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Defect formation dynamics in curved elastic
surface crystals†

Norbert Stoop and Jörn Dunkel *

Topological defects shape the material and transport properties of physical systems. Examples range

from vortex lines in quantum superfluids, defect-mediated buckling of graphene, and grain boundaries

in ferromagnets and colloidal crystals, to domain structures formed in the early universe. The Kibble–

Zurek (KZ) mechanism describes the topological defect formation in continuous non-equilibrium phase

transitions with a constant finite quench rate. Universal KZ scaling laws have been verified experimentally

and numerically for second-order transitions in planar Euclidean geometries, but their validity for non-

thermal transitions in curved and topologically nontrivial systems still poses open questions. Here, we

use recent experimentally confirmed theory to investigate topological defect formation in curved elastic

surface crystals formed by stress-quenching a bilayer material. For both spherical and toroidal crystals,

we find that the defect densities follow KZ-type power laws. Moreover, the nucleation sequences agree

with recent experimental observations for spherical colloidal crystals. Our results suggest that curved

elastic bilayers provide an experimentally accessible macroscopic system to study universal properties of

non-thermal phase transitions in non-planar geometries.

1 Introduction

Topological defects influence the elastic, magnetic, electronic
and optical properties in many natural and man-made systems.
Examples range from liquid crystals1–4 to grain boundaries in
ferromagnets and colloidal crystals,5,6 and charge transport in
graphene7,8 and superconductors.9–12 Topological defects can
be created by varying a control parameter, such as temperature
or a magnetic field, rapidly across a phase transition. Under-
standing the complex nonequilibrium dynamics induced by
these nonadiabatic quenches remains an important theoretical
challenge. Early progress in the characterization of topological
defects was made by Kibble13 in 1976, while studying domain
formation during the rapid cooling of the early universe.14

About a decade later, Zurek9 showed how the defect density is
related to the quench rate in general second-order phase
transitions; this important breakthrough also advanced signifi-
cantly the understanding of topological defect formation in
quantum superfluids and superconductors.15 Since then, the
Kibble–Zurek (KZ) power-law scaling predictions were confirmed
experimentally and utilized in a variety of systems, including liquid
crystals,3,16 colloidal monolayers,17 ion crystals,18 Bose–Einstein
condensates,19 superfluids10,12,20 and cold atomic clouds.21

KZ-scalings were also suggested to govern the defect formation
in Rayleigh–Bénard convection,22–24 although, in contrast to
theory,25 experimentally measured exponents appeared to
depend on non-universal system properties. Moreover, since
previous theory and experiments focused primarily on phase
transitions in planar Euclidean spaces, much less is known
about the existence of KZ-type scaling laws in more complex
geometries and topologies.

Topological defects in curved two-dimensional (2D) crystal
structures arise in many biological and physical processes,27,28

from plant growth29–31 and assembly of bacterial cell walls,32,33

viral capsids34,35 and microtubules36 to the targeted design
of carbon nanotube sensors37 and microlense fabrication.38

On closed manifolds, Euler’s theorem39 links the net charge of
the topological defects to the genus g of the underlying surface,
imposing for example the 12 pentagons on a soccer ball.
Depending on the details of the crystallization process (quench
rate, geometric constraints, etc.), non-planar 2D crystals typically
contain additional excess defects with zero total charge.40–42

Recent studies provided important experimental and theoretical
insights into the defect statistics and formation dynamics in
2D colloidal crystals assembled on curved liquid–liquid
interfaces.26,43–45 Another promising class of experimental systems
are curved elastic bilayer systems,46 consisting of a soft substrate
and a stiff surface film (Fig. 1A), which can develop hexagonal
wrinkling patterns under lateral compression induced by surface
swelling47 or substrate depressurization.48,49 Such elastic surface
crystals allow the realization of nontrivial shapes of genus g 4 0,
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such as toroids, which are difficult to achieve in liquids. Moreover,
because the transition from the unwrinkled to the hexagonal
phase is tunable by a global control parameter,49 these soft matter
systems also provide an ideal testbed to study generalizations of
the KZ scaling laws to curved geometries.

The classical KZ argument for thermally induced second-
order transitions builds on the fact that the correlation length x
and relaxation time t diverge as x p W�n and t p W�zn (critical
slowing down), respectively, when the temperature W is varied
to drive the system continuously from the high-symmetry (e.g.
isotropic) phase to the lower-symmetry crystal phase. The
critical exponents n and z encode the universality class of the
transition. For a linear quench W = mt with rate m, the system will
not be able to relax to equilibrium during the time interval
|t| t tf = t, yielding the freeze-out condition tf p (mtf)

�zn or,
equivalently, tf p m�zn/(1+zn). The associated correlation length
xf = x(tf) p m�n/(1+zn) implies the KZ scaling prediction for the
defect density at freeze-out, rf p xf

�d
p mdn/(1+zn), where d is the

space dimension. The analysis below shows that this argument
also holds for the stress-induced pattern formation transitions
observed on the 2D surfaces of curved elastic bilayer materials.
Even though our system is (weakly) first-order, its dynamics
arrests under sufficiently fast quenches before the coexistence
region is entered, so that the classical KZ scalings can be
expected to hold (see Discussion below).22,24 Furthermore,
our computations identify a dynamical analogy with recent
experimental observations26 on colloidal crystal formation in
curved liquid–liquid interfaces. Altogether, these results sug-
gest that pattern formation in elastic bilayers provides an
experimentally promising system to study the dynamics of
phase transitions in non trivial geometries. From a practical
perspective, the subsequent analysis offers guidance for how to

combine quench dynamics and surface geometry to control
both the frequency and localization of topological defects.

2 Theory

To investigate topological defect formation in curved geometries,
we analyze an experimentally validated continuum model49 for
the surface wrinkling in elastic bilayer materials consisting of
a soft core and a stiffer outer shell (Fig. 1A). This generalized
Swift–Hohenberg (GSH) theory can reproduce quantitatively the
experimentally measured equilibrium phase diagrams,49 but its
dynamical implications have not yet been fully explored.

2.1 GSH theory for elastic surface crystals

The GSH equations follow from the nonlinear Koiter shell
theory50 by expanding the elastic energy of film and substrate
in the dominant normal displacement field u.49 Measuring
length in units of the film thickness h, the surface energy
functional of the GSH theory reads49

E ¼ k

2

ð
o
do g0ðruÞ2 þ

1

12
ðDuÞ2 þ au2 þ c

2
u4 � GðuÞ

� �

where k = Ef/(1 � n2) for a film with Young’s modulus Ef and
Poisson ratio n, and do is the surface element of the undeformed
substrate. The nonlinear term G(u) = [(1 � n)babraurbu +
nbaa(ru)2]u represents stretching forces to leading order in the
curvature tensor bab, with surface gradient r and Laplace–
Beltrami operator D (throughout, Greek indices run over the
set {1,2} and Einstein’s summation convention is used). Taking
the variation of E with respect to u and assuming overdamped

Fig. 1 Growth dynamics of elastic surface crystals in curved geometries. (A) Schematic of the simulated elastic bilayer material consisting of a thin film
(thickness h) adhering to a soft substrate (radius R). Upon increasing the compressive film stress, the normal displacement u of the film develops
a hexagonal pattern with wavelength l. (B) Surface crystallization dynamics on a sphere (radius R/h = 80; Movie 1, ESI†) for a slow quench m = 5 � 10�8.
(C) Planar reconstruction of the crystallization process for the sphere in panel B. The growth of the elastic surface crystal from two initial nucleation sites
(dark blue) proceeds along a predominantly regular hexagonal lattice structure, in close analogy with recent experimental observations for colloidal
crystals on spherical liquid–liquid interfaces.26 (D) Crystallization dynamics on a torus (radii R/h = 120 and r/h = 24; Movie 2, ESI†) for a slow quench
(m = 5� 10�8). (E) The planar reconstruction for the torus in panel D reveals that toroidal surface crystals also grow sequentially along a regular hexagonal
lattice structure, centered around wave-like geodesics of minimal absolute curvature.

Paper Soft Matter



This journal is©The Royal Society of Chemistry 2018 Soft Matter, 2018, 14, 2329--2338 | 2331

dynamics, the surface wrinkling process is described by the GSH
equation41,49

t0
@

@t
u ¼ g0Du�

1

12
D2u� au� cu3 � 1

2
duGðuÞ (1)

where g0 o 0, c 4 0, and duG(u) denotes the functional derivative
of the G-contribution to the energy functional E. t0 is the inverse
relaxation speed;49 with no loss of generality, we set t0 = 1 in the
following. Explicit expressions49 for the coefficients and duG(u)
are summarized in the Appendix Wrinkling theory.

Linear stability analysis of eqn (1) implies that wrinkling
patterns form via a discontinuous transition (see Fig. 4 in
ref. 49), when the control parameter a falls below the critical
value ac = 3g0

2, corresponding to an increase of the film stress s
beyond the critical buckling stress sc. In the following, we use
the previously established definition of the excess film stress
(or overstress) Se = (s/sc) � 1 as control parameter.51 Here, sc is
the critical film stress necessary to buckle the film from the
homogeneous solution u = 0. s is the applied film stress,
defined as the equi-biaxial equilibrium film stress in the
(possibly unstable) unwrinkled solution with u = 0. Therefore,
s and Se, respectively, are well defined control parameters, but
are not measures of the actual stress field in the deformed film.
The bifurcation parameter a is related to Se by49

a ¼ ac �
3c

4
Se: (2)

In the regime beyond but still relatively close to the wrinkling
threshold, 0 o Se B 1, nonlinear stability analysis confirms49

that the wrinkling solutions adopt a hexagonal pattern (Fig. 1)
due to the duG(u)-term, which is breaking the u -�u symmetry
of eqn (1).

2.2 Stress-quenching of elastic surface crystals

To obtain scaling predictions for the topological defect for-
mation in elastic surface crystals, we first solve eqn (1) numeri-
cally for linear stress quenches

Se(t) = mt (3)

with constant quench rate m, driving the system from the
unwrinkled to the hexagonal phase. In all simulations, material
parameters are chosen to match the experimental values
reported in ref. 41 and 49 (Appendix Wrinkling theory). Essen-
tial differences compared with classical KZ scenarios are (i) the
absence of fluctuations in eqn (1) and (ii) and that the under-
lying substrate geometries are non-planar. Fluctuations in
thermal systems can lead to the activation of defects near the
Ginzburg temperature.15 Thermal defect activation is however
negligible if the temperature at freeze-out, W(tf), is significantly
lower than the Ginzburg temperature, since the system remains
effectively frozen until W(tf) is reached, and the defect density is
thus determined15 by the correlation length at tf. Substrate
curvature not only enters through the derivative terms, but,
more importantly, determines the magnitude of the symmetry-
breaking terms in eqn (1).

To break the symmetry of the initially unwrinkled surface
u = 0, a small stationary random field e with |e| { 1 is added to
the rhs of eqn (1) in simulations (Appendix Wrinkling theory).
This e-inhomogeneity effectively models initial imperfections in
the film displacement, thus mimicking realistic experimental
conditions.46 We simulate eqn (1) for the linear quench (3) and
a given realization of e using the algorithm described in ref. 49.
Numerical results presented below are averages over n different
realizations of e, with n specified on the corresponding graphs.

3 Results

To illustrate the effects of locally varying curvature and surface
topology, we compare simulations for spherical and toroidal
surfaces.

3.1 Surface crystal growth under slow quenching

For slow quasi-adiabatic quenches (m - 0), we find that the
crystallization process is initiated at isolated nucleation sites
after a critical time tc and then spreads to cover the entire film
(Fig. 1B and D). This behavior is observed for both spheres and
tori (Movies 1 and 2, ESI†). Details of the spreading dynamics
and local crystal orientation become evident by reconstructing
the corresponding planar crystal patterns as suggested by Meng
et al.26 (Appendix Pattern analysis). Starting from a random
crystal site and one of its neighbors, we determine the relative
positions of all other sites connected to this initial pair,
resulting in the planar crystal representations of Fig. 1C and E.
Neighboring sites on the curved crystal are indicated by gray
lines if they appear separated in the planar embedding. The
time evolution in these graphs shows how initially separated
crystal patches merge to form a single connected crystal covering
the entire surface. The radial cuts appearing in Fig. 1C reflect the
non-isometric character of the planar representation of spherical
crystals, whereas the toroidal crystals unfold nearly isometrically
(Fig. 1E). Moreover, crystals on the torus nucleate first near the
outer rim (Fig. 1D), suggesting an influence of Gaussian curvature
in the pattern-forming process in agreement with previous
findings.52 As discussed below, qualitatively similar crystallization
sequences were observed in a recent experiment26 that studied the
deposition of charged colloids onto a spherical oil–water interface.
It is important to stress that the observed crystal nucleation is
a consequence of the nonlinear terms in eqn (1). Essential
symmetry-breaking of the unwrinkled phase u = 0 however already
occurs at earlier times and smaller amplitudes, where these
nonlinearities are negligible. Therefore, even though we observe
a crystallization reminiscent of a nucleate-and-grow dynamics, the
order parameter field has at this point already globally acquired a
symmetry-broken phase of small amplitude (Fig. 1B, 2nd snap-
shot, Movie 4, ESI†). This behavior is similar to the spinodal-
assisted nucleation of hexagonal defects.53,54 To connect with
the ideas of Kibble13 and Zurek,9 we next use the GSH elasticity
model to analyze the relation between topological defect for-
mation and quench rate m, which is difficult to explore in curved
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colloidal systems due to experimental limitations on the particle
deposition rates.

3.2 KZ-type scaling in spherical surface crystals

We start our numerical scaling analysis by considering the case
of globally constant curvature as realized in spheres (Fig. 2;
Movie 1, ESI†). In our simulations of eqn (1), the quench rate is
varied over the range m A [5 � 10�8, 10�4], consistent with the
assumption of an overdamped dynamics. Fixing the sphere
radius R/h = 80, we characterize the transition from the
unwrinkled to the wrinkled phase in terms of the average
squared displacement hu2i, where the brackets indicate an
instantaneous surface average. In the adiabatic limit m r 0,
this order parameter vanishes in the unwrinkled phase, hu2i = 0
for Se o 0, and jumps to a finite value hu2i4 0 when the excess
film stress Se crosses zero from below. By contrast, for non-
adiabatic quenches, we find that the system remains longer in
the unwrinkled phase, before eventually breaking symmetry at
some finite positive value Se 4 0 (Fig. 2D). Such delayed
symmetry-breaking is characteristic of the classical KZ mecha-
nism, reflecting the critical slowing down in the relaxation
dynamics near a second-order phase transition. To quantify
the scaling behavior in our system, we define the net freeze-out
film stress DSf = Se,f � S0, with Se,f being the value at which the
pattern amplitude is fully developed (Appendix Freeze-out). The
constant shift S0 E 0.1 is required to account for the material
imperfections modeled by the e-inhomogeneity, and is well-
studied in the context of delayed bifurcations.55,56 Our simula-
tions confirm power-law scaling DSf p m1/2 (Fig. 2E), implying
that the freeze-out time diverges as tf p m�1/2.

The perhaps most interesting observable is the topological
defect density rf at freeze-out tf. Defects are crystal sites with
coordination number Z a 6 and non-zero topological charge
s = 6 � Z. To identify the m-dependence of rf in the GSH theory,
we determined the coordination number for each lattice site
from the Voronoi cells of the displacement field u (Appendix
Pattern analysis). The resulting Voronoi graphs show that the
freeze-out density rf increases with the quench rate m (Fig. 2A–C).
After a quench is completed, defect pairs are expected to annihi-
late by grain boundary movements. We tested this hypothesis
in simulations by stopping the quench at the freeze-out value,
S(t) = Se,f for t 4 tf, so that the spherical surface crystals could
relax to a stress equilibrium. For all considered quench rates, we
find that the defect density approaches constant asymptotic
values, which converge to the equilibrium value rN as m r 0
(Fig. 2F). Note that, although the net topological charge is always
+12 in agreement with Euler’s theorem for hexagonal sphere
tilings,39 charge-neutral pairs of penta- and heptagonal defects
can reduce the elastic energy,41,44,57–59 resulting in a non-zero
defect density rN even at equilibrium. Defining the relative excess
defect density at freeze-out tf by Drf = rf � rN, our numerical
data is consistent with a KZ-type power law Drf p m1/2 (Fig. 2G).

3.3 KZ-type scaling for toroidal surface crystals

Local curvature variations can influence the equilibrium defect
localization in curved elastic crystals.41 Moreover, during
crystal growth, local curvature profoundly affects growth rates,
orientation, and defect density at impinging domains.52,60

In essence, locally varying curvature thus makes the crystal-
lization process inhomogeneous. It is then a priori not clear if

Fig. 2 KZ-type scaling laws for spherical surface crystals. (A–C) Crystalline surface patterns (top) and their corresponding Voronoi constructions
(bottom) for different quench rates m at freeze-out time tf show an increase in the defect density for fast quenches. (D) With increasing quench rate m,
bifurcation of the order parameter hu2i becomes delayed, signaling non-adiabatic slowing down. Filled circles indicate the freeze-out film stress Se,f at
which the system has resumed dynamics. (E) The net freeze-out stress DSf = Se,f � S0 follows a power-law scaling in the quench rate consistent with
classical Kibble–Zurek predictions. Error bars are smaller than symbol size. (F) When the quench is stopped at Se,f, the system relaxes slowly to an
equilibrium configuration by lowering its defect density, approaching the minimal equilibrium value rN in the adiabatic limit m - 0 (inset). (G) Although
the pattern formation transition is of first-order, the excess defect density Drf = rf � rN at freeze-out exhibits a square-root power law scaling.
Analogous results were found for systems with R/h = 40.
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and under what conditions the KZ-scalings found for spherical
systems also hold for geometries with non-constant curvature.
To test to what degree the defect scaling laws are affected by
curvature variations and surface genus, we performed addi-
tional parameter scans for tori. For elastic bilayer wrinkling, the
locally varying curvature on a torus determines the strength of
the symmetry-breaking term duG(u) in eqn (1), implying that in
our system purely crystalline toroidal surface patterns exist only
for sufficiently small aspect ratios r/R.41 We therefore focus on
thin tori with r/R = 0.2 (Fig. 3A, B and Movie 2, ESI†). Adopting
the same small random e-inhomogeneities as for the sphere
simulations (and, hence, the same shift value S0), we observe
that the freeze-out stress DSf p m1/2 and the freeze-out time
tf p m�1/2 scale exactly as in the case of constant curvature
(Fig. 3C and D). Furthermore, one again finds that faster quenches
lead to a higher density of defects at freeze-out (Fig. 3A, B, F and
Movie 3, ESI†). Although Euler’s theorem39 imposes a vanishing total
defect charge S = 0 on a torus, excess defects of opposite charge tend
to aggregate at the inner (Z = 7) and outer (Z = 5) equators to lower
the elastic energy of the toroidal crystal,40,41,61,62 resulting in a non-
zero equilibrium defect density rN. As in the sphere case, we find
that the relative excess defect density Drf = rf � rN of the toroidal
surface crystals follows a square root law Drf p m1/2 (Fig. 3F),
suggesting that local curvature variations and surface genus do not
significantly affect the scaling laws on tori. In the next part, we will
rationalize these observations by considering the structure of the
amplitude equations63 for the underlying GSH theory.

4 Discussion

As outlined in the introduction, the original KZ scaling rela-
tions for continuous second-order transitions can be obtained

by analyzing how correlation length and relaxation time diverge
as a function of the control parameter as one approaches the
critical point from the high-symmetry phase. By contrast, the
wrinkling transition considered here is subcritical, with a dis-
continuity in the order parameter at the critical stress Se = 0.
The transition thus carries the signature of a (weakly) first-
order transition. We note, however, that the quench starts in
the unwrinkled phase u = 0. Increasing Se o 0 with stationary
small perturbations |e| { 1, the system remains in the
unwrinkled phase despite the sub-critically stable hexagonal
solution. Within the general Ginzburg–Landau mean-field
framework, in this phase the correlation length diverges as the
system approaches the critical point, and the critical exponent
is n = 1/2.64 In the subcritical region, this argument is not valid
due to the coexistence of solutions. The width dSe of the
subcritical zone is, however, small. For a spherical substrate,
we previously found dSe E (h/R)2/(20 � 0.0192) E 0.02.49 As
pointed out in the context of Rayleigh–Bénard convection,22,24

for sufficiently fast quenches, we expect the system dynamics to
freeze with a selected correlation length before the coexistence
phase is entered. Considering that in our simulations, the
slowest quench froze at |DSf| E 0.04 4 dSe (Fig. 1E), we are
well within this regime. The critical exponent zn = 1 for the
divergence of the relaxation time follows by considering the
characteristic time scale of the linearized decay and growth of
fluctuations.24,64

4.1 Amplitude equations

Alternatively, we can determine the quench-dependent
freeze-out time directly by inspecting the dynamics of the
amplitude equations governing the GSH model. To this
end, we assume approximate hexagonal solutions of the

Fig. 3 KZ-type scaling laws for toroidal surface crystals. (A and B) Crystal structures (top) and Voronoi construction (bottom) for different quench rates m
at freeze-out time tf show an increase in the defect density for faster quenches. (C) Delayed bifurcation of the order parameter hu2i for different quench
rates, with the filled circles indicating the freeze-out film stress Se,f. (D) As for spherical substrates, we find DSf p m1/2 for tori, confirming KZ-type scaling
independent of surface genus and curvature. Error bars are smaller than symbol size. (E) The local average number of defects hNdi at freeze-out time tf

depends weakly on the angle f along the minor radius (f = 0 at the outer equator, and f = p at the inner equator). (F) The locally varying curvature does
not affect the scaling law for the average freeze-out excess defect density Drf = rf � rN which exhibits a square-root dependence on m.
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form u ¼ UðtÞ
P3
a¼1

eika�x þ e�ika�x
� �

, where k1 = kc(1,0),

k2 ¼ kc �1=2;
ffiffiffi
3
p

=2
� �

, k3 ¼ kc �1=2;�
ffiffiffi
3
p

=2
� �

and kc ¼
ffiffiffiffiffiffiffiffiffiffi
6 g0j j

p
.

Inserting this ansatz into the GSH eqn (1), one finds to leading
order in U and curvature (Appendix Amplitude equations)

d

dt
U � cmt

12g04
U: (4)

Dividing by
ffiffiffi
m
p

and defining a rescaled time t0 = m1/2t, we can
remove the quench rate dependence at leading order, to obtain

d

dt 0
U � ct 0

12g04
U: (5)

Identifying the characteristic time scale with the freeze-out time
implies tf p m�1/2, in agreement with our numerical results,
and the classical scaling predictions n = 1/2, z = 2 for systems of
classical Ginzburg–Landau type.15 It may be worth emphasizing
again that this power-law scaling is a direct consequence of the
stress-quench protocol and the system dynamics. In the above
considerations, the quench enters through a purely local u-term
in eqn (1), leaving the scaling law unaffected by curvature
variations. For large curvatures, the amplitude equations are
however expected to break down as the underlying mode
approximation becomes invalid. In this regime, the curvature
dependence of the differential operators in eqn (1) needs to be
taken into account. Such geometric effects have been shown to
affect symmetry-breaking and growth rates of curved 2D
crystals.52,60 However, since in our system the growth rate
increases linearly with the quench depth at freeze-out (Appen-
dix Amplitude equations), we hypothesize that for fast enough
quenches and moderate curvature variations, the KZ-scalings
remain dominant over curvature effects. Lastly, it should be noted
that eqn (1) is valid only when the characteristic wavelength of the
pattern, the hexagonal lattice spacing, is consi-
derably smaller than the radius of curvature. Therefore, wrinkling
on very strongly curved substrates can no longer be adequately
described within the present theory.

4.2 Nucleation dynamics in curved surface crystals

Crystal growth in planar Euclidean geometry is well understood.
By contrast, the complex interplay between kinetics, substrate
curvature and defect formation is still being investigated.26,27 The
current interest in these topics is in parts driven by recent
technological advances in the fabrication of graphene65 and
carbon nanotubes37 and by the development of modern confocal
imaging techniques that make it possible to track micron-sized
colloids and cells at high spatio-temporal resolution. For instance,
the formation of hexagonal crystal structures similar to those
described above can be observed during the early developmental
stages in the fruit fly Drosophila melanogaster, when nuclei migrate
to accumulate underneath the surface of the ellipsoidal shell that
encapsulates the embryo.66 Similarly, ciliated somatic cells form a
spherical crystal on the surface of the colonial alga Volvox carteri,67

with the cells’ arrangement determining the phototactic proper-
ties of the organism.

Important insights into the kinetics of crystal growth on
curved substrates were obtained recently in a joint experi-
mental and theoretical study26 on the assembly of charged
colloids on spherical liquid–liquid interfaces. The crystal for-
mation dynamics observed in these experiments shares striking
similarities with the nucleation sequences of the hexagonal
wrinkling patterns shown in Fig. 1C. In both cases, one first
observes the formation of several smaller highly regular crystal
patches, while the defects form during the later stages when
two or more of these patches merge. These kinetic parallels
suggest a certain universality in the crystal formation processes
on curved surfaces in the slow-quench regime. Extrapolating
these similarities to higher quench rates, one may hope that the
scaling results identified here translate to other physical and
biological systems that develop crystalline structures on their
curved surfaces.

5 Conclusions

The above analysis suggest that KZ-type scalings can occur in
an experimentally accessible, macroscopic elastic bilayer system.
Specifically, we have identified the power law scaling relation
between topological defects densities and linear quench rates
using a recently validated generalized Swift–Hohenberg theory of
elastic bilayer wrinkling.49 Our analysis supports earlier studies
which showed that KZ scalings can arise in the context of (weakly)
first-order transitions, provided the quench rates are fast
enough.22,24 The numerical results above predict universal
scalings in spherical and toroidal geometries. Further work will
be needed however to test whether these results extend to other
geometries with strongly varying curvature, where symmetry-
breaking is expected to become inhomogeneous. With regard to
applications, the KZ scaling relations for elastic surface crystals
offer concrete guidance for controlling the number of topolo-
gical defects by tuning the quench rate, extending previous
work40,41 that showed how substrate geometry can be used for
defect localization. The nucleation sequences leading to crystal-
line hexagonal surface patterns in the thin-film model are
qualitatively similar to those reported recently for colloidal
crystals on spherical liquid–liquid interfaces.26 This suggests
that elastic surface crystals, which have been realized by sub-
strate depressurization46 or surface swelling,47 can offer a
flexible testbed for exploring generic aspects of crystal growth
kinetics and topological defect formation in complex geometries.
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Appendix
Wrinkling theory

Wrinkling of a thin stiff film that is adhered to a softer curved
substrate can effectively be described by a Swift–Hohenberg-type
equation for the normal displacement field u.49 Measuring all
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length in terms of the film thickness h, the associated elastic
energy on an arbitrary substrate geometry o is given by, see
eqn (34) and (40a) in the ESI† of ref. 49,

E ¼ k

2

ð
o
do g0ðruÞ2 þ

1

12
ðDuÞ2 þ au2 þ 2

3
bu3

�

þ c

2
u4 � GðuÞ þ UðuÞ

i (6)

with k = Ef/(1� n2) for a film with Young’s modulus Ef and Poisson
ratio n. The nonlinearities are

GðuÞ ¼ ð1� nÞbabraurbuþ nbggðruÞ2
h i

u

UðuÞ ¼ 1

2
ð1� nÞcabraurbuþ ncggðruÞ2
h i

u2
(7)

Here, bab is the second fundamental form (curvature tensor), and
cab the third fundamental form. We note that b = 3bgg[(3 � n)
K � (bgg/2)2]/2, with K the Gaussian curvature, is of third order in
the curvature tensor and thus negligible in comparison to the first-
order curvature nonlinearity G(u). Moreover, numerical analysis for
experimentally relevant parameters49 shows that U(u) is typically
smaller than the other energy contributions and, hence, does not
significantly affect surface pattern formation. We can therefore
neglect the terms bu3 and U(u) in the remainder.

Taking the variation of the remaining energy with respect to
the normal displacement field u, and assuming overdamped
dynamics, we obtain the generalized Swift–Hohenberg equation
(GSHE) given in eqn (1) with49

duG(u) = (n � 1)[babraurbu + 2urb(babrau)]

+ n[bg
g(ru)2 � 2r�(bgguru)] (8)

To first order in the substrate curvature, the various para-
meters in the energy and in the GSHE relate to mechanical and
geometrical system properties as follows:49

g0 ¼ �
Z2=3

6
; c ¼ 2ð1þ nÞZ2=3

3
c1;

a ¼ ac �
3c

4
Se; ac ¼

Z4=3

12
¼ 3g0

2

with c1 = 0.019 a fitting constant required to match quantita-
tively the wrinkling theory to experiments, and Z = 3Es/Ef the
ratio of Young’s moduli between substrate and film, respectively.49

In our simulations, we fix the Poisson ratio n = 1/2 and
Z = 0.33, corresponding to a substrate that is approximately one
order of magnitude softer than the adhering film, which is in
the range of earlier experiments.48 To solve eqn (1) under
constant quenches Se = mt, we use a custom subdivision
surface-based finite element code with C1-continuous basis
functions.68,69 The simulations use triangular meshes consist-
ing of up to B2.7 � 104 mesh nodes and B5.5 � 104 elements.
To break the symmetry of the initially unwrinkled film u = 0,
we add a small stationary random field e to the rhs of eqn (1).
The values of e at each mesh-node are drawn independently
from a uniform distribution over the interval [�0.5 � 10�6,
0.5 � 10�6] and kept fixed throughout a simulation run.

To integrate the GSHE in time, we use a standard forward
Euler time stepping integrator, noting that the dynamics is
overdamped and thus numerically stable and accurate for small
time steps Dt. For a given quench mt, the numerical integration
is started at time tinit = �103mDt o 0, so that each simulation
spends a comparable number of integration steps in the
unwrinkled regime Se o 0.

Amplitude equations

As outlined in ref. 49, the GSHE on spherical substrates with
radius R can be approximated by a standard Swift–Hohenberg
(SH) equation by replacing the G(u)-term with a quadratic
nonlinearity that produces the same average force for a pattern

consisting of plane waves Beik�x with jkj ¼ kc ¼
ffiffiffiffiffiffiffiffiffiffi
6 g0j j

p
. Keeping

only the first-order curvature terms, the resulting standard SH
equation can be written in the rescaled standard form49

qTf = af � (1 + DX)2f + bf2 � f3 (9)

where

T ¼ t

3g02
; DX ¼

D
6 g0j j

f ¼ u

u�
; u� ¼

ffiffiffiffiffiffiffiffiffiffi
3

c
g0j j

r

a ¼ 1� a

ac
¼ c

4g02
Se; b ¼ �2

ffiffiffiffiffiffiffi
3=c

p
R

For non-spherical substrates, the coefficient b becomes a
function of the position on the surface o and thus generally
considerably more complex than in the spherical case. However,
since an appropriate b-term can be constructed for a given surface
geometry, and the value of b is not important for the subsequent
arguments, it suffices to assume in the following that the GSHE
can be cast into the form (9).

We note that in the above normal form, patterns with non-zero
amplitude and wave length l = 2p emerge when the bifurcation
parameter a 4 0: linearizing eqn (9) with the plane-wave ansatz
u(x,t) = A exp(ot + ikx), we obtain the first-order growth rates

o = a � 1 + 2k2 � k4 (10)

For a4 0, a band of modes around k = 1 becomes unstable and
the growth rate o B a, i.e. unstable modes grow faster the
deeper the quench a.

Performing a standard perturbation analysis for the SH
equation as outlined in ref. 70, we study the behavior close to
bifurcation for a = Bb2 with |b| { 1 and B = O(1). To this end,
we consider a solution to eqn (9) of the form f = bf1 + b3f3 +� � �
with ansatz

f1 ¼
X3
a¼1

AaðtÞeiKa�X þ �AaðtÞe�iKa �X
� �

(11)

where the wave vectors K1 = (1,0), K2 ¼ �1=2;
ffiffiffi
3
p

=2
� �

, and

K3 ¼ �1=2;�
ffiffiffi
3
p

=2
� �

. Substituting this ansatz into eqn (10)
and using that K1 + K2 + K3 = 0, one finds at order O(b3) three
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amplitude equations of the form70

dA1

dT
¼ b2 BA1 þ 2 �A2

�A3 � 3 A1j j2A1 � 6 A2j j2þ A3j j2
	 


A1

h i
(12)

with the other two equations obtained by cyclic permutation.
Splitting the three amplitude equations into six separate
equations for magnitudes Ra = |Aa| and complex phases
ya = arg(Aa), one finds

P
a

ya ¼ 0 as an attractive fix point,

meaning that phases synchronize.70 Without loss of generality,
one can assume individually ya = 0,70 corresponding to a real
amplitude ansatz.

Hexagons are characterized by equal amplitudes Ra � %R,
leading to a single amplitude equation

d �R

dT
¼ b2 B �Rþ 2 �R2 � 15 �R3

� �
(13)

To leading order, we then have in the original units

u ¼ UðtÞ
P3
a¼1

eika�x þ e�ika �x
� �

with ka = kcKa as given in Discussion

and U(t) = u*b %R(t). Hence, combining eqn (10) and (13),
we obtain

dU

dt
¼ cSe

12g04
U � 4

3R g0j j3
U2 � 15c

9g04
U3 (14)

Close to the onset of bifurcation, U { 1 and the higher order
terms O(U2) can be neglected, yielding eqn (4). Note that
curvature-dependent terms appear only at second order in U,
suggesting that the dynamics close to onset is insensitive
to local curvature variation, in agreement with the observed
KZ-scalings on toroidal geometries presented. Moreover, for
spherical substrates, the stable stationary solution of eqn (14) is
spatially invariant and given by

jUj ¼ g0j j
10R

4þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ 5cR2Se

g02

s !
(15)

with R the radius of the sphere. In the adiabatic limit m - 0,
we have

u2
� �

m!0
/ U2 ¼ 4g0

5R

 �2

þ c

10
Se þO Se

2
� �

; (16)

implying a linear growth of the order parameter with Se, in
agreement with Fig. 2D.

For toroidal geometries (Fig. 3C and 4A), we find a similar
behavior for substrates with non-constant curvature, confirming
that curvature variations do not greatly affect the surface-averaged
amplitude for the considered toroidal geometries. Specifically,
we estimate for toroidal geometries from Fig. 3C

hu2im-0 = A + BSe + O(Se
2) (17)

with A E 0.38 and B E 0.32 (solid black line in Fig. 4A).

Freeze-out

We summarize how the freeze-out time tf and the corres-
ponding stress Se,f are obtained for toroidal geometries. The
procedure for spherical substrates is analogous.

We first determine the stress Smax and corresponding time
tmax = Smax/m where hu2i has largest slope. We find that Smax �
S0 p m1/2, confirming the KZ-type scaling (Fig. 4A and B). Since
amplitudes are however not yet fully developed at tmax, we add a
time delay to allow amplitudes of hexagonal patterns to fully
develop. Under a constant-rate quench Se = mt, the amplitude
eqn (14) become quench-rate independent under the rescaling
t0 = tm1/2 at leading order in U. Choosing the delay Dtm�1/2 thus
allows each quench the same (rescaled) time to fully develop
the hexagonal amplitudes. We chose the value of Dt = 30, which
is long enough to allow fully developed hexagonal patterns,
while also being small enough that defect annihilation is still
negligible, thus not affecting the KZ scaling of the defect
density. Accordingly, the freeze-out film stress is defined as
Se,f = mtf = Smax + m1/2Dt.

To confirm the scalings of the order parameter in the
transition region near tmax, we first shift the measured quench
curves of Fig. 4A by tmax and rescale time by m1/2. For better
comparison, we then normalize the order parameter hu2i as

Fig. 4 Determination of freeze-out time and stress for toroidal surface crystal. (A) Delayed bifurcation of the order parameter hu2i, identical to Fig. 3C.
Markers denote the location Se,max of largest slope. The solid line is the linear approximation hu2im-0 = 0.38 + 0.32Se, whereas the dashed line,
hu2isat = 0.37 + 0.2Se demarcates the region where the order parameter begins to saturate. (B) The maximum slope stresses follow the KZ scaling,
Se,max � S0 p m1/2. (C) Close to Se,max and the corresponding time tmax, the dynamics of the normalized order parameter hu2i/hu2im-0,sat is universal
under the rescaling t - tm1/2. Circle symbols indicate the freeze-out times tf = tmax + Dtm�1/2 (Dt = 30).
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follows: from Fig. 4A, we observe that for all quench rates, the
order parameter curves begin to saturate at values of hu2isat that
are linear in Se (dashed line in Fig. 4A). Estimating the linear
trend, we find hu2isat = 0.37 + 0.2Se. We thus normalize hui by
hu2isat evaluated at Se,max. Under these rescalings, the curves
hu2i/hu2im-0,sat for various quenches m collapse onto a single
curve in the transition region close to t = tmax (Fig. 4C).
We emphasize that it is impossible to simultaneously collapse
order parameter curves after the freeze-out, because for
t c tmax the order parameter asymptotes to the adiabatic value,
which scales linearly in the quench rate and time, hu2im-0 C
A + BSe = A + Bmt, explaining the different slopes observed for
t c tmax in Fig. 4C.

Pattern analysis

To reconstruct the curved crystal structure and detect topo-
logical defects, we first threshold the amplitude field u
obtained from simulations to find the center of each crystalline
lattice site. Each site is then connected to its nearest neighbors
via a Delaunay triangulation, and the hexagonal crystal struc-
ture as well as defects are obtained from the dual Voronoi
graph. To find the flat crystal representation of Fig. 1C and E,
we first construct the Voronoi cells of the crystal. We then
randomly select a regular crystal site s0 and its six neighbors as
center of the planar lattice. Based on their positions relative to
s0, the neighbors can be assigned to one of the six surrounding
unit lattice positions. We then repeat this construction sequen-
tially for each neighbor by aligning their closest neighbors with
the existing planar lattice structure, following the procedure
used in ref. 26. To obtain the time evolution, we first construct
the final planar crystal from the fully crystallized configuration
at freeze-out time tf. For all earlier times t o tf, we use a
Hungarian matching algorithm71 to track identical Voronoi
sites and identify them in the fully crystallized planar
configuration.
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22 S. Casado, W. González-Viñas, H. Mancini and S. Boccaletti,

Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2001, 63,
057301.

23 M. A. Miranda, D. Laroze and W. González-Viñas, J. Phys.:
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