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Natural and artificial networks, from the cerebral cortex to large-scale power grids, face the challenge of
converting noisy inputs into robust signals. The input fluctuations often exhibit complex yet statistically
reproducible correlations that reflect underlying internal or environmental processes such as synaptic noise
or atmospheric turbulence. This raises the practically and biophysically relevant question of whether and
how noise filtering can be hard wired directly into a network’s architecture. By considering generic phase
oscillator arrays under cost constraints, we explore here analytically and numerically the design, efficiency,
and topology of noise-canceling networks. Specifically, we find that when the input fluctuations become
more correlated in space or time, optimal network architectures become sparser and more hierarchically
organized, resembling the vasculature in plants or animals. More broadly, our results provide concrete
guiding principles for designing more robust and efficient power grids and sensor networks.
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Fluctuations fundamentally limit the function and effi-
ciency of physical [1] and biological [2,3] networks across
a wide spectrum of scales. Important examples range from
atmospheric turbulence [4,5] affecting large telescope
arrays [6], wind farms [7–11], and power grids [12–16]
to neuronal noise in the auditory [17,18] and visual [19,20]
cortices, and extrinsic and intrinsic fluctuations [21] in gene
expression pathways [22,23]. Over the last decades,
remarkable progress has been made in the development
and understanding of noise-suppression strategies [24,25]
and their limits [2,26] in physical [11,27,28] and biological
[17,19,29] networks. Classical adaptive noise filtering
[30–32] utilizes active control [33,34], and networks can
be optimized for active controllability [35–37] and/or
transport efficiency [38–43]. Still lacking at present are
generic design principles for the construction of optimal
passive noise-canceling networks (NCNs). While passive
noise reduction has been demonstrated for single oscillators
[44], it is not yet well understood how the architecture and
efficiency of optimal NCNs depends on the input correla-
tions and cost constraints in natural and man-made systems.
Deciphering these dependencies can yield more robust
sensory network and power grid designs and may also help
clarify the role of noise-reduction in biological network
evolution.
Correlated input fluctuations can have profound bio-

medical or technological consequences in hierarchical
network structures. For instance, the detection neurons
of the retina are subject to correlated fluctuations [45]
which are passed on to the visual cortex where input
noise has been shown to affect neural processing [19].
Similarly, deficient noise cancellation in dysfunctional
auditory subnetworks has been proposed as a potential

cause of tinnitus [17,18]. Another conceptually related
problem of rapidly increasing importance is the feed-in
of spatiotemporally correlated power fluctuations from
solar and wind farms into multinational power grids
[5,7,9,11–14,46–49]. These examples raise the general
question of the extent to which efficient noise cancellation
can be hard wired into a network’s architecture if the signal
fluctuations have known statistics.
Here, we show both analytically and numerically for

generic oscillator networks [12,46,50–52] that it is indeed
possible to design optimized weighted network topologies
capable of suppressing “colored” fluctuations [9,53] as
typically present in biological and engineered systems.
In stark contrast to the widely studied problem of
optimal synchronization [27,54–63], our results imply that
optimal NCNs harness desynchronization to reduce fluc-
tuations globally. Importantly, NCNs operate purely pas-
sively, canceling out a substantial fraction of the input
fluctuations without requiring active smoothing—the net-
work itself acts as the filter. As a general principle, we find
that the more correlated fluctuating inputs are in space or
time, the sparser and the more hierarchically organized
the NCN will be. Interestingly, the best-performing net-
works are often reminiscent of leaf venation or animal
vasculature, supporting the view that robustness against
fluctuations has been an evolutionary factor [39,64]. The
mathematical analysis below thus provides detailed guid-
ance for how to use biomimetic network topologies to
improve noise robustness in engineered grids and sensor
networks.
To investigate noise cancellation in a broadly appli-

cable setting, we consider a generic model of N spati-
ally distributed, nonlinearly coupled second-order phase
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oscillators, with phase angles δiðtÞ at each network node i,
governed by

δ̈i ¼ −γ _δi þ
XN

j¼1

Bij sinðδi − δjÞ þ PiðtÞ; ð1Þ

where γ is a damping coefficient. The oscillator couplings
are symmetric, Bij ¼ Bji, and PiðtÞ is the fluctuating net
signal or power input at site i. Equation (1) has been
successfully applied to describe the dynamics of power
grids [50]. The Kuramoto model [51,54] is recovered in the
overdamped limit, for which all subsequently derived results
remain valid after a transformation of parameters
(Supplemental Material [65]). The fluctuating inputs can
be decomposed as PiðtÞ ¼ P̄i þ ξiðtÞ, where ξiðtÞ are the
fluctuations around the constant mean P̄i. Because Eq. (1) is
invariant under a constant shift δi → δi þ c, it is possible to
split off the irrelevant dynamics of the mean ð1=NÞ

P
jδj

(Supplemental Material [65]). As a result, only the centered
inputs P̄c

i ¼ P̄i − ð1=NÞ
P

jP̄j and ξci ¼ ξi − ð1=NÞ
P

jξj
are relevant.Adopting thismean-centered frame of reference
from now on, we write δiðtÞ ¼ δ̄i þ εiðtÞ for constant
average phase angles δ̄i and fluctuations εiðtÞ. Assuming
that the angle fluctuations εiðtÞ are small and linearizing
around δ̄i, we obtain the coupled set of equations,

0 ¼
XN

j¼1

Bij sinðδ̄i − δ̄jÞ þ P̄c
i ð2Þ

̈εi ¼ −γ_εi þ
XN

j¼1

½Bij cosðδ̄i − δ̄jÞ&ðεi − εjÞ þ ξci ðtÞ: ð3Þ

The zeros of the nonlinear algebraic Eq. (2) correspond to
fixed points of Eq. (1). Ourmain goal here is to use Eq. (3) to
derive and characterize optimal couplings Bij that minimize

the total fluctuation variance hjεðtÞj2i, where the vector εðtÞ
has components εiðtÞ, the total instantaneous variance is
the norm jεðtÞj2, and h·i denotes a time average. The
optimal network connectivity Bij will depend on the
statistics of the input fluctuations, encoded in the elements
Rijðt; t0Þ ¼ hξiðtÞξjðt0Þi of the covariance matrix R.
Throughout, we assume that spatiotemporal correlations

factorize, although the general approach extends to
the nonfactorizing case. For the time correlations, we
focus on colored Ornstein-Uhlenbeck noise [53] with
Rðt; t0Þ ¼ R̂e−jt−t

0j=τ=ð2τÞ. In the limit of correlation time
τ → 0, white noise is recovered with Rðt; t0Þ ¼ R̂δðt − t0Þ.
For the spatial part R̂ ¼ ðR̂ijÞ, we choose generic
isotropic and homogeneous Gaussian covariances
R̂ij ¼ e−jxi−xjj

2=ð2σ2Þ, where xi is the spatial position of
oscillator i and σ is a correlation length. In the limit σ → 0,
the feed-ins become incoherent with R̂ij ¼ δij. The total
fluctuation variance hjεðtÞj2i can be calculated analytically
for any R̂ in the Langevin formalism (Supplemental
Material [65]),

hjεðtÞj2i ¼ 1

2γ
tr
!"

1þ τ2

1þ γτ
L
#−1

L†R̂
$
; ð4Þ

where L is the weighted graph Laplacian matrix of
the network with the weights of edge ðijÞ given by
Bij cosðδ̄i − δ̄jÞ, and tr is the matrix trace. The pseudoin-
verse L† implicitly acts as a projection to center R̂. In the
white-noise limit τ → 0, Eq. (4) reduces to

hjεðtÞj2i ¼ 1

2γ
trðL†R̂Þ: ð5Þ

The structure of Eqs. (4) and (5) implies that, in principle,
arbitrarily small variances hjεðtÞj2i can be achieved by
choosing the Bij arbitrarily large. In natural or engineered

(a) (b)

FIG. 1. Even for spatially incoherent white noise input σ, τ → 0, optimal NCNs exhibit a nontrivial sparse topology independent of the
nonlinear steady state. (a) The fraction of loops fl ¼ Nl=Ntri, where Nl is the number of loops in the optimized network and Ntri is the
number of loops in a triangular grid, measures the topology of optimal networks. Each of the 30 × 30 pixels in the cost-convexity phase
diagram is an average over 15 optimal networks obtained for different uniformly random initial Bij. In the white domain, no solutions to
Eq. (2) were found. The NCN topology fl is effectively independent of C. Panels △, ☆, □ show examples of optimal NCNs with
different sparsities, with edge thicknesses proportional to Bα

ij. Backgrounds show one instance of the spatial feed-ins ξiðt0Þ normalized
to ð−1; 1Þ. (b) Time-averaged variance hjεðtÞj2i and instantaneous variances jεðtÞj2 (faint) obtained from numerical solutions of Eq. (1)
on uniform and optimized network topologies for α ¼ 0.25 (△) and α ¼ 0.5 (☆) with edge cost C ¼ 1 and centered inputs. Analytically
predicted variances (dashed) agree with the simulations.
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real-world networks, however, the allowed values of the Bij
are restricted by construction or maintenance costs. To
account for this fact, we adopt here the widely used
[39,40,57,64,66] cost constraint

P
ðijÞB

α
ij ¼ NeC, where

α > 0 is a convexity parameter, C the cost per edge, and Ne
the number of edges in the network. In the concave regime
α < 1, one expects sparse networks because it becomes
more economical to construct a single edge with a large
coupling rather than to distribute over, say, two smaller
ones. Since many natural networks are sparse, and sparsity
is desirable in engineering, this concave range arguably
comprises the most interesting part of phase space. The
cost-constrained optimization is carried out starting from a
given base network and initial Bij. Optimal weights are
found iteratively using the method of Lagrange multipliers
(Supplemental Material [65]). Weights Bij ¼ 0 in the final
optimized network correspond to edges being pruned from
the base network, and thus to changes in topology. In the
case of white noise in time and close to synchrony (δ̄i ≈ 0),
the minima have an interesting interpretation: using the
eigendecomposition R̂ ¼

P
k ρkrkr

⊤
k , one finds the defining

relation αλBαþ1
ij ¼

P
kρk½Bijðε

ðkÞ
i − εðkÞj Þ&2, where the εðkÞ

are steady-state angles in the presence of steady feed-ins rk.
Thus, the optimal couplings are directly related to a
weighted average over local steady state flows. In the
general case, additional terms appear (Supplemental
Material [65]). Armed with these analytical insights, we
now turn to the numerical investigation of optimal NCNs
for different input noise statistics.

As base networks, we explore planar triangular grids
which are approximately realized in many biological and
engineering systems such as cilia [67,68] or staggered
wind farms [69]. The number of nodes is N ¼ 100 and
damping is fixed at γ ¼ 0.5, following Ref. [50]. The
uncentered steady feed-ins are P̄i ¼ ηi, where the ηi are
independent Gaussian random variables with zero mean
and unit variance. Covariance matrices are normalized to
trðR̂Þ ¼ 1, bringing steady state background and fluctua-
tions to a similar scale. Numerical solutions of Eq. (1) were
obtained using the Euler-Maruyama scheme with time step
Δt ¼ 10−3. All main results remain valid for other grid
geometries (Supplemental Material [65]).
Already in the simplest case, when node inputs are white

noise in time (τ → 0) and spatially incoherent (σ → 0),
optimal NCNs exhibit nontrivial topologies in the sparse
regime 0 < α < 1 [Fig. 1]. The fraction of loops
fl ¼ Nl=Ntri, where Nl is the number of loops in the
optimal network and Ntri is the number of loops in the full
triangular grid, decreases with α [Fig. 1(a)]. This indicates
that optimal NCNs become sparser for α → 0. The nonzero
couplings in the optimized network have similar magnitude
for uncorrelated inputs [Fig. 1(a),(△,☆)], and the optimal
networks do not follow any symmetry of the base network.
As expected, optimal networks become dense for α > 1
[Fig. 1(a),(□)] and retain the base network topology. The
nonlinear steady state, despite being fully taken into
account in our optimization procedure, has little influence
on the structure of optimal NCNs. Decreasing the mean

(a) (b)

(c) (d)

FIG. 2. Spatial and temporal input correlations lead to a similar hierarchical NCN organization despite acting through different
mechanisms. (a),(b) Gaussian spatial correlations σ > 0 with temporal white noise τ → 0. The loop fractions fl in (a) show that NCN
topology depends largely on α, although the transition between loopy and sparse phase shifts when the correlation scale σ approaches
the mean edge length Lb. For σ ≫ Lb networks become sparser when α∼1. (b) The coupling variance σB, normalized by the mean μB,
indicates that nonuniform hierarchical patterns and sparsity are strongly correlated. (c),(d) Ornstein-Uhlenbeck colored noise τ > 0with
spatially incoherent feed-ins σ → 0 shows hierarchical patterns similar to those in panels (a),(b). Examples of optimal networks at the
positions marked by symbols in the phase diagrams illustrate the transitions from dense uniform networks to sparse hierarchical
networks with increasing spatial or temporal correlation. Each of the 30 × 30 pixels in (a)–(d) is an average over 15 optimal networks.
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coupling through the cost C pushes the NCNs towards
the regime lacking solutions of Eq. (2), but causes no
significant changes in topology apart from an overall
scaling of the couplings, even very close to the transition
[Fig. 1(a)]. Simulations of the full nonlinear Eq. (1) on
the identified sparse NCNs confirm a significant noise
reduction compared to uniform weights, in quantitative
agreement with the predictions of the linear model [dashed
and solid lines in Fig. 1(b)]. In general, the linear
approximation is accurate as long as the noise is small
compared to a worst-case uniform distribution εi ∈½−π; πÞ
(Supplemental Material [65]). Since the optimal topologies
show little dependence on the nonlinear steady state
[Fig. 1(a)], it suffices to focus on the synchronized limit
δ̄i ¼ 0 and C ¼ 1 when considering correlated noisy inputs
in the remainder. The existence of nontrivial optimal NCN
topologies even for uncorrelated inputs is remarkable, and
may already have practical applications.
Even more interesting hierarchical NCN structures arise

when the input noise becomes correlated [Fig. 2]. The
optimal couplings settle into nonuniform patterns contain-
ing loopy backbone structures with treelike branches,
reminiscent of plant [70,71], fungal [72], or animal [73]
vasculature [Fig. 2(△)]. To dissect the effects of correla-
tions, we first consider fluctuating inputs that are still
uncorrelated in time (τ → 0) but have a finite correlation
length σ > 0. Our numerical analysis shows that the
topology of optimal NCNs changes as σ is varied relative
to the mean edge length Lb, the latter defining the natural
resolution scale for a network. As expected, for σ ≪ Lb, we
find the same NCN topology as for incoherent inputs
[Figs. 1 and 2]. In contrast, when σ becomes comparable to
or larger than Lb, the optimal NCNs become significantly
sparser for 0 < α < 1 [Fig. 2(a)]. This transition is accom-
panied by the gradual emergence of a hierarchical network
structure, reflected by an increased standard deviation σB of
the optimal coupling parameters Bij relative to their mean

μB [Fig. 2(b)]. Thus, NCNs for spatially correlated white
noise develop hierarchical sparse architectures as the
correlation length σ increases.
These observations can be rationalized by noting that in

the limit of large σ, we have R̂∼D, where D is the matrix
of squared Euclidean distances between oscillators. The
rank of D is at most the dimension d of the embedding
space [74]. Therefore, the objective Eq. (5) becomes
equivalent to an average over at most d steady-state inputs.
For networks with a single nonfluctuating input, it is known
that the optimal topology is a maximally sparse tree [38].
Since d ¼ 2 in our case, the optimal NCNs are close to such
trees. This argument holds for any sufficiently well-
behaved R̂ ¼ fðD=σ2Þ that depends on the node distances
via a scale parameter. The emergence of the hierarchical
structure follows from the earlier stated fact that couplings
become proportional to a mean flow, which in a treelike
topology of steady inputs accumulates as the network graph
is traversed upstream from a leaf node. Remarkably, for
large σ, the optimal NCNs often exhibit spontaneous
symmetry breaking by approximately realizing rooted
trees, in which a hierarchical backbone emanates from
one or two central nodes [Fig. 2(△)] even though no such
distinguished node(s) were initially prescribed.
Interestingly, colored noise with nonvanishing correla-

tion time τ > 0 but no spatial coherence (σ → 0) has
qualitatively similar effects on the network structure.
When τ is larger than the damping timescale γ−1, optimal
NCNs also become sparser and more hierarchically pat-
terned [Figs. 2(c),2(d) and (⊲,⊳)]. The origin of sparsity is
now different because R̂ is almost full rank for σ → 0, and
related to the large-τ asymptotic behavior of the objective,
hjεðtÞj2i∼tr½ðL†Þ2R̂&=ð2τÞ. Although the objective does
not scale homogeneously with C anymore, only the
transition between the different NCN topologies changes
(Supplemental Material [65]).

(a) (b)

FIG. 3. Combining spatial and temporal correlations leads to three qualitatively distinct NCN phases in the ðτ; σÞ plane. (a) The loop
density fl characterizes the three phases as follows: Short correlation times τ and short correlation lengths σ favor highly reticulate
redundant networks (⊲), large τ and small σ lead to a moderate reticulation (⊳), whereas large τ and large σ selects low reticulation (△).
(b) The coupling spread σB=μB indicates a similar division of the ðτ; σÞ-phase plane: Low τ, σ lead to highly uniform networks (⊲), high
τ and low σ lead to networks with an intermediate coupling variability (⊳), and high τ, σ lead to strongly hierarchical networks with
large spread in the couplings Bij (△). The three phases are separated approximately by the lines τ=γ−1 ∼1 and σ=Lb ∼1. Each pixel in
the 30 × 30 plots (a),(b) is an average over 15 optimal networks; α ¼ 0.5, C ¼ 1 in all panels.
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Lastly, combining spatial and temporal correlations,
the ðτ; σÞ plane subdivides into three distinct phases
[Figs. 3(a), 3(b)]. For σ ≪ Lb and τ ≪ γ−1, optimal
NCNs are highly dense and uniform [Fig. 3(⊲)]. For σ ≪ Lb

but τ ≫ γ−1, NCNs exhibit intermediate sparsity and hier-
archical patterning [Fig. 3(⊳)]. For σ ≫ Lb, NCNs become
generally sparse and hierarchically patterned with little
dependence on τ [Fig. 3(△)], although the transition between
the different NCNs topologies is shifted to smaller σ
when τ ≫ γ−1.
To conclude, the above analytical and numerical results

show that noise cancellation can be hard wired into
weighted network topology for both uncorrelated and
correlated input fluctuations. As a general rule, the more
correlated the input fluctuations, the sparser and more
hierarchically ordered the optimal networks become.
Previous work [1,51] has demonstrated the applicability
of the underlying phase oscillator framework to a myriad of
physical and biological systems, from neuronal networks
[56,75] and ciliary carpets [76–78] to renewable energy
farms and power grids [9,12,14,50]. One can therefore
expect that the above ideas and results have conceptual and
practical implications for most, if not all, of these systems.
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I. CENTERED DYNAMICS

Eq. (1) from the main paper contains a freedom of re-defining �i ! �i + c for some constant c corresponding to a reference
angle. Here, we fix this freedom by introducing the new variables

 i(t) = �i(t)� µ(t)

µ(t) =
1

N

X

j

�j(t).

Taking derivatives and plugging them into Eq. (1), we find that they satisfy

 ̈ = �� ̇ +
X

j

Bij sin( i �  j) + Pi(t)�
1

N

X

j

Pj(t) (S1)

µ̈ = ��µ̇+
1

N

X

j

Pj(t), (S2)

where we used
P

i,j Bij sin( i �  j) = 0 due to antisymmetry. Equation (S1) is equivalent to Eq. (1) but with centered
inputs, and Eq. (S2) describes a stochastically forced particle with damping. We decompose the inputs into constant means
and stochastic fluctuations, Pi(t) = P̄i + ⇠i(t). Without fluctuations, a steady state is only possible if the constant forcing
in Equation (S2) vanishes,

P
j P̄j = 0. We shall assume this to be true from here on and focus on Eq. (S1), because the

dynamics of the mean is independent of the weighted network topology encoded in the Bij . We find the centered dynamics

 ̈ = �� ̇ +
X

j

Bij sin( i �  j) + P̄i + ⇠i(t)�
1

N

X

j

⇠j(t). (S3)

Equation (S3) is again simply Eq. (1) but with centered fluctuations. It is only these centered fluctuations that are relevant
for optimal NCNs. In vector form they can be written using the projection matrix Q as

Q⇠ =

✓
1 �

1

N
J

◆
⇠,

where Jij = 1. Similarly, the centered correlation matrix is

Rc = Qh⇠⇠>iQ = QRQ.

II. DERIVATION OF THE OBJECTIVE FUNCTION

In this section we derive the objective function for white noise and colored noise. Note that unlike in the main paper, for
notational ease we use the inverse correlation time scale  = ⌧�1. We first consider the case of pure white noise, and then
generalize to Ornstein-Uhlenbeck colored noise.

A. White Noise

Here, we compute the variance of fluctuations directly in the Langevin formalism.
We consider the linearized second-order system in the centered frame from the preceding section,

"̈+ �"̇+ L" = Q⇠(t),

where h⇠i = 0, h⇠(t)⇠(t0)>i = QRQ �(t� t0) is white noise input in time with spatial correlation matrix R. We can rewrite
the system as first order,

✓
"̇
⌫̇

◆
=

✓
0 1
�L ��1

◆✓
"
⌫

◆
+

✓
0
Q⇠

◆

, ẏ = My + u.



2

The solution to this system can be expressed as

y(t) = exp(Mt)y0 +

Z T

0
exp(M(t� t0))u(t0) dt0.

The eigenvalues of M are easy to compute by explicitly writing down the eigenvector condition in block-matrix form. One
obtains

�i,± = �
�

2
±

r
�2

4
� !2

i ,

where the !2
i are the (positive) eigenvalues of the Laplacian L. Since Re(�i,±) < 0 except for the eigenvector of all 1’s in the

first block, the homogeneous solution exp(Mt)y0 decays for large times except for a constant angular shift. In the following,
we change into a frame where this shift vanishes and focus on the particular solution.

We want to compute the matrix of correlations for large times,

hy(t)y(t0)>i =

Z T

0
ds

Z t0

0
ds0 exp(M(t� s))hu(s)u>(s0)i exp(M>(t0 � s0)) (S4)

=

Z T

0
ds

Z t0

0
ds0 exp(Ms)R̂ exp(M>s0) �(t� t0 � s+ s0)

=

Z 1

0
ds exp(M(s+ (t� t0)))R̂ exp(M>s).

We substituted s ! t� s, s0 ! t0 � s0, used the fact that

hu(t)u>(t0)i =

✓
0 0
0 Qh⇠(t)⇠>(t0)iQ

◆
=

✓
0 0
0 QRQ

◆
�(t� t0) = R̂ �(t� t0),

and finally took the limit of t, t0 ! 1 while keeping t � t0 fixed. Since we want to find the variance, we now set t � t0 = 0.
This matrix-valued integral cannot be evaluated directly, but we can integrate by parts to obtain

hy(0)y(0)>i = E =

Z 1

0
ds exp(Ms)R̂ exp(M>s)

=
h
M† exp(Ms)R̂ exp(M>s)

i1
0

�M†
Z 1

0
ds exp(Ms)R̂ exp(M>s)M>

= �M†R̂�M†EM>

, ME + EM> = �R̂. (S5)

This matrix equation for E is called the Lyapunov equation, and there is no analytic expression for its solution. (Note that
we used the pseudo-inverse. This is allowed because even though M has a nontrivial nullspace of dimension 1 corresponding
to (1,0), this nullspace is projected out by R̂.) The total variance of the fluctuations "(t) is encoded in the trace of the
upper-left block of E. We write the Lyapunov equation explicitly in block-form,

✓
A B
B> C

◆✓
0 �L
1 ��1

◆
+

✓
0 1
�L ��1

◆✓
A B
B> C

◆
=

✓
0 0
0 �QRQ

◆
, (S6)

where we made the symmetric ansatz E =

✓
A B
B> C

◆
with A> = A and C> = C (Remember that E is a correlation matrix

and therefore symmetric). Our goal is now to find an expression for tr(A). Multiplying out yields the equations

B +B> = 0

C �AL� �B = 0

C � LA� �B> = 0

2�C + LB +B>L = QRQ.

Adding and subtracting the first and second yields

C =
1

2
(AL+ LA)

B =
1

2�
(LA�AL). (S7)
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Plugging these into the third and taking the trace,

2�
1

2
(AL+ LA) +

1

2�
(L2A� LAL� LAL+AL2) = QRQ

) �(L†AL+ L†LA) +
1

2�
(L†L2A� 2L†LAL+ L†AL2) = L†QRQ (S8)

) 2� tr?1(A) = tr(L†QRQ) = tr(L†R).

Here, we can only take the trace over the subspace perpendicular to the vector with all ones, because that is the subspace
that L† projects on. Additionally, we used the fact that QL = LQ = L because L is a graph Laplacian whose kernel is
spanned by the vector 1 of all 1’s.

We now show that 1>A1 = 0. We compute directly

1>A1 = (1>, 0)E(1>, 0)>

=

Z 1

0
ds(1>, 0) exp(Ms)R̂ exp(M>s)(1>, 0)>.

It is easy to compute

M>
✓
1
0

◆
=

✓
0
1

◆

M>
✓
0
1

◆
= ��

✓
0
1

◆
.

Therefore, the matrix exponential can be expanded into a series,

exp(M>s)

✓
1
0

◆
=

✓
1
0

◆
�

1

�

✓
0
1

◆ 1X

n=1

(��s)n

n!

=

✓
1
0

◆
�

1

�

✓
0
1

◆
(e��s

� 1).

From the structure of R̂, we immediately obtain,

R̂ exp(M>s)

✓
1
0

◆
= �

1

�

✓
0

QRQ1

◆
(e��s

� 1) = 0.

Thus 1>A1 = 0, the trace over the perpendicular subspace is actually the full trace, and we obtain,

h|"(t)|2i =
1

2�
tr(L†R). (S9)

B. Colored noise

We now assume that h⇠(t)⇠(t0)>i = 
2 e

�|t�t0|QRQ. (Remember that  = ⌧�1 is the inverse time scale). We can express
Eq. (S4) as follows, taking the long-time limits,

2


hy(0)y(0)>i =

Z 1

0
ds

Z 1

0
ds0e�|s�s0|eMsR̂eM

>s0

=

Z 1

0
ds e(M�1)sR̂

Z s

0
ds0e(M

>+1)s0 +

Z 1

0
ds e(M+1)sR̂

Z 1

s
ds0e(M

>�1)s0

= (M � 1)�1R̂(M> + 1)�1 +

✓Z 1

0
ds eMsR̂eM

>s

◆�
(M> + 1)�1

� (M>
� 1)�1

�

= (M � 1)�1R̂(M> + 1)�1 + E
�
(M> + 1)�1

� (M>
� 1)�1

�
, (S10)

where the matrix-valued integral E solves the Lyapunov equation again, Eq. (S5). In order to continue, we require some
expressions for the block-wise inverses of M ± 1. Define S± = (±� �)((⌥ �)1 + L)�1, then

(M ± 1)�1 =

 
S± �

S±
±��

LS±
±��

1
±�� �

LS±
(±��)2

!

(M>
± 1)�1 = (M ± 1)�T .
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With this, the first term in Eq. (S10) is

(M � 1)�1R̂(M> + 1)�1 =

✓
�

S�QRQS+

(+�)(��) ⇤

⇤ ⇤

◆
=

✓
((� �)1 + L)�1QRQ((+ �)1 + L)�1

⇤

⇤ ⇤

◆
, (S11)

where we only computed the upper-left block because it contains the correlations of the fluctuations themselves. Next, we
compute the products of E with the block inverses,

E(M>
± 1)�1 =

✓
A B
B> C

◆
(M ± 1)�1 =

✓
A B
B> C

◆ 
S±

LS±
±��

�
S±

±��
1

±�� �
S±

(±��)2

!

=

✓
AS± �

BS±
±�� ⇤

⇤ ⇤

◆
, (S12)

where again we only computed the relevant parts and employed the decomposition of E from Eq. (S6). In order to obtain
the total fluctuation variance, we need the traces over the upper-left blocks. For Eq. (S11), this is

tr
�
((� �)1 + L)�1QRQ((+ �)1 + L)�1

�
= tr

�
((L+ 21)2 � 2�2)�1QRQ

�
.

In order to compute the trace in Eq. (S12), we note that [S±, L] = 0 and multiply Eqns. (S8) and (S7) by S±. Taking the
trace then yields

tr(AS±) =
1

2�
tr(L†QRQS±)

tr(BS±) =
1

2�
tr((LA�AL)S±) = 0.

Finally, we obtain

h|"(t)|2i =


2

✓
tr
�
((L+ 21)2 � 2�2)�1QRQ

�
+
� �

2�
tr(L†((� �)1 + L)�1QRQ) +

+ �

2�
tr(L†((+ �)1 + L)�1QRQ)

◆
.

This expression can be further simplified by computing the trace in the eigenbasis {�i} of L,

h|"(t)|2i =


2

X

i>0

�>i QRQ�i
!2
i +

��
2� ((+ �) + !2

i ) +
+�
2� ((� �) + !2

i )

!2
i ((� �) + !2

i )((+ �) + !2
i )

=
(+ �)

2�

X

i>0

�>i R�i
!2
i + (� �)

!2
i ((� �) + !2

i )((+ �) + !2
i )

=
(+ �)

2�
tr
�
L†(L+ (+ �)1)�1R

�

=
1

2�
tr

 
L†

L

1

(+ �)
+ 1
��1

R

!
, (S13)

which corresponds to Eq. (4) in the main paper using  = 1/⌧ .

C. The Kuramoto model

The linearized Kuramoto model is described by

"̇+ L" = ⇠.

Thus, the calculation from the preceding section still works upon replacing M by �L, and without decomposing into blocks.
The fluctuation variance is simply h|"(t)|2i = tr

�
h"(t)"(t)>i

�
.

In the white noise case we obtain

h|"(t)|2i =
1

2
tr
�
L†R

�
,

and in the case of Ornstein-Uhlenbeck colored noise similarly,

h|"(t)|2i =


2
tr
�
L†(L+ 1)�1R

�
.

Thus, formally the results for the Kuramoto model and the swing equation are related by a replacement of variables
� ! 1,(+ �) !  because objective functions that di↵er only by a constant pre-factor have the same minimizers.
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III. NUMERICAL OPTIMIZATION

Here we describe our optimization algorithm for the case of white noise. The Ornstein-Uhlenbeck case is similar, with a
di↵erent objective function.

A. Cost-constrained optimization close to synchrony

For simplicity, let us consider the case where there are no steady state flows, P̄i = 0, �̄i ⌘ const.
We choose to optimize for fixed cost,

NeC =
X

e

B↵
e ,

where ↵ is a parameter that can be tuned and that controls the economy of scale for the couplings. The Lagrangian is

L = tr(L†R) + �

 
X

e

B↵
e �NeC

!
.

Taking partial derivatives and setting them to zero yields

�↵B↵�1
e = e>E>L†RL†Ee

) Be = c (B2
ee

>E>L†RL†Ee)
1

1+↵ ,

for a constant c.
For ↵ < 1, the landscape is non-convex and many local minima exist. For ↵ > 1, the landscape is convex, and one finds a

unique global minimum.

B. Cost-constrained optimization with nonzero steady-state flow

The Lagrangian is again

L = tr(L†R)� �

 
X

e

B↵
e �NeC

!
.

The Laplacian weights are Be cos(��̄e) where the di↵erence ��̄e = �̄i � �̄j for the edge e = (ij). We take the derivative with
respect to the couplings and set to zero,

�↵B↵�1
e = cos(��̄e)e

>E>L†RL†Ee�
X

f

Bf sin(��f )f
>E>L†RL†Ef

@��̄f
@Be

. (S14)

The derivatives of the steady state angle di↵erences can be computed by taking derivatives of the steady state condition,

0 =
@

@Be

X

j

Bij sin(�̄i � �̄j)

)
@��̄f
@Be

= �f>E>L†Ee sin(��̄e) = �Sef sin(��̄e),

where we defined the symmetric matrix Sef = e>E>L†Ef . Plugging into Eq. (S14), we obtain

�↵B↵�1
e = cos(��̄e)h�"

2
ei+ sin(��̄e)

X

f

SefBf h�"
2
f iR sin(��̄f ). (S15)

Here, we introduced the shorthand h�"2eiR = e>E>L†RL†Ee for the average squared linearized angle di↵erence along an
edge under the correlation matrix R.

For Ornstein-Uhlenbeck correlations, a similar but more unwieldy expression holds.
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C. Algorithm for cost-constrained optimization

In order to solve Eq. (S15), we use the following algorithm, based on Ref. [39].

1. Start with initial couplings B(0)
e

2. Run a few steps of a nonlinear root finder (trust-region algorithm as implemented in the package NLsolve.jl,

https://github.com/JuliaNLSolvers/NLsolve.jl.) to obtain the steady state angles �(0)ss

3. Compute

B̂(i+1)
e =

0

@(B(i)
e )2 cos(��̄(i)e )h�("2e)

(i)
i+ (B(i)

e )2 sin(��̄(i)e )
X

f

S(i)
ef B

(i)
f h(�"2f )

(i)
iR sin(��̄(i)f )

1

A

1
1+↵

4. Normalize

B(i+1)
e = C1/↵ B̂(i+1)

e
⇣P

f (B̂
(i+1)
f )↵

⌘1/↵

5. Run another few iterations of a nonlinear root finder to obtain �̄(i+1)

6. Repeat from 3 until convergence of both the steady state angles and the Be.

Sometimes the RHS in step 3 becomes negative in an intermediate step. In that case we set it to zero hoping to converge to
a good solution later.

The number of variables in the cost-constrained optimization is given by the number of nodes N in the network, for which
the non-linear root finder in step 2 and 5 solves, and by the number of edges E which are obtained by the fixed-point iteration
in steps 3 and 4. In regular graphs such as the ones we consider, each node is connected by the same number of edges (except
at the boundaries), such that E = O(N). For a regular network constructed from rows containing n nodes each in d spatial
dimensions, the number of variables thus scales as O(nd).

IV. IMPROVEMENT DUE TO OPTIMIZATION

FIG. S1. Improvement in noise canceling due to optimization. We compute the ratio of the optimal network objective h|"(t)|2ioptimal

to the objective h|"(t)|2iuniform, which is computed for uniform networks, Bij = const. Each pixel is an average over ratios computed

for 25 optimal networks with di↵erent, uniformly random initial conditions. While the improvement is insignificant for convex, dense

networks (which are almost uniform anyways), sparse networks with 0 < ↵ < 1 provide a significant advantage.

V. TIME SERIES OF THE NON-LINEAR SWING EQUATION DYNAMICS

We solve the non-linear swing equation with stochastic feed-in as a system of coupled stochastic di↵erential equations. In
SDE form the white noise case reads,

d�i = ⌫idt

d⌫i = ��⌫idt+
NX

j=1

Bij sin(�i � �j)dt+ P̄ c
i dt+

NX

j=1

CijdWj ,
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where the dWj are i.i.d. Wiener processes and C = U
p
⌃ is constructed from the singular value decomposition of the

correlation matrix, R = U⌃U>. With this definition, the feed-ins have the desired correlation matrix hC dW (t)
dt

dW (t0)>

dt C>
i =

R �(t� t0).

In the Ornstein-Uhlenbeck case the system of SDEs is augmented to

dXi = �Xidt+
p
2dWi (S16)

d�i = ⌫idt

d⌫i = ��⌫idt+
NX

j=1

Bij sin(�i � �j)dt+ P̄ c
i dt+

NX

j=1

CijXjdt,

where again the dWj are i.i.d. Wiener processes and the matrix C is defined as before. We obtain the desired feed-in

correlations, hCX(t)X(t0)>C>
i = Re�|t�t0|. We employ the Julia language’s DifferentialEquations.jl package to solve

the SDEs using the Euler-Maruyama method. Eq. (S16) is replaced by the package’s time step-independent distributionally
correct Ornstein-Uhlenbeck process.

We then define the instantaneous mean angle by the integral

�̄i(t) =
1

t

Z t

0
�i(t

0)dt0,

where we evaluate the integral numerically from the simulation time series. From this, the numerical fluctuations and
fluctuation variances are

"i(t) = �i(t)� �̄i(t)

h|"(t)|2i =
1

t

Z t

0

���(t)� �̄(t)
��2 dt0.
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FIG. S2. Time series of the non-linear swing equation dynamics for the same networks as in the main paper, Fig. 2. (a) Ornstein-

Uhlenbeck colored noise and spatially incoherent feed-in. (b) Gaussian spatially coherent feed-in with temporal white noise. (c)

Spatio-temporally correlated feed-in.

In addition to the time series for white noise and spatially incoherent noise shown in the main paper, Fig. 1, here we also
show time series for the optimal networks from Figs. 2 and 3 of the main paper (see Fig. S2). It can be seen clearly that
higher correlations also lead to larger fluctuation variances.
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A. Validity of the linear model

FIG. S3. Validity of the linear optimized model for white noise. (a) We compare optimal networks at various values of convexity ↵ and

cost C by plotting the ratio of the total fluctuation variance computed as a time average from fully non-linear simulations run until

a time t = 200 and the prediction from the linear model. For each 8 ⇥ 8 triangular network, we vary the total noise strength tr(R),

where R is spatially incoherent. The linear approximation is good for small noise strengths. (b) Normalizing the variance by the worst

case variance, N⇡2/3, computed by assuming uniformly distributed fluctuations "i on [�⇡,⇡). The linear prediction is adequate until

the predicted variance reaches approximately 10% of the worst case variance.

In order to test the validity of the linear model, we perform simulations of the fully nonlinear swing equation in the white
noise, spatially incoherent case for various values of C and ↵. For each combination of parameters, we scale the total noise
variance tr(R̂) until the linear prediction and simulations begin to disagree (see Fig. S3 (a)). By rescaling the total noise
variances h|"(t)|2i ! h|"(t)|2i/(N⇡2/3), where N⇡2/3 is the worst case variance, we see that the linear model is accurate up
to ⇡ 10% of the worst case variance (see Fig. S3 (b)).

VI. DEPENDENCE OF ORNSTEIN-UHLENBECK TOPOLOGY ON COST

FIG. S4. Dependence of the topology of Ornstein-Uhlenbeck optimized networks on the cost parameter. We show phase space of

the loop density and coupling spread for 8 ⇥ 8 triangular networks at fixed ↵ = 0.5 and for spatially incoherent noise. Very low cost

networks with C ⌧ 1 (which have small couplings) stay uniform and dense even at longer correlation times ⌧ . For higher cost networks
with C > 1 with larger couplings the transition to sparsity and hierarchical organization occurs for smaller ⌧ .

Unlike for the white noise case, the Ornstein-Uhlenbeck noise variance Eq. (S13) is not homogeneous upon rescaling the
cost parameter C ! sC, even in the well-synchronized limit �̄i ⇡ 0. Therefore, unlike for white noise, the optimal networks
depend on C. Fig. S4 shows the phase space of optimal networks as a function of cost and correlation time. We see that
while for small C the transition between topologies shifts towards larger s, the topologies themselves remain unchanged (as
quantified by f` and �B/µB).
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VII. PHASE SPACES AND OPTIMAL NETWORKS FOR SQUARE GRIDS

FIG. S5. Topology phase space and optimal networks for 8⇥8 square grids for white noise in time and incoherent spatial feed-in. Each

pixel in the 15⇥ 15 phase space is an average over 5 optimal networks.

FIG. S6. Topology phase space and optimal networks for 8⇥ 8 square grids in the well-synchronized limit at C = 1. (a,b) White noise

in time and Gaussian correlated spatial feed-in. (c,d) Ornstein-Uhlenbeck noise in time and spatially incoherent feed-in. Each pixel in

the 15⇥ 15 phase space is an average over 5 optimal networks.

FIG. S7. Topology phase space and optimal networks for 8 ⇥ 8 square grids with spatio-temporal correlated feed-in in the well-

synchronized limit at C = 1, ↵ = 0.5. Each pixel in the 15⇥ 15 phase space is an average over 5 optimal networks.


