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Braiding of topological structures in complex matter fields pro-
vides a robust framework for encoding and processing infor-
mation, and it has been extensively studied in the context of
topological quantum computation. In living systems, topolog-
ical defects are crucial for the localization and organization
of biochemical signaling waves, but their braiding dynamics
remain unexplored. Here, we show that the spiral wave cores,
which organize the Rho-GTP protein signaling dynamics and
force generation on the membrane of starfish egg cells, undergo
spontaneous braiding dynamics. Experimentally measured world
line braiding exponents and topological entropy correlate with
cellular activity and agree with predictions from a generic field
theory. Our analysis further reveals the creation and annihila-
tion of virtual quasi-particle excitations during defect scattering
events, suggesting phenomenological parallels between quantum
and living matter.

braiding | topological defects | biochemical signaling waves |
virtual particles | information transport

Braiding confers remarkable robustness to static and dynamic

structures, from plaited hair and fabrics (1) to the entangled

world lines of classical (2) and quantum particles (3). Stabi-

lized by an inherent topological protection, braided threads,

ropes, and wires have long been used to transmit forces and

shield signals (4). Over the last decade, dynamic braiding pro-

cesses (5–7) have attracted major interest in soft matter (8, 9)

and quantum physics (3) as promising candidates for robust

information storage and processing (10, 11). A widely stud-

ied application is topological quantum algorithms that perform

computations by braiding the world lines of two-dimensional

(2D) quasiparticle excitations (3, 10, 11). Of similar impor-

tance to information processing in living systems—albeit much

less well understood—are the braiding dynamics of chemical

spiral wave signals on cell membranes, which control a wide

range of developmental and physiological functions, including

cell division (12), cardiac rhythm (13–16), and brain activity

(17). These spiral waves belong to a rapidly expanding class

of recently discovered biological phenomena (18, 19) in which

topological structures serve as robust organizers of essential life

processes.

Similar to quantum states, biochemical spiral wave patterns

can be described by complex wave functions (20), with spiral

cores acting as topologically protected 2D quasiparticles (21).

Although modern live-cell imaging now enables the direct obser-

vation of membrane spiral waves (22), their braiding dynamics

have remained unexplored due to insufficient spatiotemporal

resolution. Identifying the dynamic similarities and differences

between 2D biochemical and quantum excitations poses a the-

oretically and practically relevant challenge, since optogenetic

advances (23, 24) promise unprecedented control over cell sig-

naling and hence biological computation. A particularly inter-

esting open question in this context is whether fundamental

quantum mechanical particle−particle interactions, symmetries

(25), and scattering phenomena find counterparts in biological

signaling processes. Our combined experimental and theoretical

results below show that the self-braiding events of biochemi-

cal spiral wave cores on the cell membranes can exhibit virtual

particle pair creation and annihilation and bosonic exchange

symmetry, revealing profound parallels between defect dynamics

and information transport in living and quantum matter.

Driven by recent experimental progress (18, 22, 26–28),

the exploration of topological defects in synthetic and nat-

ural active matter has become a rapidly expanding area of

research (29–38). In living systems, energy conversion of ATP

at the microscale leads to the emergence of complex biochem-

ical and biophysical signaling patterns at the mesoscale and

macroscale (22, 27, 39). Such nonequilibrium patterns often

display rich topological textures and dynamics (32, 33, 40,

41), arising from the defects’ self-propulsion (29) and inter-

actions (30, 31). Owing to their robustness and slow dynam-

ics, topological excitations can act as stabilizers and organiz-

ers of active force generation (18), biological functions (19),

and information flows. Recent work determined the topolog-

ical entropy associated with the braiding of defects in active

nematic liquid crystals (37). By contrast, the relation between

spontaneous topological defect braiding and information loss in
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Fig. 1. Direct measurement of defect world line dynamics during membrane signaling wave propagation. (A) Time evolution of chemical Rho signaling wave
patterns on the starfish oocyte from a homogeneous initial state to a quasi-steady state exhibiting turbulent spiral patterns. Snapshots show maximal intensity
projections of three near-membrane Z-stack confocal slices spanning 5 µm (Movie S1). (Scale bar: 40 µm.) (B) Quasi-steady wave patterns (t > 60 min) of Rho-
GTP intensity field from four starfish egg cells, aligned with phase fields reconstructed from oscillations in pixel fluorescence intensity signal (Right). (Scale bar:
20 µm.) Five wave propagation states on five different egg cells were analyzed in total (Movies S2–S6). (C) The reconstructed phase fields harbor topological
defects of winding number +1 (red, counterclockwise rotating spiral core) and −1 (blue, clockwise rotating spiral core) (Upper). Time-lapse snapshots of local-
ized creation (annihilation) events that produce (destroy) oppositely charged defects in pairs (Lower). (Scale bar: 5 µm.) (D) World line representation of topo-
logical defects embedded in 2+1-dimensional phase field. The time-lapse snapshots in C correspond to formation of the simple space−time loop in D. (Scale bars:
5 µm; 30 s [vertical] [Movie S7 ]). (E) Loop density characterizes signaling waves from five different oocytes (states i to v) varying in cellular activity. Asterisks
annotate the lower-activity and higher-activity state i and iii, as presented next in F and G. (F) Space−time defect loops from experimental wave state i (lower
activity). (Scale bars: 10 µm; 90 s [vertical]). (G) Space−time defect loops from experimental wave state iii (higher activity). (Scale bars: 10 µm; 90 s [vertical]).
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cell membrane signaling processes (22) has remained relatively

unexplored.

To investigate the braiding dynamics of biochemical spiral

waves in living cells, we compared here experimental obser-

vations of Rho-GTP activation waves on starfish oocyte mem-

branes (22) with predictions of a generic continuum theory

(20). Rho-GTP is a highly conserved signaling protein pivotal

in regulating cellular division (42) and mechanics (43) across

a wide variety of eukaryotic species (44). Since the biological

functions of Rho-GTP have been widely investigated previ-

ously (45), we focused here on the topological characterization

of the biochemical signaling dynamics through braiding anal-

ysis of defect world lines and entropic information measures,

to identify similarities and differences with wave propagation

and particle scattering dynamics in quantum systems. Over-

coming previous observational and algorithmic limitations, we

achieved the spatiotemporal resolution required for dynami-

cal analysis by combining in vivo imaging with spectral sig-

nal representation, quantitative mathematical modeling, and

large-scale computational parameter estimations (Materials and
Methods) (46).

Results
Topological Defect Dynamics in Rho-GTP Signaling Patterns. To

visualize the self-organized Rho-GTP wave patterns on the

membrane of the oocytes (45), we used the enhanced green

fluorescent protein/rhotekin GTPase binding domain (eGFP-

rGBD) biosensor (Fig. 1A and SI Appendix, Fig. S1 and Movie

S1). Different steady-state patterns of Rho-GTP were induced

by a systematic increase of the GEF (guanine exchange fac-

tor) responsible for activating Rho-GTP (states i to v) (39).

Rho-GTP waves maintained constant oscillatory periods within

all observed nonequilibrium steady states with different cellu-

lar activity (22) (Movies S2–S6), enabling the reconstruction of

spatiotemporal phase fields (Fig. 1B and SI Appendix, Fig. S2

and Materials and Methods). Topological defects in the phase

field are singular points with winding number +1 or �1 cor-

responding to counterclockwise or clockwise rotating centers

of propagating spiral waves (Fig. 1C). These phase defects are

created and annihilated in pairs, conserving the total topo-

logical charge (Fig. 1C). By tracking the 2+1-dimensional

world lines of both defect types, we observed complex cre-

ation, annihilation, and braiding dynamics (Fig. 1D), similar

to those in Bose−Einstein condensates (46, 47) (Movie S7).

Closed space−time loops (SI Appendix, Fig. S3) reflect succes-

sive defect pair creation and annihilation events. Rho-GTP spiral

waves from the five observed oocytes exhibited varying densi-

ties of space−time defect loops, reflecting differences in cellular

activity (Fig. 1E). Despite such quantitative variations, all sig-

naling patterns displayed a wide range of loop structures and

sizes (Fig. 1 F and G and SI Appendix, Fig. S3). Steady-state

spiral waves of low-activity oocytes (Fig. 1F) exhibited a lower

loop density compared with high-activity cells (Fig. 1G). To con-

firm the link between cellular activity and defect loop statistics,

A

B C D

Fig. 2. ATP depletion induces structural changes in the membrane signaling patterns and reduces the frequency of topological defect creation and annihi-
lation events. (A) Time evolution of Rho-GTP intensity field and phase field from a starfish egg cell treated with ATP depletion drug sodium azide (Materials
and Methods and Movie S8). Videos I through IV in Movie S8 each has a duration of 30 min and were taken sequentially, separated by short (<3 min) inter-
vals in between. The drug treatment was performed after video I and before the start of video II. (Scale bars: 20 µm.) Asterisks denote the pretreatment
video I and posttreatment video III, as presented next in B–D. (B) Loop density as a function of time showing a transient drop in cellular activity in response
to the ATP depletion treatment. (C) Space−time defect loops before ATP depletion recorded during phase I in A. (Scale bars: 10 µm; 90 s [vertical]). (D) After
ATP depletion (phase III in A), the density of space−time defect loops decreases significantly, reflecting the reduction of cellular activity. (Scale bars: 10 µm;
90 s [vertical]).
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we performed additional experiments, in which starfish oocytes

exhibiting steady-state wave patterns were perturbed with the

ATP-depleting drug sodium azide (Materials and Methods and

Fig. 2). After exposure to the drug, the Rho-GTP concentration

patterns (Movie S8) and their associated phase fields displayed

visible structural and dynamical changes (Fig. 2A): Over a period

of ⇠1 h, the space−time loop densities decreased, reflecting

the decrease in cellular activity, before eventually returning to

preperturbed levels (Fig. 2 B–D and SI Appendix, Fig. S3).

These observations are consistent with the previous measure-

ments for steady-state cells (Fig. 1 B and E–G), supporting the

hypothesis that cellular activity and topological defect dynamics

are linked.

Defect Braiding Dynamics. In addition to short-lived loops which

dominate at high activity, low-activity states (Fig. 1 B, i–iii)
exhibit a large number of long-lived defect world lines that

undergo spontaneous braiding dynamics (Fig. 3A). Space−time

braiding of spiral cores is indicative of chaotic dynamics of the

Rho-GTP signaling patterns. To quantify the associated topolog-

ical entropy increase, we classified braiding events by adopting

the reduced Burau matrix representation of the n-particle braid

group (48). To this end, we first identified elementary braid-

ing events from the crossing of projected world lines (Fig. 3A).

Each clockwise or counterclockwise braiding event n is then rep-

resented by a (n � 1)⇥ (n � 1) matrix �(n) 2 {�i ,�
�1
i }, where

the �i are the generators of Burau representation (Materials
and Methods). Accordingly, a sequence of n =1, . . . ,N succes-

sive braiding events is encoded by the matrix product ⌃(N ) =
�(N )�(N�1) . . .�(1)

of the corresponding elementary generators

(2). The largest eigenvalue ⇤ of the braid matrix ⌃(N )
, known

as the braiding factor, determines the braiding exponent �=
(1/t) log⇤, which measures the growth rate of the topological

entropy in chaotic systems (2).

Braiding Exponents and Topological Entropy. To calculate the

braiding exponents � from our experimental data (6), we con-

structed a library of long-lived +1 and �1 defect world lines

for the low-activity signaling states i, ii, and iii (Fig. 3A and

Materials and Methods). Braiding exponents for different defect

numbers were then computed and averaged across subgroups

of world lines bootstrapped from the library (SI Appendix,

Figs. S4 and S5 and Materials and Methods). Our evaluation

A

B C D

Fig. 3. Spontaneous braiding of topological defects and world line collisions during cell signaling. (A) Representative selection of braided defect world
lines from low-activity state i. Braiding dynamics are quantified by multiplying braiding operators (�i , �

�1
i ) and averaging over a collection of projected

world line cross-overs (Materials and Methods and SI Appendix, Fig. S4). (Scale bars: 20 µm; 240 s [vertical]). (B) World line collision (defect pair creation
and annihilation) frequencies per unit area for states i, ii, and iii exhibit a sequential rise. Error bars represent SD throughout time. (C) Measured braiding
exponents as a function of total defect number exhibit a sequential rise in magnitude with increasing activities from states i to iii. Error bars represent
SE across bootstrap samples. (D) Braiding exponents from C collapse when rescaled by the world line collision frequencies. Error bars represent SE across
bootstrap samples.
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of world line collision frequencies reveals different time scales

of cellular activities across signaling wave states (Fig. 3B). The

estimated braiding exponents support the hypothesis that topo-

logical entropy increases faster at higher cellular activity (Fig.

3C). When rescaled by the world line collision frequencies ⌧�1
,

the braiding exponents collapse onto a single curve (Fig. 3D).

This result presents a direct link between the spontaneous topo-

logical braiding of spiral defects and information loss in the

cellular signaling waves.

Discussion
Quantitative Mapping to a Complex Ginzburg−Landau Theory. To

understand whether the above results translate to a broader

class of biochemical signaling systems, we compared the exper-

imentally observed loop and braiding dynamics with predic-

tions from a generic spiral wave theory (20). We simulated

a complex Ginzburg−Landau (CGL) continuum model (20,

49) with tunable levels of activity (Fig. 4A and SI Appendix,

Fig. S6). The CGL theory describes a general class of non-

linear waves capable of embedding spiral cores, for which

effective diffusion and reaction parameters can be systemati-

cally derived as combinations of constants from a multispecies

reaction−diffusion system (SI Appendix, Figs. S7 and S8 and

Materials and Methods). By tuning the reaction parameter in

the CGL model, we were able to quantitatively match the CGL

phase field dynamics to the oocyte states i, ii, and iii in both

space (Fig. 4A and SI Appendix, Fig. S9) and time (Fig. 4 B
and C, Movie S9, and Materials and Methods). Detailed braid-

ing analysis of the space−time defect dynamics of CGL states

confirmed that higher-activity states show faster topological

entropy growth (Fig. 4D). In agreement with our experimental

observations, the braiding exponents collapse when rescaled by

the world line collision frequencies (Fig. 4E). Taken together,

these results support the conclusion that essential aspects of

wave-mediated information processing on the oocyte membrane

can be modeled and studied within a generic CGL theory

framework.

Virtual Quasi-particle Excitations on the Cell Membrane. Macro-

scopic information loss in spiral wave signaling patterns results

from the microscopic interactions between the defect cores.

Future efforts to control biochemical membrane signaling

through optogenetic intervention will thus require a detailed

understanding of microscopic defect scattering events. We there-

fore applied our analysis framework to study the previously

inaccessible short-range defect scattering dynamics. While two

colliding opposite-sign spiral cores tend to annihilate, a pair of

interacting same-sign spiral cores can exhibit intricate dynam-

ics (Fig. 5). In addition to basic pair-braiding dynamics (Fig. 5A
and Movie S10), our data revealed scattering events during which

short-lived “virtual” particles were created (Fig. 5 B and C). Such

virtual particles annihilated either mutually (Fig. 4B and Movie

S10) or by recombination with one of the original defects (Fig.

5C and Movie S10). These biochemical scattering events have

known counterparts in quantum systems (50), and all of them

can also be identified in the corresponding CGL wave states

(Fig. 5, Lower). Another interesting parallel with quantum sys-

tems relates to the pair exchange symmetry when two equal-sign

spiral defects exchange positions through braiding. In the case of

two identical quantum particles, the global phase shift acquired

B

C

A D

E

Fig. 4. A generic CGL model captures phase continuum and defect-braiding dynamics with tunable activity. (A) Representative snapshots comparing phase
fields of best-fit (Materials and Methods) CGL (49) models with oocyte states i, ii, and iii (Insets), animated in Movie S9. (Scale bar: 20 µm.) (B) Snapshots
of space−time slices (kymographs) for states i, ii, and iii, animated in Movie S9. (Scale bar: 20 µm; 50 s [vertical]). (C) Snapshots of space−time slices
(kymographs) for CGL matches of states i, ii, and iii, animated in Movie S9. (Scale bar: 20 µm; 50 s [vertical]). (D) Braiding exponents as a function of total
defect number exhibit a similar sequential rise in magnitude across CGL matches of states i, ii, and iii. Error bars represent SE across bootstrap samples.
(E) Braiding exponent curves across CGL matches from D consistently collapse when rescaled by the world line collision frequencies. Error bars represent SE
across bootstrap samples.
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Fig. 5. Pair scattering events observed in experiments and simulations (Right), and their corresponding Feynman diagrams (Left). (A) Scattering event
in which a pair of same-sign defects partially braids. From Movie S10: Time-lapse snapshots of an example event in experiment (Upper) and the CGL
match (Lower). (Scale bar: 10 µm.) (B) Scattering event between two same-sign defects during which a short-lived “virtual” opposite-sign defect pair is
created and annihilated. From Movie S10: Time-lapse snapshots of an example event in experiment (Upper) and the CGL match (Lower). (Scale bar: 10 µm.)
(C) Scattering event during which a virtual defect pair is created and recombines with one of the incoming defects. From Movie S10: Time-lapse snapshots
of an example event in experiment (Upper) and the CGL match (Lower). (Scale bar: 10 µm.)

during a 180� braiding operation determines the bosonic,

fermionic, or anyonic nature of the fundamental excitations (25).

Intriguingly, statistics of braiding defect pairs collected from the

CGL states suggest a bosonic exchange symmetry (SI Appendix,

Fig. S10) associated with the spiral wave system.

Defects as Organizers of Biophysical and Biochemical Signaling.
Recent studies of eukaryotic cell layers (19, 28, 35) and bacterial

colonies (18) revealed that topological defects play a central role

in organizing collective cell dynamics (51), multicellular mor-

phologies (34), and apoptosis (19). Similarly, topological defects

at the centers of biochemical (52) and electrical spiral waves

(13–16) have been shown to control the collective signaling in

multicellular communities, including heart (13–15) and brain tis-

sues (17). Providing an extension to signaling at the single-cell

level, our above analysis suggests a link between ATP-driven

cellular activity, spiral wave defect dynamics, and information

flow on the oocyte membrane (Fig. 2). The eukaryotic Rho-GTP

wave patterns studied here bear resemblance to bacterial Min

protein oscillations (53), which similarly regulate mechanics dur-

ing cell divisions (54) and can also realize spiral wave patterns

under suitable conditions (55). From a theoretical perspective,

the fact that key aspects of the Rho-GTP phase field dynamics

can be captured by a generic CGL description (Fig. 4) further

supports the hypothesis that topological defect analysis can pro-

vide a unifying framework for understanding robust information

transport in biological systems. From an experimental perspec-

tive, an interesting next challenge is to decipher potential roles of

the Rho-GTP membrane signaling defects in the organization of

long-wavelength information during mitosis (45). Targeted opto-

genetic positioning of defects on the cell membrane may help

answer this question in the near future.

Conclusions
Groundbreaking research over the last decade has identified

topological defects as central organizers of biological informa-

tion processing and function (17–19). Our analysis of the topo-

logical braiding dynamics in biochemical signaling waves on cell

membranes demonstrates a framework for comparing informa-

tion transport and processing in analogy with quantum systems.

This paves the way for exploring whether recently developed

optogenetic control techniques (23, 24) can enable the creation
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and control of emergent bosonic, fermionic, or perhaps even

anyonic excitations in biological matter.

Materials and Methods
Additional technical details of experiments and theoretical analysis are
described in SI Appendix, which includes SI Appendix, Figs. S1–S10.

Data Acquisition. For this study, we combined data from previously
reported measurements (22) of Rho-GTP steady-state wave patterns on
Patiria miniata starfish oocyte membranes with data from newly per-
formed experiments (Fig. 2) in which P. miniata starfish oocytes were
treated with the ATP-depleting drug NaN3 (sodium azide). In total,
the data sets comprise five time series from ref. 22 and four time
series from NaN3 perturbed oocytes (Movie S8). All data were processed
using a spectral representation method (SI Appendix) that enables previ-
ously unfeasible high-resolution phase-field reconstruction and dynamical
analysis.

Starfish Oocyte Experiments. Oocytes were extracted from P. miniata
starfish, washed by calcium-free seawater to prevent spontaneous matu-
ration, and incubated at 15 �C. In vitro−synthesized messenger RNAs were
prepared in the laboratory and delivered into cytoplasm via microinjection.
Microscope imaging was performed after an overnight incubation to max-
imize protein expression in oocytes. For each experiment, 1-MA (1-methyl
adenine) solution was used to induce meiosis. Fluorescent proteins were
excited with a 488-nm laser, focused through a Nikon 60⇥/NA = 1.40 oil
objective and collected using an EMCCD (electron multiplying charge cou-
pling device) camera. The microscope room was maintained at 20 �C to
22 �C throughout the experiment. To obtain the data in Fig. 2, first, the
meiosis process was induced until Rho-GTP spiral wave signaling patterns
on membrane (time series I) reached a steady state, using the previous pro-
tocols (22) for acquiring steady-state data in Fig. 1. Then the oocytes were

exposed to the ATP-depleting drug NaN3 to obtain sequential time-lapse
videos II, III, and IV as described in SI Appendix and shown in Movie S8.

CGL Simulations. The CGL equation (20),

@t = � (1 + ic)| |2 + (1 + ib)r2 ,

is a generic model describing the spatiotemporal evolution of oscillatory
continuum systems  (x, t) near a Hopf bifurcation and can be quantita-
tively matched to a multispecies reaction−diffusion system (SI Appendix).
Simulations of the CGL model were performed on a unit sphere using
the MATLAB Chebfun library. Each simulation starts from a random ini-
tial condition and lasts for sufficient time to ensure decay of initial
transient dynamics. A quantitative database and an interactive solver of
spatiotemporal patterns of the CGL equation is available online at CGLE
Atlas (49).

Data Availability. All data and analyses codes are available in SI Appendix.
A quantitative database and an interactive solver of spatiotemporal
patterns of the CGL equation are available online at CGLE Atlas,
https://www.cgleatlas.com/ (49).
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9. S. Čopar, U. Tkalec, I. Muševič, S. Žumer, Knot theory realizations in nematic colloids.
Proc. Natl. Acad. Sci. U.S.A. 112, 1675–1680 (2015).

10. C. Nayak, S. H. Simon, A. Stern, M. Freedman, S. Das Sarma, Non-Abelian
anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159
(2008).

11. M. Freedman, A. Kitaev, M. Larsen, Z. Wang, Topological quantum computation. Bull.
Am. Math. Soc. 40, 31–38 (2003).

12. J. Lechleiter, S. Girard, E. Peralta, D. Clapham, Spiral calcium wave propagation and
annihilation in Xenopus laevis oocytes. Science 252, 123–126 (1991).

13. J. M. Davidenko, A. V. Pertsov, R. Salomonsz, W. Baxter, J. Jalife, Stationary and
drifting spiral waves of excitation in isolated cardiac muscle. Nature 355, 349–351
(1992).

14. R. A. Gray, A. M. Pertsov, J. Jalife, Spatial and temporal organization during cardiac
fibrillation. Nature 392, 75–78 (1998).

15. N. Bursac, F. Aguel, L. Tung, Multiarm spirals in a two-dimensional cardiac substrate.
Proc. Natl. Acad. Sci. U.S.A. 101, 15530–15534 (2004).

16. J. Christoph et al., Electromechanical vortex filaments during cardiac fibrillation.
Nature 555, 667–672 (2018).

17. X. Huang et al., Spiral wave dynamics in neocortex. Neuron 68, 978–990 (2010).
18. K. Copenhagen, R. Alert, N. S. Wingreen, J. W. Shaevitz, Topological defects

promote layer formation in Myxococcus xanthus colonies. Nat. Phys. 17, 1–5
(2021).

19. T. B. Saw et al., Topological defects in epithelia govern cell death and extrusion.
Nature 544, 212–216 (2017).

20. I. S. Aranson, L. Kramer, The world of the complex Ginzburg-Landau equation. Rev.
Mod. Phys. 74, 99–143 (2002).
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Supporting Information Text

Materials and Methods

Membrane signaling wave dataset from live starfish oocytes. To obtain high-resolution Rho-GTP intensity and defect trajectory data,
we developed and implemented a spectral representation framework, which is described in detail in the next Section and Fig. S2. We applied
this framework to five videos showing steady-state Rho-GTP wave patterns at different levels of cellular activity (Fig. 1B; Movie S2-6, left
panel) and four sequential videos of Rho-GTP wave patterns with cellular activity perturbed by ATP depletion treatment. The five steady-state
videos were recorded as part of our previous study (1). All raw microscope image data were de-noised and interpolated using a spectral
representation approach, which by projecting the measured pixelated fields onto spatiotemporal basis functions allows for a systematic
data de-noising and compression and translated discrete video data into continuous differentiable fields that can be computed at arbitrary
spatiotemporal resolution. We then used this representation to generate de-noised evaluations of raw microscope data at 2 times higher spatial
resolution and 10 times higher temporal resolution for dynamical analyses.

The experimental recordings of the five steady-state signaling wave data were obtained as described in our previous study (1), by preparing
the starfish oocytes with the following procedures. Patiria miniata starfish were procured from South Coast Bio-Marine LLC, then kept in a
salt-water fish tank maintained at 15°C. Ovaries from the female animals were extracted through a small bottom incision (animals heal after
extraction) made near the central disk. Upon extraction, ovaries were carefully fragmented with a pair of scissors to release the oocytes. The
oocytes were then washed twice with calcium-free salt-water to prevent early initiation of meiosis. The washed oocytes were incubated in
regular salt-water at 15°C for up to three days, within which experiments were performed.

Two types of proteins were co-expressed in the oocytes prior to measuring membrane Rho-GTP signaling waves. To fluorescently label
Rho-GTP molecules, we used the eGFP-rGBD (fluorescently-labelled rhotekin binding domain) construct, a gift from William Bement (2)
(Addgene plasmid 26732; http://n2t.net/addgene:26732; RRID: Addgene 26732.). To generate excitable Rho-GTP waves on the membrane,
we used the Ect2-T808A-mCherry construct, which was a kind gift from G. von Dassow. Ect2 (epithelial cell transforming sequence 2) is
a conserved guanine exchange factor (GEF) enzyme involved in Rho protein activation in starfish oocyte (3–5) as well as broader types of
animal cells (6). The Ect2-T808A molecule bears a mutation that desensitizes it to one particular Cdk1 phosphorylation in starfish oocytes,
which otherwise limits membrane association during the M-phase. Both constructs were amplified with overnight bacterial culturing, purified
(Miniprep kit, Qiagen) and linearized (with appropriate restriction enzymes), and eventually used as templates to synthesize mRNA (SP6
mMessage mMachine transcription kits, Thermo Fisher Scientific). The synthesized mRNA molecules were mixed in nuclease-free water
solution, then microinjected into the cytoplasm of the oocytes. Injected oocytes were incubated overnight at 15°C to allow for sufficient protein
expression.

To image the membrane Rho-GTP signaling waves with minimized positional drifts, we used a set of specially-designed PDMS (polydimethyl-
siloxane) chambers for containing the oocytes (5) (Fig. S1A). The chambers were microfabricated by casting gas-permeable PDMS onto
patterned silicon wafer moulds. We designed the elliptical shape of the master mould to match typical volumes of the oocytes, with a height of
80 µm and surface area of ≥ 27 000 µm2. The patterned silicon wafer was manufactured using photolithography (Microfactory SAS), and
silicon wafer was silanized with trichlorosilane (Sigma 448931). To prepare the chambers, PDMS was first made by mixing Dow SYLGARD
184 Silicone Elastomer Clear solution at a 10:1 base-to-curing agent ratio. After mixing thoroughly, the elastomer was poured over the silicon
master mould, then degassed in a vacuum chamber and cured at 60 ¶C in an oven for an hour.

The imaging of membrane Rho-GTP signaling waves of the five-oocyte dataset was performed using a Zeiss 700 laser scanning confocal
system, which contains a Zeiss AxioObserver motorized inverted microscope stand and three photomutiplier detectors. To induce meiosis,
we first treated microinjected oocytes with 10 µM 1-methyl adenine solution (Sigma 215325). The treated oocytes were then washed with
regular salt-water and loaded into PDMS chambers (Fig. S1A). Time-lapse confocal images collecting near-membrane Z-stack signals (Fig.
S1B) were acquired using a ◊40/NA 1.3 oil Plan Apochromat objective with appropriate laser lines and emission filters. The steady-state
wave dataset (Movie S2-S6) was collected from five individual oocytes in two different batches. Movie S1 showing the representative time
evolution of Rho-GTP patterns was acquired using a RPI spinning disk confocal microscope with a ◊40/NA 1.3 oil Plan Apochromat objective
and oocyte was collected from a separate batch, but all other treatments are conserved. During imaging, the microscope room was always
maintained at 20 - 22°C.

To obtain the four sequential time-lapse videos of Rho-GTP wave pattern data under ATP depletion, we applied the mitochondrial inhibitor
drug sodium azide NaN3 (Sigma 71289) to individual starfish oocytes during their steady-state Rho-GTP signaling process. After the induction
of meiosis, protein-expressing oocytes were transferred to an open chamber constructed from a glass coverslip and a gas-permeable polymer
coverslip (ibidi sticky-Slides) spaced by two parallel lanes of 100 µm-thick double-sided Scotch tapes. Throughout imaging, we immersed the
chamber in a 400 µL filtered seawater droplet to prevent evaporation. The chamber has two open ends, therefore permitting perturbation of
oocyte metabolism through application of inhibition drug into the open seawater droplet.

For ATP depletion experiments, we added sodium azide to the open droplet after the oocytes exhibited membrane Rho-GTP waves with steady
spatial and temporal structures. The imaging of Rho-GTP waves in open-chamber cells was performed using a home-built optical setup with
488 nm laser (50 mW, OBIS, Coherent Inc.) excitation. A neutral-density filter (NDC-50C-4M, Thorlabs) was used to adjust the intensity of
the 488 nm laser beam. The beam diameter was expanded using two lenses with focal lengths f1 = 40 mm and f2 = 300 mm (Thorlabs). The
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Fig. S1. Experimental setup and Rho protein reaction kinetics. (A) Experimental setup to visualize membrane fluorescence accompanying Rho protein signaling waves.
Oocytes were confined in seawater-filled PDMS chambers during time-lapse imaging. (B) Cycling of Rho protein between the GTP-bound form (active, fluorescently labelled in
experiments) on the membrane and GDP-bound form (inactive) in the cytosol. GEF (guanine nucleotide exchange factor) enzyme catalyzes the activation process. Confocal
images were collected from near-membrane Z-stack signals.

expanded beam was circularly polarized using a quarter-wave plate (WPQ05M-561, Thorlabs) and then focused into the back aperture of a
high-NA (numerical aperture) oil objective (Nikon CFI Plan Apo 60X/NA=1.40). Emitted fluorescent light was collected through the same
objective, passed through a custom made dichroic beam splitter (ZT405/488/561/700-800, Chroma), filtered using a single band-pass filter
(FF01-531/46-25, Semrock), and eventually focused onto a EMCCD camera (Andor, Oxford Instrument). Time-lapse images were focused on
a single near-membrane z-position and taken at 2 frames per second. We collected four consecutive time series for the oocyte shown in Fig. 2
and Movie S8 (time series I, II, III and IV), each of 30 min duration, with <3 min intervals in between to start drug treatment (in between time
series I and II) or adjust z-focus ((in between time series II, III and IV)).

Data representation, phase field construction and phase defect tracking from signaling waves. We constructed the phase field
from microscope images with the following procedure. Raw time-lapse Z-stack images (covering ≥5 µm near the membrane) were first
combined into a single intensity field video through a maximal intensity projection. The rectangular intensity field video, I(x, t), was extracted
from the experimental intensity video by least square fitting an ellipse to the boundary of the oocyte. The data was then rotated to axis align
the major and minor axes of the ellipse. The rectangular region was extracted by choosing the largest possible rectangle inscribed in the
ellipse. Similar to spectral methods for differential equations, the (2 + 1)D space time data cube with Nx, Ny and Nt pixels in each dimension
respectively is represented as a sum over bases functions, Chebyshev polynomials of the first kind in space and Fourier in time (7),

I(x, t) =
Nx≠1ÿ

n=0

Ny≠1ÿ

m=0

Nt/2≠1ÿ

k=≠Nt/2

cn,m,kTn(x)Tm(y)e2fiikt/Nt . [1]

Tn(x) is the n degree Chebyshev polynomial of the first kind, Tn(x) = cos(n arccos(x)) . Assuming the data I(x, t) can be well represented
by a smooth function f(x, y, t) with additive noise, I(x, t) = f(x, y, t) + ‘x,y,t where |‘| π |f |, then the linearity of the Fourier and
Chebyshev transform implies the coefficients cn,m,k can be decomposed as the sum cn,m,k = c̃n,m,k + ‘̃n,m,k, where the c̃n,m,k decay
rapidly because they come from a smooth function and the ‘n,m,k are uniformly small relative to the largest c̃. We therefore expect that we can
remove noise and get a smooth representation of the data by cutting off the summation in Eq. (1) at the thresholds Mc and Mf to get the new
denoised representation of the data,

f(x, t) ¥
(Ny/Nx)n+mÆMcÿ

n,m=0

Mfÿ

k=≠Mf

cn,m,kTn(x)Tm(y)e2fiikt/Nt . [2]

The coefficients cn,m,k can be calculated efficiently using fast algorithms for the Discrete Cosine Transform and the Discrete Fourier Transform
(8, 9). This assumes that the function is sampled on the Chebyshev grid xk = cos(kfi/N) for k = 0, . . . , N in both spatial dimensions and
uniformly spaced in time. The data is converted from the uniformly spaced experimental grid to the Chebyshev grid using linear interpolations.
The errors introduced in the coefficients from the linear interpolations are of lower order than the error already introduced from the noise in the
data.
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Fig. S2. Data representation and reconstruction using orthogonal basis projection. (A) Comparison of an experimental snapshot with the corresponding data and phase
field representation Eq. (2) for state ii. Scale bar 20 µm. (B) Parameter sweep over possible Fourier and Chebyshev mode cutoffs for state ii. (C) Compression error fronts for
the experimental states. We see that all the curves have a similar shape across all states. The linear fit to each of the experimental fronts on the loglog graph is shown with
thick lines. (D) Comparison of true and represented data and phase for simulated CGL test data. (E) Parameter sweep over possible Fourier and Chebyshev mode cutoffs for
the CGL test data. (F) Compression error front extracted from the parameter sweep in (F) along with the linear fit to the loglog curve and the chosen cutoff point.

The thresholds Mc and Mf are chosen by sweeping over all possible thresholds 0 Æ Mc Æ Ny and 1 Æ Mf Æ Nt/2 and calculating the
relative reconstruction error,

E(fl, fl̃) =

Òq
x,t

(I(x, t) ≠ f(x, t))2

Òq
x,t

I(x, t)2
[3]

and the effective compression at each point. The effective compression is defined by the mean of the spatial and temporal compression
C = 0.5(Cs + Ct) where Ct = (2Mf + 1)/(2Nt + 1) and Cs = (2 + 2Mc ≠ Ny)(1 + Nx)/(2NxNy). A scatter plot of compression
versus reconstruction error shows that there is a front corresponding the points of best reconstruction error for a given compression. These
correspond to points where the reconstruction error contours and compression contours are tangent. We choose the threshold as the point at the
start of the elbow of this front determined by fitting a line to the linear part of the curve on a loglog plot. Once we have the basis representation
for the experimental data we can then evaluate the expansion in Eq. (2) at any points (x, y, t) inside the domain interpolating the data at higher
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resolution.

The method was first tested on mock CGL data with added Poisson noise of varying strengths to approximate experimental noise. Fig. S2E-F
illustrates the process for choosing the thresholds and S2D show a comparison of the resulting reconstruction to the noisy input image and
the true image for one noise strength. For the experimental data, parameter sweeps were performed for each state and a cutoff was chosen
for each state (Fig. S2A-C). For the ATP depletion data an initial preprocessing step was used to account for the background in the raw
microscope image. Each frame was first down sampled by averaging over each square of four neighboring pixels and then rescaled to have
zero mean and standard deviation of one. The mean over all rescaled frames was then subtracted from each frame to remove the background
illumination. Since the resolution is the same across all ATP depletion videos, the same cutoff was used, which was chosen by selecting the
largest Chebyshev and Fourier threshold across all the parameter sweeps from each video. The denoised expansion was then evaluated at
2 times higher spatial resolution and at 1 frame per second temporal resolution. (Raw videos have frame rates of 10 –12 s and pixel resolution
of 0.625 µm.)

The stationarity of all Rho-GTP wave data used for further statistical analysis was ensured by selecting from experimental videos the time
series with quasi-constant pixel oscillation period, spatial wavelength and defect density, same as the protocol used in (1). This test was
performed for all five steady-state data as well as the initial time series (I) of the ATP-depleted dataset, to ensure that patterns were at steady
state before exposure to drug treatment in sequential time series (II, III and IV).

The phase was calculated from the new data representation. Let · be the approximately a quarter of the oscillation period of the oscillating
time signal of each pixel. First the moving center, Ī(t), calculated by convolving the signal with a gaussian window of width · , was subtracted
from each pixel. This centers the pixel time signal around 0. Next we computed the analytic extension of each pixel trajectory (I ≠ Ī)(t) into
the complex plane, z(t) = (I ≠ Ī)(t) + HT[(I ≠ Ī)(t)], where HT[(I ≠ Ī)(t)] is the Hilbert transform of the signal (10). In the frequency
domain this corresponds to setting all coefficients corresponding to negative frequencies to 0 and doubling those corresponding to positive
frequencies. For a discrete signal of length N with discrete Fourier coefficients Îk this corresponds to,

ẑk =

Y
]

[

2Îk for 1 Æ k Æ N
2 ≠ 1

0 for N
2 + 1 Æ k Æ N ≠ 1

Îk for k = 0 or k = N
2

. [4]

We then define the phase of the signal „(t) as the angle of the analytic signal in the complex plane „(t) = tan≠1(HT[(I ≠ Ī)(t)], (I ≠ Ī)(t)).
The extraction was performed for every individual pixel in the microscope images to obtain the time-lapse phase field, „(x, t).

The phase defects were subsequently tracked based on the reconstructed phase field. To locate the positions of phase defects harbored in the phase
field of an instantaneous time frame, „(x), we performed a line integral

¸
C

Ò„(x) · ds for every two-pixel-by-two-pixel local window. Plus
(minus) phase defects have a value of 2fi (≠2fi). To retrieve the trajectories of phase defects through continuous time frames, we used a particle-
tracking software with a gap-closing algorithm (developed by J.-Y. Tinevez). This software is based on the Munkres/Hungarian algorithm
and is available from the FileExchange site on the MathWorks website (https://www.mathworks.com/matlabcentral/fileexchange/34040-
simpletracker).

Extracting loops and loop statistics from phase defect trajectories. To obtain loops from phase defect trajectories, we first identified
defect creation and annihilation sites at each time frame. A leading distance cutoff d = 16 pixels (≥ 10 µm) was used to identify if a pair of
oppositely-charged defects that appears (disappears) on the same time frame came from (into) the same creation (annihilation) event. A next
correction was implemented for the “breaks” of phase defect trajectories in space-time, where the defects were far from the spatial boundary
but appeared (disappeared) without a creation (annihilation) partner. These trajectory breaks originate dominantly from the occasionally high
instantaneous defect speeds. The correction was done by allowing for a larger distance cutoff, d

Õ
= 40 pixels, to match between breaks within

one instantaneous time frame (unidentified creation or annihilation events) as well as between consecutive time frames (unidentified gap in
tracking). The latter correction was also incorporated to optimizing performance of the gap-closing tracking algorithm of phase defects. Values
of d and d

Õ
were empirically determined by their performance of creating and correcting defect trajectory breaks in the experimental dataset.

We next extracted loops from the defect trajectories and creation (annihilation) information. A loop is identified to be the space-time trajectory
group connected by multiple creation and annihilation events, where for every single trajectory there is a creation partner and an annihilation
partner inside the group. Short-lived loops that only existed for one time frame (and therefore only contain one short-lived plus and minus
defect pair) were filtered.

The prominence of defect loops in space-time for experimental wave states strongly correlates with their virtual particle pair creation and
annihilation frequencies, resulting in the noticeable difference between state i and v in three-dimensional space-time view (Fig. S3A). To
quantify a proper loop metric in three-dimensional space-time, we took the loop arc length, which combines the projection in positional
space as well as on time axis (Fig. S3B). The arc length is normalized by the corresponding spatial and temporal periods (Table S1) and is
therefore a dimensionless number. The statistics of normalized loop arc lengths across experimental wave states is presented in Fig. S3C). This
dimensionless loop metric falls on similar ranges across varying states (Fig. S3D). Fitting the distribution with an exponential function, the
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Fig. S3. (next page) Appearance and statistics of space-time defect loops in experimental wave patterns.
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Fig. S3. (preceding page) Appearance and statistics of space-time defect loops in experimental wave patterns. (A) Space-time view of defect loops formed from defect
+1/-1 pair creation and annihilation events in steady-state experimental wave states i - v. Scale bar: 20 µm; 120 s (vertical). (B) Normalized loop arc length as a dimensionless
loop metric is calculated from combining loop projections in positional space (projected perimeter, ��l) and on time axis (lifetime, ��t), respectively normalized by the spatial
wavelengths ⁄ and temporal oscillation periods T , which we extract from the wave patterns (Table S1). (C) Histograms of the normalized loop arc length for state i – v each as
well as i - v’s combined statistics. Solid lines show the corresponding exponential fits. (D) Probability density function of normalized loop arc lengths for state i - v. Error bars

represent the standard deviation within each equi-probable bin (N = 9 per bin). (E) Scale parameter µ’s estimates according to an exponential distribution p(x) = 1
µ e

≠ x
µ for

the normalized loop arc length distributions fall in close values for state i - v and their combined statistics. Error bars represent the 95% confidence intervals of the parameter
estimates. (F) Total defect number as a function of time measured in wave patterns before and after ATP depletion. Left to right: Drug-perturbed wave pattern time series I - IV.
(G) Space-time view of defect loops in drug-perturbed wave pattern time series I - IV. Scale bar: 20 µm; 120 s (vertical).

maximal-likelihood estimates of the scale parameter also return similar values (Fig. S3E). In the experiments where we perturbed cellular
activity with ATP depletion, we see a quantitative change in the density and appearance of space-time defect loops correlating with the shift in
defect density (Fig. S3F-G).

Quantifying braiding dynamics from phase defect trajectories. As a topological measure of complexity in dynamical systems, braiding
analysis has the advantage that it is well grounded in group theory. Mathematically, a sequence of braiding history between particles can be
treated as a series of sequentially multiplied generators, where each generator denotes the direction of “crossing” between one particle and its
neighbors projected onto a reference line at an instantaneous time. Analyzing such product of generators as a function of time then gives a
measurement of complexity growth in the system.

To quantify the braiding dynamics, we implemented the reduced Burau representation of the n-particle braid group, setting the integer
coefficient as t = ≠1 (11). With this representation, each generator ‡(j) œ ‡i, ‡≠1

i becomes an (n ≠ 1) ◊ (n ≠ 1) matrix, multiplying one
another in the total running matrix product:

�n(t) = ‡(N)‡(N≠1) · · · ‡(1) [5]

Where N is the total number of crossing events during time t. The matrix product �n(t), as a function of time, can be numerically calculated
from detecting crossings in particle trajectories, since the generators have well-defined mathematical forms:

[‡i]kl = ”kl + ”k,i≠1”li ≠ ”k,i+1”li [6]

[‡≠1
i ]kl = ”kl ≠ ”k,i≠1”li + ”k,i+1”li [7]

(i = 1, · · · , n ≠ 1 is the positioning of crossing particles on the reference line; k, l = 1, · · · , n ≠ 1 are the subscripts of the (n ≠ 1) ◊ (n ≠ 1)
matrix elements.)

The matrix product �n(t) records the braiding history of particles and therefore contains information about the system dynamics. One
important piece of information is the magnitude of its largest eigenvalue, En(t), often termed as the braiding factor. In random matrix theory,
the exponential growth rate of En(t) at long time limit approximates the Lyapunov exponent of a chaotic system, which has also been verified
in numerical experiments (12). Such exponential growth rate is therefore termed as the braiding exponent,

⁄(n) = lim
tæŒ

1
t

· ln | En(t) | [8]

For our two-dimensional defect trajectories, the braiding factor calculated from taking the average of all reference line projections (12)
(spanning [0, fi] with an increment of 0.01fi) displayed consistently positive braiding exponents ⁄(n).

Ideally, the matrix product �n(t) and the braiding exponent ⁄(n) can be calculated from any number of particles (n) with long enough time
frames (t). However, when adopting such analysis for phase defect trajectories, apparently the number of co-existing long-lived phase defects
scales inversely with the number of time frames we set. We therefore implemented the following strategy adapted from similar previous
finite-trajectory braiding analyses (12): For each wave state, a maximal rectangular observation window was first chosen from regions excluding
the low-defect-density area, to ensure that sampled defects are fair tracer particles organizing the wave patterns (Fig. S4A). A library in equal
amount of longest-living plus and minus defects were then set up (Fig. S4B), n+ = n≠ = nl/2, where nl is the upper limit of when the
matrix product �n(t) can still give a quantifiable braiding exponent ⁄(n) (Fig. S4C-D). The braiding exponent curves were then constructed
as a function of defect amount by bootstrapping samples containing varying numbers of defect trajectories from this pre-built braiding library.

We took the following precautions during defect bootstrapping, as braiding is a topological measurement built from projected path-crossing.
Each bootstrap sample was taken from defects clustered in neighboring regions (Fig. S5A). For each bootstrap sample we took at defect
number n, we quantified the braiding factor growths during the longest shared-trajectory times (Fig. S5B), and averaged over all bootstrap
samples to retrieve the braiding exponent corresponding to defect number n. Technically, the braiding factor growth is also affected by the total
area that the same number of defect trajectories could occupy differently (Fig. S5C), as well as the unevenness in their spatial distribution. To
minimize such effect in the braiding exponent curve, we calculated the total available sample amount nbs at each defect number n, and required
that nbs > 50 for the braiding exponent to be included in the curve in Fig. 3C. Also, we excluded the defect number n at which the growth of
trajectory-occupied-area deviates a linear growth (Fig. S5D). Both metrics similarly omit the braiding exponent curves at defect numbers n
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Fig. S4. (next page) Quantifying braiding dynamics of phase defects in experimental wave patterns.
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Fig. S4. (preceding page) Quantifying braiding dynamics of phase defects in experimental wave patterns. (A) Selection of observation windows for phase defects for
experimental state i - iii (top row) based on the normalized defect density distribution in positional space (bottom row). The density heatmap was constructed by applying a
two-dimensional Gaussian kernel of standard deviation 10 µm for every presence of phase defect in space and average over time frames. Density cutoff (red dashed line) was
set at fl0 = 0.2. Scale bar: 20 µm (B) Libraries of phase defect trajectories constructed across state i - iii. Scale bar: 20 µm; 120 s (vertical). (C) Left: Heatmap visualizing the
braiding factor growth of a collection of particle trajectories across a rotating reference line (projection angle). The phase defect trajectory library of state ii was used to generate
this heatmap. Right: Schematic for detecting two alternative particle-particle crossing paths that correspond to different braiding group generators. (D) Braiding factor growths
calculated for state i – iii. Curves are quantified from the entire library for each state. Shaded regions represent the standard error across reference line projections.

Fig. S5. Construction of braiding exponent curves through bootstrapping phase defect trajectories within a pre-built library. (A) Schematic of neighboring-trajectory-
bootstrapping within the phase defect library. Shown here is the mean position of all defects in the library for state ii. Scale bar: 20 µm. (B) Braiding factor growths calculated for
state ii. Top curve is quantified from the entire library (N = 34, shaded regions represent the standard error across reference line projections) and lower curves are from the
bootstrap samples taken for trajectory number N = 10, 16, 22, 28. Error bars represent the standard error across bootstrap samples. (C) Heatmap visualizing the distribution of
braiding exponents evaluated from bootstrap trajectory samples with varying defect number and spatial area coverage. (D) Amount of available bootstrap samples and the
mean area each sample cover as a function of number of defects for state i - iii. Error bars represent the standard deviation across samples. Shaded regions in grey are the
number-of-defect cutoffs chosen for the braiding exponent curves for each state.

approaching the size of the library nl (grey region in Fig. S5D). Finally, we were able to extract the mean value of braiding exponent ⁄(n)
from bootstrapped samples, and quantify it as a function of defect number, n (Fig. 3C-D).

This bootstrapping strategy has qualitative influences when comparing the braiding curves we extracted from experimental defects and
continuum complex Ginzburg-Landau simulations (next section). The data collapse in Fig. 3D deviates at larger defect number, and the
reason is as follows: Our experimental setup where oocytes are confined in PDMS chambers provides the flat surface necessary for time-lapse
microscopy imaging. Meanwhile, it also generates a finite curvature difference between defects that are located near the boundary when
compared to those in the center. Limited by the finite defect amount available in experiments, we included near-boundary defects in our
calculations. These boundary defects contribute to the deviation of braiding exponent at large defect numbers, as bootstrapping of trajectories
renders the number of sampled trajectory sets fewer for large defect numbers, and contain more of the boundary defects.

Simulating continuum complex Ginzburg-Landau models on a sphere. Simulations for Fig. 4 were performed on the domain of
a unit sphere using the Chebfun package, a publicly available PDE solver (13). The methodology used is identical to that previously de-
scribed in Ref. (1). For completeness, we used a time step of 0.1 for the temporal evolution and 256 spectral modes to resolve the spatial domain.

A quantitative database and an interactive solver of spatiotemporal patterns in the complex Ginzburg-Landau equation can be viewed online at:
CGLE Atlas, https://www.cgleatlas.com. The interactive simulation requires the latest version of Firefox/Safari and Javascript as well as a
graphics card on the client computer with at least 1 GB RAM.
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Fig. S6. CGLE atlas. (A) Full phase diagram of dynamic defect patterns in the CGLE. (B) Zoom-in on parameter region matched to experiments.

Derivation of complex Ginzburg-Landau equation and spatiotemporal matching. Following (14, 15), we consider a reaction-diffusion
(RD) system

ˆtc = f(c; µ) + DÒ2
xc ,

where c œ Rn describes a vector of n dynamical variables, f : Rn æ Rn the local nonlinear dynamics and D the diffusion matrix. When such
a system exhibits spatiotemporal oscillations due to undergoing a supercritical Hopf bifurcation as one of the bifurcation parameter µi is varied,
it has a normal form that is given by the (rescaled) complex Ginzburg-Landau equation (CGLE)

ˆt̃Â = Â ≠ (1 + ic)|Â|2Â + (1 + ib)Ò2
x̃Â ,

with a complex amplitude/order parameter Â = |Â|ei„ œ C as well as linear and nonlinear dispersion coefficients b and c. The CGLE
approximates the full RD dynamics by only describing the envelope dynamics of the RD system, which evolve on a slow temporal scale t̂ and a
coarse spatial scale x̂ compared to the original scales t and x. The dynamical variables c œ Rn of the full RD system can be approximated
with the CGLE amplitude Â œ C to first order via

c̃(x, t; µ) = c0 + 2‘


‡1/|Re(g)|)Re
1

ei(Ê0+‘2Ê1)tu(1)Â(‘


‡1/Re(d)x, ‘2‡1t)
2

.

The oscillation frequency and spatiotemporal scales transform as:

ÊRD = Ê0 + ‘2Ê1 + ‘2‡1ÊCGLE

x = 1
‘


‡1/Re(d)
x̂ = �̂x̂

t = 1
‘2‡1

t̂ = ·̂ t̂

In these mappings, the shortest distance from the Hopf bifurcation is a small parameter ‘ =
Ô

”µ =


||µ ≠ µHopf||2. We define the Jacobian
matrix Jij = ˆcj fi. Expanding with respect to ‘, we define J(c0; µ) ¥ J0 + ”µJ1 œ Rn◊n. From this matrix J0 is derived the eigenvector
u(1) as

J0u(1) = iÊ0u(1)

with Ê0 the imaginary part of the corresponding eigenvalue. The diffusivity parameter d = Èu(1)|D|u(1)Í œ C. Likewise, ⁄1 = ‡1 + iÊ1 =
Èu(1)|J1|u(1)Í. To calculate the final parameter g, one must define two higher order matrices Mijk = ˆcj ck fj and Nijkl = ˆcjckclfi, with
corresponding series expansions

M(c0; µ) ¥ M0 + ”µM1 œ Rn◊n◊n

N(c0; µ) ¥ N0 + ”µN1 œ Rn◊n◊n◊n
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Following this, define

v0 = ≠2J≠1
0 M0u(1)u(1)

v+ = ≠(J0 ≠ 2iÊ01)≠1M0u(1)u(1)

from which

g = ≠2Èu(1)|M0|u(1)Í|v0Í ≠ 2Èu(1)|M0|u(1)Í|v+Í ≠ 3Èu(1)|N0|u(1)Í|u(1)Í|u(1)Í œ C

Finally, the CGLE parameters are defined in terms of g and d as

b = Im(d)/Re(d)
c = Im(g)/Re(g)

Fig. S7. Brusselator model overview. (A) Phase portrait of the Brusselator model. u- and v-nullclines (blue and yellow) intersect in the unstable fixed point (unfilled circle)
encircled by a stable limit cycle (orange). (B) Time series of both dynamical variables u (blue) and v (orange) showing steady nonlinear oscillations over time. (C) Bifurcation
diagram of Brusselator model with Hopf bifurcation line (black), where the real parts of both eigenvalues vanish, while the (D) imaginary part is non-zero.

All together, these formula allow a given reaction-diffusion system to be mapped to CGLE near a super-critical Hopf bifurcation. As an
instructive example we focus on the explicit CGLE mapping of the Brusselator model, as presented previously in Ref. (14):

ˆtu = µ1 ≠ (µ2 + 1)u + u2v + Ò2
xu

ˆtv = µ2u ≠ u2v + ”Ò2
xv

The local dynamics of this model are presented in Fig. S7. For {µ1, µ2, ”} = {2, 5.2, 0.7} the corresponding CGLE parameters are
{b, c} = {≠0.353, 1.111}. Oscillation frequency and spatiotemporal scales obey

ÊRD = 2 + 0.1ÊCGLE

x = 2.92x̂

t = 10t̂
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The resulting complex order parameter can be used to approximate the Brusselator to first order as

c(x, t) =
3

2.0
2.5

4
+ 0.73 Re

3
e2it

3
≠i

0.5 + i

4
A(0.34x, 0.1t)

4

The agreement between the full and approximated Brusselator can be seen in Fig. S8.

Fig. S8. Comparison of Brusselator, its slow modes described by CGLE and the resulting first order approximation of the Brusselator. (A) Brusselator. (B) Slow
mode decribed by CGLE. (C) First order approximation of the Brusselator. In A, B and C, top rows show time series, middle rows phase space dynamics and bottom rows
show a snapshot of a 2D spiral gas after 60 Brusselator oscillation periods. All simulations started from topologically identical initial conditions. Temporal and spatiotemporal
dynamics agree very well, even though the limit cycles differ. Time interval in all plots covers the same time domain.

For a given value of model parameters b and c, the matching parameters Ê0, �̂ and ·̂ are found as follows. From a (2+1)D spatiotem-
poral simulation of the CGLE the mean defect density flCGLE and speed vCGLE are calculated, along with the local oscillation frequency
ÊCGLE. The corresponding defect density flexp, speed vexp and local oscillation frequency Êexp are calculated for the matching experiment.
�̂ =


flexp/flCGLE is chosen so that defect densities are the same between simulation and experiment. To calculate Ê0, we first calculate the

dimensionless parameter – = vexp
Ô

flexp/Êexp, which represents the ratio of slow and fast temporal modes in our system. A corresponding
frequency Êfast = vCGLE

Ô
flCGLE/– is calculated to be the oscillatory frequency of the fast mode of our matched CGLE system. From this, we

acquire Ê0 = Êfast ≠ ÊCGLE. Finally, we chose ·̂ = Êfast/Êexp to ensure that our systems evolve on the same time scale.

For experimental wave state i, the best-matching CGL model parameters b = ≠0.3 and c = 1.25 was determined according to the pattern
matching procedures described in Ref. (1). Since wave states i - iii differ only in cellular activity level and protein diffusion parameters
are not affected, we fixed the diffusion-related linear dispersion parameter b = ≠0.3 for state ii and iii, and searched the best-matching
activity-determining nonlinear dispersion parameter c. To locate the proper c values, we defined an activity constant as the total defect collision
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frequency normalized by the mean amount of defects present in field of view (Fig. S9A): f0 = 1
N̄

· Z
�t , where Z is the total collision counts

over time lapse �t. We next did a parameter sweep of steady-state CGL slow mode simulations in the activity parameter c with an increment
of �c = 0.01, returning the growth curve of such collision frequency f0(c) as a function of c. To directly compare this activity constant in
inverse time unit between experiments and CGL simulations, we chose the time unit conversion factor “(c) = (Êc

CGLE/Êc=1.25
CGLE ) · Êc=1.25

exp ,
utilizing the prior match of experimental state i with parameter c = 1.25. The converted activity constant “(c) · f0(c) finally gave us the

Fig. S9. (next page) Quantifying braiding dynamics of phase defects in complex Ginzburg-Landau simulations.
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Fig. S9. (preceding page) Quantifying braiding dynamics of phase defects in complex Ginzburg Landau simulations. (A) Normalized collision frequencies for
experimental wave pattern state i, ii and iii. (B) Normalized collision frequencies for CGL states simulated with a constant diffusion parameter (b = ≠0.3) and varying reaction
parameters. Error bars represent the standard error of normalized collision frequencies across time frames. Circles present the selection of best-matching reaction parameters
for state i, ii and iii based on a comparison with the parameter sweep (smoothed, shown as dashed line in red). (C) Libraries of phase defect trajectories constructed with the
same experimental observation window across matching CGL simulations for state i - iii. Scale bar: 20 µm; 120 s (vertical) rescaled with CGL-experiment spatiotemporal
matching constants. Bottom row: Space-time view of phase defect trajectories consisting of the library for each state. (D) Braiding factor growths calculated for matching CGL
simulations for state i - iii. Curves are quantified from the entire library for each state. Shaded regions represent the standard error across reference line projections.

best-matching c values for state ii and iii: c = 1.31 for state ii, and c = 1.36 for state iii (Fig. S9B). Space-time rescaling constants (Table S2)
were then applied for the CGL slow mode simulations for state i - iii to acquire the CGL-experiment phase continuum matching shown in Fig.
4A-C and Movie. S9. Braiding statistics for CGL simulations were also quantified using the space-time rescaled CGL wave states, where the
library construction as well as the braiding exponent curve cutoff were executed following the exact same procedures as described in Fig.
S4-S5 (Fig. S9C-D).

Fig. S10. Pair braiding dynamics of CGL defect pairs and the signature of Bosonic symmetry (A) After completing a counter-clockwise 180¶ braiding event, the particle
positions are exchanged, with initial and final states having matching wave amplitudes (top row). For bosonic excitations, the phase field also returns to the initial configuration
(bottom row, right), whereas fermionic states exhibit a global phase shift of fi (bottom row, middle). (B) Representative space-time trajectories of persisting plus-plus (left) and
minus-minus (right) defect dipoles that spontaneously exhibit large rotations. Shown here are the braiding defect pairs simulated with parameters of experimental state i.
(C) Detection of large-rotation defect pairs (N = 83) simulated with parameters of experimental state i. Red curves represent defect pairs with +1 topological charges and blue
curves represent those with -1 topological charges. (D) Histogram of exchange phases collected from the large-rotation defect pairs as shown in C. (E) Probability density
function of exchange phases collected from the large-rotation defect pairs as shown in C and D.

Quantifying phase exchange symmetry from spontaneous braiding events. The positional exchanges observed in the spontaneous
braiding dynamics between same-sign defects inspired us to quantify whether there exists any exchange symmetry for the accompanying
phase field. While experimentally observed spontaneous braiding pairs are scarce on account of the chaotic presence of background defects,
in CGL simulations we could generate sufficient samples of large-rotation defect pairs. We were interested in calculating the phase shift
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�„ = „(x1, x2) ≠ „
Õ
exchanged(x

Õ
1, x

Õ
2) for all detectable CGL slow-mode braiding processes. Adopting the definition of exchange symmetries

from quantum mechanics, �„ should have a distribution around 0 (fi) if the phase field embeds a Bosonic (Fermionic) exchange symmetry
(Fig. S10A).

We acquired the distribution of �„ using a dataset generated from the slow-mode CGL parameters for experimental wave state i: b =
≠0.3, c = 1.25. The simulation was performed on a plane (since we were interested in small-scale defect dynamics) evolving from a start of
randomized initial complex amplitude. To detect large-rotation defect pairs, we dissected each pair of defect dipoles that are nearest-neighbor

for a number of consecutive frames, and keep those whose pair rotation angle |�◊| = |cos≠1 (x
Õ
2≠x

Õ
1)·(x2≠x1)

|xÕ
2≠xÕ

1||x2≠x1|
| exceeds fi. The before- and after-

braiding frames of phase field („(x1, x2), „
Õ
exchanged(x

Õ
1, x

Õ
2)) were selected such that the rotation angle |�◊| matches closest to fi within the

shortest possible time frames. To account for the fluctuations in defect pairwise distance (r
Õ = |x

Õ
1 ≠ x

Õ
2| can be slightly different compared

to r = |x1 ≠ x2|) as well as the rotation angle (|�◊| can be slightly different compared to fi), we rotated and rescaled the before- and
after-braiding phase field, such that the defect pair’s positions perfectly align (x

Õrr
1 = xrr

2 , x
Õrr
2 = xrr

1 ). Since pixels were no longer aligned
after the rotating-and-rescaling transformation, we interpolated the phase field on the circular region that has a radius |xrr

1 ≠ xrr
2 | and centers at

the defect pair’s center of mass. The phase shift �„ = „rr(x1, x2) ≠ „
Õrr
exchanged(x

Õ
1, x

Õ
2) was then taken as a collection of the (interpolated)

pixel differences of the transformed and interpolated phase field „rr(x1, x2) and „
Õrr
exchanged(x

Õ
1, x

Õ
2), which eventually was used to calculate the

�„ distribution.

Of all 83 large-rotation defect pairs that we extracted from 253 independent CGL simulations, we observe that a typical pair exchange event
preserve the local phase field around the pair defects, both for plus-plus defect pairs and minus-minus defect pairs (Fig. S10B). The plus and
minus defect pairs exhibit chirality in terms of their spontaneous braiding directions (Fig. S10C). And when the phase shifts distributions were
calculated for all 83 large-rotation defect pairs from Fig. S10C, a peak of exchange phase �„ centered around 0 was observed (Fig. S10D-E),
suggesting the existence of a Bosonic phase symmetry in the slow-mode CGL model simulations.

Additionally, we characterized the defect-defect pair scattering dynamics which include simple braiding, virtual pair creation-annihilation and
recombination (Fig. 5). As we have demonstrated in the prior study (1), defects accompanying Rho-GTP wave patterns exhibit a disordered
phase featuring a low fraction of bound opposite-sign or same-sign defect pairs. To collect effective scattering statistics, we would need (at
least) a few tens of events of the same-sign defect pairs that remain bound for long times while far-away from the rest of background defects.
Hence the current experimental conditions do not generate enough numbers of scattering events for detailed statistical analysis.
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Table S1. Spatial wavelengths and temporal oscillation periods across experimental states i - v.

Mean of oscillation periods T

(s)
Standard deviation of oscillation
periods T (s)

Mean of spatial wavelengths ⁄

(µm)
Standard deviation of spatial
wavelengths ⁄ (µm)

State i 69.9 2.4 16.58 0.70
State ii 50.0 3.7 15.62 0.62
State iii 49.2 2.9 14.31 0.57
State iv 61.8 3.7 13.72 0.48
State v 69.2 3.8 13.69 0.63
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Table S2. Rescaling constants used to match experimental and simulated CGL wave state i - iii.

·̂ �̂ Ê0

State i 0.5323 1.6102 1.4304
State ii 0.5159 1.7230 1.6616
State iii 0.5958 2.1483 1.8226
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Movie Captions

Movie S1. Propagating waves of Rho-GTP on the surface of an oocyte. Starting from a homogeneous initial state, Rho-GTP spiral
waves propagate on membrane and eventually settle into a quasi-steady state (t > 60 min). Frame rate is 20 s. Pixel resolution is
0.568 µm.

Movie S2. Time-lapse videos of raw and reconstructed Rho-GTP waves recorded in state i. Scale bar: 20 µm.

Movie S3. Time-lapse videos of raw and reconstructed Rho-GTP waves recorded in state ii. Scale bar: 20 µm.

Movie S4. Time-lapse videos of raw and reconstructed Rho-GTP waves recorded in state iii. Scale bar: 20 µm.

Movie S5. Time-lapse videos of raw and reconstructed Rho-GTP waves recorded in state iv. Scale bar: 20 µm.

Movie S6. Time-lapse videos of raw and reconstructed Rho-GTP waves recorded in state v. Scale bar: 20 µm.

Raw videos in Movie S2 - S6 are the maximal intensity projections from near-membrane z slices taken with a point-scanning confocal
microscope, which were utilized for reconstructing the high spatio-temporal resolution wave patterns (see Methods for details). Raw videos
have frame rates of 10 ≠12 s and pixel resolution of 0.625 µm. Reconstructed videos (Methods; fig S2) have a frame rate of 1 s and pixel
resolution of 0.3125 µm.

Movie S7. Video of the the space-time structure of the experimental phase field continuum and the trajectories of the embedded
topological defects. Scale bar: 5 µm (space); 30 s (time).

Movie S8. Time-lapse videos I, II, III and IV of background subtracted raw (see Methods for details) and reconstructed Rho-GTP
waves recorded during ATP inhibition drug treatment. Drug was applied in between I and II. Scale bar: 20 µm.

Movie S9. Video showing the space-time structure of three-dimensional phase field continuum for experimental wave states i - iii and
matching CGL wave states (space-time rescaled). Top row: Phase field evolution in time for CGL wave states (large) aligned with their
experimental counterparts (lower-right inset). Middle row: Space-time slices (kymographs) animated at varying slicing positions in
space for experimental wave state i - iii. Bottom row: Space-time slices (kymographs) animated at varying slicing positions in space
for CGL wave states matched and rescaled for i - iii. Scale bar: 20 µm (space); 50 s (time).

Movie S10. Time-lapse videos of representative small-scale defect pair-scattering events that happen spontaneously both in experi-
mental and matching CGL wave states: Simple braiding event, virtual particles’ pair creation/annihilation event, and recombination
event. Simulated CGL wave states were space-time rescaled to align with experimental wave states. Example defect pairs are the
same as shown in Fig. 4A-C snapshots. Scale bar: 10 µm.
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