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Abstract. The thermodynamic maximum principle for the Boltzmann–Gibbs–
Shannon (BGS) entropy is reconsidered by combining elements from group and
measure theory. Our analysis starts by noting that the BGS entropy is a special case
of relative entropy. The latter characterizes probability distributions with respect
to a pre-specified reference measure. To identify the canonical BGS entropy
with a relative entropy is appealing for two reasons: (i) the maximum entropy
principle assumes a coordinate invariant form and (ii) thermodynamic equilibrium
distributions, which are obtained as solutions of the maximum entropy problem,
may be characterized in terms of the transformation properties of the underlying
reference measure (e.g. invariance under group transformations). As examples,
we analyse two frequently considered candidates for the one-particle equilibrium
velocity distribution of an ideal gas of relativistic particles. It becomes evident
that the standard Jüttner distribution is related to the (additive) translation group
on momentum space. Alternatively, imposing Lorentz invariance of the reference
measure leads to a so-called modified Jüttner function, which differs from the
standard Jüttner distribution by a prefactor, proportional to the inverse particle
energy.

1 Author to whom any correspondence should be addressed.

New Journal of Physics 9 (2007) 144 PII: S1367-2630(07)45675-0
1367-2630/07/010144+14$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:joern.dunkel@physik.uni-augsburg.de
http://www.njp.org/


2 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Contents

1. Introduction 2
2. Thermodynamic entropy, relative entropy and Haar measures 2

2.1. Standard formulation of the MEP . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Relative entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3. Choice of the reference measure: group invariance and Haar measures . . . . . 7

3. Relativistic velocity distributions 9
3.1. Standard Jüttner distribution: momentum translation symmetry . . . . . . . . . 10
3.2. Modified Jüttner distribution: Lorentz symmetry . . . . . . . . . . . . . . . . . 11

4. Summary 12
Acknowledgment 13
References 13

1. Introduction

The combination of variational principles and group symmetries has proven extremely fruitful
in various fields of theoretical physics over the past century, with applications ranging from
classical mechanics [1, 2] to quantum field theory [3]–[5]. In this paper, we would like to discuss
how group and measure theoretical concepts may be incorporated into the maximum entropy
principle (MEP) of canonical equilibrium thermostatistics [6].2 To this end, we follow up an idea
by Ochs [7, 8] who demonstrated that the canonical Boltzmann–Shannon–Gibbs (BGS) entropy
is a special case of relative entropy (section 2). The relative entropy [9]–[11] characterizes a
probability distribution with respect to a pre-specified reference measure and allows a manifestly
coordinate invariant formulation of the MEP. In particular, we will focus on how the choice of the
reference measure affects the solution of the entropy maximization problem (i.e. the equilibrium
distribution). Thereby, it will be clarified that an acceptable MEP must include a postulate that
determines which specific reference measure has to be used for a given class of physical systems.
To obtain a mathematically meaningful characterization of potential reference measures, one can
study their symmetry properties by means of their transformation behaviour under group actions.
The idea of combining measure and group theory goes back to the Hungarian mathematician
Alfred Haar [12]. In the second part of the paper, this approach will be pursued in order to analyse
the MEPs for two of the most frequently discussed candidates for the relativistic one-particle
equilibrium velocity distribution (section 3).

2. Thermodynamic entropy, relative entropy and Haar measures

We start out by summarizing the standard formulation of the canonical MEP in section 2.1.
We shall focus on the simplest paradigm, corresponding to a spatially homogeneous, ideal gas
of classical particles, as this is sufficient for illustrating the main ideas. The concept of relative

2 The MEP states that the thermodynamic equilibrium distribution can be obtained by maximizing a suitably chosen
entropy functional under a given set of constraints.
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entropy is reviewed in section 2.2. The choice of the reference measures and their characterization
in terms of symmetry groups is discussed in section 2.3.

2.1. Standard formulation of the MEP

The canonical one-particle equilibrium velocity distribution for a non-relativistic gas of weakly
interacting particles (e.g. atoms or molecules) is the Maxwell distribution, corresponding to the
normalized probability density function (PDF)

fM(v) =
(
mβ

2π

)d/2

e−βmv2/2, v = (v1, . . . , vd) ∈ Vd := R
d. (1)

Here, β = 1/T is the inverse temperature, m the mass of the particle, and Vd denotes the space
of the d-dimensional Cartesian velocity coordinates (throughout, we use units such that the
speed of light c = 1, and Boltzmann constant kB = 1). In principle, one can find several different
arguments to justify equation (1) [13]; e.g. it can be shown [14] that the marginal one-particle
PDF of an isolated, weakly interacting N-particle gas converges to fM(v) in the thermodynamic
limit. An alternative derivation that will be focused on in the remainder of this paper is based on
the canonical MEP.

The MEP approach starts from postulating a canonical BGS entropy functional of the form

SB[f ] := −
∫

Vd
ddvf (v) log [f (v) · cd0], (2a)

where ddv = dv1, . . . dvd denotes an infinitesimal volume element of the non-relativistic
Cartesian velocity space Vd . The velocity constant c0 is formally required in equation (2a) to
make the argument of the logarithm dimensionless; however, its actual value is irrelevant for
the results to obtained, so that without loss of generality we can fix c0 = c = 1 throughout. The
MEP associated with equation (2a) states that the thermodynamic equilibrium distribution f ∗ is
obtained by maximizing SB[f ] with respect to f � 0 under the normalization and mean energy
constraints

1 =
∫

Vd
ddvf(v), ε =

∫
Vd

ddvf(v) E(v). (2b)

Here, E(v) = mv2/2 is the non-relativistic kinetic energy of a single particle (measured in the
laboratory-frame), and ε the mean energy per particle which is assumed to be known. By means
of two Lagrangian multipliers (α, β), the MEP results in the condition

0 ≡ δ

δf

{
SB[f ] + α

[
1 −

∫
Vd

ddvf(v)

]
+ β

[
ε−

∫
Vd

ddvf(v) E(v)

]} ∣∣∣∣
f=f ∗

= −(1 + log f ∗)− α− βE. (3)

Solving this equation for f ∗ and determining (α, β) from the constraints (2b), one recovers the
Maxwellian (1) with parameter β = d/(2ε). Hence, the MEP based on equation (2a) appears
to be satisfactory at first sight, but a more careful analysis reveals the following drawback: in
order to give the empirically established result (1), the BGS entropy (2a) must be written in
terms of the ‘correct’physical variable, and one has to use the ‘correct’ coordinate representation
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(in the above case, v, or some linear transformation as momentum p = mv, expressed in Cartesian
coordinates). Otherwise, one does not obtain the correct one-particle equilibrium distribution (1).

To briefly illustrate this, consider the physically most relevant three-dimensional case
(d = 3) and suppose that, instead of Cartesian coordinates (v1, v2, v3), we had started from
polar coordinates (v, φ, θ) ∈ [0,∞)× [0, 2π)× [0, π] =: P

3, i.e., by naively writing

SB[f̄ ] := −
∫

P3

dv dφ dθ f̄ (v, φ, θ) log f̄ (v, φ, θ), (4a)

where f̄ (v, φ, θ) is subject to the constraints

1 =
∫

P3

dv dφ dθ f̄ (v, φ, θ), ε =
∫

P3

dv dφ dθ f̄ (v, φ, θ) Ē(v, φ, θ), (4b)

and Ē(v, φ, θ) = mv2/2 is the energy expressed in polar coordinates. Maximizing SB[f̄ ] under
the constraints (4b) yields

f̄ ∗(v, φ, θ) =
(
mβ

2π

)d/2

e−βmv2/2. (5)

For comparison, by transforming the Maxwell PDF (1) to polar coordinates we find

f̄M(v, φ, θ) = J̄

(
mβ

2π

)d/2

e−βmv2/2, J̄ = v2 sin θ, (6)

where J̄ is the Jacobian of the coordinate transformation (v1, v2, v3) �→ (v, φ, θ). Upon
comparing equations (6) and (5), we observe that f̄ ∗ �= f̄M, due to the missing Jacobian prefactor
in equation (5).

This simple example illustrates that the above entropy definition is implicitly coordinate
dependent. This fact is somewhat unsatisfactory. If viewed as fundamental, then the MEP should
be formulated in a form that works independently of the underlying coordinate representation.
As we shall discuss next, this can be achieved by recognizing that the thermodynamic entropy
(2a) is a special case of the so-called relative entropy [7]–[9].

2.2. Relative entropy

First, we summarize the definition of the relative entropy [7]–[9] and demonstrate its invariance
under coordinate transformations. Subsequently, it will be shown how the BGS entropy (2a) is
embedded into this concept.

Consider some set X ⊆ R
d and two measures µ and ν on X that are absolutely continuous

with respect to each other (i.e. µ and ν have the same null sets in X [15]). The relative entropy
of µ with respect to ν is defined by3

S[µ|ν] := −
∫

X
dµ log

dµ

dν
(x) = −

∫
X

dν fµ|ν(x) log fµ|ν(x), (7a)

3 This definition of relative entropy, sometimes also referred to as generalized BGS entropy [7]–[9], does not only
apply to continuous but also to discrete spaces X . Depending on the problem under consideration, X may be the
one-particle or many-particle phase space, the velocity space, the configuration space, etc.
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where the function

fµ|ν(x) := dµ

dν
(x) > 0 (7b)

is the so-called Radon–Nikodym density [15] of µ with respect to ν. The measure ν plays the
role of a reference measure. We briefly illustrate the meaning of the Radon–Nikodym density by
two simple examples.

The most prominent measure on R
d is the Lebesgue measure, denoted byλ [15]. The measure

λ assigns to any d-dimensional rectangular parallel-epiped Jd := [a1, b1] × · · · × [ad, bd] ⊂ R
d

the intuitive measure number λ(Jd) = ∏d

i=1(bi − ai), where it is assumed that bi > ai holds
∀ i = 1, . . . , d. If, for example,µ is a probability measure on X ⊆ R

d , then the Radon–Nikodym
density fµ|λ(x) of µ with respect to λ is the ‘ordinary’ PDF of µ.

As the second example, consider two measuresµ, ν on X ⊆ R
d with non-vanishing densities

fµ|λ > 0 and fν|λ > 0 on X . In this case, the Radon–Nikodym density of µ with respect to ν is
given by the quotient of their densities, i.e.,

fµ|ν(x) := dµ

dν
(x) = fµ|λ(x)

fν|λ(x)
. (8)

Accordingly, we may rewrite the relative entropy (7a) in terms of the two densities fµ|λ and
fν|λ as

S[µ|ν] = −
∫

X
dλ fµ|λ(x) log

fµ|λ(x)
fν|λ(x)

= −
∫

X
ddx fµ|λ(x) log

fµ|λ(x)
fν|λ(x)

=: s[fµ|λ|fν|λ]. (9)

In the second line, we have inserted the equivalent notation ddx for the Lebesgue measure dλ
of an infinitesimal volume element in R

d . Equation (9) will provide the basis for all subsequent
considerations. We note that, in order to define relative entropy, it is a priori not required that the
measuresµ and ν are normalizable on X ⊆ R

d; it suffices to assume that they have the same null
sets, i.e., fµ|λ(x) = 0 implies fν|λ(x) = 0 and vice versa, so that the argument of the logarithm
is well-defined.4

Before discussing how the BGS entropy (2a) arises as a special case of equation (9), it is
useful to give the general, coordinate invariant form of the MEP with equation (9) serving as the
starting point. For this purpose, we impose the constraints

1 =
∫

X
dµ =

∫
X

ddx fµ|λ(x), (10a)

ε =
∫

X
dµ E(x) =

∫
X

ddx fµ|λ(x) E(x), (10b)

whereE > 0 is a non-negative ‘energy’function.5 MaximizingS[µ|ν] = s[fµ|λ|fν|λ] with respect
toµ or, equivalently, with respect to fµ|λ, and taking into account the constraints (10a) and (10b),

4 Conventionally, we set dµ
dν (x) = 1, if fµ|λ(x) = fν|λ(x) = 0.

5 In principle, one could also include more than two constraints.
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leads to the condition

0 ≡ 1 + log
f ∗
µ|λ
fν|λ

+ α + βE. (11)

Similar to equation (3),α andβ have entered here as Lagrangian multipliers for the normalization
and ‘energy’constraints, respectively. From equation (11) the solution of the variational problem
is obtained as

f ∗
µ|λ(x) = fν|λ(x) e−(α+1)−βE(x). (12)

The parameters (α, β) are determined by means of the conditions (10a) and (10b). As it is evident
from equation (12), the ‘equilibrium’ PDF f ∗

µ|λ depends on the choice of the reference density
fν|λ(x).

We next show that the relative entropy definition (9) is manifestly coordinate invariant. For
this purpose, consider a change of coordinates x �→ x̄, and denote by X̄ the range of the new
coordinates. Using the following standard formulae for the transformation of volume elements
and densities f :

ddx =
(
∂x

∂x̄

)
ddx̄, f̄ (x̄) =

(
∂x

∂x̄

)
f(x(x̄)), (13)

where J̄ = (∂x/∂x̄) is the Jacobian of the coordinate transformation, we find that

s[fµ|λ|fν|λ] = −
∫

X
ddx fµ|λ(x) log

fµ|λ(x)
fν|λ(x)

= −
∫

X̄
ddx̄ f̄ µ|λ(x̄) log

f̄ µ|λ(x̄)

f̄ ν|λ(x̄)
= s[f̄ µ|λ|f̄ ν|λ]. (14)

Hence, the relative entropy is indeed independent of the choice of the coordinates, due the fact
that the Jacobians in the argument of the logarithm cancel. As a consequence, the solution
of the associated MEP becomes coordinate independent as well. To demonstrate this more
explicitly, we first rewrite the constraint function E in terms of the new coordinates by defining
Ē(x̄) := Ē(x(x̄)). Then, the constraints (10a) and (10b) may be expressed equivalently in the
new coordinates as

1 =
∫

X
ddx fµ|λ(x) =

∫
X̄

ddx̄ f̄ µ|λ(x̄), (15a)

ε =
∫

X
ddx fµ|λ(x) E(x) =

∫
X̄

ddx̄ f̄ µ|λ(x̄) Ē(x̄). (15b)

Hence, the solution of the associated variational problem reads

f̄ ∗
µ|λ(x̄) = f̄ ν|λ(x̄) e−(α+1)−βĒ(x̄) =

(
∂x

∂x̄

)
fν|λ(x(x̄)) e−(α+1)−βE(x(x̄)) =

(
∂x

∂x̄

)
f ∗
µ|λ(x(x̄)). (16)

This is indeed the correct transformation law for the equilibrium PDF f ∗
µ|λ from equation (12);

i.e., once the reference measure ν and its density are properly specified, the MEP and its solution
become independent of the choice of the coordinates.

Finally, it is straightforward to see that the BGS entropy (2a) is a special case of equation
(9): we identify X = Vd = R

d and fix the reference measure as the Lebesgue measure in velocity
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space ν = λ. Then, taking into account that fλ|λ(v) ≡ 1, equation (9) reduces to the BGS entropy
(2a) i.e., explicitly,

S[µ|λ] = −
∫

Vd
ddv fµ|λ(v) log fµ|λ(v) = SB[f ]. (17)

We thus note that the canonical BGS entropy corresponds to a specific choice of the reference
measure, namely, the Lebesgue measure in velocity space. Put differently, whenever one writes
an entropy in the ‘standard’ form (17), one has implicitly fixed an underlying reference measure
(defined with respect to some set of primary variables).

With regard to the subsequent discussion it will be important to keep in mind that the solution
(12) of the coordinate invariant MEP is determined by two ingredients: (i) the ‘energy’ function
E that specifies the mean value constraint and (ii) the underlying reference measure ν. While
usually the energy function E is known, it is a not-so-trivial problem to identify the appropriate
reference measure ν for a given class of physical systems. In the next section, we are going to
discuss how one can classify reference measures according to their transformation properties
under symmetry groups.

2.3. Choice of the reference measure: group invariance and Haar measures

The above discussion shows that the MEP is incomplete unless one is able to specify the reference
measure ν on the state space X . Put differently, before accepting the MEP as a truly fundamental
principle, one has to find a general method that allows to determine ν for a given class of
dynamical systems. A promising step towards solving this problem is to analyse potential
reference measures with respect to their invariance properties under fundamental symmetry
transformations. Conceptually, this idea is closely related to the theory of Haar measures [12,
13]. In a seminal paper [12] published in 1933, the Hungarian mathematicianAlfred Haar studied
the possibility to introduce a measure µ◦ on a continuous group (G, ◦) such that µ◦ is invariant
under the group multiplication ‘◦’. To briefly sketch this idea, consider a subset A of the group
G and some arbitrary, fixed group element g ∈ G. By multiplying each element a ∈ A with g,
the subset A is mapped on to another subset of G, denoted by

g ◦ A := {g ◦ a |a ∈ A } . (18)

Now consider a measure µ◦ on G that assigns to A ⊆ G some non-negative real number µ◦(A).
The measure µ◦ is said to be group invariant, if6

µ◦(g ◦ A) = µ◦(A) (19)

holds for any g ∈ G and A ⊆ G. Haar was able to prove the existence of an invariant measure
µ◦, and its uniqueness apart from an irrelevant multiplicative constant for locally compact,
topological groups. Such group invariant measuresµ◦ are referred to as Haar measures nowadays
[15]. They give a mathematically precise meaning to the notion ‘uniform distribution’ by
combining measure and group theoretical concepts. However, in physics one often encounters
the slightly different situation, where a certain symmetry group acts on the domain X of a
vector space, e.g. by means of a matrix representation. In this case, it is a natural to extend

6 In the case of non-commutative (i.e. non-Abelian) groups, one may distinguish invariance under multiplications
from the right or left.

New Journal of Physics 9 (2007) 144 (http://www.njp.org/)

http://www.njp.org/


8 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

the original ideas of Haar by considering measures on X that are invariant under the group
action.7

In order to link these concepts to thermodynamics, we return to the BGS entropy (17). This
‘canonical’ entropy was identified above as the relative entropy with respect to the Lebesgue
measure λ on the non-relativistic velocity space Vd = R

d . Adopting the group-theoretical point
of view, the defining property of the Lebesgue measure is given by the fact that λ is the only8

translation invariant measure on Vd . To capture this fact more precisely, we define w-parametrized
translations Gw on Vd by means of

Gw : v �→ w + v, ∀ w, v ∈ Vd. (20)

The velocity translations Gw form a group by means of the composition rule

Gw1 ◦Gw2 = Gw1+w2 . (21)

Now consider some subdomain A ⊂ Vd and define the translation Gw[A] of A by

Gw[A] := {w + v | v ∈ A} . (22)

Then the Lebesgue measure λ is the only measure satisfying [15]

λ(Gw[A]) = λ(A), ∀A ⊂ Vd, w ∈ Vd, (23a)

or, equivalently, in differential notation

ddv = ddv′ (23b)

where v′ = Gw(v) = w + v. This very translation invariance distinguishes the Lebesgue measure
from all other measures that can be introduced on Vd . Adopting the physicist’s point of view, the
translation map (20) may be interpreted in two different ways.

1. Geometric interpretation: equation (20) describes a Galilei transformation, corresponding
to a change of inertial coordinate systems.

2. Kinetic interpretation: equation (20) describes a momentum conservation law, with �p =
mw corresponding to the particle’s momentum gain in a collision.

Both interpretations are equally plausible here, because non-relativistic momentum and velocity
differ by a mass constantm only; in particular, the Lebesgue measure in velocity space transforms
to a Lebesgue measure in momentum space, when changing from velocity to momentum
coordinates in the non-relativistic case. However, regardless of this ambiguity in the interpretation
of equation (20), it is evident that the Lebesgue measure in velocity space (or, equivalently, in
momentum space) plays a distinguished role in non-relativistic physics: it is the Haar measure
of the Galilei group (or, equivalently, of the momentum translation group). This might explain
why only the relative entropy with respect to this particular measure, S[µ|λ], yields the correct
non-relativistic equilibrium distribution (1).

7 For example, in the one-dimensional case d = 1 the proper-orthochronous Lorentz group L↑
+ consists of boosts

only and, therefore, it can be identified with the relativistic velocity space RV1 = (−1, 1); hence, the action of L↑
+

on RV1 is just the action of L↑
+ on itself. This corresponds to the framework originally considered by Haar [12].

By contrast, in higher space dimensions d > 1 it is not possible anymore to identify the relativistic velocity space
RVd = {v ∈ R

d | |v| < 1} directly with a subgroup of the Lorentz group, since then the number of group parameters
is larger than d (cf chapter 6 in [16]). Nevertheless, also in this case one can find a Lorentz invariant measure on
RVd , which is unique apart from an irrelevant multiplicative constant; cf discussion in section 3.
8 We omit the phrase ‘apart from an irrelevant multiplicative constant’ from now on.
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In the remainder of this paper, we are going to study generalizations of the Maxwell
distribution (1) in the framework of special relativity. In particular, we shall identify the reference
measures underlying two of the most commonly considered relativistic one-particle equilibrium
distributions.

3. Relativistic velocity distributions

Six years after Einstein [17, 18] had formulated his theory of special relativity, Ferencz Jüttner
[19] presented in 1911 the first detailed study on the canonical thermostatistics of a relativistic
(quasi-)ideal gas of classical particles.9 As the main result of his paper, he proposed the
following three-dimensional relativistic generalization of Maxwell’s non-relativistic momentum
distribution [19]–[21]:

φJ(p) = exp (−βE)
Z0

, p ∈ RP3 := R
3 (24)

with β = 1/T being the inverse temperature parameter, and

E = (m2 + p2)1/2 = mγ(v), p = mvγ(v), (25)

the relativistic energy and the relativistic momentum with Lorentz factor γ(v) = (1 − v2)−1/2

(we continue to use units kB = c = 1). Thed-dimensional relativistic momentum space is denoted
by RPd . The constant Z0 is determined by the normalization condition

1 =
∫

R3

d3p φJ(p), (26)

and, in the three-dimensional case, one finds [19]

Z0 = 4πm3K2(βm)

βm
, (27)

whereKν denotes the modified Bessel function of the second kind. The one-particle momentum
distribution (24) refers to a laboratory rest frame, where the container enclosing the gas is at rest.
As usual, it is assumed that for an ordinary hard box potential the spatial part of the one-particle
phase space PDF is trivial (i.e. constant), corresponding to a spatially homogeneous particle
distribution in the box.

The Jüttner function φJ has been widely used in high energy and astrophysics over past
decades [22]–[24]. However, in recent years several authors [25]–[29] argued that equation (24)
might not represent the correct relativistic equilibrium distribution, and several alternatives were
suggested. Generalizing to an arbitrary number of space dimensions d, the proposed candidates
can be summarized in terms of the following η-parameterized momentum PDF:

φη(p) = exp(−βE)
ZEη , p ∈ RPd = R

d, η � 0. (28)

The normalization constant Z depends on both η and d. For η = 0 the PDF (28) reduces to the
standard Jüttner function (24),φ0 ≡ φJ.The most frequently considered modification corresponds
to η = 1 [25]–[30], while one author [28] has also included the case η = 2. Compared with
the Jüttner value η = 0, larger values η > 0 diminish the probability of particles having high

9 Jüttner’s paper [19] appeared about 20 years prior to Haar’s work on group invariant measures [12].
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Figure 1. Relativistic velocity PDFs from equation (29) for the one-dimensional
case d = 1. (a) At low temperatures T � m both distributions approach a quasi-
Gaussian (Maxwellian) shape. (b) At high temperatures T � m the distributions
become bimodal. For the same temperature value T , the standard Jüttner
distribution with η = 0 exhibits a higher probability of large absolute velocities
than the modified distribution with η = 1.

absolute momentum at same temperature T = 1/β. The one-particle velocity PDF corresponding
to equation (28) is given by

fη(v) = md−η

Z
γ2+d(v)

γη(v)
exp [ − βmγ(v)] (29)

with v taking values in the relativistic velocity space RVd := {v ∈ R
d | |v| < 1}. Below we focus

on the two most frequently considered values η = 0 (standard Jüttner distribution) and η = 1
(modified Jüttner distribution). Figure 1 shows the corresponding velocity PDFs f0 and f1 at two
different temperature values for the one-dimensional case d = 1.

In the remainder, we will analyse the MEPs that give rise to the standard and modified
Jüttner distributions, respectively. In particular, the different underlying reference measures shall
be characterized by means of their invariance under group actions.

3.1. Standard Jüttner distribution: momentum translation symmetry

We first consider the MEP for the standard Jüttner distribution with η = 0.As discussed in section
2.2, the MEP becomes coordinate independent if expressed in terms of relative entropy. In the
relativistic case, it is most convenient to use the momentum coordinate p ∈ RPd := R

d . The
Lebesgue measure on relativistic momentum space RPd has, by definition, a constant density
denoted by �. Without loss of generality, we choose the normalization �(p) = (mc)−d = m−d

so that the integral of � over some finite subset of RPd is a dimensionless number. With these
preliminaries, we can state the MEP for the standard Jüttner function: maximization of the relative
entropy

s0[φ|�] = −
∫

RPd

ddp φ(p) log
[
mdφ(p)

]
(30a)

under the constraints

1 =
∫

RPd

ddp φ(p), ε =
∫

RPd

ddp φ(p) E(p), (30b)
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where now E = (m2 + p2)1/2 is the relativistic energy, yields the standard Jüttner distribution
φJ, corresponding to η = 0 in equation (28). It may be worth noting that, in the relativistic case,
the Lebesgue measure on RPd does not transform into a Lebesgue measure on the relativistic
velocity space RVd due to the nonlinear momentum–velocity relation p = mvγ(v). Hence, if
one rewrites the relative entropy s0 in terms of the velocity v, an additional determinant factor
enters in the argument of the logarithm.

We now turn to the invariance properties of the specific reference measure, required to
obtain the standard Jüttner distribution with η = 0. Analogous to the discussion in section 2.3,
the Lebesgue measure in relativistic momentum space is singled out by the fact that it is the only
translation invariant measure in momentum space; i.e., it is the Haar measure of the momentum
translation group. Hence, the standard Jüttner function is consistent with the kinetic interpretation
in section 2.3. Put differently, if the Jüttner function turns out to be the correct relativistic one-
particle equilibrium distribution, then the maximum principle for the relative entropy should
be completed by the postulate that the reference measure must be translation invariant in
momentum space.

3.2. Modified Jüttner distribution: Lorentz symmetry

As the second example, we consider the modified Jüttner distribution with η = 1 in equation (28).
It is straightforward to verify that this distribution is obtained by maximizing the relative entropy

s1[φ|ρ] = −
∫

RPd

ddp φ(p) log
[φ(p)
ρ(p)

]
, ρ(p) = 1/E (31)

under the constraints (30b). In contrast to equation (30a), the reference density ρ = 1/E is
momentum dependent. The measure χ associated with ρ assigns to any subset A ⊂ RPd the
measure number

χ(A) =
∫

A
ddp ρ(p) =

∫
A

ddp

E(p)
. (32)

It is interesting to explore the invariance properties of this measure. For this purpose, we consider
an arbitrary proper-orthochronous Lorentz transformation. Such transformations are either spatial
rotations, or boosts, or a combination of both [16]. They act as linear transformations on the
energy-momentum vector (E,p). Due to the fixed relationE(p) = (m2 + p2)1/2 between energy
and momentum, a Lorentz transformation can also be viewed as transformation that operates on
the momentum coordinates p alone, denoted by L : RPd → RPd . The functions L are linear
only in the case of pure rotations, but nonlinear otherwise [31]. However, analogous to equation
(22), we may define the Lorentz transformation L[A] of a set A ⊂ RPd by

L[A] := {L(p) | p ∈ A} . (33)

By taking into account the well-known fact that [23, 31, 32]

ddp

E(p)
= ddp′

E(p′)
(34)

holds under Lorentz transformations p �→ p′, one then finds that

χ(L[A]) = χ(A), ∀ A ∈ RPd. (35)

Hence, the specific reference measure underlying the modified Jüttner distributions with η = 1
is distinguished by the property that it is Lorentz invariant. In view of the fact that the Lorentz
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group is the relativistic counterpart of the Galilei group, one can say that the modified Jüttner
distribution is obtained when adopting the geometric interpretation in section 2.3. Put differently,
if the modified Jüttner function were the correct relativistic one-particle equilibrium distribution,
then the maximum principle for the relative entropy should be completed by the postulate that
the reference measure in momentum space must be invariant under the action of the fundamental
symmetry group of the physical model (e.g., Galilei, Lorentz, etc).

3.2.1. Explicit example: one-dimensional case d = 1.
As remarked earlier, the one-dimensional case d = 1 is somewhat special, because (only)

in this case the Lorentz boosts form a group that may be directly identified with the one-
dimensional velocity space RV1 := (−1, 1). The composition of two Lorentz boosts induces
a group multiplication ⊕ψ on RV1, given by

v3 := v1⊕ψv2 := v1 + v2

1 + v1v2
. (36)

This group operation is well known as the Einstein addition of velocities. The task of introducing
an invariant measure on the group (RV1,⊕ψ) falls exactly into the class of problems originally
considered by Haar [12]. The subscript ψ symbolizes that the Einstein addition ⊕ψ is equivalent
to an ordinary addition ‘+ ’ in the space� := (−∞,∞) of the rapidity variablesψ := arvtanh v.
Put differently, the maps ‘arctanh’ and ‘tanh’ induce a group isomorphism between (RV1,⊕ψ)

and (�,+). The latter fact makes it particularly simple to identify the Haar measure on (RV1,⊕ψ):
one merely needs to rewrite the Lebesgue measure λψ on�, which is invariant under the addition
of rapidities, in terms of the velocity coordinate; in differential notation, one then finds

dλψ = dψ =
(

dψ

dv

)
dv = γ2(v) dv ∝ dp

E(p)
, (37)

corresponding to the Lorentz invariant measure on RV1 and RP1, respectively (cf equation (34)).
As discussed above, using this measure as the reference measure in the MEP, one obtains
the one-dimensional modified Jüttner distribution with η = 1. For comparison, the ordinary
addition p3 := p1 + p2 in momentum space RP1 = (−∞,∞) induces another group operation
⊕p on RV 1 = (−1, 1) by means of the map v(p) = p/(m2 + p2)1/2. The corresponding velocity
addition law reads explicitly

v3 := v1⊕pv2 := v1

√
1 − v2

2 + v2

√
1 − v2

1√
1 − v2

1v
2
2 + 2v1v2

√
1 − v2

1

√
1 − v2

2

. (38)

Analogous to equation (37), the invariant Haar measure on (RV 1,⊕p) is obtained by expressing
the Lebesgue measure λp on RP1, which is invariant under the momentum addition, in terms of
the velocity variable, yielding

dλp = dp ∝ γ3(v) dv. (39)

As discussed in section 3.1, by using this measure in the MEP one is led to the standard Jüttner
function.

4. Summary

We have studied the canonical MEP for thermodynamic equilibrium distributions by combining
basic ideas from group and measure theory [10, 15]. It has been demonstrated that the concept of
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relative entropy [7]–[9] provides a suitable basis for stating the MEP in a coordinate invariant way.
Moreover, this approach clarifies that thermodynamic equilibrium distributions, if obtained from
a MEP [6], are determined not only by their constraint functionals but also by the underlying
reference measures. The latter may be characterized in terms of their symmetry properties,
i.e., by their invariance under group actions.

As examples, we analysed the two most frequently considered candidates [19]–[30] for the
relativistic generalization of the Maxwell distribution. It could be shown that the two candidate
distributions are based on different underlying reference measures.The reference measure leading
to a standard Jüttner distribution [19]–[21] is uniquely characterized by the fact that it is invariant
under momentum translations, whereas the modified Jüttner distribution [25]–[30] is related to
a Lorentz invariant reference measure in momentum space. Even though the above approach
clarifies the underlying mathematical differences on a fundamental level, it does not permit a
decision to be made as to which distribution is actually the better candidate, as either reference
measure has its own merits. In our opinion, this ambiguity deserves further consideration in the
future.

We conclude this paper by mentioning two applications. The correct relativistic equilibrium
distribution is required in order to calculate the friction coefficients and noise correlation functions
of relativistic Langevin equations (RLEs) self-consistently [33]. An accurate determination of
these quantities is essential, e.g., if RLEs are employed to estimate the outcome of high energy
collision experiments, as recently done by van Hees et al [34]. Another potential, astrophysical
application concerns the Sunyaev–Zeldovich (SZ) effect [35, 36], i.e., the distortion of the cosmic
microwave background (CMB) spectrum due to the interaction of CMB photons with the hot
electron gas in clusters of galaxies. The size of relativistic corrections to the SZ effect depends
essentially on the shape of the assumed relativistic electron velocity distribution.
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