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Topological constraints have long been known to provide efficient mechanisms for localizing and storing
energy across a range of length scales, from knots in DNA to turbulent plasmas. Despite recent theoretical and
experimental progress on the preparation of topological states, the role of topology in the discharging dynamics
is not well understood. Here we investigate robust topological energy release protocols in two archetypal soft
systems through simulations of 238 knotted elastic fibers and three-dimensional liquid crystals across a range
of different topologies. By breaking the elastic fiber or switching the liquid crystal surface anchoring, such
topological batteries can perform mechanical work or drive fluid flows. Our study reveals topologically resonant
states for which energy release becomes superslow or superfast. Owing to their intrinsic stability we expect such
tunable topological batteries to have broad applications to storage and directed release of energy in soft matter.
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I. INTRODUCTION

Topological protection provides a robust means for storing
and controlling energy, an effect widely used in a variety
of biological and physical systems [1–6]. On small scales,
knotted topologies play important functional roles [7] in the
behavior of tangled DNA, proteins, and polymers [8–12].
In continuum systems, foundational work on topology has
revealed the origin of helicity conservation in classical [2,13]
and complex fluids [14] and the dynamo effect in turbulent
plasmas [15,16]. Structured continua such as liquid crystal
fluids are a rich source of emergent topological phenomena,
from interacting defects [17,18] to knotted field configura-
tions [3,19,20]. Recent experimental advances in mechanical
lattices [21,22] and soft robotics [23] bring the question of
topologically tunable designer materials into the experimen-
tally accessible realm. Although the study of topological
modes [24] has dramatically improved our understanding of
soft matter, harnessing topology to perform useful work such
as driving flows [17,25,26] continues to present fundamental
challenges.

Here we study how topology affects energy release dy-
namics in knotted elastic fibers [27–29] and nematic liquid
crystals [19], demonstrating two distinct realizations of a
topological battery. In both cases, topology-mediated buck-
ling and instability phenomena underlie the discharging rates
and functional capabilities of the batteries. Knotted filaments
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present an intuitive mechanical realization of a topological
battery: By initializing closed elastic loops in tight knotted
states [28,30,31] with varying twist [32,33], energy may be
stored robustly (see Fig. 1 below). Cutting the knot at the point
of maximum stress results in a controlled topology-dependent
energy discharge. Transferring this idea to liquid crystals,
nematic batteries can be realized by imprinting topologically
nontrivial field configurations, which are energetically sta-
bilized through the anchoring of the nematic orientational
director field to a colloidal surface [3,19,20]. Energy is then
released by optically changing the anchoring profile. Using
three-dimensional (3D) numerical simulations, we explore the
energy discharge dynamics in elastic fibers and liquid crystals
across a range of different knot types and topological charges.
For both systems, we find special topologically resonant states
that are characterized by superslow or superfast energy re-
lease, exemplifying control of discharging dynamics through
topology.

II. ENERGY RELEASE DYNAMICS IN ELASTIC KNOTS

A. Kirchhoff model with contact friction

Tying a knot in an elastic fiber and fusing together the
free ends produces our first example of a topological battery.
By twisting the free ends before fusing, knotted batteries
can be studied along the two axes of knot type and twist
density (Fig. 1). We describe this system using the Kirch-
hoff model for elastic rods together with contact friction
[29,34]. The fibers have natural length L, radius h, and circular
cross section with moment of inertia I = πh4/4 and cross-
sectional area A = πh2. The state of the fiber is defined by
its centerline curve x(s) and an orthonormal material frame,
{d1(s), d2(s), d3(s)}, constrained by x′ × d3 = 0, where s is
the arc length parameter of the unstretched fiber. The elastic
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FIG. 1. Knotted topological batteries were simulated for 238 initial configurations, representing 17 different twist densities for 14 knot
types. Simulation parameters: α−1 = 1.3, γ = 5, L/h = 50.

energy depends on the geometric curvature κ , twist density
θ ′ = d1

′ · d2, and stretch |x′|:

E = EbA

2

∫ L

0
ds

[
1

4
h2(κ2 + αθ ′2) + γ (|x′| − 1)2

]
, (1)

where Eb is the bending modulus, E = γ Eb is the Young’s
modulus, and ν = α−1 − 1 is the Poission’s ratio. To describe
the dynamics, we define � = (ḋ1 · d2)d3. The governing
equations follow from extremizing (1) and assuming viscous
damping forces and friction dominate inertial terms:

F′ = −ηAẋ′′ − f fric, (2a)

M′ + x′ × F = −2ηI (�′′ · d3)d3. (2b)

F and M are the internal force and moment in the rod, re-
spectively, f fric is a friction force density, and η is a damping
parameter. Constitutive laws yield expressions for F and M:

M = EbI (d3 × d3
′ + αθ ′d3),

F · d3 = EA(|x′| − 1).

The friction force density is based on a friction model that has
been experimentally validated [29]:

f fric = η f A
∫

ds′ 	(2h − |x(s) − x(s′)|) ẋ(s) − ẋ(s′)
|x(s) − x(s′)|3 .

In contrast to Ref. [29], we take η f /η = 0.1 (instead of setting
η f = η) and neglect the effect of torsional friction. The in-
trinsic energy density, E0 = Ebh2, and energy, E0 = Ebh2L, of
the system correspond to the bending energy associated with
κ ∼ 1/h. We choose an intrinsic timescale, T0 = 2Lη/hEb, as
an intermediate scale between the relaxation times of pure
twist, Ttw = η/αEb, and pure bending, Tb = 2L2η/π2h2Eb.
The model applies to a range of different materials; a spe-
cific candidate system is thin lubricated silicone fibers with
α−1 ∼ 1.3, γ ∼ 5, η ∼ 10 kPa s, Eb ∼ 10 MPa.

B. Charging

Charging knotted filaments with twist results in a series of
topology-mediated buckling instabilities [Fig. 2(a)]. The twist
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FIG. 2. Charging topological batteries with knot tying and twist, illustrated for two knot types. (a) Energy storage in elastic batteries
depends on both knot type and initial twist density. The chiral trefoil knot (31, top) exhibits different buckled states at positive and negative
twist, whereas the achiral figure-of-eight knot (41, bottom) does not. (b) Chirality-dependent buckling leads to different energy density profiles
for the trefoil knot when charged with positive twist (θ ′ = 2/h) and negative twist (θ ′ = −2/h). Simulation parameters: α−1 = 1.3, γ =
5, L/h = 50.

in the buckled state is typically lower than the initial twist
supplied to the prebuckled state [35]. The evolution of the total
twist in the fiber, T w, follows from relating spatial and time
derivatives of the frame:

d

dt
T w = [� · d3]L

0 +
∫ L

0
ds d3 · (d′

3 × ḋ3). (3)

When the fiber is closed, the first term on the right-hand
side vanishes. Although initializing a fiber with a specific
twist requires a time-dependent torque application protocol,
the amount of buckling provides an indicator of the twist
charge within the battery, for a given knot type. For example,
twist produces initial battery states with varying postbuckled
geometries [Fig. 2(a)] and energy densities [Fig. 2(b)]. Ad-
ditionally, twist is sensitive to certain underlying topological
properties. In our simulations, chiral knots generally exhibit
handedness-dependent buckling [Fig. 2(a), top], whereas achi-
ral knots tend to buckle independently of twist handedness
[Fig. 2(a), bottom].

C. Discharging dynamics and topological resonance

As knotted mechanical batteries unravel, the competition
between bending and twisting energies reveals a landscape
of topological resonances, where certain initial states lead to
super slow energy discharge. After being broken at the point
of maximum stress, different transient, metastable states occur
[see Fig. 3(a) and the movie in the Supplemental Material
[36]]. The discharge dynamics separate into a bending-
dominated regime and a twist-dominated regime, as evident
from the initial state of the battery [Fig. 3(b)]. The crossover
between the two regimes corresponds to the scaling of strains
associated with twisting and bending. From (1), the character-
istic strains for tightly knotted configurations are εb ∼ hκ ∼ 1
for bending and εtw ∼ hθ ′ ∼ hT w/L for twisting. As a result,
twist dominates the discharge dynamics at high twist densities
with θ ′h > 1 [Figs. 3(c)–3(e)]. Since the effects of varying
knot type are more naturally related to the bending energy,
twist can be thought of as washing out topology. Indeed, at
high twist, θ ′h > 1, the batteries discharge quickly, indepen-

dent of knot type [Figs. 3(d) and 3(e)]. By contrast, at low
twist, knot topology essentially determines the discharging
dynamics [Fig. 3(e)]. In particular, select knots exhibit ex-
tremely long discharge times [Figs. 3(d) and 3(e)]. We can
explain these slow topological resonances by considering the
mechanisms by which knots release twist and bending energy.
Bending forces point in the d′

3 direction, which lies in the
fiber’s local osculating plane, spanned by d3 and d′

3. From (3),
twist changes when ḋ3 has a component in the d3 × d3

′ direc-
tion; twist relaxation therefore pushes the fiber out of plane.
The topologically resonant slow knots can thus be thought of
as maximally nonplanar and therefore self-confining.

III. ENERGY RELEASE DYNAMICS IN NEMATIC FLUIDS

A. Nematodynamic model

Nematic fluids containing spherical colloidal particles [19]
enable another construction of a topological battery. The ef-
fective topological charge of the particle is determined by
its prescribed liquid crystal anchoring profile, which may be
optically changed [37,38] to release energy. We model the
nematic system with a tensor order parameter Q. The largest
eigenvalue and its eigenvector determine the degree of order
S and the director n. The free energy, F = ∫

f dV , is given by

f = A

2
Qi jQji + B

3
Qi jQjkQki + C

4
(Qi jQji )

2 + L

2
(∂kQi j )

2.

Derivatives of Qi j in the free energy density describe the
effective elastic behavior of the director field, where L is the
elastic constant, and A, B, and C are parameters that tune the
nematic phase behavior. Our 3D nematodynamic simulations
[39] are based on the Beris-Edwards formulation of the Q-
tensor dynamics [40]:

(∂t + uk∂k )Qi j + �ikQk j − Qik�k j = Hi j + 2χ

3
Di j

+ χ (DikQk j + QikDk j ) − 2χ

(
Qi j + δi j

3

)
QklWkl , (4)
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FIG. 3. Discharging knotted elastic fibers. (a) The relaxation dynamics depend strongly on knot type and twist state (see the simulation
movie in the Supplemental Material [36]). (b) At low twist, the initial knot energy varies with knot type, while high twist negates the effect
of topological changes. (c) Energy is released in phases as intermediate metastable topological states form and untie. Topology-dependent
obstructions cause certain knot types to untie more slowly at zero twist (31, 74). Higher twist states typically discharge faster, but the final
discharge rates are set by the relaxed length of the fiber. (d) Topological resonances occur predominantly at low twist. (e) High twist leads
to fast untying for all knot types. At scales where bending dominates, topology-dependent resonance effects become visible. Total number of
initial knot configurations simulated for (e) is 238 (Fig. 1) using the algorithm from Refs. [29,30].

where u is fluid velocity, χ is the alignment parameter, and 

is the rotational viscosity coefficient. The molecular field Hi j

drives the system towards equilibrium, Hi j = −(δF/δQi j )tr,
where (·)tr denotes the traceless part. Di j and �i j are the
symmetric and antisymmetric parts of the velocity gradient
tensor Wi j = ∂iu j . We model the nematic as an incompressible
fluid with stress tensor

σi j = 2χ

(
Qi j + δi j

3

)
QklHkl − χHik

(
Qk j + δk j

3

)

− χ

(
Qik + δik

3

)
Hk j − ∂iQkl

δF

δ∂ jQkl

+ QikHk j − HikQk j + 2ηDi j − pδi j, (5)

where p is the fluid pressure and η is the isotropic
viscosity. Defining the intrinsic length scale ξN =√

L/(A + BSeq + 9
2CS2

eq) and timescale τN = ξ 2
N/L, the

particle radius is set to R = 52.5ξN and the director field
has relaxation timescale τd = R2/L = 2760τN. The phase
parameters are set to A = −0.19 L/ξ 2

N, B = −2.34 L/ξ 2
N,

and C = 1.91 L/ξ 2
N, The nematic is in the alignment regime

χ = 1, with isotropic viscosity η = 1.38 ξ 2
N/LτN. Our 3D

simulations were performed on a 200 × 200 × 150 mesh
with grid resolution �x = 1.5 ξN and time resolution
�t = 0.057 τN. This Q-tensor-based formulation of
nematohydrodynamics has been particularly effective for
predicting and explaining experimental data measured in
studies of entangled defect lines in nematic colloidal systems
[18,19], nematic colloids with variation of the particle or
interface shape [41,42], patterned nematic interfaces [43],
and microfluidics using nematic liquid crystals [17]. Such
mesoscopic approaches can be directly expanded with other
contributions and fluid mechanisms, including multiple
elastic constants, driving of surface anchoring, and the effects
of other possible mechanical or external fields. In addition,
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FIG. 4. Charging topological batteries in nematic fluids. (a) The battery consists of a spherical colloidal particle confined between two
plates (gray), with topologically nontrivial anchoring profile, nq(θ, φ), resulting in an effective topological charge, q, for the particle. The
particle is colored from blue to yellow as the horizontal component of nq varies from −1 to 1. The director field (green rods) contains a defect
ring (red isosurface at S = 0.35) of varying cross-sectional structure (color-coded insets). (b) The defect ring buckles for q � 7 into a loop with
q maxima and minima. (c, d) Above the instability threshold (q � 7), a nonzero mean director component emerges in the horizontal plane (xy)
of the sample. (e) The total free energy of the nematic colloid is dependent on the topological charge of the nematic structure. See Sec. III A
for simulation parameters.

surface-contributed timescales could also be controlled
through in-plane switching methods [44].

B. Charging

Nematic topological batteries are charged by imposing
a topologically nontrivial director field anchoring profile
on the surface of a spherical particle given by nq(θ, φ) =
(sin θ cos qφ, sin θ sin qφ, cos θ ). Here θ and φ are the polar
and azimuthal angles, and the integer q sets the effective
topological charge of the particle [45]. The system is placed
in a cell with strong perpendicular anchoring of the nematic
director on the top and bottom boundary [Fig. 4(a)]. The bulk
nematic structure counteracts the topological charge of the
particle by forming a defect ring [46], known as a Saturn ring
for q = 1. The director field in the cross sections of the defect
ring varies continuously between +1/2, −1/2, and twisted
profiles [Fig. 4(a)]. For small q, the defect ring lies on the
equatorial plane of the particle [Figs. 4(a) and 4(b)]. As q in-
creases, the gradients of the director field increase, eventually
causing the defect loop to buckle at a critical qc depending
on colloid size. The resulting oscillatory defect profiles have
wavelength matching that of the anchoring profile and am-
plitude increasing with q [Fig. 4(b)]. The buckling transition
is characterized by the average horizontal director field, 〈n‖〉,
which is zero for q < qc and positive for q � qc [Figs. 4(c)
and 4(d)]. The total free energy, F , however, strictly increases
with q [Fig. 4(e)]. Topology thus determines the distribution

of energy throughout different modes, along with the total
energy.

C. Discharging dynamics and topological resonance

Energy partitioning within the charged nematic batteries
causes topological resonances in the discharge dynamics. The
relaxation process is triggered by switching off the anchoring
on the spherical particle, allowing the director field to take
any orientation at its surface [Fig. 5(a)]. The initial reorienta-
tion of the director field is accompanied by the shrinking of
the defect ring until it is annihilated on the particle surface.
The continued reorientation of the director field towards the
equilibrium homogeneous vertical structure drives a complex
flow pattern [Fig. 5(a)]. During the typical director relaxation
time, τd, the energy decreases by several orders of magnitude
[Fig. 5(b)]. While the initial energy release rate increases with
initial battery energy and topological charge q [Fig. 5(c)], the
asymptotic release rates show characteristic resonance peaks
[Fig. 5(d)]. In particular, we observe superfast discharge rates
for q close to qc [Fig. 5(d)]. The return to slow relaxation for
q � qc is caused by the formation of the long-scale deforma-
tion mode with 〈n‖〉 > 0 [Figs. 4(c) and 4(d)], which obstructs
fast discharge.

IV. CONCLUSIONS

In both studied systems, topology and mechanics interact
to produce long-lived states that are central to the observed
topological resonances. For elastic batteries, these states are
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FIG. 5. Discharging nematic topological batteries. (a) As the orientational field (green rods) relaxes by changing its surface anchoring, the
defect ring (red loop) is annihilated and drives a flow (black arrows) which changes direction over time. The flow vorticity ω measures the
direction and magnitude of the flow. (b) Higher q states have both larger initial energy and faster initial discharge. (c, d) The initial energy
release rate, defined as the reciprocal of the 50 % energy discharge time, is monotonic with topological charge. In contrast, the asymptotic
release rates (d), given by the reciprocals of the 99 % or 99.9 % discharge times, display topological resonance. See Sec. III A for simulation
parameters.

the intermediate knots that can form as the fiber unties. At
small or zero twist, these configurations trap bending energy,
leading to long relaxation times. Similarly, at sufficiently high
topological charge, nematic batteries can store energy in the
slow 〈n‖〉 mode. Over long timescales, these modes make
the pivotal contribution to the overall discharge rate. More
generally, this principle of topologically activated slow modes
can provide a conceptual framework for understanding topo-
logical resonances in other soft matter settings.

To conclude, knotted elastic fibers and topologically
charged nematic fluids provide prime demonstrations of topo-
logical batteries. Both systems permit controlled triggering of
energy release via fracture and photoalignment techniques.
Our above analysis shows how elastic and nematic batter-
ies can be topologically optimized to achieve slow or fast

discharge. Owing to the inherent robustness of topological
structures, the above ideas translate to a wide range of scales.
The energy stored in topological batteries may be harnessed
to drive flows or perform mechanical or electrical work, thus
opening an avenue for topological control of soft systems.
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