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Supersolids are theoretically predicted quantum states that break the continuous rotational and translational
symmetries of liquids while preserving superfluid transport properties. Over the last decade, much progress has
been made in understanding and characterizing supersolid phases through numerical simulations for specific
interaction potentials. The formulation of an analytically tractable framework for generic interactions still poses
theoretical challenges. By going beyond the usually considered quadratic truncations, we derive a systematic
higher-order generalization of the Gross-Pitaevskii mean-field model in conceptual similarity with the Swift-
Hohenberg theory of pattern formation. We demonstrate the tractability of this broadly applicable approach by
determining the ground-state phase diagram and the dispersion relations for the supersolid lattice vibrations
in terms of the potential parameters. Our analytical predictions agree well with numerical results from direct
hydrodynamic simulations and earlier quantum Monte Carlo studies. The underlying framework is universal and
can be extended to anisotropic pair potentials with a complex Fourier-space structure.
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I. INTRODUCTION

Supersolids are superfluids in which the local density spon-
taneously arranges in a state of crystalline order. The existence
of supersolid quantum states was proposed in the late 1960s
by Andreev, Lifshitz, and Chester [1,2] but the realization in
the laboratory has proven extremely difficult [3]. Recent ex-
perimental breakthroughs in the control of ultracold quantum
gases [4–7] suggest that it may indeed be possible to design
quantum matter that combines dissipationless flow with the
intrinsic stiffness of solids. Important theoretical insights
into the expected properties of supersolids and experimental
candidate systems have come from numerical mean-field
calculations and quantum Monte Carlo (qMC) simulations
for specific particle interaction potentials [8–12]. What is
still lacking, however, is a general analytically tractable
framework that allows the simultaneous characterization of
whole classes of potentials as well as the direct computation
of ground-state phase diagrams and dispersion relations for
supersolid lattice vibrations in terms of the relevant potential
parameters.

To help overcome such conceptual and practical limita-
tions, we introduce here a generalization of the classical
Gross-Pitaveskii (GP) mean-field model [13,14] by drawing
guidance from the Swift-Hohenberg theory [15], which uses
fourth-order partial differential equations (PDEs) to describe
pattern formation in Rayleigh-Bénard convection. Our ap-
proach is motivated by the successful application of higher-
than-second-order PDE models to describe classical solidifi-
cation phenomena [16–18], electrostatic correlations in con-
centrated electrolytes and ionic liquids [19,20], nonuniform
FFLO superconductors [21], symmetry breaking in elastic
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surface crystals [22], and active fluids [23–25]. Whereas
higher PDEs are often postulated as effective phenomenologi-
cal descriptions of systems with crystalline or quasicrystalline
order [26], it turns out that such equations can be derived
directly within the established GP framework. The resulting
mean-field theory yields analytical predictions that agree with
direct quantum hydrodynamic and recent qMC simulations
[12,27] and specify the experimental conditions for realizing
periodic supersolids and coexistence phases, as well as super-
solid states exhibiting quasicrystalline symmetry (Sec. V).

II. MEAN-FIELD THEORY

As in the classical GP theory [13,14], we assume that a
system of spinless particles can be described by a complex
scalar field �(t, x) and that quantum fluctuations about the
mean density n(t, x) = |�|2 are negligible. Considering an
isotropic pairwise interaction potential u(|x − x′|), the total
potential energy density is given by a spatial convolution
integral which can be expressed as a sum over Fourier-mode
contributions ∝ û|n̂|2, where hats denote Fourier transforms
(see Appendix A for a detailed derivation). If u is isotropic
with finite moments, then its Fourier expansion can be written
as û(k) = ∑∞

j=0 g2 jk2 j [28], where k = |k| is the modulus
of the wave vector, yielding the potential energy density
1
2 n

∑∞
j=0(−1) jg2 j (∇2) jn, with ∇2 denoting the spatial Lapla-

cian. The constant Fourier coefficients g2 j encode the spatial
structure of the potential. Variation of the total energy func-
tional with respect to � yields the generalized GP equation
(Appendix A)

ih̄∂t� =
⎡
⎣− h̄2

2m
∇2 +

⎛
⎝ ∞∑

j=0

(−1) jg2 j (∇2) j |�|2
⎞
⎠
⎤
⎦�. (1)

The classical GP model, corresponding to repulsive point
interactions u = g0δ(x − x′), is recovered for g0 > 0 and
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g2 j = 0 otherwise. The authors of Ref. [29] studied the case
g0, g2 > 0 and g2 j�4 = 0, keeping partial information about
long-range (k → 0) hydrodynamic interactions by effectively
adding a surface energy term ∝ |∇n|2 to the energy density.
However, as we see shortly, to describe supersolid states, the
long-wavelength expansion has to be carried out at least to
order k4.

To show this explicitly, it is convenient to express the
complex dynamics, (1), in real Madelung form [31]. Writing
� = √

n exp(iS) and defining the irrotational velocity field
v = (h̄/m)∇S, Eq. (1) can be recast as the quantum hydro-
dynamic equations (Appendix C; see also [32])

∂t n = −∇ · (nv), (2)

m(∂t + v · ∇ )v = −∇(δU/δn), (3)

with the effective potential energy U [n] to order O(k4),

U =
∫

dx

[
h̄2

8m

|∇n|2
n

+ g0

2
n2 + g2

2
|∇n|2 + g4

2
(∇2n)2

]
. (4)

The first term is the kinetic quantum potential [31] and the
kinetic energy is K = (m/2)

∫
dx nv2. For nonleaky boundary

conditions, Eqs. (2) and (3) conserve the total particle number
N = ∫

dx n and energy E [n, v] = K[n, v] + U [n]. The quan-
tum hydrodynamics defined by Eqs. (2)–(4) is Hamiltonian
in terms of the momentum density mnv = h̄n∇S, thereby
differing, for example, from generalized Ginzburg-Landau
theories for nonuniform FFLO superconductors [21] and
finite-temperature hydrodynamic approaches [1,33–35].

Local minima of E [n, v] have zero flow, v ≡ 0, and hence
the corresponding density fields must minimize U [n]. As-
suming short-range repulsion g0 > 0, we see that uniform
constant-density solutions minimize U [n] when g2 � 0 and
g4 = 0 (Appendix F); this case was studied in Ref. [29]. If,
however, we consider the more general class of pair inter-
action potentials with g2 ≷ 0, then short-wavelength stabil-
ity at order k4 requires that g4 > 0. This situation arises,
for example, for the two-dimensional (2D) Rydberg-dressed
Bose-Einstein condensate (BEC) studied in Ref. [27], which
has g0 = 0.189h̄2/m, g2 = −0.113 (h̄2/m) μm2, and g4 =
0.016 (h̄2/m) μm4 (Appendix G). Whereas for g2 > 0 roton
minima are absent as in the classical GP theory [8], supersolid
ground-state solutions [8,9] of Eq. (4) can exist when g2 < 0,
as we see shortly.

To determine the ground-state phase diagram of U [n] with
g2 < 0, it is convenient to define the characteristic wave
number q0 = √−g2/(2g4) > 0, time scale t0 = m/(h̄q2

0 ), and
energy scale ε0 = h̄2q2

0/m. Focusing on the 2D case and
adopting (q−1

0 , t0, ε0) as units henceforth, we can rewrite
Eq. (4) as

U [ρ] = 1

2

∫
dx

[ |∇ρ|2
4ρ

+ αuρ
2 + ρ(1 + ∇2)2ρ

]
, (5)

where ρ = mn(g4q2
0/h̄2) is the rescaled number density and

αu = 4g0g4

g2
2

− 1 (6)

the interaction parameter (Appendix C). In an infinite domain,
the internal energy U [ρ] is completely parameterized by αu

and the average density ρ̄ = ∫
ρdx/

∫
dx. For the Rydberg-

dressed BEC in Ref. [27], which has q0 = 1.87 μm−1, corre-
sponding to a hexagonal lattice spacing of 3.88 μm, one finds
αu = −0.043 and ρ̄ ≈ 9.4 (Appendix G).

III. GROUND-STATE STRUCTURE

An advantageous aspect of the above framework is that
the ground-state structure of U [ρ] in the (αu, ρ̄ )-phase plane
can be explored both analytically and numerically in a fairly
straightforward manner (Fig. 1). Standard linear stability anal-
ysis (Appendix D 3) for uniform constant-density solutions
predicts a symmetry-breaking transition at αu = −1 when
ρ̄ � 1/8 and

αu = 1 − 16ρ̄

64ρ̄2
when ρ̄ > 1/8, (7)

indicated by the thin dashed line in Fig. 1(a). Refined analyt-
ical estimates for the ground-state phases can be obtained by
considering the Fourier ansatz ρ = ρ̄ + ∑

j φ j exp (iq j · x).
The pattern forming operator (1 + ∇2)2 penalizes modes with
|q j | 
= 1, suggesting that single-wavelength expansions can
yield useful approximations for the ground-state solutions.
Conceptually similar studies for classical phase field models
[18] imply that 2D and 1D close-packing structures realizing
hexagonal and stripe patterns are promising candidates. The
one-mode approximation ansatz for a hexagonal lattice reads

ρ = ρ̄ + φ0

3∑
j=1

[exp (iq j · x) + c.c.], (8)

where the lattice vectors q j form the “first star” with qi ·
q j = q2, if i = j and −q2/2 otherwise (c.c. denotes complex
conjugate terms). Similarly, the stripe phase is defined by
ρ = ρ̄ + [φ0 exp (iqx1) + c.c.]. These trial functions have to
be minimized with respect to the amplitudes φ0 and the
magnitudes q of the reciprocal lattice vectors, which can be
done analytically (Appendix D 4). Our analytical calculations
predict four distinct pure ground-state types, which can be
identified as uniform (U), supersolid (SS), normal solid–
like (NS), and droplet (D), and also a narrow U/SS coex-
istence phase via Maxwell construction [dark-brown domain
in Fig. 1(a)]. These naming conventions are directly adopted
from Ref. [12]. As always, mean-field predictions should be
supplemented with other methods to properly characterize the
supersolid-NS transition to ensure that the wave functions are
localized in the NS state [36]. Yet the comparison with the
qMC simulations in Ref. [12] suggests that our mean-field
results capture essential aspects of their numerical results; see
inset in Fig. 1(a).

Using the one-mode approximation, the qualitatively dif-
ferent states can be inferred as follows: The uniform U phase
has constant density ρ = ρ̄ > 0, corresponding to φ0 = 0.
The supersolid SS phase is distinguished through the exis-
tence of energy-minimizing one-mode solutions with nonzero
amplitude φ0 that yield strictly positive periodic density pat-
terns ρ > 0 everywhere. By contrast, in the NS state, the
one-mode density field can become locally negative, signaling
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FIG. 1. (a) Phase diagram showing the ground-state structure of the potential energy functional U [ρ] in Eq. (5), calculated analytically
using a one-mode approximation. Inset: Phase diagram for an interacting Rydberg-dressed BEC obtained from qMC simulations, adapted
with permission from Fig. 2 in Ref. [12]. (b) Examples of numerically computed minima of U [ρ] for parameters indicated by the yellow
symbols in (a). The uniform superfluid state (U) is stable against perturbations below the thin dashed red line. The hexagonal supersolid (SS;
∗; Supplemental Material Movie 1 [30]) phase has a lower energy than the metastable supersolid stripe phase (SS; ‖). The first-order transition
between the U phase and the SS phase supports a narrow coexistence region (dark brown) with the uniform subphase having a lower density
(x). In the NS state, the one-mode minimization of U yields locally negative density solutions, signaling failure of the approximation (see also
Fig. 2). In the droplet phase (•) no real-valued one-mode solutions exist. The single-droplet solution (D; •) is shown as an inset for scale in the
other panels.

a breakdown of the one-mode approximation in this regime
(Fig. 2). The dotted curve in Fig. 1(a) indicates where the
one-mode approximation becomes invalid. The comparison
with the qMC simulations in Ref. [12] shown in the inset
in Fig. 1(a) suggests that this curve can be used as an
approximate predictor for the boundary of the SS phase.
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FIG. 2. Difference between supersolid (SS) and normal solid–
like (NS) states. One-dimensional cross sections of the density fields
of two numerically determined ground states with the same average
density ρ̄ = 0.4 but αu = −0.484 (SS; orange lines) and −0.60 (NS;
blue lines), respectively. In both cases, the positions are rescaled
with the nearest-neighbor distance ann = 4π/

√
3q to compensate the

different lattice spacings. Inset: Full 2D density field for αu = −0.6;
the dashed red line indicates the 1D cross section.

An in-depth analysis of the NS phase, which is beyond
the scope of this paper, would require going beyond the
truncated mean-field model considered here. Similarly, in
the droplet D phase, no real-valued density solutions exist
within the one-mode approximation. To test the analytical
predictions and explore the validity of the underlying one-
mode approximation in detail, we performed a numerical
ground-state search (Appendix H) for various parameter pairs
(ρ̄, αu). Representative examples of numerically found states
are shown in Figs. 1(b) and 2 and generally agree well
the analytical predictions. The hexagonal supersolid at ρ̄ =
1.5, αu = −0.2 [asterisk in Fig. 1(b)] is indeed dominated
by a single mode, with the second-highest mode being ∼20
times smaller. Our analytical one-mode estimates suggest
that the supersolid stripe states have a higher energy than
the hexagonal states, with the energy difference going to 0
as one approaches the U-SS phase boundary [solid line in
Fig. 1(a)]. This opens the possibility that systems at nonzero
kinetic energy or in a strained geometry might arrange in
a stripe configuration similar to the metastable state shown
at ρ̄ = 0.5, αu = −0.45 [parallel lines in Fig. 1(b)]. The
numerical solution for αu = −0.2178, ρ̄ = 1.0 [x in Fig. 1(b)]
confirms the analytically predicted coexistence of uniform
and supersolid phases, suggesting that the one-mode approx-
imation places the coexistence region accurately in the phase
diagram. For coexistence to be observable in experiments, the
energy of the uniform and supersolid bulk regions has to be
significantly higher than that of the interface, which requires
a sufficiently large system size. At high ρ̄, the coexistence gap
closes, approaching the asymptote αu = −0.22/ρ̄ of the phase
transition.
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Our simulations show that the one-mode approximation
describes the ground-state structure accurately down to av-
erage densities ρ̄ � 0.4 near the uniform-supersolid phase
transition. If ρ̄ and/or αu are reduced further, higher modes
will no longer be negligible. The difference between a super-
solid one-mode ground state and a normal solid multimode
solution at the same average density ρ̄ = 0.4 is shown in
Fig. 2. The density profile for the NS state resembles a
collection of Gaussian peaks, which typically have a signifi-
cantly larger separation than the peaks of a one-mode solution
at similar ρ̄. Moreover, the very low-density values in the
regions between the maxima suggest that small quantum or
thermal fluctuations may suffice to destroy phase coherence
in this regime. Finally, the domain αu < −1 corresponds to
a negative GP parameter g0 < 0, thus representing attractive
contact interactions. The numerically determined ground state
at ρ̄ = 0.1, αu = −1.1 [filled circle in Fig. 1(b)] realizes a
single droplet with an approximately Gaussian density profile,
qualitatively similar to recent experimental observations of
quantum droplet formation in dilute 39K BECs [37].

IV. DYNAMICS

We next describe how the above framework can be used
to obtain predictions for the sound-wave dynamics in a su-
persolid (see Appendix E for details of calculations). The
supersolid phase breaks the continuous translational sym-
metry and supports lattice vibrations. These vibrations can
be studied analytically close to the uniform-supersolid phase
transition, where the one-mode approximation for the density
ρ is accurate. Near the phase transition the local deviation
of ρ from its mean value ρ̄ is relatively small, and one can
Taylor-expand the nonlinear quantum potential in ρ around
ρ̄. Adopting this approximation, we now consider a change
of coordinates x → x − u(t, x), where u is a displacement
field in the Eulerian frame x. Since we are interested in
hydrodynamic long-wavelength sound excitations, we may
assume that the displacement field varies over a length scale
significantly larger than the spacing between the hexagonal
density peaks |∇u| � 1. Inserting the one-mode ansatz (8)
into Eq. (5), and keeping only the leading terms in u, one
obtains an energy functional U [u] that is quadratic in the
displacement field (Appendix E). The approximative dynam-
ics of u is found from Eqs. (2) and (3) by noting [38] that,
for small displacements, ∂t u = v and ∂t v = −∇δU/δρ =
−(1/ρ̄ )δU/δu hold. This gives the linear equation

∂2
t u = 3φ2

0q2

ρ̄

[
1 − φ0/ρ̄ + 5φ2

0/ρ̄
2

4ρ̄
∇2u

+ (3q2 − 2)∇2u + 2q2∇(∇ · u) − 2

3
∇4u

]
, (9)

which is solved by a plane wave u0 exp [i(k · x − ωt )]. Since
the field v ∝ ∇S describes an irrotational potential flow
with ∇ × v = 0, only longitudinal modes are allowed.
Inserting the plane-wave ansatz in Eq. (9) yields the
nonlinear dispersion relation ω/ω‖ = (k/k‖)

√
1 + (k/k‖)2,

with k2
‖ = 3

2 {[(5φ2
0/ρ̄

2 − φ0/ρ̄ + 1)/4ρ̄] − 2 + 5q2} and
ω2

‖ = 2q2φ2
0k4

‖/ρ̄, which is shown as the blue line in Fig. 3(a).
For supersolids described by the one-mode approximation,
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FIG. 3. (a) The analytically calculated nonlinear dispersion re-
lation (blue line) for plane waves becomes asymptotically linear for
small k values (dashed orange line). See text for the scaling factors ω‖
and k‖. Inset: The analytical prediction (blue line) agrees well with
numerical results (symbols) obtained by solving the full nonlinear
dynamical system described by Eqs. (2) and (3) for ρ̄ = 1.0 and αu =
−0.24. (b) Representative snapshot from a numerical simulation
showing the magnitude of the velocity field and the density field.
See also Movie 2 (Supplemental Material [30]).

one has q ≈ 1 and φ0/ρ̄ < 1/3, implying k/k|| � 1. This
suggests that vibrations with wavelengths larger than the
lattice constant generally exhibit a linear dispersion and that
the speed of sound is simply given by c‖ = ω‖/k‖ [dashed
orange curve in Fig. 3(a)].

The analytical prediction derived from the linear Eq. (9)
agrees well with the numerical dispersion results obtained by
simulating the full nonlinear Eqs. (2) and (3) with the open-
source spectral code DEDALUS [39]; see inset in Fig. 3(a).
In our simulations, we analyzed a longitudinal mode in a
periodic box, for four box sizes in the direction of the
wave, using ρ̄ = 1.0 and αu = −0.24 (Appendix H). For
these parameters, one finds φ0 = 0.266 and q = 0.934 by
minimizing the energy U of the supersolid state with the one-
mode approximation. Representative simulation snapshots
showing the magnitude of the velocity field and the density
are shown in Fig. 3(b); see also Movie 2 (Supplemental
Material [30]). The low-k mode is visible as an enveloping
modulation of the velocity field. The sound speed was mea-
sured in the simulations by estimating w‖ and k‖ from a
linear fit, yielding c‖ = 0.6994 ± 0.0015, in excellent agree-
ment with the theoretically predicted value ω‖/k‖ = 0.6995.
Thus, although waves can scatter from inhomogeneities of
the density field in the fully nonlinear system, the long-
wavelength dynamics is accurately captured by the linearized
theory.
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FIG. 4. Superfluid ground state exhibiting quasicrystalline order,
as predicted by Eq. (1) for an interaction potential u having relevant
terms up to eighth order in the expansion (10). System param-
eters: ρ̄ = 1.0, αu = −0.9, b1 = 0.09, b2 = 0, a1 = 0.982, a2 =
2 cos (π/12). Here ρmin ≈ 0.395 and ρmax ≈ 2.969. The minimum
density is well above 0, suggesting that this state is superfluid. Inset:
Absolute value of the Fourier-transformed density, |ρ̂|, indicating a
12-fold rotational symmetry with two rings in the reciprocal lattice.
See also Movie 3 (Supplemental Material [30]).

V. SUPERFLUID QUASICRYSTALS

The supersolid phase in Fig. 1 is caused by the pat-
tern forming term αu(1 + ∇2)2 in the internal energy U .
This fourth-order contribution makes plane waves with wave
number k0 = |k| = 1 energetically favorable, giving rise to a
hexagonal pattern. More complex supersolid structures can
be expected in systems where the Fourier-transformed inter-
action potential û possesses multiple local minima ki, where
û(ki ) < 0. To demonstrate that this is indeed the case, let us
replace (1 + ∇2)2 with[

b1 + (
a2

1 + ∇2)2][
b2 + (

a2
2 + ∇2)2]

, (10)

which corresponds to keeping terms up to order j = 4 in
the generalized GP equation, (1). The resulting eighth-order
operator in Eq. (10) is energetically bounded from below
and accounts for an asymmetry in the local potential energy
minima ki through the parameters bi. Note that ai and ki

are in general no longer equal when bi 
= 0. With a larger
number of physically relevant length scales at play, systems
can attain a wider range of ground-state structures [40,41].
To illustrate this, we computed the ground state of Eq. (1)
for the expansion (10) with parameters ρ̄ = 1.0, αu = −0.9,
b1 = 0.09, b2 = 0, a1 = 0.982, a2 = 2 cos (π/12). As evident
from the corresponding mean-field density ρ and its absolute
Fourier transform |ρ̂| in Fig. 4, the ground state in this case
is a quasicrystalline superfluid state with 12-fold rotational
symmetry; see also Movie 3 (Supplemental Material [30]).

In this context, we mention that earlier discussions [42,43]
of superfluid quasicrystalline states considered spin and pseu-
dospin interactions with only one relevant length scale. By
contrast, the quasicrystalline ground state in Fig. 4 forms
due to the competition between the two length scales set by
the local minima of the interatomic potential û. While this
mechanism is reminiscent of classical quasicrystal pattern

formation [40,41], the mean-field quantum systems discussed
here differ from their classical counterparts through the pres-
ence of the quantum potential term which penalizes high-k
modes.

VI. CONCLUSION

To conclude, we have introduced and studied a higher-
order generalization of the classical GP mean-field theory
that accounts for the structure of pair interactions through
the relevant Fourier coefficients of the underlying potential.
The resulting hydrodynamic equations share many concep-
tual similarities with classical Swift-Hohenberg-type pattern
formation models [15], for which a wide range of advanced
mathematical analysis tools exists [18,44,45]. The generalized
GP equation, (1), allows us to transfer these techniques di-
rectly to quantum systems. By focusing on the fourth-order
case, we obtained analytic predictions for ground-state phase
diagrams and low-energy excitations that agree well with
direct numerical simulations. With regard to experiments, our
results suggest that the coexistence phase at the first-order
superfluid-supersolid transition may be the most promising
regime for observing supersolids. We expect this mean-field
prediction to be robust, as the analytically derived uniform-
supersolid phase transition curve (solid line in Fig. 1) agrees
well with recent qMC simulations [12] that account for be-
yond mean-field effects [Fig. 1(a), inset].

When the interaction parameter αu in Eq. (6) becomes
too small, a transition to a normal solid state is expected,
as quantum fluctuations will likely destroy phase coherence
in the low-density domains. However, grain boundaries of
polycrystalline normal solid could still show superfluid be-
havior [46,47] and can be studied using the theory presented
here. Interestingly, our numerical ground-state analysis sug-
gests that at low average densities a quantum droplet can be
stabilized by the kinetic quantum potential without requiring
higher-order nonlinearities to correct for quantum fluctuations
[37,48]. From a conceptual perspective, the generalized GP
framework appears well suited for future extensions: By cal-
culating the quasicrystalline ground state (Fig. 4 and Supple-
mental Material Movie 3 [30]), we have already demonstrated
how to extend the approach to systems with multiple relevant
length scales. The theory can be refined by including Lee-
Huang-Yang [49,50] corrections ∝ ρ5/2 that penalize sharply
peaked densities. Generalizations to anisotropic potentials
and multicomponent systems seem both feasible and exper-
imentally relevant [4,37,51]. We thus hope that the above
discussion can provide useful guidance for future efforts in
these and other directions.
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APPENDIX A: DERIVATION OF THE
MEAN-FIELD ENERGY

1. Mean-field reduction of the many-particle
Schrödinger equation

For completeness, we present the derivation of the gen-
eralized GP equation, (1), from a many-particle Schrödinger
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equation with a pair potential u(ri, r j ). Our starting point is
a bosonic N-particle quantum system, described by a wave
function �N (t, r1, . . . , rN ) that satisfies the exchange symme-
try

�N (t, . . . , ri, . . . , r j, . . .)

= +�(t, . . . , r j, . . . , ri, . . .). (A1)

The dynamics of the system is governed by the N-particle
Schrödinger equation

ih̄∂t�N = ĤN�N , (A2)

where the N-particle Hamiltonian is defined by

ĤN = −α
∑

i

∇2
ri

+
∑

i

vext(ri ) + 1

2

N∑
i=1

N∑
j 
=i

u(ri, r j ),

(A3)

with α = h̄2/(2m). Equation (A2) can be written as a variation
of the expectation value of ĤN ,

ih̄∂t�N = δE

δ�∗
N

, (A4)

where

E�N [�N , �∗
N ] := 〈ĤN 〉 =

∫
drN�∗

N ĤN�N . (A5)

The key step in the derivation of the generalized GP equation
is the mean-field approximation

�N (t, r1, . . . , rN )

= 1

N!

∑
π∈SN

ψ (t, rπ (1) )ψ (t, rπ (2) ) . . . ψ (t, rπ (N ) ), (A6)

where the sum is over the permutation group SN of indices
1, . . . , N . This approximation is equivalent to assuming that
there are no entangled particles in the system. It also implies
that the one-particle probability distributions ψ∗(ri )ψ (ri ) are
independent and identical.

We can use Eq. (A6) to calculate the mean-field approxi-
mation of the energy. The symmetric form of the mean-field
ansatz allows for relabeling of indices in the evaluation of the
Hamiltonian HN , giving

E� =
∫

dr(−α�∗∇2� + |�|2vext ) + N (N − 1)

2N2

×
∫

dr1dr2[�∗(r1)�(r1)u(r1, r2)�∗(r2)�(r2)].

(A7)

Here � = √
Nψ so |�|2 becomes the number density n. For

large N , one has N (N − 1)/N2 ≈ 1.
To derive a dynamical equation for the one-particle wave

function, we evaluate the expectation value of the time evo-
lution operator. Multiplying Eq. (A2) by �∗

N and integrating

over the spatial coordinates gives

〈ih̄∂t 〉 =
∫

drN�∗
N ih̄∂t�N

=
∫

drN�∗
N ih̄

N∑
j=1

∂�N

∂�(r j )
∂t�(r j )

= 1√
N

∫
drN�∗

N ih̄
N∑

j=1

�N

�(r j )
∂t�(r j )

= 1

N

N∑
j=1

∫
dr j�

∗(r j )ih̄∂t�(r j )

=
∫

dr�∗(r)ih̄∂t�(r) = E�.

(A8)

Taking the functional derivative with respect to �∗ yields

ih̄∂t� = δE�

δ�∗ , (A9)

where the right-hand side is given by

δE�

δ�∗ =
(

−α∇2 + vext +
∫

dr′|�(r′)|2u(r, r′)
)

�. (A10)

The functional Gross-Pitaevskii equation in Eq. (A9) was
discussed by Gross in his seminal paper on superfluid vortices
[13]. This theory corresponds to a quantum density functional
theory where the exchange-correlation energy is neglected;
for strongly correlated systems, see, e.g., Ref. [52].

2. Fourier expansion for isotropic potentials

The energy contribution for an isotropic pair potential u is

〈u〉 = 1

2

∫∫
dr1dr2[�∗(t, r2)�∗(t, r1)

× u(|r2 − r1|)�(t, r1)�(t, r2)], (A11)

which can be rewritten as

〈u〉 = 1

2

∫
dr[n(t, r)(u ∗ n)(t, r)], (A12)

where (u ∗ n) is the convolution∫
dr′[u(|r − r′|)n(t, r′)] (A13)

and n is the local number density |�|2.
The Fourier transform of a pair potential

û(k) =
∫

dr[e−ik·ru(r)] (A14)

with finite moments can be expressed as a power series in k2

as

û(k) =
∞∑
j=0

g2 jk
2 j . (A15)

Using this the convolution of the pair potential becomes

(u ∗ n) = F−1[ûn̂] =
∞∑
j=0

(−1) jg2 j∇2 jn. (A16)
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Here F−1 denotes the inverse Fourier transform.
Now

〈u〉 = 1

2

∫
dr

⎡
⎣n

⎛
⎝ ∞∑

j=0

(−1) jg2 j∇2 j

⎞
⎠n

⎤
⎦. (A17)

The energy E� becomes

E� [�∗, �]

= 〈u〉 +
∫

dr
[

h̄2

2m
|∇�|2 + vext|�|2

]
(A18)

and the dynamics is given by Eq. (A9).
The interaction term [Eq. (A17)] can be effectively trun-

cated at low j because the kinetic energy contribution ∝
|∇�|2 penalizes high-order Fourier modes, forcing their am-
plitudes to be small. Let us examine the lowest-order trunca-
tions of Eq. (A17):

(i) Zeroth order: This case corresponds to the standard GP
equation.

(ii) Second order: This case was studied in Ref. [29]. The
coefficient g2 must be nonnegative to ensure that the energy
is bounded from below, thus leading to a penalization of
variations in n. As shown in Appendix F, for repulsive contact
interactions (g0 > 0) the only possible ground state is the
uniform state characterized by a constant density n(t, r) = n̄.

(iii) Fourth order: In Appendix D we show that this order
leads to pattern formation.

(iv) Higher orders: Interaction potentials with multiple
competing length scales allow the realization of more complex
symmetries, including honeycomb pattern or quasicrystals
[40,41]; see example in Sec. V.

3. Fourth-order expansion

Let us reparametrize the contribution due to the interaction
potential as

〈u〉 =
∫

dr
[ur

2
n2 + ue

2
n
(∇2 + q2

0

)2
n
]
. (A19)

In terms of the wave function � we have

ih̄∂t� = Ĥ�, (A20)

where

Ĥ = − h̄2

2m
∇2 + vext + [

ur + ue
(∇2 + q2

0

)2]
(A21)

is the system Hamiltonian.
The parameters are defined as

q2
0 = − g2

2g4
, ue = g4, ur = g0 − g2

2

4g4
. (A22)

For negative values of q2
0, no pattern forming is to be expected.

The sign of q2
0 is fully determined by g2 since g4 > 0 in order

to ensure finite energy for small-wavelength Fourier modes.

APPENDIX B: UNITS

In an effort to make the text more readable we use some of
the same symbols for both SI and reduced units, whereas in
the Appendixes we have tried to maintain mathematical rigor,

TABLE I. Units and notation. Here d is the dimension of the
system.

Symbol Description Units Variable(s) Text

r Length m – x
t Time s – t
� Wave function m−d/2 (t, r) �

n Number density m−d (t, r) n
u Interaction potential J md r = |r| u
x Length q−1

0 – x
τ Time m/(h̄q2

0 ) – t
s Minimization parameter m/(h̄q2

0 ) – –
 Wave function h̄/(q0

√
mue ) (τ, x) –

ρ Number density h̄2/(mueq2
0 ) (τ, x) ρ

U Effective potential energy h̄2q2
0/m ρ U

u Displacement field q−1
0 (τ, x) u

with the possible drawback of having too many symbols in
the text. In the text v denotes the velocity field both in SI units
and in units of h̄q0/m, whereas in the Appendixes the field v is
only in units of h̄q0/m. In the Appendixes we use the notation
F� for integral energies, where � is the field variable. We have
omitted the field variable for functionals of the fields ρ and v.
In the text the same uppercase characters of the form F are
used for energy integrals in both SI units and reduced units. In
both the text and the Appendixes the integral energies that are
functionals of reduced fields are also in energy units that are
reduced. See Table I for a partial list of symbols used in the
text and the Appendixes.

APPENDIX C: HYDRODYNAMIC FORMULATION

The wave function  can be rewritten using the polar
decomposition as

(τ, x) = R(τ, x) exp (iS(τ, x)). (C1)

Now ρ = ||2 = R2. We define v := ∇S, allowing us to write
Eq. (A20) as a set of flow equations,

Dv
Dt

= −∇[Q + ṽext + (αu + (∇2 + 1)2)ρ], (C2a)

∂τρ = −∇ · [ρv], (C2b)

where D/Dτ = ∂τ + v · ∇ is the advective time derivative,
αu = ur/(ueq4

0 ), and

Q = −1

2

∇2√ρ√
ρ

(C3)

is the quantum potential. Equation (C2a) can be expressed in
terms of a functional derivative as

Dv
Dt

= −∇ δU

δρ
, (C4)

where

U [ρ] =
∫

dx
[ |∇ρ|2

8ρ
+ ṽextρ + αu

2
ρ2 + 1

2
ρ(∇2 + 1)2ρ

]
(C5)
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is the effective potential energy. These dynamics conserve the
total energy of the system

E [ρ, v] = K[ρ, v] + U [ρ], (C6)

where

K[ρ, v] =
∫

dx
[

1

2
ρ(τ, x)|v(τ, x)|2

]
(C7)

is the kinetic energy.

APPENDIX D: GROUND STATES

In this section we discuss ground states of the system
described by energy E [Eq. (C6)]. We define dissipative
processes that are used to minimize E and use them to analyze
the ground-state structure of the system both analytically and
numerically.

1. Dissipative dynamics in the density formalism

The energy E is locally minimized when v = 0 and U is
minimized with respect to ρ. Here we present two types of
density preserving dissipative flows parametrized by s that
minimize U .

The first one is given by

∂sρ(s, x) = − δU [ρ]

δρ(s, x)
+ λ(s)

= −[Q + (αu + (∇2 + 1)2)ρ] + λ(s), (D1)

where

λ = −
∫

dx
[

δU [ρ]

δρ

]
(D2)

is a Lagrange multiplier that keeps the total density
∫

ρdx
constant in time. Here −

∫
denotes the integral mean defined by

−
∫

f dx = ∫
f dx/

∫
dx. The process described by Eq. (D1) is

referred to as nonlocal dissipative dynamics.
Local dissipative dynamics is defined by

∂sρ = ∇2 δU [ρ]

δρ

= ∇2[Q + (αu + (∇2 + 1)2)ρ]. (D3)

It can be shown that both these dynamics will lead to a
nonincreasing U , i.e., ∂sU (s) � 0.

2. Dissipative dynamics in the wave formalism

Let us define the total energy in the wave formalism:

E[∗,]

= 1

2

∫
dx{|∇|2 + αu||4 + [(1 + ∇2)||2]2}. (D4)

The generalized nonlinear Schrödinger’s equation can be writ-
ten as

∂s = −i
δE

δ∗

= −i

[
−1

2
∇2 + (αu + (∇2 + 1)2)||2

]
. (D5)

The time evolution can be made dissipative by making a
modification

∂s(s, x) = −(i + μ)
δE

δ∗ + λ(s)(s, x), (D6)

where μ is some positive dissipation rate. Here λ(t ) is a
Lagrange multiplier ensuring the global conservation of the
density ||2 and can be calculated as

λ(s) = μ

N

∫
dx

[
∗(s, x)

δE

δ∗

]
= μ

N
〈H〉, (D7)

where

N =
∫

dx[|(s, x)|2] (D8)

is the rescaled number of particles in the system and H is the
Hamiltonian operator. This can be interpreted as the expected
energy per particle times the dissipation rate.

The dynamics can be made overdamped by dropping the
imaginary part of the mobility, giving

∂s(s, x) = −μ
δE

δ∗ + λ(s)(s, x), (D9)

where λ is defined by Eq. (D7). This equation has no coupling
between the real and the imaginary parts of  allowing for
setting Im[(s, x)] = 0, which gives (s, x) = √

ρ(s, x).
Both Eq. (D6) and Eq. (D9) can be shown to lead to a

nonincreasing energy E with respect to parameter s.

3. Linear stability analysis

Let us analyze the stability of Eq. (D3) against small peri-
odic perturbations about a constant state, i.e., ρ(τ, x) = ρ̄ +
ε(τ ) exp (iq · x), where ε is some positive, small, spatially
independent amplitude. Inserting this ansatz into Eq. (D3) and
abbreviating q = |q| we find

∂τ ε(τ ) = −
(

q4

4ρ̄
+ αuq2 + q2(1 − q2)2

)
ε(t )

= C(q)ε(τ ) (D10)

up to linear order in ε. Maximizing the coefficient C with
respect to q defines the most unstable perturbation. If such
a maximum exists, it suffices to examine the value of C at the
given maximum. If no maximum exists, C is maximized by
q = 0, which will give a stable constant solution.

Solving the aforementioned problem gives the condition
for stability. The uniform solution is not stable against pertur-
bations if

αu <

{−1, ρ̄ � 1/8,

(1 − 16ρ̄ )/
(
64ρ̄2

)
, ρ̄ > 1/8.

(D11)

This defines the spinodal curve for the uniform phase. The
stability phase diagram with the value for the most unstable q
is shown in Fig. 5.

4. One-mode approximation

The pattern forming part of the internal energy Eq. (C5)
can be written in Fourier space as

1

8π2

∫
dk[(1 − k2)2ρ̂(k)2] (D12)
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FIG. 5. Stability diagram of the uniform density state as a func-
tion of the interaction parameter αu and average density ρ̄. Contour
lines show the value for the most unstable wave number q of the
linear perturbation.

by using Plancherel’s theorem. For crystalline ground states
we have

ρ(x) =
∑
k∈G

akeik·x, (D13)

where G is the point group of the reciprocal crystal lattice.
The pattern forming term will penalize any modes with |k| 
=
1, suggesting that including only the vectors k in the first
Brillouin zone might approximate well the ground state. Here
we analyze one-mode approximations of periodic number
densities in two dimensions.

a. Stripe phase

We use the ansatz

ρS(x) = ρ̄ + φ0nS(x) = ρ̄ + φ0(eiq·x + c.c.)

= ρ̄ (1 + A cos [q · x]), (D14)

where c.c. stands for the complex conjugate and A = 2φ0/ρ̄.
We can simplify the calculations by choosing q = (q, 0) and
writing q · x = qx, leading to

ρS(x) = ρ̄ + φ0nS(x) = ρ̄ + φ0(eiqx + c.c.)

= ρ̄ (1 + A cos[qx]).

Inserting the stripe ansatz ρS in Eq. (C5) gives an average
energy

Ū = −
∫

Cp

dx

[
1

8

|∇ρS|2
ρS

+ αu

2
ρ2

S + 1

2
ρS(∇2 + 1)2ρS

]
, (D15)

where Cp is the interval [0, 2π/q] corresponding to a period of
ρS. The integrand is constant in the y coordinate, reducing the
energy to a 1D integral. We start by calculating the quadratic
term

ρ2
S = ρ̄2 + 2ρ̄φ0nS(x) + φ2

0nS(x)2.

All the terms that have an oscillating component exp(iq jx)
with j = 1, 2, 3, . . . make no contribution to the average
energy. Therefore the interesting terms are np

S with p > 1.

The terms without an oscillating component are referred to as
resonant terms since they resonate with the linear operation∫

Cp
dx.
Now

−
∫

Cp

dx
(
n2

S

) = −
∫

Cp

dx(e2iqx + e−2iqx + 2) = 2

and

−
∫

Cp

dx[ρS(x)2] = ρ̄2 + 2φ2
0 .

We also need

−
∫

Cp

dx[ρS(x)∇2pρS(x)] = −
∫

Cp

dx[(−1)pρS(x)q2pn(x)]

= 2(−1)pq2pφ2
0 .

The pattern forming part of the average energy becomes

−
∫

Cp

dx

[
αu

2
ρS(x)2 + 1

2
ρS(x)(∇2 + 1)2ρS(x)

]

= αu + 1

2
ρ̄2 + ((1 − q2)2 + αu)φ2

0 . (D16)

The remaining part of the average energy is the part from the
quantum potential

−
∫

Cp

dx

[ |∇ρS(x)|2
ρS(x)

]
= −
∫

Cp

dx

[
(∂xnS(x))2

ρ̄ + nS(x)

]
.

Here we use nS(x) = ρ̄A cos ξ , where ξ = qx:

−
∫

Cp

dx

[
(∂xnS(x))2

ρ̄ + nS(x)

]
= A2q2ρ̄

2π

∫ 2π

0
dξ

[
sin 2ξ

1 + A cos ξ

]

= A2q2ρ̄

2π

∫ π

−π

dξ

[
sin 2ξ

1 + A cos ξ

]
.

This can be solved with a substitution, p = tan (ξ/2). This
gives

sin ξ = 2p

1 + p2
, cos ξ = 1 − p2

1 + p2
, dξ = 2

1 + p2
d p.

Now

A2q2ρ̄

2π

∫ π

−π

dξ

[
sin 2ξ

1 + A cos ξ

]

= A2q2ρ̄

2π

∫ ∞

−∞
d p

⎡
⎣

( 2p
1+p2

)2

1 + A
( 1−p2

1+p2

) 2

1 + p2

⎤
⎦

= 8A2q2ρ̄

2π (1 − A)

∫ ∞

−∞
d p

[
p2(

p2 + γ 2
A

)
(1 + p2)2

]
,

where γ 2
A = (1 + A)/(1 − A). Note that ρS � 0 requires A �

1. We also assume that A � 0, implying that γ 2
A > 0 and that
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Im x

Re x

x

FIG. 6. Semicircular contour in the complex plane used for cal-
culating an integral on the real axis. The symbol x marks a singularity
on the imaginary axis.

γA is real. The integral∫ ∞

−∞
d p

[
p2

p2 + γ 2
A

1(
1 + p2

)2

]

=
∫ ∞

−∞
d p

[
p2

(p + iγA)(p − iγA)

1

(p + i)2(p − i)2

]

=:
∫ ∞

−∞
d p f (p)

can be solved in a standard way using residue theorem for a
semicircular path on the complex plane shown in Fig. 6 and
taking the radius to ∞. For this we need residues at singu-
larities in the upper-half complex plane (Im p > 0). There are
two of these, p = iγA and p = i. The latter is of order 2:

Res ( f , iγA) = iγA

2
(
γ 2

A − 1
)2 ,

Res ( f , i) = − i(1 + γ 2
A )

4
(
γ 2

A − 1
)2 .

Now∫ ∞

−∞
d p f (p) = 2π i[Res ( f , iγA) + Res ( f , i)],

giving

8A2q2ρ̄

2π (1 − A)

∫ ∞

−∞
d p

[
p2

p2 + γ 2
A

1

(1 + p2)2

]

= q2ρ̄(1 −
√

1 − A2).

Finally,

Ū = q2ρ̄

8

⎛
⎝1 −

√
1 − 4

(
φ0

ρ̄

)2
⎞
⎠

+ αu + 1

2
ρ̄2 + ((1 − q2)2 + αu)φ2

0 . (D17)

b. Hexagonal phase

The crystalline hexagonal ground-state solution is approxi-
mated similarly to the stripe phase with the one-mode approx-
imation

ρH(r) = ρ̄ + φ0nH(r)

= ρ̄ + φ0

3∑
j=1

(eiq j ·r + c.c.), (D18)

where the reciprocal lattice vectors q j have a hexagonal
symmetry, i.e.,

q j · qi =
{

q2, i = j,
− 1

2 q2, i 
= j.

Equation (D18) can be rewritten as

ρH = ρ̄

(
1 + 2A cos

(√
3qx

2

)
cos

(qy

2

)
+ A cos (qy)

)
,

where, again, A = 2φ0/ρ̄.
Calculating the resonant terms for the polynomial part of

the internal energy is pretty straightforward [53]. For the
quantum potential we have

−
∫

Cp

dx
[

1

8

|∇ρH|2
ρH

d

]
= −
∫

Cp

dx

[
ρ̄q2A2

8

3 sin2
(√

3qx
2

)
cos2

( qy
2

) + (
cos

(√
3qx
2

)
sin

( qy
2

) + sin(qy)
)2

2A cos
(√

3qx
2

)
cos

( qy
2

) + A cos(qy) + 1

]
,

where Cp is the primitive lattice cell shown in Fig. 7. Let
√

3qx/2 = x̃ and qy = ỹ. Now this integral is

ρ̄q2A2

32π2

∫ 2π

0

∫ 2π

0
dx̃dỹ

[
3 sin2 (x̃) cos2

( ỹ
2

) + (
cos (x̃) sin

( ỹ
2

) + sin(ỹ)
)2

2A cos (x̃) cos
( ỹ

2

) + A cos(ỹ) + 1

]
.

The integration in x̃ can be done by repeating the calculation done for the stripe phase. The integrand will have two purely
imaginary singularities that can be calculated by factoring the polynomial appearing in the denominator. This gives an integral
in ỹ over a period of 2π :

ρ̄q2

32π

∫ π

−π

dỹ

[
1

cos(ỹ) + 1

(
−2 − 6A + 10A2 + (9A2 − 4A − 4) cos(ỹ) − 2A cos(2ỹ) − A2 cos(3ỹ)√

2A2 cos(2ỹ) − 6A2 − 8(A − 1)A cos(ỹ) + 4
+ (A + 2) cos(ỹ) + 2A + 1

)]
.
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Cp

ann

FIG. 7. One-mode density field with a hexagonal symmetry
showing the primitive lattice cell Cp and the nearest-neighbor dis-
tance ann = 4π/(q

√
3).

Noting that cos(−ỹ) = cos(ỹ) and making the change of
variables cos ỹ = 1 − 2ξ gives

q2ρ̄

32π

∫ 1

0
dξ

[
P1(ξ )

ξ
√

f1
+ Q1(ξ )

ξ
√

ξ (1 − ξ )

]
,

where

P1(ξ ) = −16A2ξ 3 + (24A2 − 8A)ξ 2

+ (4A − 4)ξ + (A − 1)2,

Q1(ξ ) = (2A + 4)ξ + A − 1,

and

f1(ξ ) = (4A2ξ 2 + (4A − 8A2)ξ + A2 − 2A + 1)(1 − ξ )ξ .

Let us first calculate the part

I1 :=
∫ 1

0
dξ

[
Q1(ξ )

ξ
√

ξ (1 − ξ )

]

=
∫ 1

0
dξ

[
4 + 4A√
ξ (1 − ξ )

]
−
∫ 1

0
dξ

[
1 − A

ξ
√

ξ (1 − ξ )

]
.

Both parts can be calculated with trigonometric substitution.
This gives

I1 = 2(2 + A)π − lim
ξ→1

2(1 − A)ξ√
ξ (1 − ξ )

= 2(2 + A)π − lim
ε→0

2(1 − A)
√

ε−1 − 1. (D19)

The second part diverges and has to be combined with other
terms. Now the other part needed here is

I2 :=
∫ 1

0
dξ

[
P1(ξ )

ξ
√

f1

]
=
∫ 1

0
dξ

[
−16A2ξ 2

√
f1

− 8A(1 − 3A)ξ√
f1

− 4(1 − A)√
f1

+ (1 − A)2

ξ
√

f1

]
. (D20)

These are elliptic integrals. The only diverging part is∫ 1

0
dξ

[
(1 − A)2

ξ
√

f1

]
.

This can be dealt with by using an identity,

(2 − s)a0Js−3 + 1
2 a1(3 − 2s)Js−2

+ a2(1 − s)Js−1 + 1
2 a3(1 − 2s)Js − sa4Js+1

=
√

f (ξ − c)−s|10, (D21)

where

Js[ f ] =
∫ 1

0
dξ

[
1√

f (ξ − c)s

]
, (D22)

f is a third- or fourth-order polynomial with

f = a0(x − c)4 + a1(x − c)3

+ a2(x − c)2 + a3(x − c) + a4,

s = 1, 2, 3, . . . , and c is some arbitrary constant [54]. In our
case s = 1, c = 0, and f = f1, giving

a0 = −4A2, a1 = −4(1 − 3A)A, a2 = −(1 − 3A)2,

a3 = (1 − A)2, a4 = 0.

We have∫ 1

0
dξ

[
(1 − A)2

ξ
√

f1

]

= −(1 − A)2J1

= −8A2J−2 + 4A(3A − 1)J−1 + −2
√

f1

ξ

∣∣∣∣
1

0

.

The only diverging part is the last one. Combination with
the earlier-diverging term gives

lim
ε→0

(
−2

√
f1

ξ

∣∣∣∣
1

ε

− 2(1 − A)
√

ε−1 − 1

)
= −2

√
f1(1) = 0.

Let

It = I1 + I2. (D23)

Now

It = 2(2 + A)π − 4(1 − A)J0 − 12A(1 − 3A)J−1 − 24A2J−2.

The integrals Js are standard elliptic integrals and can be
transformed to Legendre normal form with a change of in-
tegration variables. We have f1 = g1g2, where g2 = ξ (1 − ξ )
and g1(ξ ) > 0 for ξ ∈ [0, 1]. We use the change of variables
ξ2 = √

g2/g1. For details, see Ref. [54]. The contribution of
the quantum potential can be written as q2ρ̄It/32π , which,
after a somewhat tedious calculation, gives

UQP = q2ρ̄

16

{
A + 2 − √

2 − 3A

×
[

12C−1
A (E (kA) − K (kA)) + (2A + 1)CAK (kA)

π

]}
,

(D24)

where

K (k) =
∫ 1

0
dt

[
1√

(1 − t2)(1 − k2t2)

]
(D25)
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FIG. 8. Exact solution for the one-mode approximation energy of
the quantum potential UQP plotted against a polynomial fit showing
that the quartic approximation suffices for analytical calculations.

is the complete elliptic integral of the first kind and

E (k) =
∫ 1

0
dt

[√
1 − k2t2

√
1 − t2

]
(D26)

is the complete elliptic integral of the second kind. The
complex coefficients are defined as

kA = i

√√√√ 3A2 +
√

(1 − A)3(3A + 1) − 1

−3A2 +
√

(1 − A)3(3A + 1) + 1
(D27)

and

CA =
√

6A2 + 2
√

(1 − A)3(3A + 1) − 2

A3
. (D28)

The value of UQP at the maximal A = 2/3 can be expressed in
terms of known constants as

UQP

∣∣
A=2/3 =

(
1

6
−

√
3

8π

)
q2ρ̄. (D29)

For more details see the Mathematica notebook
elliptic_integral.nb [30].

UQP will be a part of the total internal energy that still
has to be minimized with respect to q and A. To simplify the
minimization procedure we fit a fourth-order polynomial

p4(x) = a2A2 + a3A3 + a4A4 (D30)

against the quantum potential (D24). We find

Ū = (a2 + a3A + a4A2)A2q2ρ̄

+ 1
4 (2(αu + 1) + 3A2(αu + (q2 − 1)2))ρ̄2, (D31)

where a2 = 0.226 034, a3 = −0.288 956, and a4 =
0.401 767. The zeroth coefficients disappears because for
zero amplitude the quantum potential is 0. On the other
hand, the first coefficient is 0 because the integral over the
periodic domain of any single oscillating mode gives 0. The
fourth-order fit seems to agree well with the exact solution as
shown in Fig. 8.
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FIG. 9. Uniform-supersolid phase transition line with an asymp-
totic expression αu = −0.2234/ρ̄.

5. Finding the ground state

The ground state of the system is found by minimizing
Eqs. (D17) and (D31) with respect to the scaler q and the
amplitude A = 2φ0/ρ̄ for given system parameters ρ̄ and αu.
In both cases, the extrema can be expressed as roots of poly-
nomials. The coexistence gap between the uniform superfluid
and the supersolid phases is calculated numerically using the
analytical energies via common tangent construction. We find
an analytical expression for the phase transition line between
the uniform superfluid and the supersolid phases that can be
expressed as an asymptotic expansion for large ρ̄ as αu =
−0.2234/ρ̄. Figure 9 shows the asymptotic expression with
the exact solution. The one-mode analysis gives an upper
bound for the SS-NS transition. Minimizing the one-mode
energy given by Eq. (D31) predicts negative densities in the
parameter range labeled NS in Fig. 1. In a similar way, the D
phase is characterized by the absence of real solutions to the
minimization problem of the one-mode energy. For details on
the ground-state phase diagram see the Mathematica notebook
phase_diagram.nb [30].

APPENDIX E: WAVE EQUATION FOR LATTICE
VIBRATIONS OF THE SUPERSOLID

We next examine the dynamics of a small displacement
field about the hexagonal ground state described in Sec. D 4 b.
To this end, we introduce a deformation of the coordinates
x → x − u(τ, x). The one-mode approximation in Eq. (D18)
becomes

ρ(τ, x) = ρ̄ + φ0

3∑
j=1

[e−iq j ·u(τ,x)eiq j ·x + c.c.]. (E1)

We write the time evolution equation for the displacement
field u(τ, x) in terms of the effective potential energy U .
First, we assume that the relative amplitude φ0/ρ̄ is small and
expand the quantum potential up to fourth order in φ0/ρ̄. This
assumption should work near the uniform-supersolid phase
transition line, where the amplitude of the oscillating number
density is low. Second, we assume that ∇u is small and expand
the configuration energy U up to second order in u. Third,
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we assume that the velocity field v is small and keep only
the linear terms in the dynamical equations. For details of
the calculation see Ref. [38], where a similar analysis was
performed.

Now, Eqs.(C2a) and (C2b) give

∂τ u(τ, x) = v(τ, x), ∂τ v(τ, x) = − 1

ρ̄

δU [u]

δu
, (E2)

assuming that φ0 and |q j | = q take the equilibrium value. This
can be combined into a single equation,

∂2
τ u(τ, x) = − 1

ρ̄

δU [u]

δu
. (E3)

The configuration energy U with the aforementioned approx-
imations reduces to

U [u(τ, x)] = 3φ2
0q2

2

∫
dx

×
{[

1

4ρ̄

(
1 − φ0

ρ̄
+ 5

φ2
0

ρ̄2

)
+ (3q2 − 2)

]
‖∇u‖2

+ q2((∇ · u)2 + (∇u)T : ∇u) + 2

3
‖∇2u‖2

}
+U0(αu, φ0, ρ̄, q). (E4)

Taking the functional derivatives with respect to u and plug-
ging in Eq. (E3) leads to

∂2
τ u = 3φ2

0q2

ρ̄

[
2q2∇(∇ · u)

+
(

3q2 − 2 + 1 − φ0/ρ̄ + 5φ2
0/ρ̄

2

4ρ̄

)
∇2u − 2

3
∇4u

]
.

(E5)

Inserting a plane wave exp [i(k · x − ωτ )] gives a dispersion
relation

ω/ω‖ = k/k‖
√

1 + (k/k‖)2 (E6)

for longitudinal modes. Here

k2
‖ = 3

2

[(
5φ2

0/ρ̄
2 − φ0/ρ̄ + 1

)
/4ρ̄ − 2 + 5q2

]
,

ω2
‖ = 2q2φ2

0k4
‖/ρ̄. (E7)

At small k the dispersion relation becomes linear and one
can read off the speed of sound:

c2
‖ = 3φ2

0q2

ρ̄

(
5q2 − 2 + 1 − φ0/ρ̄ + 5φ2

0/ρ̄
2

4ρ̄

)
. (E8)

We can also calculate U0 of Eq. (E4), giving

U0 = 3φ2
0V�

[
q2

4ρ̄

(
1 − φ0/ρ̄ + 5φ2

0/ρ̄
2
) + (1 − q2)2

]
, (E9)

where V� is the volume of the domain. Since φ0/ρ̄ � 1/3,
the first part due to the quantum potential penalizes any
system with q > 0, making the system expand. The second
part penalizes any variance from q = 1. This part stabilizes the
nonuniform pattern. For large values of ρ̄ the pattern forming
part dominates and q ≈ 1.

APPENDIX F: NO PATTERN FORMING FOR LOW-LEVEL
EXPANSIONS WITH REPULSIVE CONTACT

INTERACTION

Here we show that the low-level expansions of the inter-
action term u will only give uniform ground-state solutions.
The effective potential energy functional for the second-order
expansion is

Un[n] =
∫

dr
[

h̄2

8m

|∇n|2
n

+ g0

2
n2 + g2

2
|∇n|2

]
, (F1)

where we use the subscripted Un here to emphasize that the
energy is in SI units. We assume here that g0, g2 � 0. The
functional derivative is given by

δUn

δn
= g0n − g2∇2n + h̄2

8m

(
−2∇2n

n
+ |∇n|2

n2

)
. (F2)

We want to minimize Un with respect to a conservation
constraint for n. This can be achieved by minimizing

Ũn[n] = Un[n] − μ

∫
dr[n(t, r) − n̄] (F3)

with respect to n. Here n̄ is a given average particle number
and μ is the chemical potential. Extrema of Ũn fulfill the
condition

δUn

δn
= μ, (F4)

i.e., the functional derivative is a constant. Inserting a uniform
n = n̄ in Eq. (F2) gives g0n̄ = μ, showing that n = n̄ is an
extremum of Ũn. We show that this extremum is a global
minimum by showing that the energy Ũn is globally convex.

First, some prerequisites [55]:
(i) A functional is convex iff its second variation is non-

negative for all test functions ϕ.
(ii) The sum of convex functionals is convex.
The second variation is given by

δ2
ϕUn[n] = lim

ε1,ε2→0

d2

dε1dε2
Un[n + ε1ϕ + ε2ϕ]. (F5)

The variations for the parts proportional to g0 and g2 can be
calculated easily, giving

g0

∫
dr[ϕ(t, r)2], g2

∫
dr |∇ϕ(t, r)|2,

respectively. Both are clearly nonnegative, implying that the
corresponding parts in U are convex. For the last part we have

|∇n + (ε1 + ε2)∇ϕ|2
n + (ε1 + ε2)ϕ

= |∇n + (ε1 + ε2)∇ϕ|2
∞∑

k=0

(ε1 + ε2)kϕk

nk+1

= lot + 2ε1ε2[n∇ϕ − ϕ∇n]2

n3
+ hot,

where ‘lot’ stands for lower-order terms and ‘hot’ for higher-
order terms. This gives the second variation

h̄2

4m

∫
dr
{

[n∇ϕ − ϕ∇n]2

n3

}
� 0, (F6)
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completing the proof. Setting g2 = 0 proves the same for the
zeroth-order expansion.

APPENDIX G: PARAMETERS FOR
RYDBERG-DRESSED BECS

Here we calculate the interaction parameters q0, ur, and ue

for a model system for Rydberg-dressed BECs described in
Ref. [27]. The calculation presented here can be repeated for
any radially symmetric interatomic potential u whose Fourier
transform’s smallest extremum is a minimum.

We use parameters defined in Fig. 2 in Ref. [27]. The
interaction potential is

u(r) = usw(r) + uRB(r), (G1)

where usw(r) = gδ(0) is the collision part due to S-wave
scattering and

uRB(r) = C6

r6 + R6
c

(G2)

is the long-range interaction of two excited alkaline Rydberg
atoms. C6, Rc, and g are system parameters.

We calculate the Fourier transform

û(k) =
∫ ∞

0

∫ 2π

0
dθdr[reikr cos(θ )u(r)]

= g +
∫ ∞

0
dr

[
πrC6rJ0(kr)

R6
c + r6

]
, (G3)

where J0 is the zeroth Bessel function of the first kind. The
remaining integral can be calculated numerically or expressed
in terms of the Meijer G function [56] as

û(k) = π

3
C6R−4

c G4,0
0,6

((Rck
6

)6
; 0, 1

3 , 2
3 , 2

3 , 0, 1
3

)
+ g. (G4)

In order to obtain the parameters we fit the polynomial

ûf(k) = ur + ue
(
k2 − q2

0

)2
(G5)

to the solution û. There are many ways to perform the fitting.
This problem has been studied in the context of approximating
direct pair correlation functions in the classical density func-
tional theory of freezing with simpler energy functionals [18].
Here we will fit ûf by matching q0 to the smallest minimum
km of û and by ensuring that the energy of the uniform and
the supersolid solutions will be correct, i.e., ûf(0) = û(0) and
ûf(q0) = û(q0). We find

q0Rc = q̃0 ≈ 4.8202,

R4
c

C6
(ur − g) = 2R4

c

C6
û(q0) = ũr, (G6)

(q0Rc)4ue

C6
= 2R4

c

C6
(û(0) − û(q0)) = ũe.

The approximate values for these parameters are ũr ≈
−0.170 23 and ũe ≈ 3.9690.

We set g = 0 in accordance with Ref. [27]. The αu param-
eter can be calculated as

αu = ur

q4
0ue

= û(q0)

û(0) − û(q0)
= ũr

ũe
, (G7)

TABLE II. Parameter values for Rydberg-dressed BECs.

Alternative
Parameter expression Value unit

l
√

h̄/(mωtr ) 0.972674 μm
rc Rc/l 2.65
c6 C6m3ω2/h̄4 2.45
N – 104

q0 q̃0/Rc 1.87005 μm−1

ue ũeC6/(R4
cq4

0 ) 0.197182399 h̄2/(mq4
0 )

ur ũrC6/(R4
c ) −0.008456958 h̄2/m

giving αu ≈ −0.042 889. We also need the average density.
In Ref. [27] the authors study a system of 104 Rb atoms in a
volume of approximately V ≈ 9R2

c . We have

ρ̄ = mueq2
0

h̄2 n̄ = m

R2
c h̄2

ũe

q̃2
0

N

V
C6

= m

R2
c h̄2

ũe

q̃2
0

N

9R2
c

h̄4c6

m3ω2
tr

= h̄2

m2ω2
tr

1

R4
c

ũe

q̃2
0

Nc6

9

=
(

l

rc

)4 ũe

q̃2
0

Nc6

9
≈ 9.4. (G8)

Here ωtr/2π = 125 Hz is the trapping frequency of a har-
monic potential, and l = √

h̄/mωtr is the characteristic length
scale for this trapping potential. The lowercase characters are
used for units defined by ωtr and a tilde is used for units
defined by C6 and Rc. For parameters, see Table II.

The one-mode approximation predicts the phase transition
at αu ≈ −0.024 539 8, implying that these parameters should
be well within the solid regime. The nearest-neighbor distance
for the hexagonal lattice is

ann = 4π

q0

√
3
, (G9)

which, for the parameters in [27], gives ann ≈ 1.505 16 and
Rc = 3.879 69 μm.

Figure 10 shows the exact solution for ûRB and several
different fits. We use a fitting procedure matching the values of
the fitted function with the exact solution at k = 0 and k = q0.
We also ensure that q0 minimizes ûRB. Other fits shown in
Fig. 10 include matching the curvature and the magnitude at
k = km = q0. This would most likely approximate the elastic
response of the solid phase better since it describes the energy
well for modes k close to q0. However, for this system this
fitting method would give an inaccurate estimate for the en-
ergy of the uniform state described by û(0). The last fit shows
a general least-squares fitting to ûRB. This fitting method fails
to predict the wavelength of the one-mode approximation, the
solid energy, and the energy of the uniform state, implying that
global fitting might not work in this case. For more details see
the Mathematica notebook parameters.nb [30].
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FIG. 10. Rydberg contribution of the Fourier-transformed inter-
action potential ûRB and different fitting polynomials.

APPENDIX H: NUMERICAL METHODS

1. Ground-state determination

The ground state of the system is found by time-evolving
the nonconserved dissipative dynamical equation [Eq. (D1)]
except in the case of the quantum droplet phase, for which
we used overdamped dissipative wave dynamics [Eq. (D9)].
In general, the performance of the density formalism is better
because the high-order derivatives appear linearly in the dy-
namical equations. However, the density formalism becomes
numerically unfeasible whenever the one-particle density ρ

is close to 0 due to difficulties in evaluating the quantum
potential Q.

For the ground-state calculations we impose doubly pe-
riodic boundary conditions and calculate the derivatives in
Fourier basis. We use a semiimplicit time-stepping algorithm
that treats the linear parts of the equation implicitly and the
nonlinear parts explicitly [57]. To ensure numerical stability
we require that the difference of the total energy �E be-
tween time steps is nonpositive. This difference is also used
as a stopping condition: whenever �E < 10−12 the iterative
search for the ground state is stopped.

The simulation domain is a rectangle of size
(4πq−1/

√
3, 4πq−1). For the periodic ground states the

size of the domain has to be minimized in order to obtain
the physical ground state. This is done as follows: Let some
lowest mode of the ground state of a given domain be
exp(iq · x). Now q = |q| defines the size of the domain. Due
to the effect of the quantum potential the q that minimizes
the ground-state energy is usually a little bit less than 1. In
order to find the minimal q we define an iterative process.
We make an initial guess for q and calculate a number of
points around it. This gives us a chart (qn, En) to which we
fit a parabola. We calculate analytically the minimum of this
parabola, define a new set of qn around this minimum, and
repeat the process. Let q(i)

m be the minimal q calculated from
the fitted parabola at the ith iteration. We stop the iteration
when |q(i)

m − q(i−1)
m | is less than 10−5.

2. Lattice vibration simulations

Lattice vibrations are studied by simulating the full dynam-
ics in the hydrodynamic formulation using the spectral PDE
solver DEDALUS [58]. Since the mean-field potential terms are
linear in the density ρ, they can be integrated implicitly in the
hydrodynamic formulation, eliminating the stiff time-stepping
restriction that would arise from integrating the higher-order
potential terms explicitly. Since spectral methods have no nu-
merical dissipation, we regularize the equations by inserting
a viscositylike term ∝∇2v in the velocity equation, which
smooths small-scale variations and slowly damps velocity
perturbations.

First, the ground state of the periodic domain is calculated
after which the vibration simulations are initialized with a
low-amplitude plane-wave velocity signal. The system was
then evolved for ∼103 temporal units. The total kinetic energy
of the system is observed to undergo oscillations which decay
due to the added viscous term. The square of an exponentially
decaying sinusoid is fit to the time series of the kinetic energy
to determine the oscillation frequency of the velocity signal.
The imposed perturbation wavelength and this fit frequency
are used to assess the agreement between the simulations and
the analytical dispersion relation.
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