
Eur. Phys. J. Special Topics 224, 1349–1358 (2015)
© EDP Sciences, Springer-Verlag 2015
DOI: 10.1140/epjst/e2015-02463-2

THE EUROPEAN
PHYSICAL JOURNAL
SPECIAL TOPICS

Regular Article

Generalized Navier-Stokes equations for active
suspensions

J. S�lomkaa and J. Dunkelb

Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts
Avenue E17, Cambridge, MA 02139-4307, USA

Received 26 February 2015 / Received in final form 18 May 2015
Published online 24 July 2015

Abstract. We discuss a minimal generalization of the incompressible
Navier-Stokes equations to describe the complex steady-state dynamics
of solvent flow in an active suspension. To account phenomenologically
for the presence of an active component driving the ambient fluid flow,
we postulate a generic nonlocal extension of the stress-tensor, concep-
tually similar to those recently introduced in granular flows. Stability
and spectral properties of the resulting hydrodynamic model are stud-
ied both analytically and numerically for the two-dimensional (2D)
case with periodic boundary conditions. Future generalizations of this
theory could be useful for quantifying the shear properties of active
suspensions.

1 Introduction

An active suspension [1–7] is, roughly speaking, a passive fluid medium that contains
at least one ‘micro-swimmer’ species capable of converting chemical into kinetic en-
ergy. If the swimmer concentration is sufficiently high, their collective dynamics can
induce rich non-equilibrium flow patterns in the ambient fluid [8–16], thereby causing
significant changes in the transport properties [17–20] and rheological response [21–
24] of the solvent medium. An intriguing, seemingly generic feature of dense active
suspensions is the emergence of a characteristic topological defect or vortex distance
[5–7,12,25,26], thought to arise from the competition between self-propulsion, steric
and hydrodynamic interactions [27]. Although the microscopic origins of such dy-
namical length-scale selection mechanisms are not yet fully understood, their exper-
imentally confirmed presence [5–7,12,25] suggests that one can effectively describe
active suspensions in terms of “non-local” higher-than-second-order partial differen-
tial equations (PDEs) [28], in analogy with well-established continuum theories of
pattern formation in elastic materials [29], granular media [30] and convection phe-
nomena [31].

Indeed, recent experimental and theoretical studies [7,12] confirm that a fourth-
order extension of the Toner-Tu theory [32,33] can reproduce, both qualitatively
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and quantitatively, many of the main statistical features of dense bacterial sus-
pensions. Specifically, these experiments [7,12] measured the mean bacterial veloc-
ity field u(t,x), which can be approximately decomposed in the form u(t,x) �
v(t,x) + v0P (t,x), where v(t,x) is the underlying solvent velocity field and P (t,x)
denotes the local mean orientation of the bacteria. The parameter v0 is the typical
bacterial self-swimming speed relative to the solvent flow (in general, v0 is also a
fluctuating quantity). The bacterial velocity data {u}, obtained by standard PIV
methods [2,5,8], were found to agree well with predictions of the incompressible
fourth-order theory [7,12]

∇ · u = 0 (1a)

(∂t + λ0u · ∇)u = −∇(p− λ1u2)− β(u2 − u20)u+G0∇2u−G2(∇2)2u, (1b)

where the pressure p(t,x) is the Lagrange multiplier for the incompressibility (bacter-
ial mass conservation) constraint (1a). The parameter λ0 describes nematic advection
and λ1 an active pressure contribution [28] that can be absorbed into a redefined pres-
sure p′ = p − λ1u2. The (β, u0)-terms correspond to a quartic Landau-type velocity
potential [33–35] and account for the formation of locally aligned bacterial jets [2]. The
nonlocal (G0, G2)-terms encode passive and active stresses due to hydrodynamic and

steric interactions, and determine the characteristic vortex size ΛΓ � 2π
√
G2/(−G0)

in the model when G2 > 0 and G0 < 0. Conceptually, Eqs. (1) extend the incom-
pressible Toner-Tu theory [33–35] through the additional Swift-Hohenberg-type [31]
instability that arises for G0 < 0. A similar linear instability mechanism was recently
derived by Großmann et al. [36] who considered a self-propelled particle model with
velocity-dependent interaction. With regard to our subsequent discussion, it is im-
portant to note that Eqs. (1), which are defined in the rest-frame of the microfluidic
channel confining the suspensions, are non-conservative due to the aligning β-term,
reflecting the fact that the self-swimming field v0P is not a conserved quantity (just
as in the classical Toner-Tu model [32,33]).

Although Eqs. (1) give satisfactory predictions for the bacterial velocity field
u(t,x) in a stationary setting [7,12], they are of limited use with regard to shear
experiments, which typically measure the response of the solvent flow in the presence
of moving boundaries. Aiming to develop a simplified phenomenological framework for
the future mathematical description of rheological measurements [21,22], we will focus
here on the complementary problem of constructing effective models for the solvent
velocity field v(t,x). Specifically, we are interested in identifying a minimal extension
of the Navier-Stokes (NS) equations that reproduces qualitatively the experimentally
observed, turbulent steady-state tracer dynamics in active suspensions [7]. In contrast
to traditional approaches that build on explicit couplings between solvent flow and
additional orientational order-parameter fields [9–11,15,24,37], we investigate here
analytically and numerically higher-order ad hoc closure conditions for the stress ten-
sor. Despite some technical differences, our approach shares conceptual similarities
with the recently proposed, effectively non-local constitutive relations that have led
to promising progress in the quantitative understanding of granular flows [38].

2 Generalized Navier-Stokes (NS) model

We focus on a coarse-grained model of active micro-swimmer suspensions, assuming
that a single velocity field, v(t,x), describes the solvent flow on scales several times
larger than an individual micro-swimmer. Considering incompressible solvent flow,
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we postulate that the dynamics of v(t,x) is governed by the mass and momentum
conservation laws

0 = ∇ · v, (2a)

∂tv + (v · ∇)v = −∇p+∇ · σ, (2b)

with scalar pressure p(t,x) and symmetric stress tensor σ(t,x). Equation (2) implic-
itly assumes that the suspension has reached a (possibly turbulent) quasi-equilibrium
state, in which the net momentum transfer between microswimmers and fluid becomes
negligible. This restriction is consistent with the standard assumption that active fil-
aments or microorganisms can be regarded as force-free [39–42] and torque-free [43]
swimmers, which drive solvent flow by creating a stress field σ.

Instead of constructing σ from orientational order-parameter fields [9–11,15,24,
37], we hypothesize that the steady-state stress generated by the micro-swimmers can
be captured through a generic closed-form ansatz

σ = Σ(∇,v). (3)

In this paper, we will focus on a representative of the class of isotropic traceless
tensors1

Σ(∇,v) = f(∇2) [(∇v) + (∇v)�
]
, (4)

where ∇2 is the Laplace operator, and the scalar function f(·) quantifies the
swimmers-solvent coupling. The symmetric ansatz (4) ensures that there is no net
contribution to angular momentum from internal stresses, reflecting the assumption
that the swimmers are torque-free [43].

Intuitively, Eq. (4) can be thought of as a leading-order stress contribution linear
in v, arising from a truncated gradient expansion of an integral kernel representation
of the ‘full’ stress tensor σ, similar to a Kramers-Moyal expansion [44]. In particular,
for a constant function f(∇2) ≡ Γ0, corresponding to a passive isotropic fluid, Eqs. (2)
reduce to the standard Navier-Stokes equations. In this limit case, Γ0 is the usual
kinematic viscosity and depends on the volume filling fraction of (non-motile) micro-
swimmers.

In the remainder, we will restrict the discussion to symmetric second-order poly-
nomials

f(∇2) = Γ0 − Γ2(∇2) + Γ4(∇2)2. (5)

The constants Γ0 and Γ4 are assumed to be positive to ensure asymptotic stability,
whereas the parameter Γ2 may have either sign. Nontrivial steady-state flow struc-
tures emerge for negative values Γ2 < 0. Inserting Eqs. (4) and (5) into Eqs. (2), we
obtain the hydrodynamic equations

0 = ∇ · v, (6a)

∂tv + (v · ∇)v = −∇p+ Γ0∇2v − Γ2∇4v + Γ4∇6v, (6b)

where ∇2n ≡ (∇2)n from now on. Below, we analyze the generalized NS equations (6)
on a 2D square domain. Since we aim to understand their bulk properties, we adopt
periodic boundary conditions throughout.

1 More generally, one could also consider additional quasi-nematic stress contributions ∝
vv − I|v|2/d, where I is the d-dimensional identity tensor. Such terms would effectively
rescale the advective derivative and add a kinetic pressure contribution.



1352 The European Physical Journal Special Topics

3 Analytical results

To obtain some intuition about the generalized NS model (6), we first note that its

linear part supports a stationary vortex lattice of period ∼ √Γ4/(−Γ2), when Γ2 is
negative. This follows from the fact that

(
Γ0∇2 − Γ2∇4 + Γ4∇6

)
eik·x = 0 (7)

if k = |k| is one of the roots of Γ0 + Γ2k
2 + Γ4k

4 = 0, with real positive roots
existing only when Γ2 < 0. Furthermore, since the nonlinear advective terms on the
lhs. of Eq. (6b) will generally lead to mixing, one can expect to find parameters
such that Eqs. (6) produce turbulent mesoscale patterns similar to those observed in
experiments [5,7,12].

To perform a more detailed stability analysis, we focus on a periodic square domain
Ω = [−L/2, L/2]2 and rescale Eqs. (6) by introducing dimensionless quantities

x→ 2π

L
x, t→ (2π)2Γ0

L2
t, v → L

2πΓ0
v, p→ L2

(2π)2Γ20
p, k→ L

2π
k. (8)

One then finds that the dynamics of the model is characterized by the two dimen-
sionless groups

γ =
Γ0Γ4
Γ22
, γ2 =

(2π)2Γ2
L2Γ0

, (9)

and the rescaled Eqs. (6) take the form

∇ · v = 0 (10a)

∂tv + (v · ∇)v = −∇p+∇2v − γ2∇4v + γγ22∇6v. (10b)

To ensure stability at short wavelengths, γ must be always positive. Nontrivial flow
structures require γ2 < 0. We expect that there is a region in the (γ, γ2)-parameter
space that supports a quasi-chaotic steady-state dynamics characterized by the cre-
ation and annihilation of vortices.

To estimate this parameter region, we investigate how the total kinetic energy,
E(t) = 1

2

∫
Ω
dx |v|2, varies with time. From the equations of motion with periodic

boundary conditions, one finds

Ė(t) =

∫

Ω

dxv · ∂tv

=

∫

Ω

dx

[
−∇ ·

(
1

2
|v|2v + pv

)
+ v · (∇2v − γ2∇4v + γγ22∇6v)

]

=

∫

Ω

dxv · (∇2v − γ2∇4v + γγ22∇6v
)
. (11)

We next insert the Fourier series for the velocity, v(t,x) = F−1(v̂) ≡∑k eik·xv̂(t,k),
where k ∈ Z2, to obtain

Ė(t) = −(2π)2
∑

k

k2
(
1 + γ2k

2 + γγ22k
4
)|v̂(t,k)|2. (12)
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The first and the third term in the brackets are always positive, and therefore dissipate
energy. If γ2 > 0 holds, then Ė < 0 always; in this case, any solvent flow in the
system is rapidly damped out. More interestingly, however, when γ2 < 0, the active
component pumps energy into the flow. We may then ask if, at least for some region
in the (γ, γ2)-plane, the energy input and the energy dissipation can balance each
other. If such a steady-state exists, then the total system energy should fluctuate
about a constant mean value. More formally, we expect in this case that the mean
energy change vanishes,

〈Ė〉Δ,T ≡ lim
Δ→∞

lim
T→∞

1

Δ

∫ T+Δ

T

Ė(t)dt→ 0, (13a)

and that the time-averaged Fourier coefficients become stationary and isotropic,

〈|v̂(t,k)|2〉Δ,T → 〈|v̂(k)|2〉. (13b)

Provided that the steady-state is attainable, we have the following energy balance
equation

∑

k

k2
(
1 + γ2k

2 + γγ22k
4
)E(k) = 0, (14a)

where the energy spectrum, E(k), is defined as [45]

〈
1

2

∫

Ω

dx |v|2
〉

Δ,T

=
∑

k

E(k), (14b)

yielding

E(k) =
(2π)2

2

∑

k′:|k′|=k
〈|v̂(k′)|2〉. (15)

Building on the above considerations, we can now analytically estimate the part of
the (γ, γ2)-parameter plane where a steady-state can be reached. Neglecting pressure,
the linearized version of Eq. (10b) reads

∂tv = ∇2v − γ2∇4v + γγ22∇6v. (16)

Using the Fourier series for v as before, this is equivalent to

∂tv̂(t,k) = Λ(k) v̂(t,k), (17a)

where

Λ(k) = −k2(1 + γ2k
2 + γγ22k

4)

= −γγ22k2(k2 − k2−)(k2 − k2+). (17b)

The range of physically reasonable zeros k± can be inferred from stability considera-
tions as follows:

Fourier modes may become unstable if the micro-swimmers inject a sufficiently
large amount of energy into the system. In the linearized model, such supercritical
energy injection leads to divergence at an exponential rate. However, the advective
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Fig. 1. Simulation results for the rescaled generalized Navier-Stokes model defined in
Eqs. (10). A) Numerical stability analysis in the (γ, γ2)-parameter plane. Nontrivial energet-
ically stable steady-state solutions exist in the green region (labels D, E and F correspond to
snapshots shown in panels D-F). The numerical results agree well with the analytically pre-
dicted region of flow structure formation (red dashed lines) obtained in Sect. 3. In the purely
dissipative regime (dark blue), the system converges to the zero-flow solution. The truncated
model becomes unstable (brown region) when the dissipation is not able to balance the en-
ergy input. B, C) Kinetic energy as a function of time, E(t), and corresponding normalized
energy spectra, E(k), for the three parameter choices in the bottom row. D–F) Snapshots
of the steady-state flow stream lines for simulations with periodic boundary conditions. The
background color represents the associated vorticity fields ω = ∇ ∧ v, normalized by their
maximal values. The domain size is L× L, with L = 600μm in physical units.

term in the full nonlinear system mixes different modes, facilitating energy dissipation
through the decaying modes. The stability of a given mode is determined by the sign
of Λ(k). To observe non-trivial flow structures, we require Λ(k) > 0 for some k > 0,
implying that γ2 < 0 and γ < 1/4, because otherwise (1 + γ2k

2 + γγ22k
4) > 0 and,

hence, no real positive roots k± exist. Furthermore, its is plausible to assume that
any realistic active system has a long-wavelength cut-off corresponding to the largest
scale at which energy is collectively injected into the fluid, implying that the system
should be dissipative in some vicinity of its lowest mode, k = 1. Otherwise, there is no
room left for an inverse dissipative energy cascade and the energy could continuously
accumulate at long wavelengths. We therefore demand k− > 1, which implies that
γ2 >

1
−2γ (1 − √1− 4γ). Thus, all discrete k-modes lying in the annular region 1 <

k− < k < k+ inject energy, whereas the complementary set of modes dissipates
energy. For instance, if we adopt the simplifying assumption that, as in classical 2D
turbulent flow, E(k) scales as k−5/3 up to some cut-off mode, which we take to be
the largest unstable mode, k2+ = 1

−2γγ2 (1 +
√

1− 4γ), then, after approximating the

sum by an integral, Eq. (14a) predicts the critical value of γ = 0.16. In summary,
these considerations suggest that an energetically stable, nontrivial steady-state can
be reached in the parameter range 0.16 < γ < 0.25 and 0 > γ2 >

1
−2γ (1−√1− 4γ).

These simple estimates agree well with our numerical results, as shown in Fig. 1A.
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4 Stream function formulation and numerical implementation

To solve Eqs. (10) numerically, it is convenient to reformulate the dynamical equa-
tions (10) in terms of a stream function. By means of the Helmholtz-Hodge decompo-
sition [46], we can express the solvent flow field v as a sum of divergence-free, curl-free
and harmonic components,

v = ∇Φ +∇∧Ψ + V , (18)

for some scalar function Φ(t,x), pseudo-scalar function Ψ(t,x) and a harmonic vector
field V (t,x) satisfying ∇2V = 0. The ∧-product is defined by ∇∧Ψ = (εij∂iΨ) with
εij denoting the components of the 2D Levi-Civita tensor; similarly, for two 2D vectors
a = (a1, a2) and b = (b1, b2), we have a∧b = εijaibj . On periodic domains, harmonic
functions are constant, so V is interpreted as the fluid center of mass velocity. We will
always work in the center of mass frame, hence V = 0 from now on. Similarly, Φ is
also a constant since incompressibility implies that ∇2Φ = 0, so that Φ is a harmonic
function. Thus, Eq. (18) reduces to v = ∇∧Ψ.

To obtain the evolution equation for Ψ, we take the divergence and the curl of
Eq. (10b), which gives

(∇∇Ψ) : (∇∇Ψ)− (∇2Ψ)2 = −∇2p, (19a)

∂t(∇2Ψ) +∇(∇2Ψ) ∧∇Ψ = ∇4Ψ− γ2∇6Ψ + γγ22∇8Ψ. (19b)

The main advantage of this reformulation lies in the fact that the stream function Ψ
is now the only dynamical variable, as the pressure p can always be recovered from Ψ
by solving the Poisson Eq. (19a).

The governing equation for the stream function, Eq. (19a), can be solved with
standard spectral methods [47]. Using the Fourier series representation, the modes
of Ψ evolve according to

∂tΨ̂ +N = −k2(1 + γk2 + γγ22k
4)Ψ̂, (20a)

where the nonlinear terms are abbreviated by

N = k−2F{F−1(ikk2Ψ̂) ∧ F−1(ikΨ̂)}. (20b)

We integrated Eqs. (20) with a classical fourth-order Runge-Kutta scheme, and ap-
proximated F(·) by a Discrete Fourier Transform (DFT). The nonlinear term N is
evaluated by inverting the DFT, performing the multiplication in position space, and
then applying the DFT again. The aliasing error generated in this procedure is re-
moved at the expense of using a larger number of Fourier modes and zero-padding
when necessary (see [47] for a detailed description of this method; in our simulations,
we used a symmetric grid of 243× 243 modes).

5 Results

We first investigated the stability of numerical solutions of Eqs. (10) on a periodic
L×L square domain by performing systematic scan of the (γ, γ2)-parameter plane, ini-
tializing each simulation run with small random stream function values. In agreement
with our analytical considerations in Sect. 3, we found three qualitatively different
asymptotic behaviors:

(i) For γ2 > 0 or when γ becomes too large, the solvent dynamics is purely dissi-
pative and approaches a stationary state of vanishing flow v ≡ 0 (blue symbols
in Fig. 1A).
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(ii) For γ2 < 0 and γ too small, the solutions become unstable, reflected by an
exponential blow-up of the kinetic energy (brown symbols in Fig. 1A).

(iii) For γ2 < 0 and moderate values of γ the system exhibits quasi-chaotic steady-
state flow patterns (green symbols in Fig. 1A). The numerically estimated
boundaries of this physically relevant domain agree well with the analytical
estimates (red dashed lines) from Sect. 3.

Example snapshots of quantitatively different flow patterns for three parameter pairs
(γ, γ2) are shown in Fig. 1D–F. For all three parameter pairs, the kinetic energy
approaches a constant mean value (Fig. 1B). As γ approaches the upper critical value
0.25, the corresponding energy spectra develop peaks near the linearly most unstable
wave number, k∗ ∼ −(2γγ2)

−1 (black curve F in Fig. 1C). In position space, such
peaks correspond to a characteristic vortex size ∼ k−1∗ (Fig. 1F). For comparison, the
blue and red curves in Fig. 1B,C represent two opposite extremes at small values of γ
exhibiting very large and small vortices, respectively (Fig. 1D,E). The vortex diameter
in Fig. 1D approaches ∼ 1/2 of the total system size L, corresponding to the second
smallest k-mode in our simulations. Accordingly, this vortex length scale appears
as a maximum at the lower boundary of the k-range (blue curve D in Fig. 1C). In
the opposite limit, when the characteristic vortex size becomes very small (Fig. 1E),
the spectrum is well approximated by a Kolmogorov scaling law E(k) ∝ k−5/3 as
typical of the upward cascade in classical 2D turbulence (red curve E in Fig. 1C).
This supports the assumptions made in Sect. 3 to derive the left vertical red dashed
line in Fig. 1A. Although this upward cascade “smears out” the spectrum at smaller
wave numbers, a remnant of the characteristic vortex size remains visible as a kink
at high wave-numbers (red curve E in Fig. 1C).

To relate the dimensionless parameters in our 2D simulations to physical relevant
dimensional values, we may fix Γ0 = 102 μm2/s and identify the box length with
L = 600μm. With these choices, the typical steady-state speeds are in the range of
1μm/s to 100μm/s, as typical of passive tracer particles in dense bacterial suspen-
sions [7].

Furthermore, we would still like to emphasize that the unstable regime (brown
symbols in Fig. 1A) arises from the particular truncated polynomial ansatz in Eq. (5).
Future quantitative comparison with experiments should focus on reconstructing bet-
ter approximations of the function f or, more generally, σ. Conversely, however,
stability criteria provide useful physical constraints for effective models that can be
utilized in parameter estimation procedures.

Although we restricted our numerical analysis to the 2D case, the generalized
Navier-Stokes model defined in Sect. 2 remains valid in 3D. If one adopts the trun-
cated polynomial ansatz (5), many qualitative flow characteristics are expected to
persist in higher dimensions, but the partial Kolmogorov scaling regime is unlikely
to be seen. This is due to the fact that, in classical 3D turbulence, a spectral de-
cay ∝ k−5/3 is associated with a downward cascade towards larger k-modes (smaller
wave-lengths), whereas in the polynomial model (6) the large-k dynamics is domi-
nated by the k6-damping term. To observe Kolmogorov scaling in the 3D generalized
Navier-Stokes model, one would have to modify the stress tensor such that it ex-
hibits asymptotically linear k-scaling at both small and large wave-numbers. This is
achievable by postulating non-polynomial functions f in Eq. (4).

6 Summary

We proposed and analyzed a minimal generalization of the Navier-Stokes equation to
describe the steady-state solvent flow in an active suspension. The main assumption
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underlying this simple momentum-conserving model is that, on scales larger than the
swimming cells or filaments, the complex fluid-swimmer interactions can be effectively
captured by a generalized form of the stress energy tensor, which can be expanded
in terms of higher-order differential operators. In this contribution, we focussed on
a simple example, corresponding to a sixth-order PDE, that produces turbulent flow
features that are qualitatively similar to those observed through passive tracer-particle
tracking in recent experiments [7].

A future goal is to embed this class of models into a shear-flow setting as rele-
vant to viscosity measurements [21,22]. This problem is conceptually and numerically
nontrivial as appropriate boundary conditions need to be identified and implemented.
Notwithstanding, such a phenomenological approach may help us to progress towards
a sufficiently-general-yet-reasonably-simple framework for the classification of rheo-
logical observations in active suspensions. From a practical perspective, an interesting
challenge will be to reconstruct an empirical form of the generalized stress-tensor σ
from experimentally measured solvent flow data.

The authors would like to thank Anand Oza and Sebastian Heidenreich for advice on
the numerical implementation. They are grateful to Igor Aranson, Markus Bär, Raymond
Goldstein, Hartmut Löwen, Lutz Schimansky-Geier, Holger Stark, Rik Wensink and Julia
Yeomans for helpful discussions.
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