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Inverse design of discrete mechanical metamaterials
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Mechanical and phononic metamaterials exhibiting negative elastic moduli, gapped vibrational spectra, or
topologically protected modes enable precise control of structural and acoustic functionalities. While much
progress has been made in their experimental and theoretical characterization, the inverse design of mechanical
metamaterials with arbitrarily programmable spectral properties and mode localization remains an unsolved
problem. Here, we present a flexible computational inverse-design framework that allows the efficient tuning
of one or more gaps at nearly arbitrary positions in the spectrum of discrete phononic metamaterial structures.
The underlying algorithm optimizes the linear response of elastic networks directly, is applicable to ordered
and disordered structures, scales efficiently in two and three dimensions, and can be combined with a wide
range of numerical optimization schemes. We illustrate the broad practical potential of this approach by
designing mechanical band-gap switches that open and close preprogrammed spectral gaps in response to
an externally applied stimulus such as shear or compression. We further show that the designed structures
can host topologically protected edge modes, and validate the numerical predictions through explicit three-
dimensional finite-element simulations of continuum elastica with experimentally relevant material parameters.
Generally, this network-based inverse design paradigm offers a direct pathway toward manufacturing phononic
metamaterials, DNA origami structures, and topoelectric circuits that can realize a wide range of static and
dynamic target functionalities.
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I. INTRODUCTION

Phononic metamaterials [1] offer exciting opportunities to
precisely control the passage of sound waves in applications
ranging from acoustic cloaking [2] and lensing [3] to art
[4]. Often, the counterintuitive properties of such materials
arise from gaps in their vibrational spectra, which prevent
or attenuate the conduction of sound over specific frequency
ranges. Recent advances in additive manufacturing techniques
such as three-dimensional (3D) printing [5] and lithography
[6] make it possible now to assemble and experimentally char-
acterize geometrically complex mechanical metamaterials [7].
In parallel, insightful theoretical studies [8] have substantially
improved our understanding of the effects of lattice geometry
and broken symmetries on band structure, mode localization,
and topological protection in phononic metamaterials [9,10].
Despite such important progress, major challenges remain
regarding the inverse design of mechanical metamaterials with
arbitrarily programmable spectra and modes. In particular, the
systematic design of highly amorphous, dynamically tunable
structures that allow the controlled switching [11–15] between
gapped and ungapped states remains an important problem.
Here, we introduce and demonstrate a theoretical and compu-
tational framework to solve static and dynamic inverse design
tasks for a broad class of discrete mechanical metamaterials.

The problem of designing ordered and disordered materials
with desired spectral properties has a long and rich history

[1,8,9,16,17]. In the context of modern metamaterials, en-
gineered band gaps were studied first in optics using ap-
proaches ranging from direct shape-optimization in periodic
[18] and disordered systems [19] to the tuning of hyperuni-
form geometries [20,21] to realize desired electromagnetic
absorption and transmission spectra. Over the past years, the
underlying concepts were generalized to acoustic band-gap
engineering through the exploitation of locally resonant units
[8], hierarchical self-similar lattices [22], gyroscopic materi-
als with topologically protected modes [23,24], and topology
optimization of continuous materials [16,17,25]. The research
in these areas has identified resonances [26] and impedance
mismatch between different material components [27] as the
two primary mechanisms underlying band-gap formation. In
parallel, recent work on quantum [28] and quantumlike [29]
systems showed that disorder can promote band-gap forma-
tion. Building on these complementary insights, the inverse
design approach described below achieves programmable
band gaps and mode localization by optimizing the linear
physical response, typically yielding highly disordered unit
cells.

Our algorithmic framework is based on a discrete net-
work representation of the underlying mechanical structure,
rendering it equally applicable to a broad range of ordered
and disordered [30–35] systems. Compared with earlier works
that focused on the direct numerical tuning of spectral band
gaps in continuum [16] and discrete [36] materials through
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FIG. 1. Designing band gaps in 2D and 3D phononic networks by linear-response optimization (LRO). (a) Triangular 6 × 6 unit cell of a
2D periodic network with three tuned band gaps (orange). In the optimized network, most springs have stiffness values at the boundaries of
the permitted interval [0.1,1]. The band structure was computed over the points � = (0, 0), M = (0, π/b), X = (π/a, π/b), where a, b are the
dimensions of the rectangular unit cell in the x and y directions. (b) Randomized 2D Delaunay network unit cell with one tuned gap (Movie
1 [38]). The bimodal stiffness distribution yields a stiff scaffold network with soft “holes,” realizing impedance mismatch. (c) A single gap
programmed into a 3D tetrahedral network. The band structure was computed over the points for the orthorhombic unit cell from Ref. [39],
and the density of states (D.o.s.) ρ(ω) was calculated from a uniform discretization of the Brillouin zone with 51 × 51 samples. In all network
plots of (a)–(c), the linewidth is proportional to the spring stiffness, with stiffer springs corresponding to thicker lines. (d) The probability of
successfully tuning a predetermined number of gaps into an N-vertex unit cell is significantly higher for networks with amorphous topology
(blue) than for triangular grids (green). Each data point is an average over 50 random choices for a fixed number of target gaps; error bars
indicate standard deviation of success probability. (e) The mean stiffness is negatively correlated with the index of the lowest tuned gap. As
the number of gaps increases, the stiffness distribution becomes less binary and less correlated to the gap position. We show data for an 8 × 8
triangular grid, but randomized topologies behave similarly. (f) Gap robustness is independent of gap position and network topology. For
both triangular and amorphous unit cells with a single gap at mode index i, the addition of zero-mean Gaussian noise with variance σ to the
stiffnesses causes a decrease in the gap size as σ → kmin.

topology optimization, the indirect response-optimization ap-
proach pursued here offers two essential advantages: First,
conceptually it enables an interpretation of the gapped net-
works as response-minimized metamaterial structures. Sec-
ond, computationally the scheme can be easily combined with
efficient gradient-based methods. The method is not restricted
to the commonly considered low-lying band gaps in highly
symmetric structures, but instead allows the placement of
one or more band gaps at nearly arbitrary positions in the
spectrum (Fig. 1). We will show how these facts can be
used to design phononic switches with prescribed spectral
structure under different global deformations (Fig. 2). To
connect with experiments, we will also demonstrate through
3D finite-element (FE) simulations for continuum elastica
with realistic material parameters that bond bending alone
can suffice to capture and tune the dynamics of contin-
uum elastic networks (Fig. 3). Our discussion concludes by
showing that the response-optimized networks can host pro-
tected chiral edge modes, thus enabling the inverse design
and precise control of topological metamaterial properties
(Fig. 4).

II. THEORY AND RESULTS

A. Discrete mechanical networks

The inverse design algorithm described below optimizes
the linear response over a set of experimentally tunable sys-
tem parameters. While the approach generalizes to arbitrary
dynamical systems that can be linearized in the neighborhood
of fixed points, we focus here on discrete mechanical networks
consisting of n identical point masses mv = m connected by
springs with stiffnesses {ke}, where v is a vertex and e is an
edge of the network. The elastic energy of the network reads

V = 1

2

∑
e

ke
(
�e − �(0)

e

)2
, (1)

where ke is the stiffness of spring e, �e is its length, and �(0)
e is

its rest length. In this case, we are interested in programming
spectral properties by optimizing over the set of spring con-
stants {ke}. To linear order, the dynamics of the network near
the equilibrium configuration is given by

m ü + Ku = 0, (2)
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FIG. 2. Phononic metamaterial switches with unit cells possessing random topologies. (a) Network designed to open a band gap when
global type A shear in the x direction (x �→ x + εy, y �→ y, ε = 0.125) is applied (Movie 2). The gapless unstrained and gapped strained
configurations can be seen in the density of states ρ(ω). (b) Network designed to open a gap under global type B shear [x �→ (1 + ε)x, y �→
(1 − ε)y, ε = 0.125]; see Movie 3. (c) Network designed to open a gap under global compression [x �→ (1 − ε)x, y �→ (1 − ε)y, ε = 0.125];
see Movie 4. For global compression, most spring lengths decrease, so that the second term in Eq. (A3) reduces all excitation frequencies.
In contrast, for global shear, some springs lengthen while others are compressed, so that the excitation frequencies remain roughly identical.
(d) The gap widths |ωi+1 − ωi| increase with the magnitude ε of the applied deformations in (a)–(c). The linear approximation for the deformed
equilibrium breaks down past ε ≈ 0.125. In all cases, the target deformation was ε = 0.2. Gap sizes were computed by discretizing the entire
Brillouin zone using 51 × 51 samples.

where u = (uv ) is the vector of mass displacements and
K = QkQ� is the stiffness matrix, with k the diagonal ma-
trix of individual spring stiffnesses and Q the compatibility
matrix encoding the relative geometric relationships between
the masses (Ref. [37] and the Supplemental Material [38]).
Equation (2) can be simplified further by expanding into
eigenmodes defined by the relation Kui = mω2

i ui, where the
set {ωi} constitutes the spectrum of excitation frequencies.
The goal of the spectral optimization is then to construct
networks with spring constants {ke} that realize a desired
frequency spectrum {ωi}. Specifically, to achieve a reduced
acoustic response, we would like to place large gaps between
predetermined consecutive eigenvalues ωi.

B. Response optimization

To design one or more spectral gaps at desired locations
in the spectrum, we formulate a linear-response optimization
(LRO) scheme that creates suitable impedance mismatches

FIG. 3. Spectral gap design for continuum elastic networks. (a,b)
3D renderings of two continuum Styrodur networks (diameter ≈
17 cm, thickness 1 cm) studied in finite-element (FE) simulations
(Appendix). The color represents the in-plane harmonic response
amplitude |G0 j |, where the finite elements j respond to harmonic
forcing of the element 0 at the center of the network with amplitude
(1, 1, 0)/

√
2 at the midgap frequency ω = 1.8 kHz. The response

of the tuned network (a) is significantly smaller than that of the
network (b) with randomly permuted stiffnesses. (c) FE modes for
the tuned network (a) exhibit a substantial spectral gap (blue). The
gap vanishes for the network (b) with randomly permuted stiffnesses
(orange).

(Fig. 1). Unlike brute-force [40] optimization (see Ref. [38]),
the LRO framework yields a differentiable objective function
and is equally applicable to undeformed and deformed net-
works (Fig. 2). The linear response to harmonic forcing Feiωt

is given by

u(t ) = eiωt G(ω; k)F, (3)

where the response function is

G(ω; k) = (−mω21 + K )−1.

The time-averaged covariances of the real vertex responses are

Cvv′ (F) = 1
2 〈Re (uv (t )) Re (uv′ (t ))〉t ,

where Re(·) is the real part of a complex number. Plugging
in Eq. (3) and explicitly performing the time average over a
period T = 2π/ω, we find the matrix expression

C(F) = G(ω; k)FFH G(ω; k)H , (4)

where the superscript H denotes the Hermitian transpose. The
strength of each node’s response at frequency ω is encoded
in the diagonal entries. We now average Eq. (4) further over
an ensemble of independent, identically distributed random
forcings F with covariances 〈FFH 〉F = 1. Using linearity of
the matrix product, we obtain

〈C(F)〉F = G(ω; k) 〈FFH 〉F︸ ︷︷ ︸
=1

G(ω; k)H . (5)

Summing over the diagonal of 〈C(F)〉F yields

R(ω; k) = tr(G(ω; k)G(ω; k)H ), (6)

where tr(·) denotes the matrix trace. Equation (6) is equivalent
to the squared real network response 1

2

∑
v〈〈Re(uv )2〉〉, where

〈〈 · 〉〉 denotes an average over both the period T = 2π/ω

and the forcing ensemble. Since Eq. (6) is averaged over
forcings, it depends only on the spectrum and not on the
eigenmodes, and thus it can be used to tune spectral properties
indirectly. As an instructive example, consider a system with
unit mass and only two eigenvalues at ω2

1,2. The minimum
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FIG. 4. Protected chiral edge modes in designed networks. (a) Designed gapped network on a triangular lattice. (b) Gapped band structure
of the network from (a) in the symmetry-unbroken state (	 = 0, Chern invariant C = 0). (c) Chiral protected edge bands (arrow) in the
topological phase (	 = 0.16, Chern invariant C = 1) for a ribbon with 12 open-boundary unit cells in the y direction and periodic boundary
conditions in the x direction. Color corresponds to the mode localization ratio λ = ∑

i u4
i /(

∑
i u2

i )2. Each of the two bands corresponds to chiral
modes localized on either side of the finite ribbon. The topological phase transition occurs at 	c ≈ 0.08. (d) Localized chiral edge response to
forcing in the lower left corner in a finite sample network with 6 × 6 unit cells. Circle size corresponds to the norm ‖ui‖2 of the linear response
at long times, while color corresponds to the response phase.

of R(ω) = (ω2
1 − ω2)−2 + (ω2

2 − ω2)−2 occurs at ω2
∗ = (ω2

1 +
ω2

2 )/2 with the value R(ω∗) = 8(ω2
2 − ω2

1 )−2, inversely pro-
portional to the gap width. Thus, minimizing the response
Eq. (6) at a frequency between two eigenvalues will maximize
the gap width. The above framework can be easily adapted
to other classes of forcing ensembles, allowing additional
optimization for application-specific input correlations 〈FFH 〉
[41].

C. Periodic structures

The generalization to periodic crystals is straightforward in
a Bloch basis, taking the lattice Fourier transform [37] of the
above relations (see Ref. [38]). In this case, the trace in Eq. (6)
is replaced by a sum of traces over the response functions
Gq at each wave vector q in the first Brillouin zone of the
reciprocal crystal lattice. The Fourier transformed eigenmode
equation is then K̂ (q)ûi(q) = mω2

i (q)ûi(q). To numerically
tune a gap between ωi and ωi+1 at wave vector q, we minimize
the objective function

Li(q; k) = R
(√

1
2

(
ω

(0)
i (q)2 + ω

(0)
i+1(q)2

)
; k

)
, (7)

where the frequencies ω
(0)
i are evaluated at the initial stiff-

ness guess k(0)
e . To tune multiple gaps at band indices I =

{i1, . . . , in}, we sum up the contributions from the individ-
ual bands and minimize LI (q; k) = ∑

i∈I Li(q; k). Compared
with direct gap optimization schemes [40], our LRO objective
in Eq. (7) has the benefit of being fractional-linear in k and
hence differentiable with respect to k as long as all involved
matrix inverses exist. Thus, it can be efficiently minimized
with derivative-based optimization algorithms (Appendix).
These algorithms generally converge to one of potentially
many local minima. The optimized networks presented below
are based on random initial conditions and as such correspond
to numerically determined local minima. We generally found
that this basic approach is sufficient for designing large gaps
at the desired positions. In principle, it is straightforward to
combine the LRO scheme with computationally more costly
global optimization techniques such as simulated annealing.
The numerical results below demonstrate, however, that local
optimization schemes can yield satisfactory network designs
for many practical applications.

D. Band-gap tuning of 2D and 3D networks

The discrete LRO framework is equally applicable to reg-
ular and amorphous network topologies in two as well as in
three dimensions. In the examples shown in Figs. 1(a)–1(c),
we optimized spring constants ke over the range [0.1,1] to
create one or more band gaps at predetermined positions in
the acoustic spectrum. Sufficiently large networks can support
a substantial number of tuned gaps [Fig. 1(d) and Ref. [38]].
The characteristics of the final gap-optimized structures do
not significantly depend on the base network topology. As
a general design rule, the distribution of stiffness values
ke in the optimized networks becomes bimodal and peaked
at the interval boundaries [Figs. 1(a)–1(c)]. Intuitively, this
means that the LRO algorithm can generate impedance mis-
match between high- and low-stiffness components. While
such impedance mismatch appears to be the predominant
mechanism of gap formation in our designed networks, local
resonances can occur as well (see Ref. [38]). At higher gap
frequencies, the relative proportion of stiff to weak bonds
changes such that the mean stiffness decreases independent of
the unit-cell size [Fig. 1(e)], leading to increasingly disordered
network patterns (see Ref. [38]). Thus, low-lying gaps are
realized by large high-stiffness regions with low-stiffness
inclusions, whereas high-lying gaps are realized by large low-
stiffness regions with high-stiffness inclusions.

E. Regular versus amorphous network topologies

A practically important question is how many gaps a given
network can support. To explore this question systematically,
we attempted to tune up to 32 gaps at random frequencies
into more than 6000 networks with different unit-cell sizes
and base topologies. Starting from uniform random initial
conditions ke ∈ [0.1, 1], we estimated the success probabil-
ity P[minq ωi+1(q) > maxq ωi(q) for all gaps i] by explicitly
computing the actual final gap sizes at 4 × 4 = 16 different
sampling points in the Brillouin zones. As expected, we
found that larger unit cells can support more gaps [Fig. 1(d)].
Interestingly, however, it is easier to implement a relatively
larger number of gaps when the unit cell has randomized
vertex positions [Fig. 1(d)]. The algorithm for constructing
these randomized unit-cell networks relies on a Delaunay
triangulation (Appendix). Recent work [33,34] showed that
amorphous networks are better suited for tuning static elastic
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properties than regular lattices. Our results indicate that the
same is true for the inverse design and control of dynamical
properties such as sound transmission.

F. Robustness

Notwithstanding the recent major technological advances
[5,6], fabrication of discrete metamaterials can be expected to
introduce small-to-moderate deviations from the optimal net-
work structure. To demonstrate the robustness of the inversely
designed networks, we tuned a single gap at different posi-
tions into the frequency spectrum of networks with different
unit-cell topologies. Thereafter, we perturbed the optimized
stiffnesses by adding normally distributed noise (mean 0,
standard deviation σ ), and we computed the gap size for the
perturbed network. Independent of the specific gap position
and network topology, we found that the gap size decreases as
σ increases, roughly halving in size as σ approaches the lower
stiffness bound [Fig. 1(f)]. This implies that the low-stiffness
components are essential for the realization of both high-lying
and low-lying gaps.

G. Designing phononic switches

Going beyond basic band-gap tuning, a practically im-
portant challenge is the inverse design of metamaterials that
adjust their spectra on-demand in response to an external
control stimulus [11,12]. We now demonstrate how the above
LRO framework can be adapted to design phononic switches
that can selectively open and close spectral gaps at prepro-
grammed frequency ranges/band indices and stimuli (Fig. 2).
As the switching mechanisms we choose global deformations,
which have been used previously to induce and control gaps
[13–15]. The combination of nonaffine network response and
nonzero spring tensions in the strained equilibrium changes
the elastic energy and therefore the vibrational spectrum [see
Eq. (A3)]. Our LRO implementation tunes the deformed
and undeformed spectra independently. More precisely, the
deformed stiffness matrix Kdef of a spring network under a
global deformation � : x �→ �x can be found to lowest order
by computing the strained equilibrium positions of all nodes
from the linear dynamics Eq. (2), and then expanding the
nonlinear Eq. (1) around the strained equilibrium, removing
all linear terms [Eq. (A3)]. From an algorithmic perspective,
switch tuning falls into the class of multiobjective optimiza-
tion problems, which means that, in general, there exists not a
single optimal solution but instead a Pareto front of optimal
tradeoffs between the individual objectives [42]. Here, we
parametrize the problem of simultaneously tuning a gap in the
deformed state and no gap in the undeformed state using a
no-preference method by considering the scalar least-squares
problem,

Lswitch(k) = Rdef (ω(0); k)2 + α[R(ω(0); k) − βR(0)]2, (8)

where R(0) is the response of the undeformed initial network,
Rdef (ω(0); k) is the response of the deformed network, and
α ∈ {0, 1}. The parameter β controls the desired response
of the undeformed network. Equation (8) is minimized in
three passes. First, we set α = 0, creating a network with a
large gap in the deformed state. Generically, this gap persists

when the deformation is switched off, only decreasing in
size. This persistence is mitigated by running two additional
passes with α = 1, always feeding in the result of the previous
optimization as an initial guess for the next and recomputing
ω(0) and R(0), leading to a stepwise increase of the response
in the undeformed state while retaining low response in the
deformed network. The value of β such that the network
possesses a closed band structure in the undeformed state and
a spectral gap in the deformed state is found by a parameter
search, and generally lies between 5 � β � 25. Examples of
phononic band gap switches controlled by the two types of
shear transformations and compression are shown in Fig. 2
and Movies 2–4 in the Supplemental Material [38].

III. DISCUSSION

A. Continuum elastica

Macroscopic real-world elastic networks generally exhibit
behavior more complex than pure stretching. Elastic rods
can also bend and twist [43], and hingelike connections can
significantly influence the total elastic response. Generalizing
the above ideas, we studied the influence of bending modes
and hinges on spectral network design. Through a direct
comparison with FE computations, we found that these two
effects suffice to design realistic 3D metamaterial dynamics,
as twisting is negligible in the low-frequency regime. Our ex-
tended 2D network model treats bending and hinge stiffnesses
on the same footing by introducing a local preferred relative
orientation for elastic rods [44] that are linked by a joint
node (see Ref. [38]). Assuming stiff hinges, angular deviation
from the preferred orientation is penalized at each node, and
bond bending is modeled by inserting an additional node at
the center of each bond. As planar continuum realizations of
these idealized 2D networks, we performed FE simulations of
discrete mechanical metamaterials consisting of small disks
connected by rods of different in-plane diameter (Fig. 3;
see Ref. [38]). The rods are tapered toward their ends to
ensure similar elastic properties near the hinges. The disk-
rod networks are extruded in the direction normal to their
plane to obtain centimeter-thick quasi-2D material structures
[Figs. 3(a) and 3(b)], which can be 3D printed or cut out of a
slab of elastic material. Considering typical Styrodur parame-
ters, we matched the effective elastic constants of the idealized
2D network model to those of the 3D FE model (Appendix).
The reduction to the 2D model for band-gap design is made
possible by the fact that, for sufficiently thick 3D materials,
the spectrum is divided into in-plane and out-of-plane modes.
Since in-plane and out-of-plane dynamics are approximately
decoupled in this regime, it suffices to optimize the spectral
gaps associated with these in-plane modes (see Ref. [38]).
By tuning a low-frequency spectral gap into the 2D network
and mapping back onto the full 3D FE model [Fig. 3(a)],
we find that the gap remains highly conserved in the FE
mode spectrum [Fig. 3(c), blue circles]. In contrast, a control
network [Fig. 3(b)] obtained by randomly permuting the edges
of the optimized network loses the gap [Fig. 3(c), orange
circles]. As a consequence, the gapped 3D continuum network
exhibits a significantly reduced response when the center node
is forced at midgap frequency [Figs. 3(a) and 3(b)]. This
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demonstration illustrates the vast practical potential of the
LRO approach with regard to the inverse design of complex
3D metamaterial functionalities.

B. Topologically protected modes

Topological mechanics offers a powerful framework for
the control of phononic excitations. Topologically protected
phonons localized at the edges of gapped mechanical ma-
terials have been studied extensively in special lattices
[23,24,29,45,46] and in random networks [28,47]. Here, we
demonstrate that our designed networks can harbor such
modes as well. Inverse design thus promises precise con-
trol of topological materials and may pave the way to fully
programmable topology. Specifically, we consider 2D Chern
insulators, originally discovered through the quantum Hall
effect, in which protected modes arise through the breaking
of time-reversal invariance. A mechanical Chern material was
realized recently with active gyroscopes [23,24]. We focus on
the direct analog of Hall insulators, breaking time-reversal
symmetry by rotating a gap-tuned network about an axis
perpendicular to it [48]. The resulting Coriolis force plays
the role of an external magnetic field. To linear order in the
rotation frequency 	, the equations of motion read

m ü + 2m � × u̇ + Ku = 0, (9)

where � × x = (−	 x2,	 x1) in the 2D plane. By increasing
the rotation rate 	, a 2D network with designed band gap
[Fig. 4(a)] can be driven through a topological phase transi-
tion. The initially open gap [Fig. 4(b)] closes at some finite
	 = 	c, and then reopens in a topological phase with nonzero
bulk Chern invariant C = 1, revealing a localized band of
protected edge modes in the gap [Fig. 4(c)]. In finite samples,
the nontrivial topology leads to the appearance of robust,
protected edge modes allowing unidirectional transport of
phonons along the sample boundary [Fig. 4(d)], with chirality
controlled by the sign of 	. Although not every tuned gap can
be made topological in this manner, we observed in test sim-
ulations that topological transitions occur if the original gap
in the trivial regime 	 = 0 exhibits a “Mexican hat” shape, as
seen in Fig. 4(b). This distinctive shape is indicative of a band
inversion process, which has been implicated in mechanical
topological insulators before [49]. According to our numerical
tests, this feature might also provide a useful indicator for
potential topological transition in networks with designed
band gaps. Altogether, our results suggest that topological
mechanical materials could be programed to exhibit protected
modes at almost any frequency, gap size, and chirality by
tuning the basic building blocks of the underlying network.

IV. CONCLUSIONS

We showed that linear-response optimization (LRO) pro-
vides a flexible and efficient algorithmic framework for the
inverse design of discrete elastic metamaterials with desir-
able spectral properties. Notably, LRO opens a path toward
developing and exploring materials with amorphous unit
cells, which appear capable of hosting a significantly larger
number of programmable frequency gaps than their more
commonly studied highly symmetric counterparts (Fig. 1).

Furthermore, LRO makes it possible to rationally design
mechanical systems with switchable band structure that can
be controlled through external deformations (Fig. 2). Disor-
dered base structures are particularly promising candidates in
this context, because their nonaffine responses facilitate large
spectral differences between deformed and undeformed mate-
rial configurations. Another intriguing prospect is the inverse
design of topological materials with highly controllable mode
protection (Fig. 4).

The LRO approach developed here can be easily adapted to
impose desired band gaps at different selected positions in the
Brillouin zone, or to realize more complex spectral features
such as degenerate points. While the present study focused on
optimizing the global network response via Eq. (6), we antic-
ipate that the tuning of individual covariance matrix elements
can provide a powerful technique for the fine-grained control
of specific dynamical properties. Perhaps most importantly,
however, due to its generic mathematical formulation, the
LRO scheme can be applied to any dynamical system that can
be linearized near a stable fixed point. This promises exciting
future possibilities for the inverse design of complex static
and dynamic target functionalities in a wide range of systems,
from amorphous photonic crystals [50] and DNA origami
structures [51,52] to passive [53] and active [54] topolectrical
circuits.
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APPENDIX: METHODS

1. Gradient-based optimization

We employed the standard L-BFGS-B bound-constrained
quasi-Newton algorithm [55]. In the numerical examples,
stiffness values ke were optimized over the interval [0.1, 1].

2. Randomized topology

Networks with randomized topology were constructed by
first distributing points xi in the periodic unit cell uniformly
at random, and then locally minimizing the potential func-
tion V = ∑

i 
= j d (xi, x j )−1, where the distance d (xi, x j ) =
minm ‖xi − x j + m‖ for lattice vectors m. The basic unit-cell
points were copied into the directly adjacent unit cells, and a
Delaunay triangulation was calculated to obtain the network
topology and unit vectors along the bonds. Equivalent points
were identified in the basic unit cell, and the adjacent unit cells
were deleted.

3. Spectra of deformed networks

The spectrum of an elastic network described by Eq. (1) is
found by linearizing the elastic energy to

V = 1

2

∑
e

ke(b̂e · 
ue)2, (A1)

where ke are the spring stiffnesses of spring e, b̂e is the
unit vector pointing along e = (i j), and 
ue = ui − u j for
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the small displacements xi = x(0)
i + ui from the equilibrium

positions x(0)
i . To linear order, a global deformation is then

defined by

x → (1 + η)(x(0) + u) ≈ x(0) + ηx(0) + u, (A2)

where the d × d matrix η encodes the global deformation.
Plugging this into Eq. (A1) and minimizing with respect to u,
we obtain the new equilibrium positions of the network nodes
under the global deformation.

The spectrum of the deformed network is then found by
expanding (A1) around the new equilibrium positions xdef =
x(0) + ηx(0) + udef . Up to a constant, we obtain

Vdef = 1

2

∑
e

ke

[
�(0)

e

�̃e
(b̃e · 
ve)2 +

(
1 − �(0)

e

�̃e

)
(
ve)2

]
,

(A3)

where the tilde denotes a quantity in the deformed equilib-
rium, and vi are the small displacements around the deformed
equilibrium.

4. Finite-element calculations

We used MATLAB 2018b’s createpde command in the
structural mode for solid modal analysis. The meshes were
generated using the default parameters, only the maximum
mesh size was set to 0.005. The material properties were
set for Styrodur (BASF AG, Ludwigshafen, Germany), a
polymer foam with Young’s modulus Y = 2 × 107 Pa, Pois-
son’s ratio ν = 0.4, and density ρ = 33 kg/m3. To compare
the results of 3D finite-element (FE) calculations to our
2D network model, for each mode with x, y, z components
(ux, uy, uz ) we computed the in-plane contribution f 2

xy =
(‖ux‖2 + ‖uy‖2)/(‖ux‖2 + ‖uy‖2 + ‖uz‖2), and we discarded
all modes with fxy < 0.5. Additional details of the mapping
between the 2D network model and the 3D FE model are
provided in Ref. [38].
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