortex λ has been set to 1 as before. Previous work [36] has identified the limiting distribution
of Ĥ in bounded domains. For the identical vortex systems considered here, this limiting distribution
is Gaussian. An informal derivation of this fact follows from the theory of U -statistics [37,38]. Set
H̄ = Ĥ/N2, and consider

√
N (H̄ − μ) =

√
N

(
− 1

4πN2

∑
a �=b

G(Za, Zb) − μ

)
+ 1

4πN
√

N

∑
a

g(Za), (4)

where

μ = − 1

4π
E[G(Za, Zb)].

The second term in (4) is a sum of only N independent random variables and thus converges to 0.
A central limit-type theorem [37] for the sequence of N (N − 1) random variables G(Za, Zb) shows
that

√
N (H̄ − μ) is asymptotically normal, where μ and the variance σ 2 are given by [36,37,39]

μ = − 1

4π
EG(Za, Zb), σ 2 = lim

N→∞
N Var(H̄ ) = lim

N→∞
Var(Ĥ )

N3
.

Furthermore, U -statistics theory [37] indicates that σ 2 > 0 holds whenever E[G(z, Za)] is not
constant as a function of z. Formalizing the above argument would require showing that G and g
meet suitable regularity conditions [37]. The scaling of the variance is Var(H̄ ) ∼ O(1/N ), analogous
to the central limit theorem. This scaling may be understood intuitively as a consequence of the fact
that there are only N , and not N2, independent points. Although E(Ĥ/N2) ∼ O(1), as N → ∞,
there is an O(1/N ) contribution to the mean coming from the boundary terms, E[g(Za)]. For finite
N , the pdf of Ĥ/N2 can therefore be better approximated by a Gaussian with mean

E

(
Ĥ

N2

)
= μ + μb

N
,

where μb = E[g(Za)]/4π . The limit allows us to define the low-energy regime in terms of a rescaled
energy ε, which measures the distance from the mean energy in units of standard deviation

ε =
√

N

σ

[ H
N2

−
(
μ + μb

N

)]
. (5)

Similarly, for the disk, the angular momentum becomes a random variable Ĵ

Ĵ =
∑

a

|Za|2,
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FIG. 5. Low-energy edge modes persist at large vortex numbers and are in quantitative agreement with
mean-field predictions. (N = 80). (a) Rescaled energy (ε) and angular momentum (�) are strongly correlated at
large N . (b) The density of states over ε for N = 80 (blue histogram) and N = 1000 (red circles) demonstrates
the convergence to the limiting density (solid curve). The green line selects the rescaled energy ε = −2.5
at N = 80. (c) Streamlines demonstrate the flow pattern of a sample point in phase space with low energy,
ε = −2.5 (see movie S1). (d) The time-averaged Hamiltonian dynamics of N = 80 vortices at ε = −2.5
exhibits edge modes (see movie S2). Simulation time: T = 8 × 103T0. (e) Mean-field theory in the disk
predicts edge modes (β = 15, γ = 0). (f) Predicted and measured probability density as a function of the radial
coordinate r. The zero-angular momentum mean-field prediction (solid black curve) agrees quantitatively with
time-averaged Hamiltonian dynamics (N = 80, green circles), and deviates significantly from the uniform
vortex distribution (solid horizontal line).

where E(|Z|2) = 1/2 and Var(|Z|2) = 1/12. Using the central limit theorem, the appropriately
rescaled angular momentum is therefore

� =
√

12N

(
Ĵ

N
− 1

2

)
.

B. Mean-field theory in the disk

Statistical edge modes persist in the disk at low energy for large vortex numbers N . When N is
sufficiently large, the densities of state approach their limiting values [Figs. 5(a) and 5(b)], and the
rescaled energy ε defines the low-energy regime. The robustness of edge modes at low ε [Figs. 5(c)
and 5(d)], can be understood analytically through the mean-field approach of maximizing the
entropy of the vortex system at fixed energy, particle number, and angular momentum if the domain
has circular symmetry [32,40,41]. It is convenient to explicitly state factors of the vortex circulation
λ in the mean-field picture. We set ρ = ωL2

0/(Nλ) to be the dimensionless vortex density, so ρ

integrates to L2
0 = 1. Similarly, we rescale the streamfunction, ψ̃ = ψL2

0/N so that ∇2ψ̃ = −λρ.
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The constrained entropy functional is [21]

I[ρ] = S − βλ2T 2
0 H − α

∫
�

d2x ρ − βγ L2
0

N
T0J

= −
∫

�

d2x ρ log ρ − βλ

∫
�

d2x ψ̃ρ − α

∫
�

d2x ρ − βγλ

∫
�

d2x r2ρ, (6)

where β, α, γ are Lagrange multipliers enforcing the constraints of constant energy, particle number,
and angular momentum, respectively, with units [β] = T 2/L6, [γ ] = L2/T, [α] = 0. If � does not
have circular symmetry, then γ = 0. By analogy with the first law of thermodynamics, β and α are
sometimes thought of as an inverse temperature and a chemical potential. Extremizing I yields

δI
δρ

= − log ρ − 1 − βλψ̃ − βλγ r2 − α = 0,

and thus

ρ = e−1−αe−βλ(ψ̃+γ r2 ) = 1

Z
e−βλ(ψ̃+γ r2 ),

where Z = e1+α . Using the streamfunction-vorticity relation, ∇2ψ̃ = −λρ, gives the mean-field
equation

∇2ψ̃ = −λ

Z
e−βλ(ψ̃+γ r2 ), ψ̃ |∂� = 0, (7)

where

Z =
∫

�

d2x e−βλ(ψ̃+γ r2 ). (8)

By setting φ = −βλψ̃ and β1 = β/Z , the mean-field equation can be expressed as a nonlinear
eigenvalue problem

∇2φ = β1λ
2e−βγλr2

eφ, φ|∂� = 0,

where

β = β1λ
2
∫

�

d2x e−βλγ r2
eφ.

In the disk, we can simplify this equation by assuming axisymmetry, φ = φ(r), and neglecting
angular momentum, γ = 0, based on the strong correlation between angular momentum and energy
[Fig. 5(a)]

φ′′ + 1

r
φ′ − β1λ

2eφ = 0, φ′(0) = 0, φ(1) = 0.

The boundary condition at 0 comes from the requirement that φ is smooth at the origin. This
equation can be solved exactly to give a vortex density ρ with one free parameter [32]

ρ(r) = 8

8π + β

1(
1 − βr2

8π+β

)2 , β > −8π. (9)

This solution agrees quantitatively with simulations of Hamiltonian dynamics [Figs. 5(e) and 5(f)],
confirming the validity of the mean-field theory at low energies. Furthermore, the mean-field
solution predicts a wide range of low-energy edge modes. Whenever β > 0, the solution (9) is
maximized on the boundary. For large β, the solution describes an increasingly concentrated edge
mode. The role of image vortices in this edge mode solution can be visualized by mapping the
system onto a sphere (Figs. 1 and 6).
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0 0.5Probability density

FIG. 6. Visualization of edge modes in the unit disk from Fig. 5(d) through stereographic projection (N =
80). The southern hemisphere, containing positive vortices (red) has λ = +1, and the northern hemisphere,
containing negative image vortices (blue) has λ = −1. The vortex circulation λ changes sign across the equator,
leading to the formation of an edge mode.

C. Topological interpretation of edge modes

Operators of the form ∇2 − m2 have a topological interpretation in certain contexts, including in
the theory of chiral hydrodynamics [42]. In our system, this operator appears in the linearization of
the mean-field equations (7) after neglecting angular momentum (γ = 0):(

∇2 − β

Z
λ2

)
ψ̃ = −λ

Z
. (10)

This linearization is valid when |βλψ̃ | is small, which holds close to the boundary; see Eq. (7).
Although this equation has exponentially decaying solutions, the assumption that |βλψ̃ | is small
means that these solutions are not valid everywhere. The true decay behavior is given by exact
solutions to the full nonlinear equation, such as (9). Setting ψ0 = ψ̃ − 1/βλ removes the constant
term in Eq. (10)

(∇2 − β1λ
2)ψ0 = 0, (11)

where β1 = β/Z as before.
The topological interpretation of this simplified equation comes from taking the square root of

the differential operator

M =
( −i∂y −∂x + λ

√
β1

∂x + λ
√

β1 i∂y

)
, M2 = −(∇2 − β1λ

2)I2,
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FIG. 7. Low-energy edge modes persist at large vortex numbers and are in quantitative agreement with
mean-field predictions. (a) The density of states over rescaled energy (ε) for N = 80 (blue histogram) and
N = 1000 (red circles) demonstrates convergence to the limiting density (solid curve). The green line selects
the rescaled energy ε = −2.5 at N = 80. (b) Streamlines demonstrate the flow pattern of a sample point
in phase space with low energy, ε = −2.5 (see movie S3). (c) The time-averaged Hamiltonian dynamics
of N = 80 vortices at ε = −2.5 exhibits edge modes (see movie S4). Simulation time: T = 8 × 103T0.
(d) Mean-field theory in a bean-shaped domain predicts edge modes (β = 15). (e, f) The mean-field theory
prediction (solid black curve) agrees quantitatively with time-averaged Hamiltonian dynamics (green circles),
and deviates significantly from the uniform vortex distribution (solid horizontal line).

where I2 is the 2 × 2 identity matrix. The matrix M is the 2D Dirac Hamiltonian and has topological
properties [42]. In the Fourier representation, −i∂x �→ qx and −i∂y �→ qy, we can write the matrix
operator M as

M(qx, qy, λ) =
(

qy −iqx + λ
√

β1

iqx + λ
√

β1 −qy

)
. (12)

When viewed as a function on the parameter space (qx, qy, λ), a topological quantity known as a
Chern number [42,43] can be associated with M (see the Appendix). This invariant measures the
winding of the eigenvectors of M across the (qx, qy) plane and depends only on the sign of λ. As a
consequence, regions in the physical (x, y) space where λ changes sign are special and host localized
steady-state flows [42] (see the Appendix). This corresponds exactly to our physical picture of
vortex dynamics. Our systems of positive vortices have λ = 1 and are surrounded by negative image
vortices with λ = −1 (Fig. 6). At the boundary, where λ changes sign, we observe statistical edge
modes. This argument requires β < 0, and so is not incompatible with the high-energy regime,
where edge modes are not observed. Although this description [42,44] is not the standard picture
of topological edge modes [43], it presents a possible avenue for exploring connections with other
topological phenomena.
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D. Mean-field theory in nonconvex domains

Low-energy edge modes also survive in nonconvex domains at large N . As in the disk, the
rescaled energy ε defines low-energy states [Fig. 7(a)] which display statistical edge modes
[Figs. 7(b) and 7(c)]. Expressed as a nonlinear eigenvalue problem, the mean-field equation without
angular momentum is

∇2φ = β1λ
2eφ, φ|∂� = 0, (13)

where ρ is obtained as

ρ = 1

β
∇2φ, β = β1λ

2
∫

�

d2x eφ.

The numerical solution of this equation agrees with time-averaged simulations of the Hamiltonian
dynamics [Figs. 7(c)–7(f)]. Mean-field theory thus remains valid for irregular, nonconvex domains
at low energy and produces statistical states with edge modes. In particular, any smooth solution
of (13) with β1 > 0 gives a vortex density which is maximized on the boundary. To see this,
observe that φ is subharmonic, ∇2φ > 0. By the maximum principle for subharmonic functions
[32], φ must be maximized on the boundary of its domain. Since φ is constant on the boundary, we
have

φ(xb) � φ(x) ∀xb ∈ ∂�, x ∈ �.

The vortex density ρ is an increasing function of φ,

ρ = 1

β
∇2φ = β1λ

2

β
eφ.

Thus ρ is also maximized on the boundary.

V. CONCLUSIONS

By explicit treatment of boundaries, we have shown that the strongly interacting point vortex
system displays statistical edge modes at low energy. These edge modes are robust to changes in
geometry, surviving in convex and nonconvex domains, and persist in the large vortex number limit.
An interesting future extension could be the investigation of similar phenomena in systems with
multiple vortex species, and in more complicated domains, including multiply connected domains,
for which there exist a wide variety of conformal mapping techniques [45–48]. Although our edge
modes are not explicitly topological, there might exist links to topological edge modes in other
systems, as the mean-field theory used here bears some resemblance to the description of Chern-
Simons vortices [49]. More generally, the above results raise the interesting question of whether
an explicit treatment of boundaries could yield insights into the real-space mechanisms underlying
other topological edge-mode phenomena [42,50–54].
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APPENDIX

1. Topological aspects of the mean-field equation

a. Chern numbers

The linearized mean-field equation (11) can be interpreted topologically by virtue of its associ-
ated Dirac matrix operator from Eq. (12),

M(qx, qy, λ) =
(

qy −iqx + λ
√

β1

iqx + λ
√

β1 −qy

)
.

Each eigenvector of M corresponds to a Chern number. We sketch the calculation of these quantities
following Refs. [42,43]. To this end, we first rewrite M by formally expressing the matrix parameters
(qx, qy, λ

√
β1) in terms of spherical polar coordinates:

λ
√

β1 = h cos φ sin θ, qx = h sin φ sin θ, qy = h cos θ.

Then

M =
(

h cos θ he−iφ sin θ

heiφ sin θ −h cos θ

)
.

The eigenvectors of M are

�− =
(

e−iφ sin θ/2
− cos θ/2

)
, �+ =

(
e−iφ cos θ/2

sin θ/2

)
.

The Berry phase for each eigenvector is

A−
θ = −i〈�−|∂θ�−〉 = 0, A−

φ = −i〈�−|∂φ�−〉 = − sin2 θ

2
,

A+
θ = −i〈�+|∂θ�+〉 = 0, A+

φ = −i〈�+|∂φ�+〉 = − cos2 θ

2
,

This gives the Berry curvature in polar coordinates

F±
θφ = ∂θA±

φ − ∂φA±
θ = ± 1

2 sin θ.

Transforming back to Cartesian coordinates (qx, qy, λ
√

β1), we find

F± = ±1

2

λ
√

β1

q2
x + q2

y + λ2β1
.

Finally, the Chern number for each eigenvector is given by integrating F over qx and qy:

C± =
∫

dqx dqy

2π
F± = ±1

2
sgn(λ).

Regions of the (x, y) plane with λ’s of different signs are therefore associated with different Chern
numbers. The nonzero difference in Chern number across such a boundary is responsible for the
presence of a localized edge mode:

|�C| = |C±(λ > 0) − C±(λ < 0)| = 1.

b. Localized states

Another way to see that localized states occur when λ changes sign is to look for solutions to the
equation [43]

M

(
f
g

)
=

( −i∂y −∂x + λ
√

β1

∂x + λ
√

β1 i∂y

)(
f
g

)
= 0
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FIG. 8. Hamiltonian dynamics, Monte Carlo sampling, and mean-field predictions are in quantitative
agreement at low energy (N = 500). (a) Monte Carlo sampling at fixed energy (ε = −2.5) and varying angular
momentum reveals a low-energy edge mode (n = 3540 samples of N = 500 vortices). (b) The time-averaged
Hamiltonian dynamics of N = 500 vortices at ε = −2.5 exhibits edge modes. Simulation time: T = 2 × 103T0.
(c) Mean-field theory in the disk, at zero angular momentum, predicts edge modes (β = 5.2, γ = 0). Away
from r = 0, quantitative agreement is observed between the mean-field theory prediction (solid black curve),
time-averaged Hamiltonian dynamics (filled green circles), and Monte Carlo sampling (empty blue circles).
Solid horizontal line shows uniform vortex distribution.

for some functions f and g. Assume that there is a boundary at x = 0, with positive vortices in
the region x > 0 and negative (image) vortices in the region x < 0. For ease of notation, set m =
λ
√

β1, so m > 0 when x > 0 and m < 0 and x < 0. To solve these equations, we assume that m is
continuous but changes rapidly from −√

β1 to +√
β1 across the boundary at x = 0. We will look

for separable functions f and g, which decay for large x, y:

−i fy − gx + m(x)g = 0,

fx + m(x) f + igy = 0,

where subscripts denote derivatives here. Consider the first equation

−i fy − [∂x − m(x)]g = 0.

Since m(x) and x have the same sign, g will grow exponentially. Therefore a bounded solution must
have g = 0. This gives fy = 0 immediately, so the only remaining equation is

fx = −m(x) f .

This has a solution

f (x) ∝ exp

(
−

∫ x

0
dx′ m(x′)

)
.

As expected, this solution is sharply peaked around the boundary x = 0 and decays rapidly away
from x = 0.

While the linearized mean-field equation (11) enables an interpretation within the conventional
linear-operator framework of topologically protected modes, the more accurate description of the
strongly interacting vortex system is provided by its nonlinear mean-field equation (7).

2. Equilibration at large N

In the systems of positive point vortices considered here, time-averaged dynamical simulations
are found to agree with vortex distributions obtained by Monte Carlo sampling at fixed energy, even
for large (N = 500) vortex numbers (Fig. 8). Although there are mathematical questions which
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remain unresolved, it is believed that this observed ergodicity is an appropriate assumption for the
point vortex model under certain conditions [21,55]. In other cases, the system is known to be
nonergodic [56,57]. Numerical studies indicate evidence for ergodicity at intermediate energies for
mixed vortex systems (with λa = ±1) in bounded [26,36] and periodic [36] domains. On the sphere,
the ergodic hypothesis appears to hold for a range of energies [58]. At very low energies, however,
dipole formation in mixed vortex systems can produce quasistationary states [36,59]. Furthermore, it
is possible that the relaxation time scales unfavorably with the vortex number N in certain scenarios
[21]. Since we consider only positive vortices, we do not expect dipole formation to obstruct
equilibration at very low energies. However, relaxation timescale issues could be responsible for
the discrepancy we observe in the vortex distributions obtained from dynamical simulations, Monte
Carlo sampling and mean-field theory, near the center (r → 0) of the disk [Fig. 8(c)].

The edge mode obtained for N = 500 vortices at rescaled energy ε = −2.5 (Fig. 8) is shallower
than that obtained for (N, ε) = (80,−2.5) (Figs. 5 and 7). In particular, the mean-field solution for
the (N, ε) = (80,−2.5) edge mode has β = 15, whereas the (N, ε) = (500,−2.5) edge mode has
β = 5.2. However, in both cases, the mean-field solution (9) accurately describes the vortex density

ρ(r) = 8

8π + β

1(
1 − βr2

8π+β

)2 , β > −8π.

This suggests that, by choosing an ε which corresponds to a larger β, a sharper edge mode can be
found for N = 500.

3. Mean-field theory from the canonical ensemble

The mean-field equations (7) can be derived using the canonical ensemble. Following the
presentation in Ref. [60], the canonical partition function for N vortices in a domain � is

Z (β ) =
∫

�N

dξ e−βH(ξ ),

where ξ = (x1, y1, . . . , xN , yN ) is a point in �N . This can be rewritten in terms of the dimensionless
vortex density ρ = ωT0. Let �[ρ] be the functional corresponding to the total vortex density:

�[ρ] =
∫

�

d2x ρ(x) = 1.

Setting W [ρ] to be the number of microstates {ξ} corresponding to the macrostate {ρ(x)}, allows us
to write Z (β ) as an integral over fields ρ(x):

Z (β ) =
∫

�N

dξ e−βH(ξ ) =
∫

Dρ W [ρ] δ(�[ρ] − 1)e−βH[ρ].

The energy is

H[ρ] = −T 2
0

∫
�

d2x d2x′ ρ(x)G(x − x′)ρ(x′) = T 2
0

∫
�

d2x ψ̃ρ,

where the second equality uses ψ̃ = ψT0 from (6). By a counting argument [32,60], the entropy
S[ρ] is related to W [ρ] by

S[ρ] = −
∫

�

d2x ρ log ρ = logW [ρ].

The partition function Z (β ), and the probability P[ρ] of the density ρ are therefore

Z (β ) =
∫

Dρ δ(�[ρ] − 1)eS[ρ]−βH[ρ], P[ρ] ∝ δ(�[ρ] − 1)eS[ρ]−βH[ρ].
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The most probable distribution follows from maximizing S − βH subject to �[ρ] = 1. In other
words, we must maximize the functional

I[ρ] = S − βH − α

∫
�

d2x ρ.

Upon rescaling β, this is exactly the maximization in (6) without angular momentum (γ = 0). As
before, this maximization yields the mean-field equations (7) with γ = 0.
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