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Fundamental biological and biomimetic processes, from tissue morphogenesis to soft robotics, rely on
the propagation of chemical and mechanical surface waves to signal and coordinate active force generation.
The complex interplay between surface geometry and contraction wave dynamics remains poorly
understood, but it will be essential for the future design of chemically driven soft robots and active
materials. Here, we couple prototypical chemical wave and reaction-diffusion models to non-Euclidean
shell mechanics to identify and characterize generic features of chemomechanical wave propagation on
active deformable surfaces. Our theoretical framework is validated against recent data from contractile
wave measurements on ascidian and starfish oocytes, producing good quantitative agreement in both cases.
The theory is then applied to illustrate how geometry and preexisting discrete symmetries can be utilized to
focus active elastic surface waves. We highlight the practical potential of chemomechanical coupling by
demonstrating spontaneous wave-induced locomotion of elastic shells of various geometries. Altogether,
our results show how geometry, elasticity, and chemical signaling can be harnessed to construct
dynamically adaptable, autonomously moving mechanical surface waveguides.
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Wave propagation in complex geometries has been
studied for centuries [1] in fields as diverse as optics [2],
hydrodynamics [3], and gravitation [4]. The motion of a
wave can be manipulated by precisely tuning the geometrical
properties of its medium, an effect exploited by novel optical
[5] and acoustic [6,7] metamaterials with versatile refractive
properties. The problem of waveguidance becomes particu-
larly interesting in soft active systems, where traveling waves
can locally contract, shear, or otherwise deform the surfaces
on which they propagate. Although most commonly seen in
biological contexts [8–11], wave-induced deformation is
increasingly being explored in the context of soft materials
engineering [12], and there is evidence suggesting that
such a deformation can exert strong feedback on the
propagation of chemical waves [13–15]. Broadening our
understanding of chemomechanical wave propagation is
essential for the development of smart materials and soft
robotics devices [16,17] that utilize chemical gradients and
targeted buckling [18].
Here, we show how the complex interplay between

autonomous chemical waveguidance and geometry can be
used to functionalize soft active matter. Our analysis builds
on a generic, broadly applicable model in which wave
dynamics couples covariantly to a deformable elastic sur-
face. We first validate the theoretical framework by
replicating the behavior of contraction waves observed
in recent experiment [19–21]. Subsequently, the theory is
applied to design autonomously moving elastic shells of
various shapes. Our results highlight that mechanical

feedback can influence both the shape and speed of
chemical waves, enabling significantly faster locomotion.
Our model contains two ingredients: an elastic shell

described by the geometry and displacement of a two-
dimensional (2D) surface ω, and a scalar concentration
field c on ω equipped with wavelike dynamics. To capture
the mechanics of the shell, we use the well-established
Koiter model [22], in which stresses within the shell are
integrated along the thickness direction. Assuming a small
thickness h, the shell’s mechanical configuration is then
entirely described by the geometry of its middle-surface ω
embedded in R3. Equilibrium configurations correspond to
the minima of the elastic energy EKS ¼ ESþ EB with
stretching and bending contributions

ES¼
Yh

8ð1−ν2Þ

Z

ω
dωfð1−νÞTr½ða− āÞ2&þν½Trða− āÞ&2g;

ð1aÞ

EB¼
Yh3

24ð1−ν2Þ

Z

ω
dωfð1−νÞTr½ðb− b̄Þ2&þν½Trðb− b̄Þ&2g:

ð1bÞ

Here, ω denotes the deformed shell geometry characterized
by the metric a ¼ ðaαβÞ and curvature tensor b ¼ ðbαβÞ,
with greek indices henceforth running from 1 to 2. dω is the
surface area element, Y the shell’s Young’s modulus, and ν
the Poisson ratio (ν ¼ 0.33 throughout). ā and b̄ are metric
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and curvature tensors of the reference shell geometry ω̄.
The shell has minimal vanishing energy if its deformed
surface ω coincides with ω̄. Conventionally, ω̄ is identified
with the undeformed, stress-free configuration of the
shell. Active, stimulus-driven stresses can, however, be
included in this framework by allowing local modifications
of the reference configuration [23,24]. The surface ω̄ then
generally becomes non-Euclidean [25,26], and the equi-
librium configuration will have a nonzero energy charac-
terized by residual stresses [27]. As a minimal model for
chemomechanical coupling, we consider a concentration-
dependent modification of the metric and curvature tensor
of the form

ā → exp ð−ACcÞā; b̄ → ð1 − AIcÞb̄; ð2Þ

where coefficients AC and AI have the units of inverse
concentration. A comparison of Eq. (2) to a bilayer shell
model [23] is given in the Supplemental Material [28]. The
exponential dependence of ā ensures a positive definite
reference metric for all values of c. Consequently, 1=AC is
the characteristic concentration scale associated with the
decay of the reference metric to its minimal value of zero.
Since no such constraint is necessary for the curvature
tensor, we choose a linear coupling. We note that for a
reference geometry parametrized by (θ1, θ2), the surface
element area is explicitly given by dω̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðāÞ

p
dðθ1; θ2Þ.

Thus, for ACc0 ≫ 1 with c0, a characteristic concentration
scale such as the peak concentration, the stress-free state
of a surface element will have an area approaching 0.
Conversely, when ACc0 < 1, only a small relative change
of the surface area will be induced. Similarly, the curvature
coupling will tend to produce reference curvature on the
same order of the original surface when jAIc0j < 1 and will
produce much higher curvature when jAIc0j ≫ 1.
It remains to define the dynamics of the concentration

field c. In biological systems, chemical waves often feature
highly idiosyncratic behavior and strong dependence on
parameter choices [8]. Despite these specific and unique
aspects, we expect that generic features hold in many such
systems. A minimal model of chemical wave propagation is
given by the telegraph equation

ctt þ αct ¼ γ2∇2c: ð3Þ

Equation (3) combines wavelike and diffusive behavior
[33–35]. Specifically, parameters α and γ determine the
degree of diffusivity and the wave speed, respectively.
Equation (3) is implicitly coupled to the surface ω via
the geometry-dependent Laplace-Beltrami operator ∇2c ¼
ð1=

ffiffiffiffiffiffi
jaj

p
Þ∂αðaαβ

ffiffiffiffiffiffi
jaj

p ∂βcÞ, where jaj ¼ detðaÞ. In the fol-
lowing, we choose γ such that the timescale associated with
the wave propagation τw ¼ L=γ is much greater than the
elastic equilibration timescale τm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2ρ=EKS

p
, with ρ the

material density. Separating the timescales allows for the

following numerical time-stepping strategy: We discretize
the deformed surface ω as well as the concentration field c
by C1-continuous subdivision finite elements [36]. Further,
throughout we consider the weak dissipation regime
α ¼ 0.001 ≪ τ−1w to ensure that the wave front remains
coherent over observed timescales.
The solutions of Eq. (3) do not necessarily conserve the

total concentration. Integrating Eq. (3) over an arbitrary,
smooth, simply-connected, and closed surface gives
̈c̄þ α _̄c ¼ 0 for the total concentration c̄ðtÞ. Thus, we
can choose initial conditions in which the total concen-
tration is uniformly increasing; this flexibility is essential
for closely approximating experimentally measured chemi-
cal waves (Fig. 1). Unless stated otherwise, we use a
narrow 2D Gaussian as our initial condition given as
cðs; t ¼ 0Þ ¼ C0 exp½−ðs=RÞ2=ð2σ2Þ& and ∂tcðs; t ¼ 0Þ ¼
−ðC0γs=σ2Þ exp½−ðs=RÞ2=ð2σ2Þ&, where s is the arclength
from the pole. These initial conditions were found to produce
radially symmetric waves which maintained c>0 every-
where as the wave expanded and then converged at the
opposite pole (Videos 1 and 2 [28]). Note that without loss of
generality, we set the amplitude C0 ¼ 1 corresponding to a
trivial rescaling of c in Eq. (3) and the coupling parameters
AI , AC. Given an initial concentration field and shell
geometry, we integrate Eq. (3) using Verlet time stepping
and update the reference surface via Eq. (2). The shell
configuration ω is then updated assuming overdamped
dynamics, with forces calculated from the gradient of the
shell energy, Eqs. (1a) and (1b) [24,37]. Because of the
separation of the wave and mechanical timescales, this
approach ensures that the shell is very close to mechanical
equilibrium at all times.
The model defined by Eqs. (1)–(3) is generic and, as such,

broadly applicable. To demonstrate its validity, we use it to
replicate one of the best-studied examples of contractile
waves in nature: the single-cell contraction waves which
occur during oogenesis in many animal species [38]. These
occur shortly before the first cell division, when a contractile
wave travels from the vegetal to the animal pole of the
embryonic cell. Here, contraction is driven by the localiza-
tion and activation of myosin motors in the actin cortex.
Important model systems for the study of this process are
oocytes from the starfish Patiria miniata and the ascidian
Ascidiella aspersa [19,21,39] [Figs. 1(a) and 1(b), top row].
Although actin cortex mechanics have been studied in the
physics community for decades, the above model supports
large deformations in R3 and incorporates active stresses in
the context of non-Euclidean shells [26].
Since the cell membrane is essentially impermeable

over the wave propagation timescales, we assume that
the enclosed fluid volume remains constant during the
wave-induced contraction. To match our model with
experiments, we, thus, augment Eq. (1) with an additional
term μVðV − V̄Þ2 to penalize deviations of the internal
volume V from the reference volume V̄. Starting from a

PHYSICAL REVIEW LETTERS 120, 268001 (2018)

268001-2



spherical oocyte shell and the initial concentration profile
defined above, we tune our coupling parameters to produce
local contraction and curvature of the magnitudes observed
experimentally. The narrow Gaussian profile we use
approximates the pointlike initial conditions observed
experimentally, with σ2 ¼ 2=R2 chosen to match the width
of the wave in experiment. Overlaying cross sections from
the elastic shell with microscopy images, we find excellent
agreement between model and experiment [Figs. 1(a)
and 1(b)]. We note that the wave front remains rotationally
symmetric during the entire process. To gain more insights
into the dynamics, we construct kymographs depicting the
spatial dynamics of curvature along cross section profiles
[Fig. 1(c)]. In both simulations and experiments, the wave
speed is roughly constant away from the poles [constant
slopes in Fig. 1(c)], suggesting only a small influence of the
metric contraction on the wave propagation dynamics. Near
the origin of the wave, contraction is largely in plane,
effectively pulling the medium in the opposite direction of
the wave propagation, while the wave maintains a constant
velocity relative to local points on the surface; in the lab
frame, this distortion slows its progression.
Having validated the theoretical model on spherical

shells, we study implications for wave propagation in
more complex archetypal geometries. Choosing a regime
where the deformations are relatively small compared to the
system size (AI ¼ 0, AC ¼ 0.2, μV ¼ 0), we simulate
contraction waves on cuboid and prismatic shells keeping
the same initial conditions as above but varying the location
of the wave origin. We find that waves start propagating
radially outward but quickly disperse due to the broken
rotational symmetry of the underlying geometry.
Nonetheless, they converge again at later times, on the
side of the surface opposite the starting position. When they
converge, they carry an imprint of the geometry of the

underlying surface [Fig. 2(a)]. Since contraction is weak,
this symmetry breaking can be understood as follows: In
the coupling-free limit AC ∼ AI → 0, equal-time points in
the wave obey the eikonal equation j∇Tj ¼ γ−1, where γ is
the wave speed above and TðrÞ is the time required for the
wave front to reach geodesic distance r from the starting
point at t ¼ 0 [40]. For faceted surfaces, the eikonal
equation with pointlike initial conditions can be solved
graphically by unwrapping the faceted surface. For the
prism surface and a wave emanating from the triangle face
center [Fig. 2(a), column 3], we unfold the prism around the
opposite triangular face [yellow face in Fig. 2(b), top] and
periodically extend the unwrapped facets. Solutions of the
eikonal equation are then given as a superposition of circles
centered in the origin of the wave [Fig. 2(b), top].
Comparing with simulations, we find a qualitative agree-
ment of the incident wave patterns also for waves origi-
nating from an edge on the prism [Fig. 2(a), column 4;
Fig. 2(b), bottom], suggesting that basic geometry provides
the means to guide and shape surface waves. Interestingly,
we find waves on the spherical shell with especially strong
curvature inversion (where AI is sufficiently high that the
modified preferred radius of curvature is smaller than R by
a factor of 10 or more) produce a buckling pattern which
induces discrete symmetry on the sphere (Fig. S1 in the
Supplemental Material [28]). Despite this change in global
symmetry, we observe curvature coupling exerts minimal
feedback on the propagation of waves, likely due to the
isometry of curvature-induced deformation in the thin-shell
limit (see the Supplemental Material [28] for further
discussion). This illustrates that global geometry alone is
a poor predictor of wave dynamics on an active surface.
To understand better how sustained wave dynamics

interacts with geometry, deformation, and wave propagation,
we consider a closed elastic shell resting on a flat surface

(c)(b)(a)

FIG. 1. Traveling wave model reproduces in vivo mechanics of embryonic surface contraction waves. (a) For AC ¼ 1.5 and AI ¼ 1.6,
the contraction wave model reproduces sperm-triggered ascidian embryo shape dynamics. Top: Microscopy images of the deformed
oocytes (adapted with permission from Ref. [19]) overlaid with cross sections of our simulation. Bottom: Corresponding 3D surfaces
indicating the concentration field. Scale bar 50 μm. See Video 1 [28] for full motion. (b) Simulation with AC ¼ AI ¼ 0.5 reproduces the
surface contraction wave in starfish oocytes during anaphase in meiosis I. Experimental images adapted with permission from Ref. [21].
Scale bar 30 μm. See Video 2 [28] for full motion. (c) Kymographs depicting the local radius of mean curvature for the experimental
(top) and simulation (bottom) cases. Regions of maximal curvature indicate the center of the wave and travel at a constant speed.
μV ¼ 24Yh=R4, h=R ¼ 0.05.
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under gravity (Fig. 3). We model sustained, pulselike wave
dynamics by generalizing from the telegraph Eq. (3) to
FitzHugh-Nagumo dynamics [41]

ct ¼ γ2∇2cþ cð1 − cÞðc − νÞ − w; ð4aÞ

wt ¼ ϵðc − κwÞ: ð4bÞ

FitzHugh-Nagumo models have been applied to describe
chemical wave patterns in Belousov-Zhabotinsky reactions
[42,43], which are increasingly used in active, deformable
hydrogels [44]. Considering Eqs. (4), we choose parameter
values within the regime of stable traveling wave solutions
[41]: ν ¼ −0.01, κ ¼ 0.0001, ϵ ¼ 0.005, and γ ¼ 0.2. We
couple c to the local metric via Eq. (2) and fix a narrow

Gaussian profile as an initial condition for c0, while
wð0Þ ¼ 0. Gravity is modeled by a constant field
Fg ¼ ρgẑ, with g ¼ 0.5 in our units, and ρ ¼ 0.01 is the
shell surface mass density. Contact forces with the ground
are described in the Supplemental Material [28].
Our simulations show that each pulse leads to a small net

displacement of the entire shell in the direction of wave
propagation, resulting in a persistent motion over suc-
ceeding wave cycles [Fig. 3(a)]. Remarkably, even defor-
mations that are small relative to the system size affect the
wave dynamics considerably. To demonstrate this effect,
we consider a wave moving on a deforming sphere with
AC ¼ 0.1, AI ¼ 0 [Fig. 3(b)] and compare with a hypo-
thetical reference scenario in which the wave deforms the
sphere but keeps propagating on the undeformed reference

(a) (b)

FIG. 2. For weak chemomechanical coupling, point wave propagation reflects the discrete symmetries of the elastic media. (a) Weakly
coupled (AI ¼ 0, AC ¼ 0.2, side length L ¼ 20h) waves propagating from a point on various geometries. On discrete surfaces, such as
the cube and triangular prism shown here, self-interference increases concentration of the wave front near edges and vertices and breaks
the initial radial symmetry of the wave; see Video 3 [28]. (b) Unfolded representations of the two triangular prism cases shown in (a).
Through choice of starting point ' , the wave front can be guided to exhibit a threefold or fivefold symmetry on the opposing face.
Unique faces and vertices are color coded for clarity.

(a) (b)

(c)

(d)

(e)

FIG. 3. Mechanically coupled chemical waves induce locomotion in elastic shells on a solid substrate under gravity; see
Videos 4–7 [28]. (a) Locomotion in deformation-insensitive systems (hollow symbols, dashed lines) is slower than for
deformation-coupled waves (full circles, solid lines) in spherical (blue) and prismatic shells (red). Time is normalized for each
system in terms of oscillation period T, and distance is measured in terms of shell radius R. (b)–(e) Corresponding snapshots in
time demonstrate that the wave shape is strongly affected by deformations (b),(d) as compared to deformation-insensitive wave
propagation (c),(e). Spherical shells have radius R ¼ 25, while for prisms, all edges have length L ¼ 2.3R. In all cases,
thickness h ¼ 0.084R and volume multiplier μV ¼ 0.4Yh=R4 ¼ 11.1Yh=L4.
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surface geometry [Fig. 3(c); Video 4 [28] ]. As can be seen
in Fig. 3(a), the deformation-insensitive reference sphere
(blue dotted line) moves at a significantly reduced speed
compared to the deformation-sensitive system (blue solid
line). Thus, in this example, the mechanical feedback
increases both the wave frequency and the speed of
locomotion [Fig. 3(a)]. The difference between deforma-
tion-sensitive and deformation-insensitive waves becomes
even more striking in our second example, where we
initiate the wave with AC ¼ 0.2, AI ¼ 0 from the vertex
of a triangular prism [Figs. 3(d) and 3(e)]. Specifically, in
the deformation-insensitive case, we obtain a net “walking”
speed of less than half that of the deformation-sensitive
system [Fig. 3(a)]. Moreover, we find that the shape and
propagation mode of the wave front is considerably altered
due to deformation [Figs. 3(d) and 3(e); Video 5 [28] ].
Additional videos showing sustained waves for other
geometries and initial conditions are included in the
Supplemental Material [28].
To conclude, we have shown that a generic minimal

model coupling dispersive chemical wave propagation
with surface elasticity can reproduce the experimentally
observed surface deformation in ascidian and starfish
oocytes (Fig. 1; Videos 1 and 2 [28]). It has been further
demonstrated that waves confined to 3D embedded surfa-
ces are highly susceptible to the underlying geometry of
their surface (Fig. 2; Video 3 [28]), results which could be
experimentally confirmed by oocytes or reconstituted actin
cortices confined in shaped Polydimethylsiloxane cavities
[21,45,46]. Finally, we have shown that mechanical feed-
back caused by wave-induced deformation likewise has a
clear effect on surface wave dynamics. The presented
results on wave-induced shell locomotion should provide
relevant insights for the future design of autonomous
Belousov-Zhabotinsky driven hydrogel actuators, which
have already been shown to be capable of locomotion under
externally prescribed contraction dynamics [44].
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Contact forces. Contact with the ground is modeled

via a damped quadratic force:

~Fn =

(
(kz2 � �vz)ẑ, if z  0

0 otherwise

where k = 10.0, the damping coe�cient � = 0.5, ẑ the

unit vector in z-direction, and vz = ~v · ẑ is the normal

component of the local shell velocity ~v. For the sake of

numerical stability, we approximate the Coulomb friction

along this surface as

~Ff = �µ|~Fn| tanh(kf |~vt|)v̂t

where ~vt is the velocity tangential to the surface, v̂t a unit
vector along ~vt, kf = 0.1, and µ = 0.1. These forces are

applied to each point (vertex) of the discretized surface.

Symmetry breaking instability. For su�ciently

strong active stresses, we expect that the wave may alter

the shape and symmetries of the underlying surface sig-

nificantly as it propagates. To demonstrate this e↵ect, we

consider a wave moving according to Main Text Eq. (3)

on a spherical shell with large values of AI , such that

the inverted radius of curvature is much smaller than the

natural radius. For this choice of coupling parameters,

regions with c ⇠ 1 impose an inversion of the local pre-

ferred curvature. Since it is impossible for the shell to

adopt this preferred value everywhere, we expect buck-

ling instabilities at least within the region of large concen-

tration c, a common phenomenon in elastic shells subject

to incompatible reference configurations [1]. Indeed, we

observe a series of buckling transitions with increasing n-
fold symmetries as the wave propagates (Fig. S1a). The

symmetry breaking bears a strong resemblance to the n-
fold symmetry-breaking which arises in other buckling

contexts, such as during the indentation of a spherical

shell by an increasing external load [2], the isometric

folding of pollen grains [3], or the buckling of colloidal

particles under isotropic pressure [4]. The selection of

the buckling mode results from a balance of bending and

stretching energy: the more costly bending is, the fewer

vertices are allowed. As such, the symmetry number n
can be tuned by altering either the shell thickness h or

the coupling coe�cient AI (Fig. S1b). To understand the

transition between buckling modes, we note that for the

above initial conditions, the intensity of the wave front

will decrease as it expands over a larger surface as it trav-

els from the pole towards the equator. Consequently, the

local curvature inversion and thus the bending energy in

the shell is reduced. Since the symmetry number n de-

creases with a decrease of bending energy, the shell passes

through a series of increasing buckling modes, reaching

a maximum value of n when the wave front reaches the

equator. As the wave continues, it converges again to-

wards the other side of the sphere, reverting the buckling

(Movie 8).

To impose a specific symmetry, the shell has to re-

main fixed in a single imposed shape for an extended

amount of time. This can be achieved by tuning ini-

tial conditions. Specifically, we let c(�, t = 0) =

[1 + exp(��k)] / [1 + exp(k [|z|� �])] and @tc(�, t = 0) =

� exp(k|z|) [1 + exp(k�)] kz/(|z| [exp(k�) + exp(k|z|)]
[exp(k�) + exp(k|z|)]), where z is the vertical distance

from the point of origin of the wave. Such a wave

is a faithful representative of traveling wave fronts in

reaction-di↵usion systems which often maintain a con-

stant peak concentration. As anticipated, these initial

conditions support only a single symmetry mode for the

duration of the wave’s travel (Movie 9). Together with

the results of Main Text Figs. 2 and 3, these shapes could

prove su�cient to guide incoming waves; for instance, a

primary wave might be employed to shape a surface to

a desired symmetry, allow for properly-timed secondary

waves to be dynamically guided.

Comparison to bilayer shells. The stress genera-

tion via modification of metric and curvature tensor sug-

gested in the main text is related to a recently proposed

mechanistic bilayer shell model [5]. In this model, the

shell is assumed to consist of two adhering shell layers,

each of which is undergoing di↵erential volumetric expan-

sion or contraction. Any local mismatch of the individual

layer expansion then results in a net modification of the

midsurface metric and curvature tensors according to

ā ! ⇤
2
c ā

b̄ ! ⇤cb̄+ cā ,

where ⇤c and c are parameters that relate to the amount

of di↵erential swelling of the two layers [5]. As with the

model used in the main text, we set ⇤
2
c = exp(�A⇤c) and

identify A⇤ = AC to match the concentration-dependent

metric between the two models. The main di↵erence to

our proposed model is the additive modification of the

reference curvature ⇠ cā. However, for all geometries
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FIG. 1. Dynamical and steady-state symmetry breaking induced by chemical wave propagation with strong chemo-mechanical

coupling in the absence of a volume constraint, µV = 0. (a) Starting from a Gaussian initial profile, a wave front traveling on a

sphere of radius R/h = 20 with AI = 11 triggers a dynamical symmetry breaking transition (Movie 8). Each column represents

the wave and surface at a di↵erent time t with top rows colored according to the local wave concentration and bottom rows

depicting the local bending energy density EB, which concentrates at vertices. (b) A steady state exhibiting a single mode for

the duration of the wave pulse can be produced by selecting a non-Gaussian initial condition (Movie 9). By alternating the

thickness and inversion coe�cient, we produce several di↵erent discrete symmetries based on the same initial condition of a

point wave on a deformable sphere. Contraction coe�cient AC = 0 throughout. Color indicates normalized concentration.

considered, our model coincides at least approximately

with the bilayer model: For spherical geometries with

radius R, the curvature tensor can be simultaneously di-

agonalized with the metric, yielding

b̄↵� =

✓
1

R⇤c
+

c

⇤2
c

◆
�↵� ,

where �↵� is the Kronecker delta. Comparing to our

model, we find that the change in preferred curvature

can be matched with our model if we set

c(c) =
1

R


1�AIc� exp

✓
�ACc

2

◆�
.

Moreover, in all simulations on spherical geometries,

ACc ⌧ 1 for almost all time steps. Expanding the ex-

ponential, we can approximately match both models by

setting c(c) = Ac with

A =
1

R

✓
AC

2
�AI

◆
.

For all other geometries (prisms and cubes), we note

that the unmodified curvature tensor is identically to zero

everywhere except the edges, where it is undefined. As

such, the choice A = 0 allows matching of the bilayer

shell with our model. Thus, in all cases studied, the re-

sults of our model can also be interpreted mechanistically

as the elastic response of a bilayer shell. In particular,

locomotion under the outlined parameter matchings also

arises in simulations employing the bilayer model (see

Movie 10).

Movies. Movies 1 and 2 depict, respectively, simu-

lations of the starfish and ascidian embryos discussed in

Fig. 1. Movie 3 corresponds to the examples shown in

Fig. 2. Movies 4 and 5 show the driven shells from

Fig. 3, with the spherical and prismatic cases contained

in Movies 4 and 5. Finally, Movie 6 shows locomotion

of prismaitc shells with a di↵erent choice of initial con-

ditions, and Movie 7 shows locomotion of cubic shells.

Movies 8 and 9 relate to the buckling instability and are

discussed above. Movie 10 demonstrates locomotion of

shells actuated by chemical coupling to the bilayer shell

model as defined in Ref. [5].
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