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We study a generalized Navier-Stokes model describing the coherent thin-film flows
in semiconcentrated suspensions of ATP-driven microtubules or swimming cells that are
enclosed by a moving ring-shaped container. Considering Stokes’ second problem, which
concerns the motion of an oscillating boundary, our numerical analysis predicts that a
periodically rotating ring will oscillate at a higher frequency in an active fluid than in a
passive fluid, due to an activity-induced reduction of the fluid inertia. In the case of a
freely suspended fluid-container system that is isolated from external forces or torques,
active-fluid stresses can induce large fluctuations in the container’s angular momentum if
the confinement radius matches certain multiples of the intrinsic vortex size of the active
suspension. This effect could be utilized to transform collective microscopic swimmer
activity into macroscopic motion in optimally tuned geometries.
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I. INTRODUCTION

Pendulums swinging in air or water exhibit periods longer than those predicted based on gravity
and buoyancy [1,2]. In his famous mid-19th century work [1], Stokes resolved the discrepancy by
postulating an additional parameter, the index of friction (viscosity), in the hydrodynamic equations
that now bear his name. Building on this insight, Stokes was able to calculate the terminal velocity
of sedimenting globules set by the viscous drag, providing a partial explanation for the suspension
of clouds [3]. Since then, the term Stokes’ problems (SPs) has become synonymous with the
investigation of objects that move either uniformly or in an oscillatory manner through a liquid [4,5].
Nowadays, the traditional SPs provide important reference points for the rheology of active fluids,
such as water-based solutions driven by swimming bacteria [6,7] or microtubule networks [8,9].
Recent experiments show that sufficiently dense bacterial suspensions can significantly reduce the
drag experienced by a moving sphere [10] or rotated cylindrical walls [11]. Several theories have
been proposed to rationalize the observed decrease in shear viscosity, ranging from microscopic and
Fokker-Planck-based approaches [12–15] for dilute suspensions to active liquid crystal continuum
models [16–20] and phenomenological generalized Navier-Stokes equations for semiconcentrated
suspensions [21]. By contrast, the effects of oscillatory boundary conditions, Stokes’ second
problem, have thus far only been partially explored in dilute active fluids [22]. Therefore, it
is currently unknown how the collective microbial swimming dynamics in dense suspensions,
which typically exhibit active turbulence with characteristic vortex length scale � and correlation
time τ [7,8,23–27], interacts with oscillating boundaries. In particular, it is not known how the
frequency of a pendulum is altered by the presence of an active-fluid component. Here we will
show that activity effectively reduces the fluid inertia, thus increasing the frequency relative to that
of an identical pendulum swinging in water.
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FIG. 1. Sketch of the proposed active-fluid analog of the Andronikashvili experiment [33]. A rigid ring
suspended on a torsional spring with the spring constant k is filled with a thin-film active fluid that obeys
Eq. (1). We study the fluid-ring interaction in three scenarios: boundary held fixed (k = ∞, Fig. 2), oscillatory
motion of the ring induced by the torsional spring (0 < k < ∞, Fig. 3), and the response of the ring solely to
the fluid stresses (k = 0, Fig. 5).

To explore Stokes’ second problem in the context of active fluids, we investigate a generalized
Navier-Stokes model [21,28–31] describing semiconcentrated active fluids that are subject to either
oscillating boundary conditions or confined by a container that can respond freely to the internal
fluid stresses. Inspired by recent experiments [6,32], we will specifically consider free-standing thin
liquid films enclosed by a ring-shaped container of radius R attached to a torsional spring of stiffness
k (Fig. 1). For containers periodically forced by a sufficiently stiff spring, our simulations predict an
activity-induced reduction of the fluid inertia due to a lowered bulk viscosity [10,11,14] and hence
a decrease in the oscillation period. The experimental setup proposed in Fig. 1 is the active-fluid
analog of the Andronikashvili experiment [33] used to measure the rotational oscillation frequency
of a container filled with liquid helium. In the quantum case, decreasing the temperature leads to an
increase in the ratio of the superfluid helium relative to the normal fluid phase. Since the superfluid
phase decouples from the container dynamics, a decrease in temperature effectively reduces the
oscillator mass [34,35], causing a measurable increase in the angular oscillation frequency. Our
numerical results in Sec. III predict that active stresses can have a qualitatively similar effect since
topological defects in the bulk stress field can effectively decouple the bulk flow dynamics from the
container.

In the limit of a soft torsional spring (k → 0), the same setup could be used to extract work
from the collective microbial dynamics in an active fluid. Two recent experiments on bacterial [36]
and microtubule [37] suspensions under channel confinement showed that active liquids can
spontaneously achieve persistent circulation by exerting net forces on boundaries [21,38–40].
Such nonequilibrium force generation raises interesting questions as to the combined dynamics
of isolated active-fluid–container systems [41], implying a natural extension of the classic SPs.
Whereas for passive fluids viscous friction eventually suppresses any container motion, active
fluids can continually transform chemical into kinetic energy. This suggests that, under suitable
conditions, mesoscopic bulk fluid vortices arising from collective microbial swimming could
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induce macroscopic fluctuations in the container’s angular momentum, realizing an approximate
nonequilibrium analog of the Einstein–de Haas (EdH) effect [42]. In this crude analogy, the angular
momenta of the bacterial vortices assume the role of the magnetic spin degrees of freedom, whose
collective dynamics induces a measurable angular net motion of the macroscopic sample. Our
analysis in Sec. IV for freely suspended containers (k → 0) driven by active-fluid stresses indeed
predicts that large resonant angular momentum fluctuations and hence work extraction can be
achieved by tuning the container’s diameter and the fluid-container mass ratio.

II. MODEL AND NUMERICAL METHODS

The subsequent analysis is based on a phenomenological higher-order stress model for actively
driven solvent flow introduced in Refs. [21,43]. The energy transport characteristics of the resulting
generalized Navier-Stokes equations (Sec. II A) on periodic two-dimensional (2D) and 3D periodic
domains were characterized in earlier work [29–31]. Here we extend these studies to circular
domains with stationary and explicitly time-dependent boundary conditions by making use of the
recently developed double Fourier sphere spectral method [44] (Sec. II B). We note that conceptually
similar higher-order partial differential equations (PDEs) have been successfully applied recently in
the context of ionic liquids [45,46]. Furthermore, closely related higher-order Navier-Stokes models
have also been studied previously in the context of soft-mode turbulence, seismic waves [28,47,48],
and magnetohydrodynamic turbulence [49], so the results below may have implications for these
systems as well.

A. Generalized Navier-Stokes equations for actively driven solvent flow

We consider a passive incompressible solvent, such as water, driven by active stresses as
generated by swimming bacteria [25], ATP-powered microtubule bundles [8,37], or chemically or
thermally propelled Janus particles [50,51]. The dynamics of the solvent velocity field v(t, x) is
described by the effective Navier-Stokes equations [21,29–31]

∇ · v = 0, (1a)

∂tv + v · ∇v = −∇p + ∇ · σ , (1b)

where p(t, x) is the local pressure. The stress tensor σ (t, x) comprises passive and active contribu-
tions, representing the intrinsic solvent fluid viscosity and stresses exerted by the microswimmers
on the fluid [52–55]. As shown recently [29], a minimal linear extension of the usual Navier-Stokes
for passive Newtonian fluids,

σ = (�0 − �2∇2 + �4∇4)[∇v + (∇v)�], (1c)

suffices to quantitatively reproduce experimentally measured bulk flow correlations in bacterial
and microtubule suspensions [7,8,23–25,27]. The empirical fit parameters �0 > 0, �2 < 0, and
�4 > 0 determine the most unstable mode corresponding to the characteristic vortex size � =
π

√
2�4/ − �2, the typical growth timescale τ , and the bandwidth κ of the unstable wave-number

range [29]

τ =
[

�2

2�4

(
�0 − �2

2

4�4

)]−1

, κ =
(−�2

�4
− 2

√
�0

�4

)1/2

.

The typical vortex circulation speed is U = 2π�/τ . The bandwidth κ controls the active-fluid
mixing and spectral energy transport from smaller to larger scales [29]. We choose (�, τ, κ ) to
characterize active flow structures, as these parameters can be directly inferred from experimental
data [29]. Length and time will be measured in units of � and τ from now on. The higher-order terms
in the generalized Navier-Stokes (GNS) model (1) can be interpreted as a wavelength-dependent
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viscosity [56,57]. A closely related active-turbulence model with piecewise constant wavelength-
dependent viscosity was recently studied in Ref. [58]. In this class of models, the advective
nonlinearity is essential for transporting energy from the active negative-viscosity [30,58,59] modes
to the dissipative long- and short-wavelength modes.

The GNS equations (1) aim to describe an experimentally relevant intermediate regime [6,8],
in which the swimmer concentration is sufficiently high to achieve collective dynamics but still
sufficiently low so that energy transfer due to nonlinearities arising from polar or nematic ordering
potentials [54] can be neglected. In this intermediate regime, hydrodynamic advection can be the
dominant nonlinearity and may not be ignored a priori. The standard argument for neglecting
the advection in Stokes flow models is based on the typical bacterial vortex size � ≈ 100 μm,
collective swimming speed U ≈ 100 μm s−1 [7], and the kinematic viscosity of water 10−6 m2 s−1,
which yields the Reynolds number Re ≈ O(10−2). However, this consideration does not account
for the presence of active stresses that might locally cancel the passive stresses, so the net local
stress contribution to the dynamics can become small relative to advection. Such cancellations
could potentially be relevant in the so-called bacterial superfluids [11,22,60]. To quantify the local
strength of the nonlinear advection relative to the linear stress terms in our simulations, we define
the effective Reynolds-number field

Re(t, x) = ‖v · ∇v‖2

‖∇ · σ‖2
, (2)

which measures the ratio of inertial to viscous and active forces at a given time and position. The
effective mean Reynolds number 〈Re〉 for statistically stationary flows is then defined as the average
of Re(t, x) over space and time.

Focusing on a planar disk domain of radius R, we can rewrite Eqs. (1) in the vorticity–stream-
function form

∂tω + ∇ω ∧ ∇ψ = �0∇2ω − �2∇4ω + �4∇6ω, (3a)

∇2ψ = −ω, (3b)

where the vorticity pseudoscalar ω = ∇ ∧ v = εij ∂ivj is defined in terms of the 2D Levi-Cività
tensor εij and ψ is the stream function. In polar coordinates (r, θ ), one recovers the radial and
azimuthal velocity components from vr = (1/r )∂θψ and vθ = −∂rψ . An impermeable container
wall imposes the radial boundary condition vr (t, R, θ ) = 0. The tangential component satisfies
the no-slip condition vθ (t, R, θ ) = V (t ). We will consider three cases: a stationary boundary
V (t ) = 0, periodic forcing V (t ) ≈ A cos(�t ), and freely suspended boundaries, where the fluid
stresses induce a rigid-body motion V (t ) of the container. Additionally, we fix soft higher-order
boundary conditions ∇2ω(R, θ ) = ∇4ω(R, θ ) = 0 throughout, which have been shown previously
to reproduce the experimentally observed bulk flow dynamics and viscosity reduction in rectangular
shear geometries [21].

B. Numerical method and stationary boundary

To solve Eq. (3) numerically with spectral accuracy, we implemented a recently developed disk
analog of the double Fourier sphere method [44]. The underlying algorithm uses a polar coordinate
representation while avoiding the introduction of an artificial boundary at the origin. We combined
this method with a third-order implicit-explicit time-stepping scheme, which decouples the system
of PDEs (3) and treats the nonlinear advection term explicitly. Spatial differential operators were
discretized using the Fourier spectral method in θ and the ultraspherical spectral method in r [61].
This procedure generates a sparse spectrally accurate discretization that can be solved in a cost of
O(n2 log n) operations per time step, where n is the number of Fourier-Chebyshev modes employed
in θ and r . To avoid aliasing errors, the 3/2 rule [62] was used to evaluate the advection term.
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FIG. 2. Typical flow and stress fields for an active fluid with vortex size � and wide vortex-size
distribution κw = 1.5/�, confined to a planar disk geometry (radius R = 2.67�) with the boundary held
fixed. The presence of the stress-free defects allows the stress director field (third panel) to develop complex
configurations, enabling a nontrivial response to time-dependent boundary conditions (see Figs. 3 and 5). The
effective Reynolds-number field [Eq. (2), last panel] can be locally as small as O(10−2), but there exist regions
where it can reach values of O(102). These localized high-Re domains arise when ‖∇ · σ‖2 is small, which
corresponds to partial cancellation of active and passive stresses. Averaging over space and time gives the
effective mean Reynolds number 〈Re〉 = 8.4 for this simulation.

Additional mode filtering prevents unphysical oscillations in the solution (see [63] for details). The
no-slip boundary conditions were enforced via integral conditions on the vorticity field [64].

We first solved Eqs. (3) for the fixed boundary conditions vθ (t, R, θ ) ≡ 0, which correspond to
the limit of infinite spring constant k → ∞ in Fig. 1. In the case of a relatively wide bandwidth
κw = 1.5/�, the active flow spontaneously forms vortices spanning a range of different diameters
in the vicinity of the preferred value � (Fig. 2 and movie 1 in [65]), in agreement with recent
simulations [39] of multifield models. The traceless nematic stress tensor field σ defined in Eq. (1c)
is uniquely characterized by its largest eigenvalue ‖σ‖2 and the director field of the corresponding
eigenvector. We generally find that the stress director field develops locally ordered domains, which
are punctured and separated by stress-free topological defects (Fig. 2, third panel). As we will
see below, the defects facilitate activity-induced reduction of the fluid inertia, when the container
is periodically forced. We also find that, although the effective Reynolds-number field defined in
Eq. (2) can be locally as small as O(10−2), in agreement with the above estimate based on the
viscosity of water, there exist regions where it can reach values of the O(102) (see the last panel in
Fig. 2). These localized high-Re domains arise when ‖∇ · σ‖2 is small, due to a partial cancellation
of active and passive stresses. Averaging over space and time gives the effective mean Reynolds
number 〈Re〉 = 8.4 for the simulation in Fig. 2. Generally, it would be interesting to perform similar
measurements in continuum models of active nematics [52,54], where the total stress is the sum of
the viscous hydrodynamic solvent contribution and the active Q-tensor contribution.

III. STOKES’ SECOND PROBLEM AND ACTIVITY-INDUCED REDUCTION OF ADDED MASS

To connect with Stokes’ second problem, we next consider the motion of a ring pendulum
consisting of a circular container coupled to a torsional spring with a finite stiffness constant
0 < k < ∞ in Fig. 1. The torque exerted by an active fluid of mass mf on the ring is (Appendix F)

T = −mf

π

∫ 2π

0
dθ σrθ (t, R, θ ), (4)

with σrθ the normal-tangential component of the stress tensor (1c) in polar coordinates. Our
simulations show that relation between T and the angular speed of the ring φ̇ = vθ/R is dominated
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FIG. 3. Stokes’ second problem for an active fluid confined by a ring-shaped container pendulum coupled
to a torsional spring. Response of active fluids with wide [(a) and (b) κw = 1.5/�] and small [(c) and (d)
κs = 0.63/�] vortex-size distributions to oscillatory boundary conditions (see also movies 2 and 3, and Fig. 4).
The boundary speed is sinusoidal with amplitude A and angular frequency �. (b) and (d) Activity-induced
relative change λ in the effective inertia experienced by the ring pendulum. Negative values of λ imply that the
pendulum oscillates at higher frequency in an active fluid than in a passive fluid. The mean Reynolds numbers
are (a) 〈Re〉 = 9.3 and (c) 〈Re〉 = 3.3.

by linear response (Appendix C),

T = −Ifφ̈ − γ φ̇, (5)

with the inertial and dissipative parameters If and γ depending on the driving frequency, geometry,
and fluid parameters. For passive fluids at low Reynolds number, Eq. (5) holds exactly and If and
γ can be calculated for simple geometries, owing to the linearity of the Stokes equations [66]. For
our active-fluid model, we can determine If and γ directly from the numerically measured power
spectral densities (Appendix C).

A. Activity-induced reduction of added mass

To find out how activity affects the pendulum frequency, we follow Stokes’ original argument [1]
and balance T with the torque exerted by the torsional spring of stiffness k, which yields

(Ic + If )φ̈ + γ φ̇ + kφ = 0, (6)

where Ic = mcR
2 is moment of inertia of a ring of mass mc. Since the effect of γ is generally quite

small (Appendix D), we find that to leading order vθ (t, R, θ ) = A cos (�t ), where � = [k/(Ic +
If )]1/2. For passive fluids, this is exactly the result obtained by Stokes, who concluded that the added
fluid inertia If reduces a pendulum’s frequency �. Moreover, by expressing If in terms of viscosity,
he was then able to explain several puzzling experiments [1]. For parameters relevant to microbial
experiments, a passive fluid essentially behaves as a rigid body since the penetration depth

√
2�0/�

is much larger than the container radius R (Appendix E). In this case, the moment of inertia of
the passive fluid equals that of a solid disk If,p = 1

2mfR
2. Using If,p as a natural reference point,

we express the effective inertia of an active fluid as If,a = (1 + λ)If,p, where λ is the relative added
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FIG. 4. Stokes’ second problem for active fluids: additional example snapshots from simulations corre-
sponding to selected parameter combinations in Figs. 3(b) and 3(d). (a) and (b) For a wider spectral driving
range κw� > 1, a broader vortex-size distribution is observed and the bulk stress field becomes disordered
already at small values of the driving frequency �τ  2π . (c) and (d) For a narrow spectral driving range
κs� < 1, the vortices form more regular nearly periodic dynamic patterns and a higher driving frequency
�τ > 2π is required to disrupt the regular structure of the bulk stress field. In all panels, the driving amplitude
is A/U = 1 and the disk radius R/� = 2.67.

inertia due to activity. To explore how confinement geometry, driving protocol, and active-fluid
properties affect λ, we varied systematically the amplitude A, the oscillation frequency �, and the
container radius R in our simulations, comparing active fluids with wide (κw = 1.5/�) and small
(κs = 0.63/�) energy injection bandwidths, respectively (Figs. 3 and 4). Interestingly, we find that
for both values of κ , the added inertia is negative, λ < 0, across a wide range of driving frequencies
� and amplitudes A [Figs. 3(b) and 3(d)]. This implies that the fluid activity effectively reduces
the amount of inertia transferred to the pendulum and hence increases the oscillation frequency
compared with a passive fluid. At high frequencies � � 2π/τ , which can be achieved by using
sufficiently stiff springs, λ ≈ −1, implying that the pendulum does not acquire additional inertia
and oscillates as if placed in a vacuum. In this regime, the bulk flow effectively decouples from the
boundary due to the presence of defects in the stress field.

B. Decoupling mechanism

We attribute the decoupling of the active fluid from the boundary to the presence of defects in the
stress field and the half-loop topology of the stress director field near the boundaries. Specifically,
consider a single half loop, that is, a director field line that starts and ends on the boundary. If the
angles between the tangents to the field line and the normal to the boundary at the two end points
are equal and so are the stress eigenvalues ‖σ‖2, then such a director field line does not transmit any
tangential stress between the boundary and the fluid. This decoupling of a single director field line is
due to a perfect cancellation of the stress contributions at its end points. If the entire region near the
boundary was filled with such idealized half loops, then there would be perfect decoupling between
the fluid and the boundary in the sense that no force would be transmitted between the two. In the
simulations, half loops are never perfectly symmetric and the stress eigenvalues vary slightly on the
boundary [Figs. 3(a) and 3(c)]. However, even weakly distorted half loops can still lead to partial
decoupling as evident from Figs. 3(b) and 3(d). A similar mechanism also explains the reduction of
the effective viscosity in the planar Couette geometry [21].
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Importantly, the presence of the half loops implies that the director field restricted to the boundary
rotates as one moves along the boundary, thus generating net topological charge. Therefore, the fluid
must generate stress defects in the bulk to compensate for the charge induced by the half loops [67].
For example, in Fig. 3(c) the director field rotates in the clockwise direction by the angle 3π as one
moves counterclockwise along the disk boundary. The topological charge produced in this way is
sustained by the bulk disclinations.

These observations suggest that two ingredients are needed to decouple the active fluid from the
boundary: defects in the bulk stress field and a half-loop topology of the stress director field near
the boundary. While the GNS equations (1) generally tend to produce stress defects in the bulk, the
existence of the half loops also depends on the boundary conditions. As shown in Fig. 9 of Ref. [21],
certain types of stiff boundary conditions can prevent half loops from forming and even suppress
the bulk vortex dynamics. The present choice of no-slip plus soft higher-order boundary conditions
∇2ω(R, θ ) = ∇4ω(R, θ ) = 0, which was motivated by the fact that these produce bulk dynamics
similar to experiments [6,7], as well as other stress-based and normal-component-based boundary
conditions, support the half-loop topology [see Figs. 9(a) and 9(c) of Ref. [21]].

IV. WORK EXTRACTION FROM GEOMETRICALLY QUANTIZED ACTIVE FLUCTUATIONS

Mimicking the classical EdH setup, we now consider a container-fluid system isolated from
external forces or torques (k → 0) so that the container responds solely to the stresses generated by
the enclosed fluid. In passive fluids, viscosity dissipates energy and such a system will eventually
converge to a state of rest or rigid rotation if it had nonzero initial angular momentum. By contrast,
active fluids are continuously supplied with kinetic energy through conversion of chemical energy
and may thus induce a permanent dynamic response of the container. Focusing as before on a thin
rigid ring-shaped container governed by Newton’s second law, the angular dynamics of the ring is
determined by

φ̈ = −α

π

∫ 2π

0
dθ σrθ (t, R, θ ), (7)

where α = mf/mc is the ratio of total fluid mass and ring mass (Appendix F). We solve Eqs. (3)
and (7) simultaneously using V (t ) = Rφ̇ as boundary condition for Eqs. (3).

To interpret the simulation results, we note that the characteristic length and time scales � and
τ of an active fluid give rise to a natural unit of angular momentum. Regarding a single vortex as a
thin rigid disk of radius �/2 rotating at the constant angular speed 2π/τ , one finds the characteristic
kinematic angular momentum Lv = π2�4/16τ . A planar disk of radius R can carry about Nv =
(2R/�)2 vortices, so it is convenient to introduce the normalization factor � = √

NvLv. Adopting
� as the basic unit, one would expect specific angular momentum fluctuations of order one if Nv

vortices contributed randomly in an uncorrelated manner. Larger fluctuations indicate correlated
collective angular momentum transfer between vortices and the boundary.

Focusing on an active fluid with a narrow vortex-size distribution (κs = 0.63/�), we performed
parameter scans to determine how the standard deviations σL and σφ̇ of the ring’s angular
momentum L and angular speed φ̇ depend on the ring radius R and fluid-to-ring mass ratio α.
Our simulations show that for a heavy container (α  1), the fluctuations σL are approximately
independent of α, in which case their magnitude is the same as if the boundary was held fixed
(cf. Fig. 2). Once the container becomes lighter (α ∼ 1), the fluctuations start to decrease, with
the decay rate approaching 1/α for very light containers (α � 1) [Figs. 5(a) and 5(d)]. Similarly,
the angular velocity fluctuations σφ̇ ∼ ασL are independent of α for light containers, but increase
linearly for heavy containers. In particular, σφ̇ vanishes as α → 0, implying that the container
becomes stationary as its mass becomes very large, as expected [Figs. 5(c) and 5(d)]. We also
conclude that to maximize the angular velocity fluctuations σφ̇ without significantly reducing the
angular momentum transfer to the boundary the fluid mass should match the container mass (α ∼ 1).
Strikingly, we find that the fluctuations oscillate as a function of R, with the period set by the vortex
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FIG. 5. Geometrically quantized fluctuations in an active fluid with narrow vortex-size distribution κS =
0.63/�. When isolated, the fluid can significantly shake the enclosing container, a thin rigid ring of radius
R. (a) The standard deviation σL of the container angular momentum L depends on the radius R and the
fluid-to-ring mass ratio α. The fluctuations σL are independent of α for heavy containers (α  1) but start
to decrease monotonically with α when the containers become light (α � 1). As R varies, the fluctuations
oscillate with the period set by the characteristic vortex scale � (see also Fig. 6). Black dots represent 323
simulated parameter pairs; the color code shows linear interpolation. (b) Representative time series of the
container angular momentum for two different radii R = 3.67� (movie 4) and R = 3.33� (movie 5) and
fixed mass ratio α = 1. (c) Standard deviation σφ̇ ∼ ασL of the container angular speed φ̇. (d) Horizontal cuts
through (a) and (c) at constant radius R = 4�. In particular, to maximize both the angular momentum and
velocity fluctuations, the fluid mass should match the container mass (α ∼ 1).

size � [Figs. 5(a) and 5(c); see also movies 4 and 5 and Fig. 6]. This result corroborates the idea [68]
that nonmonotonic energy spectra, which the dynamical system (1) develops [29], generically result
in oscillatory forces on boundaries [68]. For optimal combinations of (α,R), σL can be more than an
order of magnitude larger than �, indicating that the bulk vortices transfer angular momentum to the
container collectively [Fig. 5(b)]. Such large quantized nonequilibrium fluctuations offer a different
way of extracting work from active suspensions (e.g., with fluctuation-driven microelectrical
alternators), complementing recently proposed ratchet-based devices [69,70]. For example, at the
peak of bacterial activity we may take τ ∼ 2 s and � ∼ 50 μm [7,29]. At the mass ratio α ∼ 1 and
the container radius R = 200 μm, Fig. 5(d) gives σφ̇ ∼ 0.02(2π/τ ) ∼ 0.06 rad/s, comparable to
the rotation rates of bacteria-powered microscopic gears of similar size reported in [69]. We thus
reach a conclusion similar to that in Ref. [69]: Power available from bacterial active fluids is too
small to drive macroscale devices but can be useful to drive mesoscale objects. However, the GNS
equations (1) only assume the presence of a typical activity scale. Hence, if an active fluid with a
larger characteristic vortex size can be produced, for example, by using larger natural or engineered
swimmers, then the available power will increase and one can expect that the setup considered here
is capable of extracting power to fuel larger devices.
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FIG. 6. Geometrically induced oscillatory behavior of fluctuations for an active fluid with narrow vortex-
size distribution κS = 0.63/�. (a) Angular momentum fluctuations σL as a function of the domain size for
heavy containers obtained from Fig. 5(a) by averaging over α ∈ [0.01, 0.1]. (b) Angular speed fluctuations σφ̇

as a function of the domain size for light containers obtained from Fig. 5(c) by averaging over α � 10. (c) and
(d) Close-up of the time series of the container’s angular momentum (blue) calculated from Eq. (F1) shown
in Fig. 5(b) for domain radii (c) R = 3.33 and (d) R = 3.67. Additionally, to illustrate the angular momentum
conservation in the fluid-container system, we show the time series of the fluid’s angular momentum (orange)
calculated independently using the formula Lfluid = ρ

∫ R

0 dr r
∫ 2π

0 dθ rvθ .

V. CONCLUSION

Recent experiments [27,36,37,71] have successfully utilized the interplay between characteristic
flow pattern scales in active turbulence and confinement geometry to rectify and stabilize collective
dynamics in natural and synthetic microswimmer suspensions. The above analysis extends these
ideas to the time domain to achieve dynamic control, similar in spirit to actuation-controlled
classical turbulence [72]. Our two main predictions about an activity-induced reduction of fluid
inertia and geometrically quantized large fluctuations for a freely suspended container-fluid system
should be testable with recently developed experimental techniques [6,32].

APPENDIX A: NONDIMENSIONALIZATION

For numerical simulations, we nondimensionalize the equations of motion (3) by rescaling
according to

t ′ = T0t, x ′
i = Rxi, ω′ = ω0ω, ψ ′ = ψ0ψ, (A1)

which gives, after dropping the primes,

∂tω + T0
ψ0

R2
(∂yψ )∂xω − T0

ψ0

R2
(∂xψ )∂yω = T0�0

R2

(
∇2ω − �2

�0R2
∇4ω + �4

�0R4
∇6ω

)
,

(A2)
ψ0

R2
∇2ψ = −ω0ω.

We set ψ0 = R2/T0, ω0 = 1/T0, and T0 = R2/�0, which leads to

∂tω + (∂yψ )∂xω − (∂xψ )∂yω = ∇2ω − γ2∇4ω + γ4∇6ω,

∇2ψ = −ω, (A3)

where γ2 = �2/�0R
2 and γ4 = �4/�0R

4.

APPENDIX B: DRIVING PROTOCOL FOR STOKES’ SECOND PROBLEM

We describe in detail the driving protocol for the active Stokes second problem. At t = 0, we
initiate the simulations with both the boundary and fluid at rest plus a small random perturbing flow
δv (‖δv‖1/U  1, where U is the characteristic speed of the turbulent patterns). We then turn on
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FIG. 7. Stokes’ second problem: driving protocol. (a) The driving amplitude [cf. Eq. (B1)] increases
according to the prefactor f (t ) defined in Eq. (B2). (b) The mean kinetic energy time series for the simulation
shown in Fig. 3(b) shows that the system relaxes well before the start time of the temporal averaging periods
(vertical dashed lines).

the periodic driving by applying the no-slip boundary condition

vθ (t, R, θ ) = f (t )A cos(�t ), (B1)

where

f (t ) = 1

2

[
1 + tanh

(
t − 30τ

2.5τ

)]
, (B2)

with τ the characteristic time scale of the active flow patterns as defined in the Introduction. Thus,
for the time interval ∼30τ the boundary remains stationary. During that time, the bulk flow relaxes
and active turbulence develops. At about ∼30τ , the periodic driving sets in and the boundary
condition (B1) quickly approaches vθ (t, R, θ ) = A cos(�t ). Calculation of the relative change λ

in the effective inertia presented in Fig. 3 occurs during the time interval [60τ, 200τ ], long after the
relaxation (see Fig. 7).

APPENDIX C: LINEAR RELATION BETWEEN TORQUE AND ANGULAR SPEED
FOR STOKES’ SECOND PROBLEM

In this section we quantify how accurately the formula (5), which relates the fluid-induced torque
T(t ) on the container to the container angular speed φ̇(t ), describes the response of an active fluid
subject to oscillatory boundary conditions. This formula approximately holds if the power spectral
density (PSD) |T(ω)|2 of the time series T(t ) is concentrated at the driving frequency �. To see
this, we follow the usual argument (see, for example, [66]). We write the container angular speed as
φ̇ = φ0�(ei�t ), where φ0 = A/R and � denotes the real part. If the PSD |T(ω)|2 is concentrated at
�, then

T(t ) ≈ �{T(�)ei�t ] = �{[Tr(�) + iTi(�)]ei�t }

= �
{
Tr(�)ei�t + Ti(�)

�

d

dt
ei�t

}
= Tr(�)

φ0
φ̇(t ) + Ti(�)

φ0�
φ̈(t ). (C1)

Setting If = −[Tr(�)]/φ0 and γ = −[Ti(�)]/[φ0�], we obtain Eq. (5).
To verify that the PSD |T(ω)|2 of the time series T(t ) is concentrated at the driving frequency

�, we performed spectral analysis of the steady-state part of T(t ). Let Tn be the discrete time series
obtained in simulations, where n denotes the time step. The number of time steps is always taken
large enough to ensure that the physical time interval is at least two orders of magnitudes greater
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FIG. 8. The linear relation (5) between the torque T(t ) and angular speed φ̇(t ) approximately holds for
active fluids. The formula becomes very accurate as the driving frequency � and amplitude A become larger
than the corresponding active-fluid characteristic pattern formation parameters 2π/τ and U , respectively. (a)
and (d) Normalized power spectral density |Tω|2/∑

ω′ |Tω′ |2 of the (discrete) steady-state time series Tn for
the two simulations shown in Figs. 3(b) and 3(d). The complex amplitudes Tω are obtained by applying the
discrete Fourier transform to Tn. The proportion of the energy concentrated (b), (c), (e), and (f) at the driving
frequency � as well as (insets) at the second most energetic frequency is shown as a function of (b) and (e) �

and (c) and (f) the oscillation amplitude A for active fluids with the (b) and (c) wide and (e) and (f) small active
bandwidths κw and κs, respectively.

than the larger of the two quantities: the characteristic pattern formation scale τ or the driving period
T = 2π/�. The time series itself is obtained by integrating the stress tensor over the container
according to Eq. (F2). We apply the discrete Fourier transform to Tn to obtain the discrete PSD
|Tω|2.

Figure 8 quantifies the shape of the power spectral density by displaying the proportion of the
PSD concentrated at � as well as at the second most energetic frequency. Figures 8(a) and 8(d)
show the full PSD |Tω|2 normalized by the total energy

∑
ω |Tω|2 for the two simulations shown

in Figs. 3(b) and 3(d). Two strong peaks at the driving frequency � = 2π/τ confirm that the
formula (5) holds in these two cases. In general, we measured the proportion of the PSD stored in the
driven mode |T�|2/∑

ω |Tω|2 [Figs. 8(b), 8(c), 8(e), and 8(f)] as well as in the second most energetic
mode [insets in Figs. 8(b), 8(c), 8(e), and 8(f)] for different container radii R, driving frequencies
[Figs. 8(b) and 8(e)], driving amplitudes [Figs. 8(c) and 8(f)], and the wide [Figs. 8(b) and 8(c)] and
small [Figs. 8(e) and 8(f)] active bandwidths κw and κs, respectively, defined in the Introduction.
We found that at least about half of the energy is always concentrated at the driven mode and that
this proportion quickly becomes larger than 90% once the driving frequency � and amplitude A

become larger than the corresponding active-fluid characteristic pattern formation parameters 2π/τ

and U , respectively. The second most energetic mode typically contains an order or two orders of
magnitude less energy than the driven mode. Overall, Fig. 8 confirms that the response of the torque
T(t ) is typically concentrated around the driving frequency �, validating the relation (5) in the case
of active fluids.
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APPENDIX D: DISSIPATIVE RESPONSE FOR STOKES’ SECOND PROBLEM

The discussion of the active Stokes second problem in the main text focused on the inertial
response characterized by the parameter If in Eq. (5). In this appendix we focus on the dissipative
response described by the parameter γ in that equation. Both If and γ are displayed in Fig. 9.

Specifically, we are interested in the energy transfer between the container and the active fluid,
reflected in the average power input per unit length 〈P 〉 needed to sustain the oscillations. As will
be shown in Appendix E, a passive Newtonian fluid (�2 = �4 = 0) such as water confined to a
circular container responds effectively as a rigid body under the conditions typical for active fluids
experiments. Since an ideal rigid body is a conservative system, we instead benchmark the active-
fluid dissipative response against the response of a passive Newtonian fluid filling the upper half
plane and driven horizontally along the x axis. In this classical setting, Stokes’ second problem can
be solved analytically yielding the power input per unit area 〈P〉 = ρA2√��0/8, where ρ and �0

are the density and kinematic viscosity of the fluid [66]. Adapting this classical result to thin films
by interpreting 〈P〉 as power per unit length and ρ as area density, 〈P〉 = ρA2√��0/8 defines a
reference for the dissipative response of the active fluid.

We computed the power input 〈P 〉 in two different ways: using the full time series for the
torque T(t ), which gives 〈P 〉 = 〈Tφ̇〉, or approximately, using the relation (5), for which 〈P 〉 ≈
γ (A/R)2/2. To explore how the confinement geometry, driving protocol, and active-fluid properties
affect 〈P 〉 computed in these two ways, we varied systematically the amplitude A, the oscillation
frequency �, and the container radius R in our simulations, comparing active fluids with wide
(κw = 1.5/�) and small (κs = 0.63/�) spectral bandwidths, respectively. The results of these
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FIG. 9. (a) and (d) Inertial and (b) and (e) dissipative response parameters If and γ as a function of the
oscillating frequency � and amplitude A (insets) that appear in the relation (5) for active fluids with (a)–
(c) wide κw = 1.5/� and (d)–(f) small κs = 0.63/� spectral bandwidths. The parameters were computed
using Eq. (C1). (c) and (f) The average power input per unit length 〈P 〉 in the steady state normalized by
the value 〈P〉 expected from the classical Stokes problem for a semi-infinite plate shows relative resonance at
the characteristic frequency 2π/τ of the active flow patterns. The markers indicate power input as computed
from the full time series of the torque T(t ), while the lines indicate the contribution derived from the linear
relation (5).
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parameter scans are summarized in Figs. 9(c) and 9(f). The two ways of computing 〈P 〉, through
the exact [markers in Figs. 9(c) and 9(f)] and approximate [lines in Figs. 9(c) and 9(f)] formulas,
yield almost identical results, further verifying the validity of Eq. (5).

Changing the driving amplitude A while keeping the other parameters fixed, we find that the
classical power-amplitude scaling 〈P 〉 ∼ A2 remains preserved in active fluids to within a good
approximation [insets in Figs. 9(c) and 9(f)]. Our simulations predict, however, that passive and
active fluids exhibit a fundamentally different response to frequency variations. For both κ� > 1
and κ� < 1, we observe deviations from the 1/2 exponent characterized by a relative resonance
when the external driving period T = 2π/� becomes of the order of the intrinsic vortex growth
time scale τ [Figs. 9(c) and 9(f)]. Away from the resonance, the growth is faster than predicted by
the 1/2 exponent at small frequencies and slower than the 1/2 exponent at large frequencies; the
precise growth rates depend on the domain size R, a signature of the interplay between activity and
confinement. However, the relative resonance itself is robust against variations in R.

APPENDIX E: PASSIVE FLUID RESPONSE FOR STOKES’ SECOND PROBLEM

In this appendix we analyze the response of a passive fluid (�2 = �4 = 0) with water viscosity
�0 = 10−6 m2/s to the oscillatory boundary conditions presented in Fig. 3. We first compare the
penetration depth δ [66],

δ =
√

2�0/�, (E1)

with the domain size R. Typical values of the characteristic timescale τ and vortex size � at the peak
of bacterial activity are (τ,�) = (2 s, 50 μm) [7]. Therefore, in a potential experiment realizing
the setup in Fig. 3, one expects frequencies and domain sizes of the order � ∼ 2π/τ ∼ 3.14 rad/s,
R ∼ 4� ∼ 200 μm. For such frequencies, a passive fluid with water viscosity has the penetration
depth

δ ∼ 1 mm � R. (E2)

We see that the penetration depth is much bigger than the domain size, which implies that, for
the range of domain sizes and driving frequencies relevant to the active Stokes second problem,
the passive fluid effectively responds as a rigid body. Since a rigid body performing harmonic
oscillations behaves like a conservative system, one expects a negligible power input in that case.
Specifically, a flat disk of radius R and thickness z filled with water with density ρ = 103 kg/m3

has mass mf = ρπR2z. The corresponding moment of inertia is

I = mfR
2/2 = ρπR4z/2.

The angular speed of the disk is φ̇(t ) = (A/R) cos(�t ) [see Eq. (B1)]. Then the energy of the rigid
disk is E = I φ̇2/2. Differentiating with respect to time yields the power of the disk undergoing
sinusoidal oscillations about the z axis,

P = Ė = I φ̇φ̈ = −I (A/R)2� cos(�t ) sin(�t ). (E3)

Averaging the above expression over a period yields zero-power input, as expected. We compared
this exact expression with the power input for a passive fluid subject to the oscillatory bound-
ary conditions in the disk geometry presented in Fig. 3 with driving parameters (R,A,�) =
(200 μm, 628 μm/s, 3.14 rad/s), typical for the active problem. Figure 10 shows the vorticity
profile and time series for the power input in a representative simulation. The evolution of the power
input is sinusoidal and follows the exact expression (E3) very closely, implying that the fluid indeed
behaves like a rigid body, as expected from the above penetration depth estimates.

The above analysis confirms that a passive fluid responds to the oscillatory boundary conditions
in the disk geometry presented in Fig. 3 effectively as a rigid body. In the notation given by Eq. (5),
the passive response is characterized by If = If,p = mfR

2/2 and γpassive ≈ 0, justifying the definition
of the activity-induced relative added mass λ given by If,a = (1 + λ)If,p.
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FIG. 10. A passive fluid (�2 = �4 = 0) with viscosity �0 = 10−6 m2/s confined to a disk domain of radius
R = 200 μm subject to oscillatory boundary conditions in Eq. (B1) with angular frequency � = 3.14 rad/s
and amplitude A = 628 μm/s responds effectively as a rigid body. This is because for such parameters, typical
for the active Stokes second problem presented in Fig. 3, the penetration depth δ of the passive fluid is much
bigger than the domain size R. (a) Representative snapshot of the vorticity and flow fields illustrates the rigid-
body-like response. (b) The corresponding power input (solid line) of the passive fluid driven according to the
protocol described in Eq. (B1) follows accurately the formula (E3) for the power input of a rigid body rotating
about the z axis represented by a disk with mass equal to that of the fluid (dotted line).

APPENDIX F: CONTAINER ANGULAR MOMENTUM EQUATION

When a container encapsulating an active fluid is isolated from external forces and torques, it
is subject solely to the fluid stresses. The container is taken to be a uniform rigid ring of radius R

and mass mc. The fluid is assumed to form a planar free-standing thin film supported on the ring.
Since the fluid is incompressible, the center of mass of the ring is stationary. However, the ring can
acquire angular momentum, because the fluid can exert nonzero torque on the container. The ring’s
angular momentum is

Lc = I φ̇, (F1)

where I = mcR
2 is the moment of inertia and φ̇ is the angular speed. Assuming the ring lies in the

(x, y) plane and its center is at the origin, working in polar coordinates (r, θ ), we find that the torque
due the fluid stress on a small segment Rdθ of the ring is

R r̂ × [ρσ · (−r̂ )Rdθ ] = −ρR2σrθdθ, (F2)

where σrθ = r̂ · σ · θ̂ . The two-dimensional fluid density ρ appears explicitly, since in the main text
it is our convention that in the stress tensor

σ = (�0 − �2∇2 + �4∇4)[∇v + (∇v)�] (F3)

the parameters �i are kinematic quantities. Integrating over the entire ring gives the total torque and
thus the evolution of the ring angular momentum obeys

d

dt
Lc = −ρR2

∫ 2π

0
dθ σrθ . (F4)

In terms of the ring angular acceleration, we have

mcφ̈ = −ρ

∫ 2π

0
dθ σrθ . (F5)

Nondimensionalizing as in Sec. I, we obtain

mcφ̈ = −ρR2
∫ 2π

0
dθ σrθ , (F6)
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where σ = (1 − γ2∇2 + γ4∇4)[∇v + (∇v)�]. The fluid mass is mf = ρπR2. We introduce a
dimensionless parameter α representing the ratio of the fluid mass to the ring mass,

α = mf

mc
. (F7)

We then find that the angular speed of the ring obeys

φ̈ = −α

π

∫ 2π

0
dθ σrθ . (F8)
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