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Mass-spring networks (MSNs) have long been used as approximate descriptions of

biological and engineered systems, from actomyosin networks to mechanical trusses.

In the last decade, MSNs have re-attracted theoretical interest as models for phononic

metamaterials with exotic properties such as negative Poisson’s ratio, negative effective

mass, or gapped vibrational spectra. A numerical advantage of MSNs is their tuneability,

which allows the inverse design of materials with pre-specified bandgaps. Building on

this fact, we demonstrate here that designed MSNs, when subjected to Coriolis forces,

can host topologically protected chiral edge modes at predetermined frequencies, thus

enabling robust unidirectional transmission of mechanical waves. Similar to other recently

discovered topological materials, the topological phases of MSNs can be classified by a

Chern invariant related to time-reversal symmetry breaking.

Keywords: mechanical networks, topological matter, Chern insulator, classical mechanics and quantum

mechanics, edge modes

1. INTRODUCTION

Topological mechanics [1] is a rapidly growing research field that studies classical analogs of
topological effects in quantum many-body physics [2]. A prime example are spectrally gapped
mechanical systems that can host topologically protected zero modes at their boundaries [3–5],
similar to localized electronic excitations in the quantum spin Hall effect [6]. Another important
class of examples are solid- or fluid-mechanical systems with broken time-reversal symmetry,
which can exhibit chiral edge modes at finite frequency [7–10], analogous to the (anomalous)
quantum Hall effect [11, 12]. Because these edge modes are topologically protected and robust
against the introduction of defects, they may provide a powerful tool for the resilient localized
transmission of sound signals in elastic materials [13].

Over the last 5 years, substantial progress has been made in the understanding of topological
phenomena in a wide variety of classical systems, ranging from mechanical systems with lattice
symmetry inspired by quantum analogs [14, 15] and amorphous networks [9, 16] to active
systems [7, 17, 18], electrical circuits [19–21], and even ocean waves [22]. Many of the recently
discovered mechanical topological insulators rely on a known underlying lattice structure [7, 14]
or curvature [22] to induce the required gaps in their excitation spectra. From a practical
perspective, it would be interesting to design and build more general structures with desired
topological properties.

Complementing recent work aimed at engineering continuum topological insulators [23],
we consider here the design of topological excitations in bandgap-optimized [24] mass-spring
networks (MSNs). Specifically, we will demonstrate that MSNs with an inversely designed
bandgap can host topologically protected finite-frequency edge modes, and convert non-robust
non-topological edge modes into robust topological edge modes when time-reversal symmetry is

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2019.00178
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2019.00178&domain=pdf&date_stamp=2019-11-08
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:henrikr@mit.edu
https://doi.org/10.3389/fphy.2019.00178
https://www.frontiersin.org/articles/10.3389/fphy.2019.00178/full
http://loop.frontiersin.org/people/685402/overview


Ronellenfitsch and Dunkel Topological Phases in Designed Networks

broken. While many traditional topological materials, including
those based on a hexagonal lattice like theHaldanemodel [25], do
not possess the mode conversion property, this desirable feature
is frequently encountered in our designed MSNs.

In the remainder, we focus on the dynamics of periodic
crystals of 2D mechanical balls-and-springs networks. In all
cases, the spring stiffnesses of these MSNs were numerically
tuned such that the excitation spectrum exhibits a band gap
(using the algorithm introduced in [24]). In formal analogy with
quantum Hall systems [11, 12], we will then break time reversal
symmetry by placing the MSN into a rotating frame, with the
Coriolis forces acting equivalently to an external magnetic field.
To study and characterize the topological phase transition and
the emerging protected chiral edge modes in detail, we will
(i) numerically calculate the non-zero Chern invariant associated
to the topological phase, (ii) demonstrate the dynamics of the
localized chiral edge excitations in numerical simulations, and
(iii) explicitly identify those dynamical edge modes that are
related to topological protection. The underlying inverse-design
framework [24] uses a generic linear response optimization
and is, therefore, broadly applicable. Promising candidates for
experimental implementations are mechanically coupled phase
oscillators under Coriolis acceleration, such as hydrodynamic
spin lattices of walking droplets [26] or gyroscopic mechanical
metamaterials [8, 10].

2. DYNAMICS OF MECHANICAL
NETWORKS

MSNs provide a generic modeling framework for many physical
systems. The potential energy of an MSN with E springs
is given by

V = 1

2

E
∑

e=1

ke

(

ℓe − ℓ(0)e

)2
,

where ke is the stiffness of spring e, ℓe is its current length and ℓ
(0)
e

is its preferred rest length. Here, we are interested in the dynamics
near the equilibrium configuration where all springs are at their

rest lengths, ℓe = ℓ
(0)
e , corresponding to the masses being at

positions x
(0)
i . Expanding in small deviations ui = xi − x

(0)
i and

neglecting frictional effects, we obtain the linearized equations
of motion,

mü+ Ku = 0, (1)

where K is the stiffness matrix of the network and m is the
mass of the balls (we assume identical masses throughout). The
vector u generally has dN components, where d is the dimension
of space and N is the number of masses. From now on, we
specialize to the case d = 2. The stiffness matrix can be further

decomposed as K = Qk̂Q⊤, where Q is the equilibrium matrix

encoding the network geometry and k̂ = diag(k1, k2, . . . , kE) is
the diagonal matrix of spring stiffnesses [27]. Neglecting thermal
fluctuations throughout, the subsequent discussion focuses on

macroscopic topological metamaterials, similar to those realized
experimentally in Chen et al. [28]. In principle, it is possible
to incorporate thermal or non-thermal noise [18] and/or more
general nonlinear potentials, such as in the elastic Lennard-
Jones model [29], provided these admit linearizations in the form
of Equation (1).

The MSN dynamics, specifically its harmonic response and its
phononic modes, are encoded in the eigenmodes

Kuj = mω2
j uj, (2)

where ωj are the eigenfrequencies. If the network is a crystal
consisting of Nc periodically repeated unit cells with lattice
vectors Rℓ, the dynamical problem can be simplified by
performing a lattice Fourier transform [27],

un(Rℓ) =
1

Nc

∑

k

e−ik·xiun(k)

un(k) =
∑

Rℓ

eik·xiun(Rℓ),

where we decompose the rest positions xi = Rℓ + vn. Here,
ℓ indexes the unit cell and n indexes the degree of freedom

within the unit cell. The wavevector k =
∑d

i=1
bi
Ni
Ki with bi ∈ Z

lies in the first Brillouin zone, Ni is the number of unit cells
in the ith dimension, and the reciprocal lattice vectors satisfy
Ki · Rj = 2πδij for the primitive lattice vectors Rj. The Fourier
transform decouples the eigen-problem Equation (2) for different
wavevectors k and leads to a phononic band structure ωn(k).

The band structure ωn(k) is of great interest both scientifically
and for engineering applications because it efficiently encodes
the elastic response of the infinite network. Specifically,
band structure engineering allows for explicit tuning of wave
propagation in acoustic materials and can be used to design,
for instance, waveguides, acoustic cloaks, or selective sound
suppression. Whereas in a generic band structure, the shape and
frequency of the acoustic modes depends strongly on the details
of the dynamics, topological modes are protected by an integer
invariant, which cannot change through continuous changes of
the interaction parameters.

Although the physical realizations of topological insulators are
vast already in the quantum case [2, 12], the possible invariants
and topological phases have been completely classified [30]. In
linear topological mechanics, a similar scheme exists as long as
the dynamical matrix is positive definite [1]. For our MSNs, this
condition is always satisfied. In the following, we shall focus on
one particular class of classical topological band structures for
two-dimensional systems.

3. PLANAR CHERN INSULATORS

Topological band structure is intimately related to the theory of
Berry phases, or geometrical phases [31]. While a full account
of the underlying theory is beyond the scope of this paper, the
fundamental result can be stated for a linear dynamical system

Frontiers in Physics | www.frontiersin.org 2 November 2019 | Volume 7 | Article 178

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Ronellenfitsch and Dunkel Topological Phases in Designed Networks

FIGURE 1 | Bandgap tuned networks and topological band structures. (A) Tuned spring stiffnesses (indicated by line thickness) on the basis of triangular grids with

4× 4 unit cells were tuned to have band gaps. (B) The final band structures exhibit band shapes reminiscent of band inversion. (C,E) Tuned network on top of a

topology based on the Delaunay triangulation of a randomized point set. (D,F) The band structure again appears to exhibit band inversion. All three networks undergo

a topological phase transition as time-reversal symmetry is broken.

iψ̇ = H(r)ψ with Hermitian matrix H(r) which depends on
some parameter r. The band structure topology is then encoded
in the eigenstates of this effective ‘Hamiltonian’ H, and can be
characterized by calculating an integer topological invariant, the
Chern number. We now give a brief sketch of this calculation.

If the system is prepared in an instantaneous eigenstate
H(r)u(r) = λ(r)u(r) and the parameter r is varied adiabatically
along a closed curve C in parameter space, then the solution will
always remain in the instantaneous eigenstate. After traversing
the curve, the solution will pick up a phase factor eiγC with

γC =
∫

C

dr · A(r), A(r) = iu(r)H∇ru(r). (3)

This is the celebrated Berry phase withA(r) the Berry connection
(superscript H denotes the Hermitian transpose). While the
Berry connection changes under reparametrizations of the curve
(gauge transformations), the phase is invariant up to 2π , and
therefore in principle a physical observable. One particular
parameter space of interest is the Brillouin zone of a crystal. In
two dimensions, the BZ has the topology of a torus, such that any
curve connecting k and k + K is closed (because wavevectors k
and k + K are equivalent if K is a reciprocal lattice vector). By
Stokes’ theorem, Equation (3) can then be expressed as a surface
integral independent of the curve,

γC =
∫

BZ
dk�(k) ≡ χ , (4)

where

�(k) = ∂k1A2(k)− ∂k2A1(k)

is called the Berry curvature. Equation (4) defines the Chern
number χ , which is an integer modulo 2π , and characterizes the
eigenstates {u(k)}k∈BZ. Thus, because in a crystal each eigenstate
parametrized by the wavevector k corresponds to a band, it is
possible to assign a topological Chern number χn to each band n.
This Chern number does not change under perturbations of the
matrix H(k), unless bands cross. Then, the eigenstates are no
longer non-degenerate and the above analysis fails.

The Chern number defined by Equation (4) is nonzero only
if the dynamics are not time-reversal invariant. If the system has

time reversal invariance, �(k) is an odd function of k, and the
integral over the Brillouin zone vanishes.

For systems with many bands and a gap between bands n′

and n′ + 1, the key insight [32] is then that one can associate
an invariant to the gap itself, namely

C(n′) =
∑

n≤n′
χn,

which can only change if the gap closes due to a perturbation
of H(k). The gap-Chern number C characterizes the bulk of
a gapped crystal. Near a boundary to another gapped crystal
with a different C or to the vacuum, the topology of the system
must therefore change locally by closing the gap. This argument
implies the existence of modes that are localized to the boundary
between different topological phases and located in the bulk gap.
Because these modes are tied to the bulk topological invariants,
they are robust and must always exist, regardless of the specific
shape of the boundary. We note that while for historical reasons
the notion of adiabatic changes of parameters was invoked to
define the Chern number, no actual adiabatic processes are
necessary for it to exist, and it makes sense for any Fourier-
transformed Hamiltonian.

For numerical purposes, the above integrals can be discretized
while retaining their gauge-invariant characteristics [33]. This
way, Chern numbers can be computed robustly and quickly
with reasonably coarse discretizations of the Brillouin zone. In
addition, any Chern number numerically computed in this way
will automatically be an integer.

In the remainder, we demonstrate that such topologically
protected edge modes can indeed exist in mechanical networks
which have been tuned to exhibit bandgaps at specified
frequencies, opening up an inverse-design pathway toward
explicitly programmable topology.

4. INVERSE BANDGAP DESIGN

There are many mechanical systems that possess topological
gaps by virtue of their lattice structure. Here, we consider a
different approach by tuning a desired gap into the spectrum
of a mechanical network through numerical Linear Response
Optimization (LRO) [24]. Starting from a basic lattice topology
such as a triangular grid or a randomized unit cell topology

Frontiers in Physics | www.frontiersin.org 3 November 2019 | Volume 7 | Article 178

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Ronellenfitsch and Dunkel Topological Phases in Designed Networks

definingmass points and springs (Figure 1), the spring stiffnesses
ke are numerically optimized to produce a gapped material
between two desired bands. Applying the numerical LRO
approach introduced and described in detail in Ronellenfitsch
et al. [24], we minimize the average response of the network at
frequency ω,

Rω(k̂) = Tr
(

Gω(k̂)
HGω(k̂)

)

, (5)

where Gω(k̂) =
(

mω2
1− Qk̂Q⊤

)−1
is the linear response

matrix to harmonic forcing with frequency ω and Tr(·) is
the matrix trace. Numerically minimizing Equation (5) over

the individual spring stiffnesses k̂ while fixing a certain
ωn < ω < ωn+1 for eigenmodes ωn is then equivalent to
maximizing a spectral gap between the nth and (n + 1)th
eigenvalue. Generalizing from spectral gaps to bandgaps, since
the Fourier transform is a linear map that block-diagonalizes

Gω(k̂), the trace in Equation (5) is replaced by a sum over
the traces over the responses at each individual wavevector k,

Gω(k̂, k). For practical purposes, this sum is truncated, and only
traces over a small number of wavevectors are actually used
in the numerical optimization. To avoid the spring stiffnesses
converging to either zero or infinity, we additionally impose
bound constraints 0.1 ≤ ke ≤ 1.0, and employ the Limited-
memory Broyden–Fletcher–Goldfarb–Shanno algorithm [34] to
perform the numerical optimization. Particle masses are set to
unity (m = 1).

The above LRO approach generalizes to arbitrary network
topologies and dimensions [24]. Throughout this paper, we will
illustrate general ideas by focusing on three specific examples of
bandgap-tuned networks: One with a regular triangular grid unit
cell topology, and two different randomized unit cell topologies
(Figures 1A,C,E). All three networks were optimized to exhibit a
bandgap at some predetermined frequency. Despite some notable
differences between them, their band structures all show features
reminiscent of band inversion (Figures 1B,D,F), a characteristic
that is often (but not always) present in topological band
structures [35–37].

Adopting band inversion as an indicator for the potential
existence of a topological transition, all that remains to do
is to break time-reversal invariance of the system dynamics
by introducing a suitable interaction. In the case of electronic
systems, an externally applied magnetic field can provide
such a symmetry-breaking interaction [12]. A classical formal
counterpart considered in the remainder is the Coriolis force [38]
which breaks the time reversal symmetry of the MSN dynamics
when the mechanical network is placed in a rotating frame [14].

5. MECHANICAL NETWORKS IN
ROTATING FRAMES

To sketch the general procedure for formulating the MSN
dynamics in a rotating frame, we first consider a point mass in
a harmonic potential with stiffness K confined to the x–y plane,
and under the influence of a constant rotation perpendicular to

the plane, � = (0, 0,�). Let x be the position of the point mass
as measured from the rotational axis. Then, Newton’s equations
of motion in the rotating frame take the form

ẍ = −K(x− x0)− 2� ∧ ẋ− � ∧ (� ∧ x). (6)

The Coriolis force is

−2� ∧ ẋ = −2(0, 0,�) ∧ (ẋ, ẏ, 0) = 2�(Ŵẋ′, 0),

where

Ŵ =
(

0 1
−1 0

)

encodes the cross product and we introduced the 2D vector x′.
Similarly, the centrifugal force is−�∧(�∧x′) = �∧(�Ŵx′, 0) =
−�2(Ŵ2x′, 0) = �2(x′, 0). Clearly, the fictitious forces lie in the
plane of rotation, so that from now on we can analyze the system
in 2D. Dropping the primes, Equation (6) then yields the in-plane
equations of motion

ẍ = −K(x− x0)+ 2�Ŵẋ+ �2x. (7)

We can now generalize from a single particle to the full MSN
dynamics by collecting all the x coordinates of the point masses
in the network into the firstN components of the 2N-component
vector x, and all the y coordinates into the secondN components.
Then the matrix Ŵ takes the form

Ŵ =
(

0 1

−1 0

)

,

where 1 is the N × N identity matrix, and K now
denotes the stiffness matrix such that Equation (7) remains
formally unchanged.

We would like to express these equations in terms of small
displacements around an equilibrium configuration. In doing so,
we need to take into account that the equilibrium configuration is
changed by the rotation. To find the new equilibrium positions x∗

in the rotating frame, we set ẍ = ẋ = 0 and solve for x∗,

(K − �2
1)x∗ = −Kx0.

Thus, a steady state exists unless the rotation frequency
�2 resonantly matches one of the eigenfrequencies of the
stiffness matrix K. In the absence of resonance, we introduce
displacements u = x− x∗, and find their equations of motion,

ü = −K(u+ x∗ − x0)+ 2�Ŵu̇+ �2u+ �2x∗

= −(K − �2
1)u+ 2�Ŵu̇.

Here, the stiffness matrix was shifted due to the centrifugal force,
and a new Coriolis term has appeared.

In the following, we further assume slow rotations compared
to the smallest eigenmode of interest, typically the frequency of
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the gap, and neglect the term proportional to �2 ≪ 1. This leads
to the final equations of motion,

ü = −Ku+ 2�Ŵu̇. (8)

The Coriolis term proportional to u̇ is responsible for
breaking time-reversal symmetry in this classical system (the
transformation t 7→ −t maps u̇ to −u̇ but leaves all other
terms invariant), analogous to the Lorentz force in a quantum
electron gas [12]. Because the eigenmodes of Equation (8) cannot
be computed directly by inserting a harmonic ansatz, we must
resort to the equivalent first order system

ẏ = Dy, D =
(

0 1

−K 2�Ŵ

)

, (9)

where y = (u,w)⊤, w = u̇, and D is the dynamical matrix, the
eigenmodes of which can be readily computed.

Equation (9) can be brought into a formmanifestly equivalent
to the Schrödinger equation by introducing the change of
variables [1],

ψ =
(√

K 0
0 i1

)

y,

where the matrix square root
√
K is well-defined because K

is positive-semidefinite. Under this change of variables, the
dynamics becomes

iψ̇ = Hψ , H =
(

0
√
K√

K 2i�Ŵ

)

, (10)

where the “Hamiltonian” H is manifestly Hermitian. This form
makes explicit the connection between classical mechanical and
quantum systems, as now the machinery of quantum mechanics
is applicable to Equation (10).

Below, we illustrate and analyze the generic consequences of
time-reversal symmetry breaking via rotation for three distinct
mechanical networks based on the inversely designed unit cells
in Figure 1. We will see that the corresponding MSNs undergo a
topological phase transition when the rotation frequency exceeds
a critical value, resulting in topologically protected gapless modes
that are exponentially localized at the boundary of samples.

6. TOPOLOGICAL EXCITATIONS IN
ROTATED NETWORKS

The three mechanical networks from Figure 1 exemplify typical
phenomena encountered with mechanical Chern networks. For
each of them, a topological phase transition occurs at some finite
0 < |�c| < 0.1, independent of the sign of �. This is due to the
fact reversing the sign of the rotation frequency� is equivalent to
reversing time t 7→ −t, and therefore mirrors the band structure,
ω(k,�) = ω(−k,−�). In particular, this means that one can
use the sign of � to control the unidirectional propagation of
excitations: A wave packet will reverse direction when the sign
of � is flipped. In the topological phase |�| > �c, all of the

considered networks have a gap-Chern invariant C = ±1, which
we calculated using the numerical procedure outlined in Fukui
et al. [33].

Generally, edge bands can be visualized by taking an infinite
periodic crystal in 2D and restricting to a ribbon-like slice
that is finite in one direction with open boundary conditions
(Figure 2G). The resulting 1D crystal now possesses a one-
dimensional band structure in which localized edge modes
are directly visible. Mode localization can be measured by
the participation ratio λ = (

∑

n |un|4)/(
∑

n |un|2)2 of the
eigenvector u(k). The ratio λ is large if the mode is localized to
few elements of the vector, and small if it is spread over many
elements of the vector.

For all three example networks from Figure 1,
the corresponding 1D crystals exhibit two bands of
localized modes in the bulk gap in the topological phase
|�| > �c (Figures 2B,D,F). The two bands host wave
packets with opposite group velocity vg = dω/dk, and are
localized at opposite edges of the semi-infinite ribbon system.
They thus correspond to one single chiral edge excitation.
The match between the bulk gap-Chern number C = ±1
and the number of edge excitations (more precisely, the
difference between clockwise and counter-clockwise edge
modes) is a direct manifestation of the celebrated bulk-boundary
correspondence [32, 39].

We further note that although the existence of |C| protected
edge bands is guaranteed in the topological regime |�| > �c,
this does not preclude unprotected edge states in the trivial
phase |�| < �c. To illustrate this fact explicitly, consider the
example in Figures 2E,F. The band structure for � = 0 in
Figure 2E is topologically trivial (C = 0) but exhibits features two
localized edge bands, which are converted into the topologically
protected bands in Figure 2F as one crosses the phase transition
at finite |�| = �c > 0.

All three networks analyzed in Figures 1, 2 have in common
that they support only a single chiral edge mode, the direction
of which can be reversed by changing the sign of �. Additional
simulation scans suggest that this is typical of mechanical
networks designed with the LRO scheme: Among all bandgap-
designed networks that exhibited a topological transition, we
never observed a case with |C| > 1. This empirical finding
is consistent with results from previous studies which reported
that larger Chern numbers are typically associated with materials
that possess long-range interactions or with systems that are
periodically quenched or driven [40]. Mechanical networks
with long-range interactions could, in principle, be designed by
introducing additional bonds that connect beyond the nearest
neighbor unit cells. While certainly intriguing, such “non-local”
networks are beyond the scope of the present study.

The wave packets hosted by the topological edge bands
of our short-range MSNs can be excited dynamically by
forcing a semi-infinite or a finite network near the boundary
at a frequency inside the bulk gap. As a specific example
showcasing this generic effect, we consider the mechanical
network from Figure 1C and construct a finite realization
consisting of 12 × 12 unit cells. To demonstrate the
robustness of the topological modes, we remove three unit
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FIGURE 2 | Topologically protected edge bands. Considering the same networks as in Figure 1, we constructed ribbon-like 1D crystal realizations that are infinitely

periodic in one lattice direction, and of finite extent (12 unit cells wide) with open boundary conditions in the other direction; see example in (G), which corresponds to

12 horizontally concatenated units of the network in Figure 1E periodically continued along the vertical direction. (A–F) The resulting one-dimensional band structures

consist of bulk bands that are delocalized (dark blue) and localized edge bands (green and yellow). All bands are colored according to the how localized the

corresponding modes are, with the localization of a mode u(k) being measured by the participation ratio λ = (
∑

n |un|4)/(
∑

n |un|2)2 where index n runs over all vertices

in the unit cell of the ribbon. (A,B) Correspond to the optimized network topology in Figure 1A; (C,D) correspond to the network topology in Figure 1C; (E,F)

correspond to the network topology in Figure 1E. Generically, networks designed via LRO can and will have localized edge modes even in the topologically trivial

regime |�| < �c, see (A,C,E). However, when the topological phase transition is crossed at some nonzero rotation rate |�| = �c, topologically protected localized

bands appear as evident from (B,D,F). We note that the frequency of rotation is always smaller than the gap frequency �2 ≪ ω2
gap, justifying our approximation.

FIGURE 3 | Traveling excitation in a rotating mechanical Chern network. We simulated the dynamics of an MSN consisting of 12× 12 unit cells as shown in

Figure 1C and analyzed in Figures 2C,D. To create an edge defect, a number of unit cells was removed from the left boundary. Simulations of Equation (11) were

performed in the topological regime with � = 0.15; see also Supplemental Video 1. (A) Between t = 0 and t = 150, a single node in the bottom left corner is

harmonically forced with a frequency ω = 0.71 in the bulk gap; see Figure 2D. (B–E) Starting at t = 150, a localized excitation travels along the edge of the

mechanical Chern insulator, moving over a local perturbation of the boundary.

cells from the left side boundary to introduce a boundary
perturbation (Figure 3A). We then numerically simulate the
forced dynamics

ü+ Ku− 2�Ŵu̇ = f sin(ωt) h(t), (11)

where the forcing vector f = (1, 0, . . . , 0, 1, 0, . . . , 0)⊤ is zero
except for the x and y components of one single node near
the bottom left corner. We pick � = 0.15 such that the
network is in the topological phase, and ω = 0.71 inside the
bulk gap. The window function h(t) = sin(π t/150)2(150− t),
where 2(t) is the Heaviside Theta function, slowly turns
on the forcing at t = 0, and turns it off entirely at
t = 150. The forcing injects energy into the network at
the frequency ω, which preferentially excites edge modes and
creates a wave packet that travels unidirectionally along the
edge of the network (Figures 3B–E, Supplemental Video 1).
In particular, due to the topological protection of the edge
modes, the precise shape of the boundary does not matter
for the existence of these wave packets. Back-scattering

modes are suppressed, and the wave packet is able to travel
around the perturbation in the boundary (Figures 3B,C). As
anticipated at the beginning of this section, the chirality of

these wave packets is controlled by the sign of the rotation

rate � (Supplemental Video 2). If the network is put in the

topologically trivial regime, no edge modes exist and the energy

injected by forcing does not create a chiral traveling wave
packet (Supplemental Video 3).

The dynamical behavior described above is encoded in a
set of eigenmodes u with Du = iωu that are exponentially
localized to the boundaries of the system, and where ω lies

in the bulk gap. For the three networks shown in Figure 1,

we again constructed finite realizations consisting of many unit
cells in a square array, and computed the eigenmodes of the

finite dynamical matrix D from Equation (9). For all three

networks, we identified modes inside the bulk gap which were
then found to be localized at the boundary (Figures 4A–C).

To demonstrate exponential localization in each case, we
analyzed a slice of the eigenmodes in y direction. Plotting
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FIGURE 4 | Exponential localization of edge modes in rotating tuned mechanical Chern networks. We construct finite realizations consisting of (A) 12× 12 and (B,C)

14× 14 unit cells of the three networks from Figure 1, and plot a single eigenmode of the dynamical matrix D from Equation (9) with a frequency inside the bulk gap.

The values of � are � = 0.1 (A), � = 0.15 (B,C), in the topological regime. The sizes and colors of the circles are proportional to the magnitude of the local node

displacement u2i,x + u2i,y , where u = (ux ,uy ) is the eigenmode. Each network hosts topological modes entirely localized at the boundary. (D) We consider a small slice in

y direction of the networks from (A–C) and again plot the magnitude of the local node displacement. For all three networks, the magnitude decreases approximately

exponentially in the bulk, demonstrating localization of the modes to the boundary.

the logarithm of the average node displacement u2i,x + u2i,y
as a function of the x position of the node confirms an
exponential decay of the node displacement with distance from
the boundary (Figure 4D).

7. CONCLUSIONS

We have demonstrated the existence of topologically protected
chiral edge modes in the gaps of inversely designed mechanical
networks, and have characterized their dynamical properties.
For the network realizations considered here, we found
that band inversion near the gap was a robust predictor
for a topological phase transition induced by sample
rotation. The direction of rotation enables control over the
chirality of the edge excitation, and topological protection
of the edge excitations was confirmed in direct numerical
simulations and through calculations of an appropriate
Chern invariant.

We hope that the present work can serve as a stepping
stone toward the precise inverse programming of topological
features into discrete disordered metamaterials. Instead of
constructing gapped materials on the basis of known lattices
by using certain features of the band structure (e.g., band
inversion) as indicators of potential topological transitions,
we envision that Linear Response Optimization [24] may
eventually allow the direct tuning of such properties by

implementing the desired topological characteristics into the
optimization objectives.
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