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Emergence and melting of active vortex crystals
Martin James1,4, Dominik Anton Suchla 1,2,4, Jörn Dunkel 3 & Michael Wilczek 1,2✉

Melting of two-dimensional (2D) equilibrium crystals is a complex phenomenon character-

ized by the sequential loss of positional and orientational order. In contrast to passive sys-

tems, active crystals can self-assemble and melt into an active fluid by virtue of their intrinsic

motility and inherent non-equilibrium stresses. Currently, the non-equilibrium physics of

active crystallization and melting processes is not well understood. Here, we establish the

emergence and investigate the melting of self-organized vortex crystals in 2D active fluids

using a generalized Toner-Tu theory. Performing extensive hydrodynamic simulations, we

find rich transition scenarios. On small domains, we identify a hysteretic transition as well as

a transition featuring temporal coexistence of active vortex lattices and active turbulence,

both of which can be controlled by self-propulsion and active stresses. On large domains, an

active vortex crystal with solid order forms within the parameter range corresponding to

active vortex lattices. The melting of this crystal proceeds through an intermediate hexatic

phase. Generally, these results highlight the differences and similarities between crystalline

phases in active fluids and their equilibrium counterparts.
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Melting of 2D crystal structures has played a pivotal role
for our understanding of order-disorder transitions in
equilibrium systems1. It remains an open question,

however, to which extent such transitions generalize to crystal-
lization and melting phenomena in active systems. In contrast to
equilibrium crystals, active non-equilibrium crystals can both
self-assemble2,3 and melt into an active fluid4–6, owing to the
intrinsic motility of their microscopic constituents. The sponta-
neous emergence and destruction of crystal-like order can be
observed in a wide variety of natural and artificial systems2,7–10.
Striking examples range from suspensions of active colloids2,11,12,
bacteria7 and sperm cells9 to biological tissues8 that can solidify
and fluidize during embryonic development13,14. Yet, despite
recent experimental advances7–9,13,15,16 and important theoretical
progress6,13,14,17–26, many key aspects of active melting processes
remain poorly understood. This may not come as a surprise given
that it took several decades to decipher the complex melting
scenarios of even the most basic 2D equilibrium crystal
structures1.

In thermal equilibrium, 2D crystalline solids exhibit quasi-
long-range positional and long-range bond-orientational order at
low temperatures. As the temperature is increased beyond a cri-
tical value, such crystals lose their order and transition to a liquid
state27–30. Over the last decades, several theories on the type and
nature of phase transitions in 2D equilibrium systems have been
proposed1. The seminal work by Kosterlitz, Thouless, Halperin,
Nelson, and Young (KTHNY)31 predicted a two-step continuous
melting transition that proceeds through an intermediate hexatic
phase characterized by quasi-long-range orientational order and
short-range positional order. However, recent advances have
shown that the liquid-hexatic transitions in equilibrium hard-disk
systems can be discontinuous32. Vortex lattices in super-
conductors have also been demonstrated to undergo a dis-
continuous transition33 as well as a dynamic melting34. Hexatic
phases have been observed in experiments on colloidal systems35

and superconducting lattices36 as well as in numerical simulations
of repulsive disks37.

The complex melting dynamics of 2D equilibrium crystals,
combined with recent advances in the control of synthetic2,11,12,38

and natural7 active matter, have stimulated an intense interest in
phase transitions in far-from-equilibrium systems6,39–43. Recent
experimental and numerical studies of particulate active matter
provide evidence for an equally if not even more complex phe-
nomenology than in passive systems. For example, Monte Carlo
simulations for active particles with inverse-power-law
repulsion4 showed an intermediate hexatic phase. Agent-based
simulations5 and active Brownian particle simulations6 further
suggest that active crystal structures can melt into a hexatic phase
without the KTHNY-typical unbinding of topological
defect pairs.

Active fluids constitute another important class of non-
equilibrium systems that exhibit intriguing transitions from
active turbulence44–48 to highly ordered vortex lattices. Vortex
lattices have been observed in dense suspensions of swimming
sperm cells9 or microtubule49, and have been predicted to form
spontaneously by a wide range of generic active fluid
models45,45,46,48,50–55. However, so far it has not been established
whether such active systems can exhibit crystalline order at
macroscopic scales, and if so, how active vortex crystals
(AVCs) melt.

The systematic study of AVC formation and melting has
remained a challenge owing to the large system sizes and simu-
lation times required. Overcoming previous limitations through
large-scale direct active fluid simulations, we report here a
detailed computational investigation of AVC emergence and
melting in an experimentally validated generalized Toner-Tu

model44,56. By evaluating the corresponding order parameters, we
establish conclusively that the active vortex lattices in two
dimensions can indeed self-organize into a solid phase with long-
range orientational order. Our analysis further reveals a rich
spectrum of dynamics including hysteresis between different
dynamical states and a solid-hexatic-liquid transition as the sys-
tem approaches the thermodynamic limit. The hexatic phase
appears remarkably robust, persisting over a range of activity
parameters. We also find that the emergence of AVCs shows
intriguing transient features as a result of the self-organization of
AVCs through a turbulent transient, followed by the slow coar-
sening dynamics of large active vortex domains of opposite
polarity.

Results
Active fluid model. Our starting point is a generalization of the
incompressible Toner-Tu equations57–59 for the active fluid
velocity field u and pressure field p44,45,56, which take the non-
dimensionalized form:

∂tuþ λu � ∇u ¼ �∇p� ð1þ ΔÞ2u� ðαþ βjuj2Þu;
∇ � u ¼ 0;

ð1Þ

where λ is an active advection parameter which incorporates the
effects of active nematic stresses45,60,61, α < 0 is the activity
parameter and β, which can be scaled out, is set to 0.01 for all
simulations. Active flows described by (1) are self-driven through
a linear instability induced by the Swift-Hohenberg operator
(1+ Δ)2, which favors periodic flow patterns of wave length
2π62,63. Equation (1) can be derived from a generic agent-based
model60,61 that accounts for the particles’ self-propulsion, their
hydrodynamic interactions, and their steric interactions. It has
been shown44 that this minimal continuum theory quantitatively
captures essential statistical properties of dense bacterial sus-
pensions in quasi-2D microfluidic chambers. Here, we apply (1)
to study AVC dynamics by performing large-scale simulations on
a doubly periodic domain of size L × L with L ranging up to
1000π using a pseudo-spectral method for spatial discretization
and a fourth-order Runge-Kutta scheme for time stepping
(Methods).

Dynamical states of the active fluid model. We
performed ~ 1000 simulations on smaller domains of size L= 20π
to map out the dynamical states and their transitions in the (α, λ)
space shown in Fig. 1a. These parameter scans revealed three
distinct states: The active vortex lattice (AVL) state (Fig. 1b)
forms for α ≈−0.8 and sufficiently large values of the active
advection parameter λ, corresponding to strong extensile
stresses45 (red-colored domain in Fig. 1a). In this state, vortices
of the same spontaneously chosen handedness self-organize in a
triangular lattice, phenomenologically similar to those observed
in dense sperm suspensions9. Strikingly, this spontaneous sym-
metry breaking occurs after an initial turbulent transient [Sup-
plementary Video (1)]. The wavenumber of the lattice thereby is
smaller than that of the linearly most unstable mode, which can
be rationalized by an inverse energy transfer from smaller to
larger scales48. Note that AVL refers to an ordered vortex array.
Only if additionally long-range orientational order can be
established, we call it an active vortex crystal (AVC). The AVL
state is surrounded by an extended active turbulence (AT) state
(green domain in Fig. 1a), in which transient vortices of either
handedness coexist in the fluid (Fig. 1c). Finally, for low active
advection λ≪ 1, corresponding to contractile stresses45, the sys-
tem settles into a stationary square flow-lattice state (Fig. 1d),
which can be explained with classical pattern formation theory48.
We focus in the following on the transitions between the AVL
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and AT states, corresponding to the regions separating the red
and green domains in Fig. 1a.

Interestingly, our simulations reveal two distinct AVL-AT
transition scenarios, characterized by coexistence and hysteresis,
respectively. To demonstrate the characteristics of AVL-AT
coexistence (gray in Fig. 1a), we keep the activity parameter
α=−0.8 fixed and decrease the active advection parameter λ
(vertical scan). This transition is characterized by an intermittent
switching between active turbulence and AVLs [Supplementary
Video (2)]. The energy density time series of a corresponding
simulation is shown in Fig. 1e. In the AVL state, the energy
density is high due to the close packing of vortices, and the
fluctuations are low. In the AT state, the energy density is lower
and fluctuations are larger. The energy-density probability density
functions (PDFs) for three representative intermediate values of λ

along the vertical scan quantify the relative abundance of each
state (Fig. 1f). This temporal, highly dynamic phase coexistence is
confirmed by measuring the fraction of time in the AVL state,
which is shown for the vertical scan in Fig. 1g.

To illustrate the hysteretic transition (orange in Fig. 1a), we
keep the active advection fixed at value λ= 7 and change the
activity parameter α (horizontal scan). In the transition region for
large negative activity parameters, the AVL will not emerge from
random initial conditions, but the AVL itself is a stable solution.
This is illustrated by the AVL time fraction for the horizontal
scan shown in Fig. 1h, which clearly exhibits a hysteresis loop. As
the activity parameter is further increased, a second transition
through the coexistence region without hysteresis is observed.
Closer to the boundary of the active turbulence region, the vortex
lattices start showing a liquid-like arrangement of vortices rather

Fig. 1 Dynamical states and their transitions in the active fluid model (domain size L= 20π). (a) Dynamical states as a function of activity and active
advection, obtained from close to 1000 simulations (Methods). Red, green, and blue regions correspond to (b) active vortex lattice (AVL), (c) active
turbulence (AT) and (d) square lattice states, respectively. The gray and orange regions are the marginal stability regions between the AT and the AVL
states. The white dots show the parameter configurations used to obtain the phase diagram (see also Fig. 6). (e) A typical energy density time series for a
simulation in the marginal stability region (α=−0.8, λ= 5.6) illustrates the intermittent melting and organization of the AVL. The insets show
representative snapshots of the vorticity field. (f) Probability density functions of the energy density for values of λ= 5 (green), 5.6 (gray) and 6.6 (red).
(g) AVL-AT transition as a function of active advection (α=−0.8, vertical black line in (a)) and (h) transition along the activity axis (λ= 7, horizontal black
line in (a)). The blue and orange curves correspond to increasing and decreasing values, respectively, of α and λ. The error bars signify the standard
deviations calculated from five independent datasets (Methods).
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than solid-like or hexatic. We stress that the system size
considered so far is not sufficient to clearly establish phases and
transitions in the thermodynamic sense. For a systematic
characterization in terms of such an analysis, we present results
from significantly larger domains in the following sections.

Solid, liquid and hexatic phases. We perform simulations that are
more than three orders of magnitude larger than for the diagram
mapping out the dynamical states (L= 1000π). We choose three
exemplary parameter sets to see how the transition from an AVL to
active turbulence translates to larger domains. Two of the parameter
sets (λ= 15, α=−0.9 and λ= 7, α=−0.75) correspond to the
AVL regime on small domains, whereas the third one (λ= 7, α=
−0.7) falls into the coexistence region.
To characterize the different phases, we construct a Voronoi

partition to identify 5-fold and 7-fold defects (Methods). Deep inside
the AVL regime, we observe a well-ordered structure with no
dislocations (Fig. 2a: λ= 15, α=−0.9). Closer to the active
turbulence region, the AVL is less ordered, and we observe the
unbinding of dislocation pairs, as well as a few free disclinations
(Fig. 2b: λ= 7, α=−0.75). As we move closer to the active
turbulence region clusters of defects emerge (Fig. 2c:
λ= 7, α=−0.7).

To characterize these different phases, we evaluate the orienta-
tional order. As a first step, we calculate the orientational order
ψi ¼ ∑j expð6iθijÞ=NðiÞ for each lattice site i. Here, θij is the angle
between the line connecting the neighbors i and j and an arbitrary
axis, and N(i) is the number of neighbors. The orientational order
allows to calculate a local deviation from the mean orientation
angle (Methods). In the bottom row of Fig. 2a–c the local
orientation is shown for the same choice of parameters as in the top
row, indicating that the local orientational order is becoming
increasingly short-ranged from a–c. This can be quantified in terms
of the orientational correlation G6(r)1, defined by

G6ðrÞ ¼
ψ�
i ψjδðr � rijÞ

D E
δðr � rijÞ

D E ð2Þ

where rij is the distance between vortex cores i and j, and the
average is taken over all lattice sites i and j. Figure 2d shows the
orientational correlation function for the different parameters. Well
inside the AVL regime, we observe long-range orientational order,
suggesting solid order. Closer to the transition region, G6(r) shows
quasi-long-range order characterized by an algebraic decay, which
is indicative of a hexatic phase. For the third set of parameters,
corresponding to the coexistence region on small domains, the
orientational correlation function decays faster than algebraic,
indicating a liquid phase.

As an additional characterization, we use the dynamic
Lindemann parameter, which is defined as the relative displace-
ment of neighboring vortex cores35,64,65:

γLðtÞ ¼
ðΔxiðtÞ � Δxiþ1ðtÞÞ2
� �

2a2
: ð3Þ

Here, Δxi(t)= xi(t)− xi(0) is the temporal displacement of a
vortex core position xi(t) from its initial position xi(0), i and i+ 1
denote neighbors, and a is the lattice spacing. For a solid, γL(t)
remains bounded whereas for both hexatic and liquid phases, it
diverges with time. Figure 2e shows that the dynamic Lindemann
parameter for our system remains approximately constant well
inside the AVL regime, further supporting the identification of a
solid phase. Close to the transition region, γL(t) diverges,
indicating either a hexatic or a liquid phase.

Taken together, based on the indications for solid order deep in
the AVL regime, we conclude that part of the AVL regime
corresponds to an active vortex crystal (AVC) regime. Closer to
the transition region, we find evidence for a hexatic phase within
the AVL regime. Finally, within the coexistence region on small
domains, we find a liquid phase on large domains. Overall, this
shows that this solid-to-liquid transition proceeds through an
intermediate hexatic phase.

Phase transitions. To confirm that the transitions between
the various dynamical states mapped out in Fig. 1a translate
to the transitions between phases on larger domains, we
consider the orientational correlation function along two cuts

Fig. 2 Characterization of different phases on a L= 1000π domain. Top row: Vortex cores (gray) and the locations of the 5-fold (red) and 7-fold (blue)
defects in the (a) solid (α=− 0.9, λ= 15), (b) hexatic (α=− 0.75, λ= 7) and (c) liquid (α=− 0.7, λ= 7) phases. The scale bar denotes a length of 50π.
Bottom row: The local orientational order, visualized by the deviation θ̂ from the mean orientation angle (Methods), becomes increasingly short-ranged from
the solid, to the hexatic, and the liquid phases. (d) The orientational correlation function G6(r) remains constant in the solid phase, decays approximately
algebraic in the hexatic phase and faster than algebraic in the liquid phase. (e) Dynamic Lindemann parameter γL(t) as a function of time. γL(t) remains
approximately constant for the solid phase, whereas it diverges for both the hexatic and liquid phases. The envelope around each line signifies the standard
deviation, calculated from six snapshots for (d) and six ensembles of vortex core trajectories for (e) from the same simulation at different times.
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through parameter space (λ= 7, α∈ [−1.0,−0.6], and
λ∈ [5.0, 9.0], α=−0.8) on L= 200π domains. For each set of
parameters, we run two simulations, one with random initial
conditions and one starting from the solid phase. Figure 3a shows

the cut for fixed λ. For α=−1.0, we find a liquid phase, irre-
spective of the initial conditions. For α=−0.9, we observe hys-
teresis, i.e. either a liquid or a solid phase, depending on the initial
condition. This matches the hysteresis region found on small

Fig. 3 Phase transitions on a L= 200π domain. Results obtained from random (top row in (a) and (b)) and solid (middle row in (a) and (b)) initial
conditions. (a) For λ= 7 and increasing α, the orientational correlation functions (bottom row) suggest a hysteretic transition from the liquid to the hexatic
phase, followed by a non-hysteretic transition from the hexatic phase to the liquid phase. In the latter transition region, ordered vortex clusters coexist with
an ambient liquid phase. (b) For increasing λ and α=−0.8, we observe a transition from the liquid phase, over the hexatic phase, to the solid phase. The
standard deviation of G6, calculated from three snapshots of the same simulation at different times, is plotted as an envelope.
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domains. For α=−0.8, we find a hexatic phase, irrespective of
the initial condition, which corresponds to the AVL state found
on small domains. For α=−0.7, the corresponding snapshots in
Fig. 3a illustrate the spatial coexistence between well-ordered and
disordered regions, reminiscent of local hexatic and liquid order,
respectively, which is also reflected in the decay of the the
orientational correlation function (Fig. 3a, bottom). This corre-
sponds to the temporal coexistence region found on small
domains. Finally, for α=−0.6, we observe a liquid phase irre-
spective of the initial condition, matching the active turbulence
state found on small domains. The vertical cut varying λ for
α=−0.8 is shown in Fig. 3b. Here we observe a transition from
the liquid phase (λ= 5) via a hexatic phase (starting at λ ≈ 6) to
the solid phase starting around λ ≈ 9. As expected from the result
on small domains, no hysteresis was observed for this transition.
Overall, these results show that the transitions between the
dynamical states on small domains correspond to transitions
between liquid, hexatic and solid phases on large domains.

Emergence of AVLs as function of the domain size. Next, we
characterize the emergence of uniform AVLs as a function of
system size. To this end, we determined the transient time until a
uniform AVL is formed for an ensemble of 100 simulations for
each system size, covering domain sizes between L= 10π and
L= 160π (Methods). Figure 4a shows the resulting scatter plot,
which demonstrates that the lifetime of the transient state
depends sensitively on the initial condition and increases con-
siderably with domain size.

For small domains, this is mainly rooted in the fact that the
emergence of a uniform AVL occurs after a spontaneous discrete
symmetry breaking through a turbulent transient48, which
renders the transient time a random variable. In fact, the PDF
of transition times is well captured by

PðTÞ ¼ δ

τ
1� e�

T
τ

� �δ�1
e�

T
τ ; ð4Þ

where τ and δ depend on the vortex lifetime and domain size,
respectively. This expression can be rationalized from the
observation that vortex lifetimes in active turbulence have an
approximately exponential distribution47. A good estimate for the
transient time is the time after which the spontaneous symmetry
breaking occurs. Its distribution can be obtained from the PDF of
the time it takes for one polarity of vortices to decay, which
amounts to computing the maximum survival time of a set of
like-signed vortices. Assuming statistical independence of the
individual decay processes yields the proposed PDF (4). Figure 4
(inset) shows the corresponding fits for the PDFs of the transient
durations obtained from 104 simulations for each domain size,
demonstrating an excellent agreement. We note that, contrary to
the expectation, the parameter δ does not increase quadratically
with the linear extent of the system. This could be due to the
dynamic nature of the vortex lifetimes, which we assumed to be
static. With a greater asymmetry in the number of vortices of
both signs, the lifetime of the decaying vortices will likely
decrease, more effectively reducing the number of vortices that
need to decay for the AVL to emerge. This lowers the value of δ
from the expected quadratic dependence on the linear system
extent.

For sufficiently large domain sizes, an additional effect comes
into play: AVL domains with both polarity can coexist for very
long times (see, e.g., Fig. 5a and the discussion below). The
temporal evolution of AVL clusters is illustrated in Fig. 4b, which
shows the number of positive and negative vortices as a function
of time (L= 160π). In this example, two vortex clusters of
approximately equal sizes but opposite polarity coexist for more
than 8000 nondimensional time units, before a uniform AVL

forms. These transient AVL domains explain the extreme outliers
in the transient duration which are the cause for the sharp
increase of the mean transient time for system sizes beyond
L= 120π.

Large-scale active vortex lattices. An example of AVL domains
emerging from random initial conditions is shown in Fig. 5a for a
domain of size L= 1000π [Supplementary Video (3)]. The slowly
evolving lattice domains are separated by a highly dynamic
interfacial area of active turbulence, which corresponds to the
liquid phase. These highly dynamic domain boundaries play a
prominent role in the melting of AVL domains, which can be
induced, for example, by decreasing the active advection para-
meter. As active advection is decreased, the AVL domains melt,
and the turbulent domain boundaries spread in area (Fig. 5b).

Fig. 4 Transient durations of AVL emergence. (a) Scatter plot of the
transient durations leading to a uniform AVL domain as a function of
domain size L. The red diamonds and the green curve are the mean and
median values, respectively. The change in slope at about L= 120π marks
the domain size where AVL domains of opposite polarity start to become
stable. (inset) Probability density functions of the transient durations for
L= 10π (blue circles, τ= 54.59, δ= 4.97), 20π (orange squares, τ= 72.78,
δ= 10.40) and 40π (green triangles, τ= 72.81, δ= 21.67), obtained from
104 simulations each, and the corresponding fits with the theoretically
proposed PDF (4) (dashed curves). The error bars correspond to the
difference between the maxima and the minima of five subsampled PDFs
(Methods). (b) The time series of the number of positive (red) and
negative vortices (blue) for a simulation with large domain size (L= 160π).
The green, gray, and red regions denote the initial transient, the coexistence
of AVL domains of opposite polarity, and the final uniform AVL,
respectively.
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A natural order parameter to characterize the melting is the
fraction of area covered by the AVL domains AAVL/Atotal

(Methods). To illustrate this transition, we evaluate the AVL
area fraction as a function of active advection (at a fixed activity
α=−0.8) for different times, which is shown in Fig. 5c. Below
λ ≈ 5.6, the AVL domains melt completely into a statistically
isotropic liquid phase. Above a critical value of λ ≈ 6.0, almost the
entire domain is covered by vortex lattices, with the area between
the lattices of different polarity occupied by a layer of active
turbulence. In between, there is a consistent, but slow decrease in
the area of this boundary layer as advection is increased. This
evolution of AVL domains is qualitatively similar to coarsening in
classical systems66.

Discussion
Using large-scale simulations, we have mapped out the dynamical
states of a generalized Toner-Tu model for active fluids. Our
analysis establishes the emergence and melting of self-organized
active vortex lattices. Depending on the path through the para-
meter space spanned by the active advection and the activity
parameters, we find two distinct transition scenarios. In the first
transition scenario, we observe a coexistence of dynamical states,
i.e. the active vortex lattice dynamically dissolves into active
turbulence and then re-emerges. In the second scenario, we
observe a hysteretic transition between AVL and AT states.

On larger domains, we find evidence for solid order within the
AVL regime, i.e. we established the existence of active vortex
crystals. When changing parameters according to the first sce-
nario discussed above, we observe the unbinding of defect pairs,
which goes along with the loss of long-range orientational order

before melting into a liquid. This indicates a melting of the AVCs
through an intermediate hexatic phase. On very large domains,
broken-symmetry AVL domains of opposite polarity emerge,
whose melting results from the spreading of the turbulent inter-
facial layers. Generally, our results reveal the roles of nonlinear
advection and activity in the complex self-assembly and melting
of AVLs, and highlight connections between phase transitions in
active matter and their classical equilibrium counterparts.

Experimental tests of our predictions could be an exciting
direction for future work. Stable vortex lattice states in bacterial
systems have been experimentally realized67 and numerically
studied68 by means of regular arrays of obstacles on a substrate.
There are also experimental systems where a vortex lattices can
self-organize without the aid of patterned substrates. For instance,
dense suspensions of spermatozoa show both, active turbulence69

as well as self-organized regular vortex lattices9 and are arguably
the best candidates to test our prediction on AVL-AT transitions.
Although previous experiments9 so far suggest a liquid-like
arrangement of vortices, rather than solid-like or hexatic, it may
be possible to achieve solid order through a careful tuning of
experimental conditions70. For instance, the type of sperm cells as
well as the intracellular ionic concentrations could affect the
nature of sperm motility71. Furthermore, the analysis of crystal-
line order in such systems would also require conducting
experiments on large domains. If a vortex crystal phase is
achieved, the activity can be tuned, for instance, by changing the
motility through the ambient temperature72 to induce a potential
melting transition. The preferred handedness of sperm cells on
planar surfaces73 precludes the observation of a spontaneously
broken discrete symmetry of the vortices. This could be alleviated
by confinement between two walls. Such experiments will

Fig. 5 Melting of active vortex lattice domains. (a) Transient meta-stable opposite-polarity AVL domains (λ= 7, α=−0.8, domain size L= 1000π). The
zoom-in shows that these domains are demarcated by an interfacial layer of active turbulence. Panel (b) illustrates the melting of the AVL domains shown
in panel (a) for λ= 5.6 after times t= 500, t= 1000 and t= 5000. (c) Area fraction of the domains as a function of active advection for times t= 500
(squares), t= 1000 (triangles) and t= 5000 (circles), starting from the configuration (a) at time t= 0. Note that the transient width of the domain
boundaries is controlled by the strength of the active advection. The orange line corresponds to the snapshots shown in panel (b).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25545-z ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5630 | https://doi.org/10.1038/s41467-021-25545-z | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


significantly enhance our knowledge of crystalline order, not just
in active matter, but in out-of-equilibrium systems in general.

Methods
Simulation details. We perform direct numerical simulations of the vorticity field
ω=∇ × u on a periodic domain by using a fully dealiased pseudo-spectral algo-
rithm. The mean velocity hui is integrated separately. The corresponding evolution
equations follow from (1) and take the form:

∂tωþ λu � ∇ω ¼ �ð1þ ΔÞ2ω� αω� β∇ ´ uj j2 u
� �

;

∂thui ¼ �ð1þ αÞhui � β uj j2 u
� �

:
ð5Þ

We solve (5) with a fourth-order Runge-Kutta method for time stepping
combined with an integrating factor for the linear terms. Our code is parallelized
using GPUs (graphics processing units) in order to accelerate the computations.
For the results discussed in the main text, the parameter values are listed in Table 1
and shown in Fig. 6.

Identification of dynamical states and transitions between them. Figure 1a is
obtained from simulations of 477 different parameter configurations as shown in
Fig. 6. For each configuration, we use two different initial conditions: a random
initial condition and a vortex lattice.

The different dynamical states shown in Fig. 1a are defined as follows. The
square lattice, active turbulence and vortex lattice states show obvious qualitative
differences as noted in the main text and are easily distinguished visually. The
hysteresis in the marginal stability region is identified as such when the simulations
are bistable: the simulations starting with random initial conditions result in an
active turbulence state whereas a vortex lattice initial condition remains stable. The
simulations are checked for convergence until a total simulation time of T= 2000
(4 × 105 time steps). The coexistence region is defined by evaluating the PDF of the
energy density. If the PDF has two peaks (see, e.g., Fig. 1f), it is defined as a
temporally intermittent pattern.

The transition between active turbulence and vortex lattices in small domains
(Fig. 1g and h) is characterized as follows. For the transition curves in both
increasing and decreasing directions of parameter values, we conduct simulations
in the range 5.0 ≤ λ ≤ 7.0 and−1.1 ≤ α ≤ −0.6. For λ= 5 and α=−1.1, we start
our simulation from random initial conditions. For the rest of the simulations, the
final snapshot of the previous simulation is used as the initial condition. Once a
statistically steady state is reached (after about T= 5000), we collect data for 106

time steps and evaluate the PDF of the energy density. If the PDF has only one
peak, the order parameter TAVL/Ttotal takes the value 0 or 1, depending on the
phase. Otherwise, the energy density at the minimum between the two peaks of the
PDF, Emin, is evaluated. The order parameter then takes the value of the probability
that the energy density E is greater than Emin. This process is repeated five times,
and the mean and the standard deviations are used to construct the transition
curves and estimate the uncertainties, which are shown in Fig. 1g and h.

Defects, dynamic Lindemann parameter and orientational correlation. Fig-
ure 2 is obtained from simulations on a 1000π × 1000π domain starting from
random initial conditions. Since the time required to fully crystallize grows rapidly
with domain size, we follow the procedure below to obtain converged simulations.

We initialize a simulation with a random initial condition on a small domain
(125π × 125π) and run it for 104 time units. The simulation is then upscaled to a
larger domain (250π × 250π) by tiling the larger domain with four copies of the
converged fields from the smaller domain. A random complex noise (respecting the

Table 1 Simulation parameters: Domain size L, active advection parameter λ, activity parameter α, number of grid points N, time
step Δt. The parameter β is set to 0.01 in all simulations. Values in parentheses represent parameter ranges of simulation
series.

Figure L λ α N Δt
1a 20π [0.0, 15.0] [−1.20, 0.00] 2562 0.005
1b 20π 8.0 −0.80 10242 0.001
1c 20π 3.0 −0.80 10242 0.001
1d 20π 0.1 −0.20 10242 0.001
1e 20π 5.6 −0.80 2562 0.005
1f 20π 5.0, 5.6, 6.6 −0.80 2562 0.005
1g 20π [5.0, 7.0] −0.80 2562 0.005
1h 20π 7.0 [−1.10,−0.60] 2562 0.005
2a/d/e 1000π 15.0 −0.90 40962 0.005
2b/d/e 1000π 7.0 −0.75 40962 0.005
2c/d/e 1000π 7.0 −0.70 40962 0.005
3a 200π 7.0 −1.00,−0.90,−0.80,−0.70,−0.60 10242 0.005
3b 200π 5.0, 6.0, 7.0, 8.0, 9.0 −0.80 10242 0.005
4a [10π, 160π] 7.0 −0.80 2562, 5122, 10242 0.005
4a inset 10π, 20π, 40π 7.0 −0.80 2562 0.005
4b 160π 7.0 −0.80 10242 0.005
5a 1000π 7.0 −0.80 81922 0.005
5b 1000π 5.6 −0.80 81922 0.005
5c 1000π [5.0, 6.5] −0.80 81922 0.005
7 1000π 15.0 −0.90 40962 0.005
8 1000π 5.6 −0.80 81922 0.005

Fig. 6 Overview of simulation parameters. The crosses show the
parameter configurations used to obtain the phase diagram (Fig. 1, domain
size L= 20π). Each cross represents simulations with two different initial
conditions, as noted in the text. The PDFs in Fig. 1f are based on simulations
with parameters marked with blue circles (L= 20π). The phase transition
curves Fig. 1g and h are based on simulations with parameters marked with
a light green line (L= 20π). The parameters used in Fig. 2 are indicated by
red squares (L= 1000π) and the parameters used in Fig. 3 by dark green
circles (L= 200π). Figures 4 (L= 10π− 160π) and 5a (L= 1000π) are
based on the parameter choice shown in yellow. Figures 5b (L= 1000π)
and 1e (L= 20π) are based on the parameter choice indicated by a pink
square. See also Table 1 for the parameter values.
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Hermitian symmetry) is added in Fourier space to ensure that the four sub-
domains of the new domain are no longer identical. The amplitude of the noise is
chosen as

Anoise � k exp �ðk� 4Þ2� � ð6Þ
where k is the wavenumber. This choice ensures that the perturbations are
comparably smaller-scale and do not destroy individual vortex structures.

The upscaling procedure is then repeated until we reach a domain size of
1000π × 1000π. An exception to this approach is the simulation for the solid phase
(Fig. 2a). Here, it is very difficult to obtain a vortex lattice with uniform lattice
orientation (Fig. 7). Hence the upscaling process is completed in just one step,
where the 1000π × 1000π domain is constructed from 64 copies of the initial
125π × 125π domain. The noise is only applied once. The simulations are then
evolved until the orientational correlation functions become statistically stationary.

To identify the defects, we first determine the centers of strong vortices47,74. By
constructing a Voronoi partition (using the Python open source module
scipy.spatial.Voronoi) over this vortex core configuration, 5-fold and 7-fold defects
are determined6.

The orientational order is evaluated from ψi ¼ ∑j expð6iθijÞ=NðiÞ where θij is
the angle between a vortex i and its neighbor j with respect to an arbitrary axis, and
N(i) is the number of nearest neighbors. Figures 2a, b and c (bottom row) show the
angle with respect to the mean orientation:

bθi ¼ arctan
=ðψiÞ
<ðψiÞ

� 	
� arctan

=ðψiÞ
<ðψiÞ

� 	
 �
ð7Þ

where ℑ and ℜ denote imaginary and real parts, respectively, and the mean
orientation is determined by an average over all vortices.

The orientational correlation function G6(r) is then evaluated according to (2)
in the main text, based on the orientational order. The results are averaged over six
snapshots for Fig. 2 and three snapshots for Fig. 3, separated by 1000 time units
each. The error bars are obtained by evaluating the standard deviations across the
six/three snapshots.

To evaluate the dynamic Lindemann parameter, we obtain 1000 snapshots
separated by 0.1 time units after the simulations reached a converged state. For
each snapshot, we identify the centers of strong vortices. The trajectory of each
vortex core is then tracked for a time period of 50 (solid and hexatic) or 10 (liquid)
time units. Only vortices which survive the entire duration of the period are
included in the analysis. The dynamic Lindemann parameter is then evaluated
following (3) in the main text. To increase statistical convergence, results are
additionally averaged over six subsequent time periods, from which we also
compute the standard deviation.

Results in Fig. 3 are obtained through simulations on a domain of size
200π × 200π. Since a complete scan of the parameter space is computationally
infeasible for this domain size, two cuts through the solid region are analyzed.
Again, each choice of α and λ is simulated with a random initial condition as well
as a vortex lattice initial condition for a total time of T= 10000. The orientational
correlation G6(r) is calculated according to (2) in the main text.

Transient durations. To evaluate transient durations (Fig. 4a and b), we conduct
simulations starting from random initial conditions until a converged vortex lattice
state is reached for each domain size. The convergence is defined as follows. By
employing a vortex identification algorithm47,74, we obtain a time series of the
number of strong vortices of both polarity. A converged vortex lattice is obtained
when the number of vortices of either sign reaches 93% of the theoretical max-
imum number of vortices possible in the domain. To obtain the mean and median
transient durations in Fig. 4a, the simulations are repeated 100 times for each
domain size and the corresponding mean and median durations are calculated. The
PDFs (Fig. 4a inset) are obtained by evaluating the transient durations for three
different domain sizes from 104 simulations each, starting from random initial
conditions. The error bars correspond to the difference between the maxima and
the minima of five subsampled PDFs obtained from 2000 simulations each. The

theoretical curves are obtained by fitting (4) to the numerical data. The corre-
sponding values of the free parameters δ and τ are, respectively, 4.97 and 54.59 for
L= 10π (blue curve), 10.40 and 72.78 for L= 20π (orange curve) and 21.67 and
72.81 for L= 40π (green curve).

Melting transition on large domains. To evaluate the melting transition curve on
large domains (Fig. 5c), we first identify centers of the strong vortices47,74. Then an
order parameter field is obtained by calculating, for each point (x, y), the difference
between the number of positive and negative vortices within a circle of radius r
centered at (x, y) (r is about 1.5 times the mean distance between the nearest
neighbors). The resulting field is then smoothed using a Gaussian filter with
standard deviation σ= 12. The original vorticity field ω and the smoothed field ωs

are shown in Fig. 8. The turbulent region is then defined as the area where the
absolute value of this smoothed field is less than half the maximum value of the
field. Once this turbulent region is defined, the order parameter AAVL/Atotal is
calculated by evaluating the fraction of the total area covered by the AVL.

Data availability
The data used in this study are available from the corresponding author on request.

Code availability
The simulation code is available on github (https://github.com/DominikSuchla/
2D_active_matter_simulation) under the GNU General Public License v3.0. Post-
processing codes that have been used to produce the results of this study are available
from the corresponding author on request.
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