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Abstract. In describing the physics of living organisms, a mathematical theory that captures the generic
ordering principles of intracellular and multicellular dynamics is essential for distinguishing between univer-
sal and system-specific features. Here, we compare two recently proposed nonlinear high-order continuum
models for active polar and nematic suspensions, which aim to describe collective migration in dense
cell assemblies and the ordering processes in ATP-driven microtubule-kinesin networks, respectively. We
discuss the phase diagrams of the two models and relate their predictions to recent experiments. The sat-
isfactory agreement with existing experimental data lends support to the hypothesis that non-equilibrium
pattern formation phenomena in a wide range of active systems can be described within the same class of
higher-order partial differential equations.

1 Introduction

A key feature of unicellular and multicellular organisms
is the emergence of characteristic length scales that are
set by a combination of biochemical and physical pro-
cesses [1,2]. Cells divide when they reach roughly the same
critical size or volume [3]; embryos develop highly repro-
ducible folding and buckling patterns [4]; human individu-
als possess nearly identical organs; and many animals such
as zebras, fish and butterflies possess color patterns of a
well-defined scale. Such pattern formation phenomena can
be naturally modeled in Fourier space [2]. For a dynamical
process that selects a pattern of a certain length scale Λ,
the corresponding Fourier-transformed dynamics ampli-
fies the modes of corresponding wave number kΛ = 2π/Λ.
This suggests that partial differential equations (PDEs) of
spatial order greater than two can provide a generic and
efficient framework for describing biological and other nat-
ural pattern selection processes [2].
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To illustrate this idea in more detail, consider a hy-
pothetical system described by a field φ(t,x), which may
represent a gene expression profile, molecular concentra-
tion, color, or any other relevant scalar quantity describing
a collection of cellular components, cells or organisms. In
general, the dynamics of φ(t,x) and its associated Fourier
modes φ̂(t,k) is highly nonlinear, but some progress is of-
ten achieved by approximating the full dynamics through
Taylor expansions. For instance, suppose that the con-
figurations ±φ are equally likely to occur, and that the
characteristic “color” values ±φc are preferred. We would
then expect the leading order dynamics to have the form

∂tφ = aφ + bφ3 + . . . , (1)

where φc =
√
−a/b with a > 0 and b < 0 to ensure sta-

bility of the fixed points ±φc. Similarly, when patterns of
length scale Λ (corresponding to wavemodes kΛ = 2π/Λ)
are selected in an otherwise isotropic spatial setting, we
would expect the leading order dynamics in Fourier space
to have the form

∂tφ̂ = (α|k|2 + β|k|4 + . . .)φ̂, (2)

where kΛ =
√

−α/(2β) with α > 0 and β < 0 to en-
sure that small-wavelength modes decay, or φ̂(t,k) → 0
as |k| → ∞. We may thus combine eqs. (1) and (2) and
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obtain the following PDE in position space:

∂tφ = aφ + bφ3 − α∇2φ + β(∇2)2φ. (3)

Intuitively, the field’s observed “colors” or values are iden-
tified with fixed points of eq. (1), while the length scale
of the most prevalent pattern corresponds to the Fourier
mode with maximal growth rate in eq. (2). Equations (1)
and (2) may be generalized by considering more general
expansions in both position and Fourier space, the latter
of which might introduce pseudo-differential operators to
eq. (3), but such extensions do not affect the general idea.

Although the arguments leading to eq. (3) are purely
formal, continuum equations of this type have been de-
rived from more fundamental models in a few select
cases [5,6]. A well-known example is the celebrated Swift-
Hohenberg theory [5] of Rayleigh-Benard convection in a
heated fluid. More recently, it was shown that surface pat-
tern formation processes in curved elastic bilayer materi-
als can be described by a fourth-order PDE of the same
type [6]. Furthermore, phenomenological models resem-
bling (3) have been successfully applied to describe pat-
tern formation processes in granular media [7]. The ap-
plicability of these ideas to the collective non-equilibrium
dynamics of biological systems has not been thoroughly in-
vestigated, but there is some encouraging preliminary evi-
dence [8–10]. In this contribution, we compare two models
that generalize eq. (3) to vector fields and matrix fields.
The vector model aims to describe polar cell motility in
dense microbial suspensions [8,9], whereas the matrix field
theory is designed to capture apolar orientational order
in concentrated ATP-driven microtubule-kinesin suspen-
sions [10–12].

Specifically, the discussion of the vector model in
sect. 2 focuses on systems consisting of microscopic con-
stituents that exhibit intrinsic geometric [13, 14] or kine-
matic polarity [15, 16], such as bacteria or sperm cells,
for which the position of the flagellum relative to the
cell body defines an orientation vector. For assemblies
of σ = 1, . . . , N polar objects with individual orienta-
tions nσ, we can define the mean local orientation field
p(t,x) = 〈nσ〉(t,x), where the average is taken over a
small volume enclosing the space point x at time t. In
contrast, the field p is not a meaningful order parame-
ter for front-back symmetric rod-like particles, called ne-
matics, since nσ and −nσ are equally valid characteriza-
tions of the same particle and thus p(t,x) ≡ 0 by sym-
metry. Instead, a non-trivial characterization of nematics
can be given in terms of the second-moment matrix-field
Q(t,x) = 〈nσnσ〉(t,x) −I/d, where I is the d-dimensional
identity matrix. Note that, by construction, Q is sym-
metric and traceless, Tr[Q] =

∑d
i=1 Qii = 0. The matrix

model in sect. 3 applies to systems that comprise approxi-
mately front-back symmetric particles without an intrinsi-
cally preferred direction of motion but which collectively
achieve complex dynamics, for example by creating ad-
vective hydrodynamic flows [11, 12, 17]. We here restrict
our attention to the two-dimensional case d = 2, which is
of relevance to the motion of both cells and microtubule
bundles on or near solid surfaces.

2 Vector field theory for polar cells

In the past decade, bacterial and other active suspensions
[8, 18–28] have emerged as important biophysical model
systems characterized by mesoscale spatio-temporal pat-
tern formation from microscopic non-equilibrium dynam-
ics [29–41]. Highly concentrated motile bacteria spon-
taneously organize into mesoscopic jet [21] and vor-
tex structures, spanning several cell lengths in diame-
ter [8, 9, 25] and persisting for several seconds [9] or even
minutes [42–45]. A conceptually simple continuum model,
accounting both qualitatively and quantitatively for the
experimental observations [8,9], is obtained [46] by merg-
ing the seminal Toner-Tu flocking theory [47–49] with the
Swift-Hohenberg theory of pattern formation [5] as fol-
lows. Focusing on the incompressible high-density regime
in which bacterial concentration fluctuations are negligi-
ble, we consider the generic transport law for the local
mean orientation vector field p(t,x) of the cells,

(∂t + u · ∇)p = −δG
δp

, (4)

where u(t,x) is the transport velocity field and G the ef-
fective non-equilibrium free energy. If cells move primarily
in the direction of their orientation, the velocity field may
be approximated as proportional to the orientation vector
field,

u = λ0p, (5)
with mass (or number) conservation implying the incom-
pressibility constraint ∇ · u = ∇ · p = 0. Equation (5)
is a reasonable approximation for sufficiently “dry” po-
lar active matter. This class includes truly dry systems
such as vibrated granular media with broken front-back
symmetry, microbial suspensions on surfaces that suppress
hydrodynamic effects [8] or, more generally, situations in
which self-propulsion dominates hydrodynamics. If fluid
flows play a dominant role, additional terms accounting
for coupling to fluid vorticity and strain must be included
in the transport law (4) [35].

To obtain a closed model for p, we still need to specify
the free energy G. Assuming that cells prefer to align their
orientations locally, we consider the generic ansatz [46]

G =
∫

d2x

[
−q(∇ · p) − α

2
p2 +

β

4
p4

+
Γ0

2
(∇p)2 +

Γ2

2
(∇∇p)2

]
, (6)

where the scalar pressure field q(t,x) is the local Lagrange
multiplier for the incompressibility constraint, (∇p)2 =
(∂ipj)(∂ipj) and (∇∇p)2 = (∂i∂jpk)(∂i∂jpk), summation
over repeated indices i, j, k = 1, 2 being implied. As in
eq. (3), the last four terms in eq. (6) may be interpreted
as the leading-order terms of a generic Taylor expansion
in both order-parameter space and Fourier space. Thus,
the resulting fourth-order model can be written as

∇ · p = 0, (7a)
(∂t + λ0p · ∇)p = −∇q + (α − β|p|2)p

+Γ0∇2p − Γ2(∇2)2p, (7b)
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Fig. 1. Simulations of the vector model (7) for various values of the orientational diffusivity parameter Γ0 and self-advection
parameter λ0, using random initial conditions and simulation box size L = 24π. (a) Phase diagram showing the dependence
of the simulated long-time dynamics on Γ0 and λ0. (b)–(e) Still images from representative simulations, the arrows showing
streamlines of the velocity field u and the color bar indicating the orientational vorticity ω = εij∂ipj normalized by its maximum
absolute value. We observe polar states (panel b), cubic vortex lattices (panel c, Supplementary Movie 1), irregular vortex lattices
(panel d, Supplementary Movie 2), and turbulent states (panel e, Supplementary Movie 3). The simulation parameters are (b)
Γ0 = 0, λ0 = 2; (c) Γ0 = −0.6, λ0 = 4; (d) Γ0 = −1.2, λ0 = 0; and (e) Γ0 = −2, λ0 = 2.5.

where (λ0, α, β, Γ0, Γ2) are phenomenological parameters
that can be determined by fitting numerical solutions of
eqs. (7) to experimental data [8, 9], analogous to the vis-
cosity in the classical Navier-Stokes equations of hydro-
dynamics [50]. As in the Toner-Tu flocking model [47–49],
the parameters α, β > 0 describe effective polar alignment
similar to that induced by ferromagnetic spin interactions.
Equation (7b) has an unstable isotropic fixed point p = 0
and a manifold of stable fixed points with |p| =

√
α/β,

corresponding to a globally ordered polar state with arbi-
trary uniform orientation. The Swift-Hohenberg-type spa-
tial derivative terms with coefficients Γ0 and Γ2 deter-
mine the length and time scale of typical patterns when
Γ0 < 0. Short-wavelength stability, or equivalently well-
posedness, of the theory requires that Γ2 > 0, but the ori-
entational “diffusion” parameter Γ0 can have either sign.
For Γ0 > 0, the system is damped into a stable homo-
geneous polar state [46]. By contrast, for Γ0 < 0, these
states destabilize into patterns with characteristic length
Λ ∼

√
Γ2/(−Γ0) and lifetime τ ∼ Γ2/Γ 2

0 , as suggested
by dimensional considerations. Analysis of a microscopic
model of polar swimmers showed that Γ0 may become
negative when the volume fraction, self-propulsion speed
and force density of the active swimmers are sufficiently
large [51].

To solve eqs. (7) numerically, we implemented a pseu-
dospectral algorithm using periodic boundary conditions
in space and an operator-splitting Euler method for time
integration [8, 46], with 128 lattice points in each spatial
direction and time step Δt = 10−2. After rescaling to
dimensionless coordinates, which is equivalent to setting
α = β = Γ2 = 1, the remaining model parameters are
(λ0, Γ0) and the simulation box size L. The dimensionless
self-advection parameter λ0 plays the role of an effective
Reynolds number. A numerically determined phase dia-
gram in the (λ0, Γ0)-parameter plane using random initial
conditions and representative still images from long-time
runs are shown in fig. 1. If |λ0| is subcritical, ordered polar
states or vortex-lattice patterns form (figs. 1b and d). For
supercritical values of λ0, these patterns become mixed

by the nonlinear advection term and thus generate a
turbulent state, an effect that is amplified by the two-
dimensional incompressibility constraint in eq. (7a) [52].
In the intermediate regime −1.25 < Γ0 < −0.75, there
is a transition from turbulence (fig. 1e) to a cubic vortex
lattice (fig. 1c) of large vortices as λ0 is progressively in-
creased. This may be due to the inverse energy cascade
in 2D turbulence, which transports energy from small to
large scales [52,53], and to the finite size of our simulation
box. While the orientational diffusion term proportional
to Γ0 is responsible for the formation of small-scale vor-
tices (fig. 1d–e), the advection term becomes more impor-
tant above a critical value of λ0, and the large vortices
characteristic of the cubic lattice phase appear. Decreas-
ing Γ0 to large negative values for fixed λ0 generally favors
lattice-like states (fig. 1c–e). We note that similar vortex-
lattice states were predicted in [54], who considered a more
complex hydrodynamic model for active polar gels and as-
sessed the linear stability of the homogenous polar state.
Ordered vorticity patterns have also been observed in ex-
periments on dividing endothelial cells, and a continuum
model inspired by eqs. (7) was used to reproduce the key
experimental observations [55].

It has been shown that eqs. (7) reproduce the key
statistical features observed in experiments using dense
quasi-2D [8] and quasi-3D [9] B. subtilis suspensions con-
fined in microfluidic channels. In particular, the corre-
sponding kinetic energy spectra exhibit a characteristic
peak [8] at the wave number corresponding to the typical
vortex size. Such peaks constitute a hallmark of mesoscale
turbulence and are in stark contrast to the scale-free
power-law spectra in classical high Reynolds number tur-
bulence [50, 52]. The presence of spectral peaks in bacte-
rial mesoscale turbulence lends support to the idea that
important characteristics of active polar suspensions may
be understood in terms of universal free energy expan-
sions of the form (6). Recently, more progress has been
made in understanding how the active turbulence pre-
dicted by eqs. (7) differs quantitatively from classical tur-
bulence [56].
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3 Matrix field theory for 2D active liquid
crystals

Two-dimensional active liquid crystal (ALC) analogs [12,
17, 57–60] comprise another class of non-equilibrium sys-
tems that lends itself to quantitative tests of generic
pattern-formation concepts [61]. ALCs are assemblies of
approximately rod-like particles that develop non-thermal
collective excitations due to steady external [57, 58] or
internal [12, 17] energy input. At high concentrations,
both dry and wet ALCs form an active nematic phase
characterized by dynamic creation and annihilation of
topological defects [12, 17, 57]. This phenomenon was ob-
served recently in suspensions of ATP-driven microtubule-
kinesin bundles that were trapped in a flat oil-water inter-
face [11,12] or near the curved surface of a vesicle [17]. As
outlined in sect. 1, orientational order in such active ne-
matics can be naturally described in terms of the matrix
field Q(t,x) which describes the local second statistical
moment of the particle orientation distribution.

Over the past decade, several nematic order-parameter
models [34,62–67] and kinetic theories [68] for wet [12,17]
and dry ALC systems [57,58] have been proposed and de-
rived, although most of them still need to be tested quan-
titatively against experimental data. We here consider the
recent experiments on wet ALCs [11, 12] and aim to de-
scribe the orientational order of ATP-driven microtubule-
kinesin filaments at a planar oil-water interface close to
a solid boundary (distance ∼ 3μm). To this end, we con-
sider a compact minimal model that generalizes the vector
model from eqs. (7) to the symmetric traceless 2×2-matrix
field Q [10], starting again from a generic transport law
for a hydrodynamically advected tensor field:

∂tQ + ∇ · (uQ) − κ[Q,Ω] = −δF
δQ

, (8)

where Ω = [∇u − (∇u)�]/2 is the vorticity tensor of the
2D interfacial flow u with coupling parameter κ = 1 for
passive LCs, [A,B] = AB − BA the matrix commuta-
tor and F an effective free energy. The scalar nematic
order-parameter S(t,x) =

√
Tr[2Q2] is proportional to

the larger eigenvalue of Q, and the filaments are oriented
along the corresponding eigenvector, or director d(t,x).
Focusing on dense suspensions as realized in the experi-
ments [11, 12], we neglect fluctuations in the microtubule
concentration. Additional terms that model microtubule
alignment with the flow may also be added, examples be-
ing {Q,E} [66,67] and SE [65], where {A,B} = AB+BA
is the matrix anticommutator and E = [∇u + (∇u)�]/2
the strain rate tensor. We neglect these here in the interest
of constructing a minimal theory capable of capturing the
key experimental observations. It is important, however,
that ∇· (uQ) 	= u ·∇Q when ∇·u 	≡ 0, which is typically
the case when fluid can enter and leave the interface.

The 2D flow field u may be related to Q through the
damped Stokes equation [69]

−μ∇2u + νu = −ζ∇ · Q, (9)

where μ is the viscosity and the rhs. represents active
stresses [64,70], with ζ > 0 (ζ < 0) for extensile (contrac-
tile) ALCs. The ν-term describes effective friction from a
nearby no-slip boundary [11,12] in the Hele-Shaw approx-
imation [69]. A straightforward boundary-layer scaling ar-
gument suggests that ν scales with the distance h from the
boundary as ν ∝ h−η where η ∈ [1, 2]. In the overdamped
regime νΛ2/μ � 1, where Λ is the length scale of typical
patterns in the active nematics, eq. (9) reduces to

u = −λ0∇ · Q, λ0 = ζ/ν. (10)

Inserting the closure condition (10) into (8) yields a
closed Q-theory, once we have specified the effective free
energy F . Combining Landau-de Gennes theory [71] with
Swift-Hohenberg theory [5], a generic ansatz for the free
energy resembling eq. (6) is given by1

F =
∫

d2x

{
−α

2
Tr

[
Q2

]
+

β

4
Tr

[
Q4

]

+
Γ0

2
(∇Q)2 +

Γ2

4
(∇∇Q)2

}
, (11)

where α, β > 0 for the nematic phase, (∇Q)2 = (∂kQij)
(∂kQij) and (∇∇Q)2 = (∂k∂lQij)(∂k∂lQij). Assuming
that Γ0 can have either sign, short-wavelength stability re-
quires that Γ2 > 0. The free energy F possesses a homoge-
neous nematic ground-state manifold for Γ0 > 0, whereas
a pattern of characteristic wavelength Λ ∼

√
Γ2/(−Γ0)

becomes energetically favorable for Γ0 < 0.
The choice Γ0 < 0 has an intrinsically microscopic

origin, as it describes kinesin-driven microtubule bundles
that undergo spontaneous buckling. This is caused by the
the motor-induced extensile shear dynamics of adjacent
bundles (fig. 1c in ref. [12]), an extended discussion of
which is given in ref. [10]. To summarize, the ALC as-
sembly consists of microtubules that grow against each
other and spontaneously buckle. Previous work has shown
that individual microtubules can couple to their surround-
ing network and spontaneously buckle under compressive
stresses [72], which here are effectively generated by their
motor-induced extensile shear. This is in contrast to pas-
sive LCs, for which Γ0 > 0 in the free energy causes spa-
tial inhomogeneities in the director field to be penalized.
We note that hydrodynamic effects could also lead to mi-
crotubule buckling [66, 73], but believe this to be a sec-
ondary effect. Indeed, fig. 1d in ref. [12] shows a scale
separation between microtubule buckling and hydrody-
namic flow structures in the isotropic phase at low micro-
tubule concentrations, which suggests that hydrodynamic
coupling is not necessary to generate spontaneous micro-
tubule buckling.

We note that eq. (11) is the formal generalization of
eq. (6) to matrix fields. However, a subtle yet important
difference is due to the compressibility of the 2D velocity
field, ∇·u 	= 0, reflecting that, in the experiments [11,12],

1 Note that ref. [10] uses a different sign convention for the
parameter multiplying the (∇Q)2 term in eq. (11).
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Fig. 2. Simulations of the matrix model (12) for various values of the orientational diffusion parameter Γ0 and self-advection
parameter λ0, using random initial conditions and simulation box size L ≥ 6π. The vorticity coupling parameter κ = 1
throughout. (a) Phase diagram showing the dependence of the simulated long-time dynamics on Γ0 and λ0. The pink curve
indicates the stability boundary |λ0| = 2Γ0 for the uniformly aligned nematic state, based on the linear stability analysis outlined
in appendix A (fig. 3c). (b)–(e) Representative still images from the simulations, the nematic director field d(x) being rendered
using line integral convolution. Topological defects are identified using the method described in ref. [10], and indicated in yellow
(+ 1

2
) and blue (− 1

2
). We observe uniformly aligned states (yellow, panel b), static or oscillatory defect-free splay/bend states

(blue, panel c, Supplementary Movies 4 and 8), long-lived static or oscillatory defect lattice states (green, panel d, Supplementary
Movie 6) and turbulent nematic states (red, panel e, Supplementary Movie 7) characterized by spontaneous topological defect
creation and annihilation. We also observe states characterized by oscillatory defect creation and annihilation events (black,
Supplementary Movie 5). The dimensionless simulation parameters are (b) λ0 = −0.625, Γ0 = 1; (c) λ0 = 0.375, Γ0 = −1.5; (d)
λ0 = −0.375, Γ0 = −2.5; and (e) λ0 = 1, Γ0 = −1.

microtubules assemble at an interface layer which can con-
tinuously exchange fluid with the environment. Inserting
the hydrodynamic closure condition (10) and the free en-
ergy ansatz (11) into eq. (8), we obtain

∂tQ − λ0∇ · [(∇ · Q)Q] − κ[Q,Ω] =

αQ − βQ3 + Γ0∇2Q − Γ2(∇2)2Q. (12)

As in sect. 2, eq. (12) can be rewritten in a dimensionless
form that is equivalent to setting α = β = Γ2 = 1, thus
leaving (λ0, Γ0) as the only two relevant parameters.

To solve the resulting dimensionless equation, we
implemented a pseudospectral algorithm with periodic
boundary conditions in space and a modified exponential
time differencing fourth-order Runge-Kutta time-stepping
scheme [74]. Simulations were performed with time step
Δt ≤ 2−10 and at least 256 lattice points in each spa-
tial direction. The simulations conducted here extend the
results of ref. [10] by incorporating the vorticity coupling
term (κ = 1), and exploring the parameter regimes Γ0 > 0
and λ0 < 0, which corresponds to contractile active ne-
matics. While the experiments in refs. [11, 12] were done
using extensile nematics, for which λ0 > 0 and Γ0 < 0,
we here explore the entire (λ0, Γ0) parameter space to ob-
tain a complete characterization of the model (12). It is
evident from eq. (10) that the limit λ0 → 0 corresponds
to decreasing the activity parameter ζ or increasing the
effective boundary friction ν. We here consider the lat-
ter scenario, which could be achieved experimentally by
decreasing the depth of the ALC layer, using the setup
described in ref. [75].

A numerically obtained phase diagram of eq. (12) for
random initial conditions Q(0,x) is shown in fig. 2a, along
with representative still images from the simulations in
fig. 2b–e. It is evident that the uniformly aligned state
(fig. 2b) is stable for sufficiently large values of the ori-
entational diffusion parameter Γ0, specifically, in the re-

gion Γ0 > |λ0|/2, which is in agreement with the results
of the linear stability analysis of the uniform state pre-
sented in appendix A (fig. 3c). Spatially periodic defect-
free splay/bend states (fig. 2c) are prevalent for moderate
values of the self-advection parameter λ0, although we also
observe a number of other more complex phases. For rel-
atively small values of Γ0, we observe oscillatory states
in which the nematic undergoes oscillations in a defect-
free environment (Supplementary Movie 4). The system
may also exhibit relaxation oscillations, which consist of
long periods in which the the director is nearly uniformly
aligned, followed by rapid bursts in which the director ro-
tates by 90 degrees (Supplementary Movie 8). This state
was observed in the multi-field active nematic model ana-
lyzed in ref. [76]. We also observe oscillatory states char-
acterized by the spontaneous creation and annihilation of
topological defects (Supplementary Movie 5).

As Γ0 becomes more negative, we observe more long-
lived static or oscillatory defect lattice states (fig. 2d, Sup-
plementary Movie 6), in which the topological defects are
found in an ordered arrangement. The long-lived states
are related to the “vortex lattices” observed by simulating
a multi-field active nematic model that allows for varia-
tions in the microtubule concentration, but assumes that
Γ0 > 0 [67]. These vortex lattices consist of an ordered ar-
rangement of topological defects in which +1

2 -defects re-
main between counter-rotating vortices, as also observed
in our simulations (see fig. 3 in ref. [10]). Such ordered
arrangements were reported in ref. [67] for both extensile
(λ0 > 0) and contractile (λ0 < 0) nematics, in agreement
with our simulations (fig. 2a).

For larger values of λ0, the system evolves into a turbu-
lent nematic state (fig. 2e, Supplementary Movie 7) char-
acterized by an aperiodic dynamics with spontaneous cre-
ation and annihilation of topological defects. We observe
that the dynamics for small values of λ0 is sensitive to the
initial conditions, and that multiple long-lived configura-
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Fig. 3. Results of the linear stability analysis of the uniformly aligned state in the (Γ0, λ0) plane, for (a) κ = 0, (b) 0 < κ < 1
and (c) κ ≥ 1. The uniform state is stable in the white regions; it undergoes an isotropic instability in the violet region, a
longitudinal instability along the director field in the red regions, and a transverse instability perpendicular to the director field

in the blue regions. The dashed curves correspond to |λ0| = 2(Γ0 +
√

2), the dotted curves to |λ0| = 2
1+κ

(Γ0 +
q

Γ 2
0 + 2(1+κ)

1−κ
),

and the dashed-dotted curve to |λ0| = 2Γ0/κ.

tions may exist for a given set of parameter values. We also
note that, while the self-advection term with prefactor λ0

breaks the p → −p symmetry of the vector model (7) and
the Q → −Q symmetry of the tensor model (12), only
the phase diagram for the tensor model is approximately
symmetric with respect to λ0.

As demonstrated in ref. [10], the two-parameter
model (12) correctly reproduces the spontaneous creation
and subsequent dynamics of ±1

2 defect pairs, while also
accounting quantitatively for their speed and lifetime dis-
tributions. Furthermore, eq. (12) predicts a regime char-
acterized by antipolar ordering of +1

2 -defect orientations.
This is in contrast to the polar ordering of +1

2–defects
observed in Brownian dynamics simulations of rigid rods
that grow, divide, and merge in the absence of hydro-
dynamic interactions [11]. Physically, the lattice states
(fig. 2d) observed at low values of the self-advection pa-
rameter λ0 destabilize into a chaotic dynamics as λ0 is in-
creased, but the defect orientational order persists within
a neighborhood of several defects. Orientational order of
topological defects was also observed in recent experi-
ments [11]. Similar to the long-lived lattice states observed
in our simulations of eq. (12), the experiments exhibited
system-spanning nematic ordering of +1

2–defects. How-
ever, this regime was realized experimentally while the
defects exhibited a complex and presumably chaotic dy-
namics.

Previous models for ALCs assumed an incompressible
2D flow field u, thus neglecting both fluid transfer be-
tween interface and bulk, and friction from nearby bound-
aries. We note that the incompressibility assumption ar-
tificially induces large-scale mixing through a turbulent
upward cascade, analogous to that in classical 2D hydro-
dynamic turbulence [52, 53]. In 2D microtubule-kinesin
layers [11, 12], flow is generated by the spatial gradi-

ents of Q, as described in eq. (9). The largest gradi-
ents occur in the vicinity of topological defects; that is,
these defects effectively stir the fluid on small scales. In a
truly incompressible 2D fluid, potentially realizable with a
soap-film setup [77], such small-scale energy input would
be transported to larger scales through an upward cas-
cade [52, 53]. Under the recently realized experimental
conditions [11, 12], however, an upward cascade is sup-
pressed by damping and fluid exchange between the ALC
layer and bulk. The model (12) implicitly accounts for
these effects and hence predicts that topological defects
remain locally ordered despite evolving via a chaotic dy-
namics [10]. Generally, this example demonstrates that
effective 2D hydrodynamic descriptions of 3D active sys-
tems must be handled with care.

4 Conclusions

We have illustrated how nonlinear fourth-order vector and
matrix continuum models can provide a useful quantita-
tive description of collective cell migration [8,9] and ATP-
driven microtubule-kinesin suspensions [10]. Conceptu-
ally, eqs. (6) and (11) build directly on “universality” ideas
in pattern formation [5,7] by simply assuming the validity
of leading-order expansions in both order-parameter space
and Fourier space. The fact that such a generic approach
has proved successful for three vastly different classes of
systems [6,8–10] lends support to the hypothesis [61] that
the pattern formation dynamics in soft active matter sys-
tems is governed by generic ordering principles. An im-
portant next step towards further validation is to derive
such higher-order equations from microscopic models [33].
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Appendix A.

We here consider the linear stability of the uniform state

Q = Q0 ≡ 1
2

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
,

in which the nematic director field is uniformly aligned
with fixed angle θ. This analysis extends the results pre-
sented in the Supplementary Material of ref. [10] to the pa-
rameter regime λ0 < 0. We substitute Q = Q0+εQ̂(t)eik·x

into eq. (12), non-dimensionalized so that α = β = Γ2 = 1,
and retain terms at order ε. As shown in ref. [10], the
maximal eigenvalue of the linear stability problem has the
form

σ(k, u) = −Γ0k
2 − k4 +

1
4

[
− 1 − λ0(1 − κ)k2u

+
√

(1 + λ0(1 + κ)k2u)2 + 4λ2
0κk4(1 − u2)

]
,

where k = k(cos φ, sin φ) and u = cos[2(φ−θ)]. A straight-
forward generalization of the argument in ref. [10] shows
that, for λ0 < 0,

σ∗(k) ≡ max
−1≤u≤1

σ(k, u) = −Γ0k
2 − k4

+
1
2

⎧
⎪⎪⎨

⎪⎪⎩

κ|λ0|k2, for u = −1 if κ ≥ 1,

κ|λ0|k2, for u = u∗ if 0 ≤ κ < 1 and k ≤ kc,

|λ0|k2 − 1, for u = 1 if 0 ≤ κ < 1 and k > kc,

where u∗ = −1 for 0 < κ < 1 and is arbitrary for κ = 0,
and kc = [|λ0|(1−κ)]−1/2. Note that this is identical to the
corresponding expression presented in ref. [10], with λ0 re-
placed by |λ0| and the roles of u = 1 and u = −1 switched.
We thus find that the system may undergo one of three in-
stabilities: an isotropic instability in which the dominant
instability is independent of the direction φ, a longitudinal
instability in which the most unstable mode points along
the nematic director field (φ∗ = θ), or a transverse in-
stability in which it points perpendicular to the nematic
director field (φ∗ = θ + π/2).

The instability is driven by the wave number k for
which σ∗(k) is the largest, and the system is stable if
σ∗(k) < 0 for all k. The analysis for λ0 < 0 is identi-
cal to that presented for λ0 > 0 in ref. [10], so we directly
show the results in fig. 3. For the case κ = 1 considered
in the main text, the stability boundary is given by the
curve |λ0| = 2Γ0/κ (fig. 3c), which corresponds to the pink
curve in fig. 2a.
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