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Abstract

We compare phase transition(-like) phenomena in small model systems for both microcanonical and canonical

ensembles. The model systems correspond to a few classical (non-quantum) point particles confined in a one-dimensional

box and interacting via Lennard-Jones-type pair potentials. By means of these simple examples it can be shown already

that the microcanonical thermodynamic functions of a small system may exhibit rich oscillatory behavior and, in

particular, singularities (non-analyticities) separating different microscopic phases. These microscopic phases may be

identified as different microphysical dissociation states of the small system. The microscopic oscillations of microcanonical

thermodynamic quantities (e.g., temperature, heat capacity, or pressure) should in principle be observable in suitably

designed evaporation/dissociation experiments (which must realize the physical preconditions of the microcanonical

ensemble). By contrast, singular phase transitions cannot occur, if a small system is embedded into an infinite heat bath

(thermostat), corresponding to the canonical ensemble. For the simple model systems under consideration, it is

nevertheless possible to identify a smooth canonical phase transition by studying the distribution of complex zeros of the

canonical partition function.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

One of the most intriguing thermodynamic properties of various macroscopic systems is their ability to
undergo phase transitions (PTs) if one or more control parameters pass certain critical values [1,2]. The first
systematic classification scheme for macroscopic PTs was proposed by Ehrenfest and Ehrenfest [3] in 1912
already. After further pioneering work by Mayer et al. [4–7], Yang and Lee [8,9] elucidated the mathematical
essence underlying PTs in the grandcanonical ensemble by studying the distribution of complex zeros (DOZs)
of the grandcanonical partition function. Later on, Fisher [10] and Grossmann et al. [11–13] employed a very
similar approach to analyze the temperature dependence of PTs in the canonical ensemble (CE). Recently,
e front matter r 2006 Elsevier B.V. All rights reserved.
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further significant progress in the understanding of critical phenomena has been achieved by studying the
connection between PTs and phase (or configuration) space topology [14–20].

Formally, the seminal contributions [3–13] have in common that, in the spirit of traditional
thermodynamics, they refer to macroscopically large systems; more exactly, to systems satisfying the
thermodynamic limit (corresponding to N;V ;E!1 such that number density n ¼ N=V and energy density
e ¼ E=N remain constant). However, the rapid experimental and computational progress during the last two
decades led to an increasing interest in extending thermodynamic concepts to ‘small’ systems, containing—by
definition—only a very limited number of DOF [21–25]. Experiments on finite systems include, e.g.,
investigations of two-dimensional Coulomb clusters in dusty plasmas [26,27], Bose–Einstein condensation in
magneto-optical traps [28,29], and transitions in sodium clusters [30]. These experimental investigations were
accompanied by extensive theoretical and numerical studies (see, e.g., Refs. [31–33]).

Simultaneously, interest began to focus on the question how to identify and classify the finite-size analogs of
macroscopic PTs. Important results in this regard were obtained by Wales et al. [23,24], who considered
necessary and sufficient criteria for phase coexistence in finite systems. A general classification scheme for
smooth canonical PTs in small systems was proposed by Borrmann et al. [34]. Pursuing an approach similar to
that of Yang and Lee [8,9], Fisher [10] and Grossmann et al. [11–13], these authors suggest to use the DOZ in
order to characterize transitions in the CE of small systems (cf. Section 3.2). Mülken et al. [35] and Alves et al.
[36] compare the DOZ classification scheme with alternative proposals made by Gross [25,37] and by Janke
and Kenna [38], respectively.

Such progress notwithstanding, there still exist some open questions regarding which types of non-analytic
PTs can occur in small systems. For (grand-)canonical ensembles, it is well established that truly singular PTs
can be observed in the thermodynamic limit only, corresponding to a system with formally infinite particle
number N !1 [8–13,34,39]. In contrast to this, the microcanonical thermodynamic functions (TDFs) may
exhibit non-analytic behavior even at finite N. For example, recently, Pleimling and Behringer [40] have found
singularities in microcanonical quantities of finite three-dimensional spin models, which announce a
continuous macroscopic PT of the infinite systems. Additionally, as we intend to demonstrate here by means of
very simple examples, the microcanonical TDFs of a small system can also exhibit non-analytic microscopic

PTs,1 characterized by well-defined critical energy values and typically accompanied by strong variations of
thermodynamic observables (e.g., oscillations of temperature, heat capacity and pressure). From the physical
point of view, such microscopic PTs correspond to transitions between different dissociation states of the
system. Hence, they are important indicators for essential structural changes in the small system under
consideration (quite analogous to singular points indicating macroscopic PTs). For reasons of simplicity, the
discussion in the present paper will be restricted to one-dimensional (1D) models, but the general mechanism
responsible for the singular and oscillatory behavior of microcanonical thermodynamic observables works
analogously in two and three spatial dimensions. Hence, it should in principle be possible to observe such
microscopic oscillations in suitably designed evaporation/dissociation experiments (which must, of course,
realize the physical preconditions of the microcanonical ensemble (MCE)).

The paper is organized as follows: Section 2 is dedicated to microscopic PTs in the MCE of small model
systems. As examples, we will consider isolated 1D chains with Lennard-Jones (LJ) pair interactions and also
the Takahashi gas [44]. It will be shown that these simple systems exhibit singular microscopic PTs, separating
different microcanonical dissociation states. Subsequently, the Takahashi gas will be used in Section 3 to
investigate the relation between singular microscopic PTs in the MCE and smooth PTs in the CE as defined by
the DOZ scheme [34]. The paper concludes with a summary of the main results in Section 4.
2. Microscopic PTs in the MCE

Classical microcanonical thermodynamics refers to an ensemble of thermally isolated systems, completely
described by their Hamiltonian dynamics. Due to the fact that the systems are decoupled from the
1The appearance of such microcanonical singular points even in the 1D case is not in conflict with van Hove’s theorem for the canonical

ensemble [41,42], since for most small systems (as well as for many ‘large’ systems) the microcanonical and canonical ensembles are

generally not equivalent (see, e.g. Ref. [43]).
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environment, the energy E is a conserved quantity, i.e., there are no energy fluctuations in the MCE. In
particular, as will be demonstrated in Sections 2.3 and 2.4, the microcanonical TDFs may exhibit singular
points even in the case of small systems.

2.1. The microcanonical ensemble

For the sake of simplicity we will confine ourselves to examples, where the thermodynamic state is
completely characterized by two control parameters, namely, energy E and volume number V (generalizations
to problems with additional macroscopic variables, e.g., the strength of external magnetic fields, are
straightforward). More precisely, we will consider N identical point-like particles of mass m, moving in D

equivalent spatial dimensions; i.e., the number of degree of freedom (DOF) reads d ¼ DN and the volume is
given by V ¼ LD, where L is the length of the confining cube (volume interval). The deterministic dynamics of
the system is assumed to be governed by a Hamiltonian of the standard form

Hðq; p;V Þ ¼ KðpÞ þUðq;V Þ ¼ E, (1a)

where q ¼ ðq1; . . . ; qdÞ and p ¼ ðp1; . . . ; pdÞ are generalized coordinates and momenta, respectively. The kinetic
energy K and the potential energy U are given by

KðpÞ ¼
Xd

i¼1

p2
i

2m
; Uðq;V Þ ¼ UpairðqÞ þUboxðq;V Þ, (1b)

where UpairðqÞ represents the pair interactions of the particles, and the box potential is defined by

Uboxðq;V Þ ¼
0; q 2 ½�L=2;L=2�N ;

þ1 otherwise:

(
(1c)

The primary thermodynamic potential of the MCE is the entropy S ¼ SðE;V Þ, which is related to the
microcanonical ‘partition’ function ZMðE;V Þ by [45]

S ¼ k lnZM, (2)

with k denoting the Boltzmann constant. The equations of state (EOS) for the temperature T and pressure P

are obtained by [25,45–49]

1

T
�

qS

qE
;

P

T
�

qS

qV
. (3)

That is, the temperature T of the MCE is a derived quantity, which is in contrast to the CE (see Section 3.1),
where the temperature is one of the adjustable external control parameters.

During the past century, various different definitions for the microcanonical partition function ZM, or the
entropy S, have been proposed and investigated. For classical systems as described by the Hamiltonian
function (1a), the two most commonly used definitions for ZMðE;V Þ read [25,45–49]

ZM ¼ O, (4a)

ZM ¼ �0
qO
qE

, (4b)

where the phase volume O is given by (h denotes the Planck constant)

OðE;V Þ �
1

N!hd

Z
Rd

dq

Z
Rd

dpYðE �Hðq; p;V ÞÞ. (5)

The Heaviside unit step function YðxÞ, appearing in Eq. (5), is defined by YðxÞ ¼ 0 for xo0 and YðxÞ ¼ 1 for
xX0. The additional parameter �0 in Eq. (4b) is a small energy constant that quantifies the thickness of a thin
energy shell around the phase space surface defined by Hðq; p;V Þ ¼ E and is formally required to make ZM

dimensionless.
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It is well-known that the definitions (4a) and (4b) may yield (almost) identical results [39,45,47,48] in the
thermodynamic limit, i.e., if N is large. However, for small systems they lead to essentially different TDFs. To
briefly illustrate this, let us consider an ideal gas with N non-interacting particles, moving in the D-dimensional
volume V. In this case, the phase volume is given by [45]

OðE;V Þ ¼
ðp2mEÞd=2

N!hdGðd=2þ 1Þ
VN , (6)

where GðxÞ is Euler’s Gamma-function. Definition (4a) then yields the EOS

E ¼
d

2
kT ;

P

T
¼

kN

V
, (7)

whereas one obtains from definition (4b)

E ¼
d

2
� 1

� �
kT ;

P

T
¼

kN

V
. (8)

For systems with db1 the difference in the energy equations is negligible, but for small systems it becomes
relevant. In particular, for d ¼ 1 Eq. (8) yields a negative temperature at positive energy. Obviously, a
similarly unreasonable result is obtained for d ¼ 2. This indicates that the partition function (4b) is
inappropriate for systems with low-dimensional phase space.

More generally speaking, only Eq. (4a) reproduces correctly the well-known laws of thermodynamics and
also yields the correct equipartition theorem for an arbitrary number d of DOF, whereas the Eq. (4b) leads to
inconsistencies if d is small. This important aspect was first realized by Hertz [50,51], and, later on, also
emphasized by Becker [45], Berdichevsky and Alberti [52,53] and Adib [54]. In particular, denoting the
ensemble average with respect to the microcanonical probability density function f ðq; pÞ / dðE �Hðq; pÞÞ by
h�iMCE, it can be shown [45,46] that the (equipartition) identity

kT

2
¼

1

d
hKðpÞiMCE ¼

p2
i

2m

� �
MCE

8i ¼ 1; . . . ; d (9)

holds, only if one employs the Hertz entropy definition

S � k lnO. (10)

Due to these reasons, all subsequent considerations will be based on Eq. (10).2 For Hamiltonians as in Eq. (1a)
one can still perform the momentum integration in Eq. (5) using d-dimensional spherical coordinates, yielding

OðE;V Þ ¼
Od

N!hdd

Z
Rd

dq f2m½E �Uðq;V Þ�gd=2YðE �Uðq;V ÞÞ, (11)

where Od ¼ 2pd=2=Gðd=2Þ denotes the surface of the d-dimensional unit sphere.

2.2. Macroscopic vs. microscopic PTs

Conventionally, macroscopic PTs are singularities (non-analyticities) of TDFs that arise in the
thermodynamic limit, corresponding to an infinitely large system. The first systematic classification of
macroscopic PTs goes back to Ehrenfest [3,55]. According to the Ehrenfest scheme, a PT is indicated by a non-
analyticity of the Gibbs free enthalpy GðT ;P; . . .Þ, assumed to be a function of the temperature T, pressure P

and other external control parameters. The order of the PT is determined by the lowest order at which any of
the derivatives of GðT ;P; . . .Þ becomes non-continuous. Since the Ehrenfest scheme has turned out to be too
narrow in many cases, it is nowadays often preferred to merely distinguish discontinuous (first-order) and
continuous (second-order) transitions.

Extending this concept to small systems, any non-analyticity of the thermodynamic potential as function of
the external control parameters may be called a PT. However, to avoid ambiguities, we shall speak of
2This is e.g., in contrast to Refs. [25,35,37] where the Boltzmann definition (4b) is considered.
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microscopic PTs when discussing singular (non-analytic) points in the microcanonical TDFs of small systems.
Furthermore, we will adopt the following terminology to classify microscopic PTs in the MCE: If the primary
thermodynamic potential, the Hertz entropy S, is discontinuous, then we will call the PT discontinuous; if S is
non-analytic but continuous, the microscopic PT is called continuous.

Let us next discuss how the formal (Ehrenfest-type) order of a microscopic PT depends on the number of
DOF. For systems described by Hamiltonian (1a), the phase volume (11) is related to the admissible
configuration space volume

oðE;V Þ ¼
Z
Rd

dqYðE �Uðq;V ÞÞ (12)

via3

qd=2OðE;V Þ

qEd=2
¼
ð2pmÞd=2

N!hd
oðE;V Þ. (13)

If, at a given critical energy EcðV Þ, oðE;V Þ has continuous derivatives up to order j, but a discontinuous
ðj þ 1Þst derivative, then OðE;V Þ and hence SðE;V Þ have continuous derivatives up to order ðj þ d=2Þ, but a
discontinuity in the ðj þ d=2þ 1Þst derivative. Consequently, the formal order of the PT equals ðj þ d=2þ 1Þ,
i.e., the order increases with an increasing number of DOF. For the examples discussed below, the
differentiability class of the admissible configuration space volume oðE;V Þ does not change with particle
number (j ¼ 0 for LJ chains and j ¼ �1 for the Takahashi gas), and we indeed observe such an increasing
order with increasing particle number (cf. results of Section 2.3.2).4
2.3. Singular microscopic PTs in LJ chains

To demonstrate the appearance of non-analytic microscopic PTs in the MCE, we consider a 1D LJ chain,
moving freely in a 1D box volume ½�L=2;L=2�. In this case, the pair potential in Hamiltonian (1a) reads

UpairðqÞ ¼
1

2

XN

iaj
i;j¼1

ULJðjqi � qjjÞ; ULJðrÞ ¼ 4a
s
r

� �12
�

s
r

� �6� �
, (14)

where a; s40 are positive parameters. To simplify subsequent formulae, we will measure energy and length in
units of the parameters a and r0 ¼ 21=6s, where r0 is the position of the minimum of ULJðrÞ. With respect to
these units the LJ potential (14) is given by

ULJðrÞ ¼
1

r12
�

2

r6
. (15)

For small volumes Lp1 the LJ-force is always repulsive, whereas in the more interesting case of sufficiently
large volumes, L41, the LJ-force may also become attracting.
2.3.1. Diatomic LJ molecule

We start by discussing the simplest non-trivial example N ¼ 2 and D ¼ 1, where we can calculate the
microcanonical TDFs exactly.5 In this case, the energy E can take values E0ðLÞpEo1, where the
groundstate energy is given by

E0ðLÞ � min
ðq;pÞ

Hðq; pÞ ¼
ULJðLÞ; Lp1;

�1; L41:

(
(16)
3In an ordinary sense, Eq. (13) is defined for even integer values d40 only; however, by employing fractional derivatives [56], its range

of validity can be extended to odd integer values d40.
4Recently, similar results have been reported for the mean-field spherical spin model by Kastner and Schnetz [57].
5The phase volume for the more complicated three-dimensional problem was recently calculated by Umirzakov [58].
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A straightforward calculation of the phase volume, based on relative and center-of-mass coordinates, yields

O ¼
2pm

h2

L

11r11
�

1

10r10
�

2L

5r5
þ

1

2r4
þ LrE �

r2E

2

� �				
rmax

rmin

, (17a)

where the boundary values are given by

rmin ¼ X�1=6; rmax ¼
L; EXEcðLÞ � ULJðLÞ;

Y�1=6; EoEcðLÞ;

(
(17b)

using the convenient abbreviations X � 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ E
p

and Y � 1�
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ E
p

.
In the case Lp1 we have rmax ¼ L for all energies EXE0, and, hence, the phase volume OðEÞ is a smooth

function for all permitted energy values. For L41, however, the boundary value rmax changes its energy
dependence at E ¼ EcðLÞ in a non-analytic manner, and hence the phase volume OðEÞ is not analytic at
E ¼ EcðLÞ. The critical curve EcðLÞ � ULJðLÞ, LX1 separates a gas-like phase (dissociated state) from the
molecular phase (bound state) in the ðL;EÞ-parameter plane. This is illustrated in Fig. 1 and will become
particularly evident from the expansions presented in the next two paragraphs. It is worthwhile to stress again
that the critical curve EcðLÞ arises naturally due to the sudden change in the energy dependence of the phase
volume, occurring when the energy E passes the critical curve. The microcanonical caloric curve TðEÞ is
continuous but not differentiable along the critical transition curve EcðLÞ, which is located in the region of an
S-bend or van der Waals-type loop, respectively. Formally, this corresponds to a fourth-order transition.

Super-critical energy values (dissociated phase). Using result (17) with r2 ¼ L, corresponding to supercritical
energy values E4EcðLÞ—or region ‘(1)’ in Fig. 1, respectively—we can derive from Eq. (3) the microcanonical
EOS, yielding

kT ¼
Z þ 24LðX � 5EÞ=X 1=6 � 33ðX � 2EÞ=X 1=3

55½L2 � ðE þ X Þð2LX 1=6 � 1Þ=X 4=3ð1þ EÞ1=2�
, (18a)

pL

kT
¼

110L2E þ 10=L10 � 44=L4 � 2L½X ð5X � 22Þ þ 55E�=X 1=6

Z þ 11½X ðX � 5Þ þ 5E�=X 1=3 � 2L½X ð5X � 22Þ þ 55E�=X 1=6
, (18b)

where Z � 55L2E þ 11L�4 � L�10. Taking the high-energy limit at constant volume V ¼ L one finds

lim
E!1

kT

E
¼ 1; lim

E!1

PL

kT
¼ 2, (19)

corresponding to the laws for the ideal 1D two-particle gas. Hence, the parameter region E4EcðLÞ can be
identified as two-particle gas state or dissociated phase, respectively.

Sub-critical energy values (bound phase). Because of Eq. (16), the opposite case EoEcðLÞ—corresponding to
region ‘(3)’ in Fig. 1(a)—can only be realized, if L41 holds; i.e., if the box volume is larger than the distance
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Fig. 1. Microcanonical phase diagrams for the 1D LJ molecules. Energies below the minimum energy E0ðLÞ (solid line) are forbidden. (a)

Diatomic LJ molecule ðN ¼ 2Þ: the critical curve EcðLÞ (dashed line) separates a gas-like (or dissociated) phase from a molecule phase. (b)

Triatomic LJ molecule ðN ¼ 3Þ: the critical curve Ec1ðLÞ (dashed line) separates a gas-like (or dissociated) phase from an intermediate

(partially bound) phase, enclosed by the critical curves Ec1ðLÞ and Ec2ðLÞ (dotted line), and a bound molecule phase (3) below Ec2ðLÞ.
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Fig. 2. Microcanonical TDFs for the 1D diatomic LJ molecule (N ¼ 2). Energy is measured in units of the binding energy a. Volume

V ¼ L is measured in units of the parameter r0, corresponding to the minimum of the LJ potential. The mass unit is chosen such that

m ¼ 1. (a) Hertz entropy S0 ¼ S � S0 as function of the energy for L ¼ 20 (solid line), L ¼ 3 (dotted line), and L ¼ 0:95 (dashed), where

S0 ¼ �k ln½h2=ðmr20a2Þ�. Note the convex curvature of the solid curve at the transition energy. (b) Caloric curves for L ¼ 20 (solid line),

L ¼ 3 (dotted line), and L ¼ 0:95 (dashed). One can readily see the singularity (peak) in the S-bend region, occurring exactly when the

critical line EcðLÞ ¼ ULJðLÞ in Fig. 1 is crossed.
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corresponding to the potential minimum r0. Again using Eqs. (17), but this time with r2 ¼ Y�1=6, we obtain

kT ¼
3½8LgðX ;Y Þ � 11 f ðX ;Y Þ�ð�EÞ1=3

55½X 1=3 � Y 1=3 þ 2LX 1=6ðY 1=3 � ð�EÞ1=6Þ�
, (20a)

pL

kT
¼

8LgðX ;Y Þ

8LgðX ;Y Þ � 11f ðX ;Y Þ
, (20b)

where we have made use of the abbreviations

g � ð1þ 5X ÞY 5=6 � ð1þ 5Y ÞX 5=6; f � ð1þ 2X ÞY 2=3 � ð1þ 2Y ÞX 2=3.

Expanding EOS (20b) near the groundstate energy E0 ¼ �1 yields

kT ¼ 2
3
ðE þ 1Þ þ O½ðE þ 1Þ2�, (21a)

P

kT
¼

1

L� 1
þ O½ðE þ 1Þ1�. (21b)

Eq. (21a) indicates that, at low energy, each momentum variable as well as an approximately harmonic
excitation of the relative coordinate carries on average the energy amount kT=2. Obviously, this is in
agreement with the equipartition theorem for harmonic DOF. Eq. (21b) corresponds to the pressure law for
an ideal one-particle gas in the reduced 1D volume V eff ¼ L� 1, reflecting the fact that, at sufficiently low
energy values, the two particles form a bound molecule with distance r � 1 between each other.

In Fig. 2(b) the caloric curves and the pressure law are shown for different fixed values of L and E,
respectively. When the volume is large enough, LX1, the caloric curves exhibit a characteristic convex region
(S-bend) and, in particular, also a non-differentiable point (see solid and dotted curves). These kinks occur
when the energy passes through the critical value EcðLÞ.
2.3.2. LJ chains with N42 particles

Analogous microscopic PTs do also occur in LJ molecules with larger particle numbers. For N42 it is very
difficult or, perhaps, even impossible to express the phase volume (11) in terms of closed functions. Usually,
one can perform only one or two of the N integrations analytically, and the remaining integrals have to be
calculated numerically, using e.g., Monte–Carlo methods. We employed the Divonne algorithm of the CUBA
library [59] to calculate the phase volume for LJ molecules with 3 and 4 particles. We used at least 1 million
sample points and partially increased the sample size up to 100 million points for testing. We also cross-
checked the results with other deterministic and probabilistic integration algorithms of the CUBA library and
found excellent agreement.
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Fig. 3. LJ chain with N ¼ 3 particles. (a) The microcanonical caloric curve TðEÞ, and (b) its first derivative for different values of the

volume L ¼ 1:9 (dashed line), L ¼ 6 (dotted line), and L ¼ 40 (solid line). TðEÞ shows two S-bend regions for L ¼ 6 and L ¼ 40. In these

regions, the first derivative dTðEÞ=dE exhibits a lambda peak pointing downward (the second derivative d2TðEÞ=dE2 has a pole).
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Fig. 3 shows the numerically calculated microcanonical caloric curve TðEÞ of the three-particle LJ chain
ðN ¼ 3Þ and its first derivative for different values of L. For L ¼ 1:9, the caloric curve appears smooth and
almost linear. For L ¼ 6 and ¼ 40, TðEÞ is still continuous, but shows two S-bend regions around energies
Ec1 � �1 and Ec2 � 0. At these energies, the first derivative of TðEÞ exhibits a (negative) ‘lambda peak’,
whereas the second derivative diverges.

As in the two-particle case, the phase volume OðE;LÞ can be written as an integral with an integrand which
is analytic for all values of E and L, and integration boundaries which are analytic except for certain values of
E and L. A detailed analysis yields the two critical curves

Ec1ðLÞ ¼ ULJ
L

2

� �
þULJ

L

2

� �
þULJðLÞ if LX

2731

43

� �1=6

,

Ec2ðLÞ ¼ ULJðrc2ðLÞÞ þULJðL� rc2ðLÞÞ þULJðLÞ if LX2
13

7

� �1=6

,

where rc2ðLÞ is given by a polynomial equation of degree eighteen, with rc2ðLÞ � �1 for Lb1. The resulting
phase diagram is shown in Fig. 1(b). One readily identifies three microscopic phases separated by the critical
curves Ec1ðLÞ and Ec2ðLÞ.

At high energies E4Ec1ðLÞ, the system is in a gas-like, fully dissociated phase. The relative positions
r21 ¼ jq2 � q1j and r32 ¼ jq3 � q2j of the particles are only restricted by the hard-core repulsive part of the
interaction potential, but apart from this constraint the particles can move independently inside the remaining
volume. In the high-energy limit, one finds E � 3

2
kT , corresponding to a quasi-ideal 1D three-particle gas.

For L42ð13
7
Þ
1=6 and low energies E0ðLÞoEoEc2ðLÞ, the system is in a bound molecule phase. The relative

positions r21 and r32 are restricted by the interaction potential to be close to the equilibrium position.
For L42ð13

7
Þ
1=6 and intermediate energy values Ec2ðLÞoEoEc1ðLÞ, the system is in a partially dissociated

phase. One of the relative positions r21 and r32 is restricted to be close to its equilibrium value, whereas the
other is only restricted by the hard-core repulsive part of the interaction potential and the box volume.
Accordingly, one of the three particles may move rather independently inside the box, whereas the other two
remain bound to each other.

Although more complicated in detail, the calculations for the four-particle LJ chain are in principle the
same as for N ¼ 3. We briefly list the main results: For N ¼ 4 (and only taking nearest-neighbor interaction
into account), three critical lines Ec1ðLÞ, Ec2ðLÞ and Ec3ðLÞ divide the ðL;EÞ-plane into four different phases.
At high energies or at low volumes LoL0, L0 ¼ 3, the system is in a gas-like phase. At low energies and large
volume, the system is in a molecule phase, where the particles can only move as a whole molecule inside the
volume. Between the gas phase and the molecule phase, there are now two intermediate, or partly dissociated,
phases, where the LJ molecule is broken up into two or three parts consisting of one or two particles. For large
volumes, the caloric curve TðEÞ shows three PTs with a continuous first, but discontinuous second derivative.
This confirms that the formal order of the microscopic PTs increases with particle number as discussed in
Section 2.2.
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2.4. Takahashi gas

As another example, let us consider the piecewise linear pair potential

uðrÞ ¼

þ1; jrj ¼ 0;

ajrj=r0; 0ojrjpr0;

1; jrj4r0;

8><
>: (22)

where a and r0 are positive parameters. In the literature this model is known as the Takahashi gas [44]. The
potential u from Eq. (22) is qualitatively similar to the LJ potential, but, unlike ULJ, it allows to calculate the
exact TDFs for both MCE and CE in the case N ¼ 2. The Takahashi gas is, therefore, particularly well suited
for studying the differences between the two ensembles.

To keep subsequent calculations as simple as possible, we will measure energy and length in units of a and r0
from now on (r0 now defines the range of the potential). With respect to these units, the potential in Eq. (22)
simplifies to

uðrÞ ¼

þ1; jrj ¼ 0;

jrj; 0ojrjp1;

1; jrj41;

8><
>: (23)

and, in contrast to Eq. (16), the groundstate energy is now given by E0ðLÞ ¼ 0. A straightforward calculation
of the phase volume yields

O ¼
pm

3h2

L2ð3E � LÞ; E4EcðLÞ; Lp1;

3L½LðE � 1Þ þ 1� � 1; E4EcðLÞ; L41;

E2ð3L� EÞ; EpEcðLÞ;

8><
>: (24)

where the critical energy curve is given by EcðLÞ � uðLÞ. Note that, compared with the LJ potential from
Section 2.3.1, we must now additionally distinguish the cases Lp1 and L41, but this is only because the
piecewise linear potential is not differentiable at r ¼ 1. However, analogous to the case of the LJ potential, the
critical curve EcðLÞ ¼ uðLÞ separates a gas-like phase (dissociated state) from the molecule phase (bound state)
in the ðL;EÞ-parameter plane. This becomes evident from the microcanonical EOS:

1

kT
¼

3

3E � L
; E4EcðLÞ; Lp1;

3L2

3L½LðE � 1Þ þ 1� � 1
; E4EcðLÞ; L41;

2

E
þ

1

E � 3L
; EpEcðLÞ;

8>>>>>>><
>>>>>>>:

(25a)

P

kT
¼

3L� 6E

L2 � 3LE
; E4EcðLÞ; Lp1;

6LðE � 1Þ þ 3

3L½LðE � 1Þ þ 1� � 1
; E4EcðLÞ; L41;

3

3L� E
; EpEcðLÞ:

8>>>>>>><
>>>>>>>:

(25b)

Taking the high-energy limits of Eqs. (25) at constant volume V ¼ L one finds

lim
E!1

E

kT
¼ 1; lim

E!1

PL

kT
¼ 2, (26)

corresponding to the laws for the ideal 1D two-particle gas. Hence, the parameter region E4EcðLÞ can be
referred to as gas-like or dissociated phase, respectively.
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Fig. 4. Microcanonical TDFs for the 1D diatomic (N ¼ 2) Takahashi gas. (a) Caloric curves for L ¼ 20 (solid line), L ¼ 5 (dotted), and

L ¼ 0:5 (dashed). One can see the jump singularity for L41, occurring exactly when the critical line EcðLÞ ¼ uðLÞ is crossed. (b)

Isoenergetic pressure curves for E ¼ 0:5 (solid line), E ¼ 1:5 (dotted), and E ¼ 5:0 (dashed), where b � ðkTÞ�1. The local minimum is

observable only if E=a\1. In the limit L!1 the particles behave as an ideal two-particle (one-particle) gas, if they are in the dissociated

phase E4a (bound phase Eoa).

J. Dunkel, S. Hilbert / Physica A 370 (2006) 390–406 399
In the opposite case, EpEcðLÞ, a low-energy expansion of the EOS near the groundstate energy E0 ¼ �1
yields

P

kT
¼

1

L
þ OðE1Þ. (27)

Neglecting terms of higher order, Eq. (27) corresponds to the pressure law for an ideal one-particle gas. This
reflects that at sufficiently low energy the two particles form a bound LJ-type molecule. Compared with the
results of the preceding section, a slight difference is given by the fact that in the LJ case the particles have a
non-vanishing distance in the groundstate, see Eq. (21b).

In Fig. 4(a) and (b) the caloric curves and the pressure law are shown for different fixed values of L and E,
respectively. In particular, in Fig. 4(a) one can see that the caloric curves exhibit a singularity, when the energy
passes through the critical value EcðLÞ. More exactly, for Lp1 the caloric curves are continuous but not
differentiable at E ¼ EcðLÞ, corresponding to a third-order PT. By contrast, in the complementary case L41,
the caloric curves become discontinuous at EcðLÞ, corresponding to a second-order PT (which is a
consequence of the additional singularity at r ¼ 1 and the vanishing gradient of the piecewise linear potential
at r41).

In the next section, we are going to study the relationship between this singular microcanonical PT and the
critical behavior of the corresponding systems in the CE.

3. Smooth PTs in the CE

Although referring to different physical conditions, MCE and CE may yield (almost) identical TDFs for
well-behaved systems with a large number of DOF d !1. However, this ‘equivalence’ between the different
statistical ensembles does usually not hold for systems with a small number of DOF [25,43,45,60,61]. Hence,
one has to describe the thermodynamics of small systems by the statistical ensemble which actually
corresponds to the given physical conditions.

3.1. The canonical ensemble

Considering the CE is appropriate if the system under investigation is coupled to an infinite heat bath
[45,62–64]. The surrounding heat bath (thermostat) keeps the temperature of the particles constant, but causes
energy fluctuations dE40 around the energy mean value Ē. Consequently, singularities in the TDFs may only
exist in the thermodynamic limit with N ;E!1, such that e ¼ E=N and n ¼ N=V remain constant and
de! 0; i.e., for a finite system with No1 the heat bath smoothens the singularities due to non-vanishing
fluctuations de. Nevertheless, it is possible to define and to classify ‘smooth’ PTs by virtue of the DOZ scheme
[34], discussed below.
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Given a Hamiltonian of the form (1a), the canonical partition function is defined by

ZCðb;V Þ ¼
1

N!hd

Z
Rd

dq

Z
Rd

dp exp½�bHðq; p;V Þ�, (28)

where b � ðkTÞ�1. The external control variables are now ðT ;V Þ or ðb;V Þ, respectively. When ZCðb;V Þ is
known, (mean) energy and pressure of the CE are obtained by differentiation

Ē � �
q
qb

lnZC; P̄ � �
qF

qV
, (29)

where F � �kT lnZC is the free energy. For convenience, we are going to drop the over-bars and simply write
E and P in the next section (over-bars will be reinstated occasionally, e.g., when comparing microcanonical
and canonical quantities).

3.2. Classification of canonical PTs in the DOZ scheme

According to Yang and Lee [8,9], DOZ of the grandcanonical partition function determines the PTs in the
grandcanonical ensemble. Later on, a similar approach has been employed by Fisher [10] and Grossmann and
Rosenbauer [11] to identify and classify PTs in the CE. They considered the distribution of complex zeros ~bk

of the canonical partition function ZCð
~bÞ, taken as complex function of the complex inverse temperature

~b ¼ bþ it ðb40Þ.

For finite systems, one can show that there are no zeros on the positive real axis, i.e., Ið ~bkÞa0 8k. In the
thermodynamic limit, however, certain points bc on the real b-axis may become limiting values of the DOZ.
By studying how the zeros condense near the b-axis, one can characterize the PT.

Although for small systems there are, strictly speaking, no non-analytic PTs in the CE, it may nevertheless
be helpful to distinguish different thermodynamic phases [31,32]. The DOZ classification scheme of Bohrmann
et al. [34] is based on the idea that the complex zeros ~bk closest to the real b-axis can be employed to estimate
the DOZ behavior in the thermodynamic limit. The extrapolated limiting values bc are used to define the
‘smooth’ canonical PT of the finite system. To be more specific, one first numbers the complex zeros ~bk,
k ¼ 1; 2; . . . of the canonical partition function ZCð

~bÞ according to their distance to the real b-axis, and then
calculates the quantities

g ¼
b2 � b1
t2 � t1

, (30a)

fk ¼
1

2

1

j ~bk �
~bk�1j

þ
1

j ~bkþ1 �
~bkj

 !
; k ¼ 2; 3; . . . , (30b)

a ¼
logðf3Þ � logðf2Þ

logðt3Þ � logðt2Þ
, (30c)

bc ¼ b1 � gt1. (30d)

These quantities characterize the DOZ near the real b-axis. According to the scheme of Borrmann et al. [34], a
first-order transition at temperature Tc ¼ ðkbcÞ

�1 appears if a ¼ 0 and g ¼ 0, whereas values 14a40
correspond to second-order transitions, and a41 to even higher-order transitions in the original Ehrenfest
classification. In order to actually observe a singular PT in the Ehrenfest sense, it is required that t1! 0 in the
thermodynamic limit.

A similar classification scheme for smooth canonical PTs in small systems, based on the average cumulative
density of zeros of the canonical partition function, has been proposed by Janke, Kenna et al. [38,65]. Alves et
al. [36] compared both approaches for a variety of model systems. In the following, however, we will refer to
the DOZ-scheme by Borrmann et al. [34] in order to classify PTs in the CE of a small system. In particular, we
aim to compare the DOZ-classification with the MCE results obtained for the Takahashi gas.
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3.3. Takahashi gas

We first calculate the canonical TDFs for the Takahashi model from Section 2.4, corresponding to two
point-like particles, N ¼ 2, confined in a 1D volume V ¼ L and interacting via the (rescaled) piecewise linear
pair potential from Eq. (23). For Lp1, we find explicitly

ZC ¼ 2
mp

h2b3
ðe�bL þ bL� 1Þ, (31a)

and in the opposite case, that is for L41,

ZC ¼ 2
mp

h2b

1

b2
½e�bð1þ b� bLÞ þ bL� 1� þ

e�b

2
ðL� 1Þ2

� �
. (31b)

Accordingly, one obtains the following canonical EOS:

E ¼

3þ bLþ ebLð2bL� 3Þ

b½1þ ebLðbL� 1Þ�
; Lp1;

6bþ ð6� 4bLÞð1� ebÞ þ b2ðL� 1Þ½L� 3þ bðL� 1Þ�

bf1þ ½1� bðL� 1Þ�2 þ 2ebðbL� 1Þg
; L41;

8>>><
>>>:

(32a)

P ¼

ebL�1

ebLðbL� 1Þ þ 1
; Lp1;

2½eb � 1þ bðL� 1Þ�

1þ ½1� bðL� 1Þ�2 þ 2ebðbL� 1Þ
L41:

8>>><
>>>:

(32b)

In the high-temperature limit, corresponding to b! 0 at constant volume V ¼ L, one finds

lim
b!0

bE ¼ 1; lim
b!0

bPL ¼ 2, (33)

i.e., the system behaves like an ideal 1D two-particle gas in this limit.
Fig. 5 shows several curves, corresponding to the thermodynamic laws (32). One may notice a strong local

increase in the solid caloric curve of Fig. 5(a). This behavior is associated with a smooth canonical PT in the
DOZ scheme of Borrmann et al. [34]. To see this, we next determine the complex zeros of the complex
partition function ZCðbþ it;LÞ for L41 from Eq. (31). Fig. 6(a) shows the corresponding numerical results
found with Mathematica [66] for L ¼ 20, by using a contour plot of the function jZCðbþ it;LÞj. Since the
zeros of the partition function are complex conjugate [34], only the zeros in the upper complex half-plane are
shown.
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Fig. 5. Canonical TDFs for the 1D diatomic Takahashi gas. Mean energy E and thermal energy kT are given in units of the binding

energy a. The volume V ¼ L is measured in units of the parameter r0, corresponding to the range of the potential, and the mass unit is

chosen such that m ¼ 1 holds. (a) Caloric curves for different fixed values of L. (b) Pressure law for different fixed temperature values kT.

Note, that bPL! 2 for L!1, corresponding to the law of the ideal two-particle gas.
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Fig. 6. Complex zeros of canonical distribution function ZCðbþ itÞ for the 1D diatomic molecule with the piecewise linear pair

interaction potential uðrÞ from Eq. (22). Quantities b and t are given in units of the inverse binding energy a�1. (a) Numerically determined

zeros in the upper half-plane obtained with Mathematica for L=r0 ¼ 20. (b) Analytic results based on the asymptotic series expansion of

ZC at L=r0 !1, see Eq. (35). As evident from these two diagrams, the analytic estimate agrees well with the numerically determined

results.

Table 1

Canonical PT parameters according to the DOZ scheme [34] for the 1D diatomic molecule with piecewise linear interaction potential from

Eq. (22)

L ½r0� a g bc ½a
�1� kTc ½a� EðTcÞ ½a�

2� 101 0.054 0.112 3.5 0.290 0.922

2� 103 0.052 0.052 9.0 0.111 0.688

2� 105 0.034 0.028 14.1 0.071 0.620

2� 1010 1:1� 10�2 9:1� 10�3 26.3 0.0381 0.56210

2� 10100 2:4� 10�5 1:1� 10�4 235.7 0.0042 0.50643

2� 101000 2:5� 10�8 1:2� 10�6 2310.3 0.0004 0.50065

For L!1 the numerical results suggest that a! 0, g! 0 and kTc=a! 0.
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To also obtain an analytic estimate for the DOZ in the more interesting case Lb1, we expand the partition
function (31b) near L!1, and find

ZCð
~b;LÞ ¼

mpL2

h2 ~b
e�

~b 1þ
2

~bL
ðe
~b � ~b� 1Þ

� �
þ OðL�2Þ

� �
. (34)

Thus, neglecting terms of OðL�2Þ, the zeros of ZCð
~b;LÞ are given by

~bk ¼
2

L� 2
� ProdLog �k;

2

L� 2
exp

2

L� 2

� �� �
; k ¼ �1;�2; . . . , (35)

where ProdLog½k; z� is the kth solution for w in z ¼ w expðwÞ. The result (35) is valid for Lb1, and in Fig. 6(b)
we plotted ~bk for 1pkp8. By comparing Fig. 6(a) and (b) it becomes evident that for LX20 the analytic
estimate from Eq. (35) is in good agreement with the numerical results.

Using Eq. (35) we can calculate the characteristic quantities a;bc; g from Eqs. (30), required for the DOZ
classification. Table 1 shows a summary of the results for different values of the volume parameter L. The
critical temperature is given by kTc ¼ 1=bc and Ec is obtained by inserting bc into the energy equation (32a).
According to the DOZ scheme, for 15Lo1 we find 0oao1, corresponding to a canonical second-order PT.
However, for L!1 we observe that a! 0, g! 0 indicating that in this limit the transition converges to
first order. Moreover, as evident from the last two columns in Table 1, for increasing volume L the critical
temperature vanishes, Tc ! 0, while the corresponding energy values EðTcÞ approach the value 0.5. However,
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by first taking the limit L!1 in Eq. (32a), we find that the corresponding asymptotic caloric curve is
given by

lim
L!1

E ¼ 1þ b�1 ¼ 1þ kT ; T40. (36)

Inserting Tc into the rhs of this equation and letting Tc ! 0, we obtain Ēc ¼ 1, which is in agreement with
microcanonical result EcðL ¼ 1Þ ¼ 1, and corresponds to the dissociation energy. In particular, the latter
result means that, in the case of a very large volume, very small energy fluctuations (requiring T40) suffice to
permanently break up the molecule. On the other hand, the system becomes deterministic at T ¼ 0, and,
correspondingly, the mean energy of the CE is then always given by the groundstate value E0 ¼ 0,
representing the bound state [formally this corresponds first taking the limit T ! 0 in Eq. (32a)]. The
apparent convergence to 0:5 in the last column of Table 1 just reflects the fact that for Eq. (32a) the two limits
T ! 0 and L!1 do not commute.

4. Summary and discussion

In this paper we have studied PTs-like phenomena in small systems, characterized by a finite number of
DOF. The main objective was to clarify similarities and differences that arise when considering either the
MCE, corresponding to a thermally isolated system, or the CE, corresponding to a system in contact with an
infinite heat bath.

4.1. Microscopic PTs in the MCE

In Section 2 it was shown that the microcanonical thermodynamic functions (TDFs) of a small system can
exhibit complex oscillatory behavior and singularities (non-analyticities). Analogous to macroscopic phase
transitions (PTs), such non-analytic points can be interpreted as microscopic PTs in the MCE.6 To illustrate
the physical meaning of such microscopic PTs, we calculated the microcanonical TDFs for two slightly
different 1D toy models (LJ and Takahashi gas). For both systems one can identify critical energy curves
EcðLÞ along which the primary microcanonical thermodynamic potential—the Hertz entropy—is non-
analytic, reflected by kinks or discontinuities in the TDFs. In these models the microscopic PTs separate
energetically different dissociation states. Their number and formal order increases with increasing particle
number N [57]. In general, our results indicate that, typically, microscopic PTs in the MCE are accompanied by

strong qualitative changes of the thermodynamic observables, as e.g., rapid drop-offs or oscillations of

temperature and heat capacities, see Fig. 3(a). These effects should be observable in suitably designed
evaporation experiments, realizing the conditions of the MCE (similar to those of Schmidt et al. [30], but
without heat bath).

For the model systems considered in this paper, a non-analyticity in the TDFs is characterized by a critical
energy curve EcðLÞ. Mathematically, such critical curves EcðLÞ arise due to the integration over the Y-function
in the definition of the microcanonical phase volume O. The Y-function in Eq. (11) effectively constrains the
range of the integration to the subset

A ¼ fðq1; . . . ; qdÞ 2 Rd j E �Uðq1; . . . ; qd ;V ÞX0g (37)

in the configuration space; i.e., A is the energetically permitted configuration space region. Hence, a
singularity in the microcanonical TDFs may arise whenever A changes its geometry or ‘shape’ in an irregular
manner during a small variation of the control parameters E and V. One possible origin for this may be a
change in the topology of A (as discussed by Pettini et al. [18–20]). For the models considered here, however,
the topology of A remains unaffected and another general mechanism is at work. To illustrate this in more
detail, we recall the example from Section 2.3.1, corresponding to the two-particle LJ gas. In this case, the set
6Formally, such singularities can be softened by using an ‘artificially’ smoothened box potential. However, this would not affect

experimentally observable effects, as, e.g., a drop-off of the temperature (mean kinetic energy) when the energy level for the next

dissociation step is crossed. Loosely speaking, employing a smoothened box potential in the thermodynamic analysis of a small system is

similar to avoiding the thermodynamic limit when being interested in PTs of large systems.
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A can be expressed as

A ¼ fðq1; q2Þ 2 R2 j ðq1; q2Þ 2 ½�L=2;L=2�2 ^ E �ULJðq1 � q2ÞX0g,

where ULJ is given by Eq. (14). The first constraint for ðq1; q2Þ reflects the box potential, whereas the second
constraint arises from the interaction potential. For EoEcðLÞ, A consists of the two diagonal ‘strips’

A� ¼ fðq1; q2Þ 2 ½�L=2;L=2�2 ^ r�ðEÞp� ðq1 � q2ÞprþðEÞg, (38)

where r�ðEÞ40 and rþðEÞ40 denote the classical turning points of the LJ potential. The ‘strips’ A� are
bounded by the box potential on two sides, whereas the other two boundaries are determined by the LJ
interaction potential. For E4EcðLÞ, however, the regions A� become triangles, bounded by the box potential
on two sides and by the interaction potential on the remaining side:

A� ¼ fðq1; q2Þ 2 ½�L=2;L=2�2 ^ r�ðEÞp� ðq1 � q2Þg.

Evidently, A changes its geometry dramatically, when the energy passes through the critical energy EcðLÞ,
thereby giving rise to the microscopic PT. For a sufficiently large volume Lbr0, where r0 is the range of the
pair interaction, this non-analytic transformation of A at the dissociation energy is accompanied by a change
of A’s effective dimensionality. Here, we mean by ‘effective dimensionality’ the number of orthogonal
configuration space directions in which the set A extends comparably to the system size L. For energy values
E5EcðLÞ, the ‘strips’ A� defined by Eq. (38) are very narrow compared to the system size L, and, hence,
A ¼Aþ [A� is effectively 1D. When the energy approaches EcðLÞ from below, the (average) width of the
two subsets A� grow very rapidly, and for E ¼ EcðLÞ, they become triangles whose size is of the order of L2;
i.e., the set A is effectively two-dimensional for EXEcðLÞ. In particular, it is this very rapid growth of A—or
O, respectively—which leads to a negative slope of the caloric curve TðE;V Þ in the vicinity of the dissociation
energy EcðLÞ.

7

4.2. Comparison with the CE

In contrast to the microcanonical TDFs, singular PTs cannot occur in the CE of a finite system
[8,9,11–13,41,42]. This is a consequence of the two completely different physical conditions, underlying MCE
and CE, respectively [45,25]. In spite of lacking sharp transitions, it is useful to distinguish different
thermodynamic ‘phases’, when considering CEs of finite systems [31,32]. Following the proposal of Borrmann
et al. [34], we determined the DOZ for the canonical partition function of the two-particle Takahashi gas
(Section 3) and found a ‘smooth’ canonical second-order PT (according to the DOZ classification scheme),
provided the volume L is large compared to the range of the potential, but still finite; for L!1 the canonical
PT changes to first order in the DOZ scheme.

In principle, however, there exist important differences between the smooth PTs in the CE and the singular
microscopic PTs in the MCE: Smooth canonical PTs can be viewed as direct finite size counterparts of
macroscopic PTs. In particular, for N particle systems as discussed in this paper the DOZ-scheme usually
yields only one transition point. Furthermore, the DOZ-order of the transition point is typically close to one
or two. By contrast, when considering the corresponding isolated system (i.e., the MCE), both the number and
the formal order of the singular microscopic PTs increase approximately proportional to the particle number
(since microscopic PTs signal each dissociation step separately). Such differences notwithstanding, canonical
and microcanonical partition functions are linked by a Laplace transformation, which suggests that (not only
for small systems) there might exist a direct connection between the canonical DOZ and the appearance of
microscopic non-analyticities in microcanonical entropy (see also [67] for a discussion of this hypothesis).

To conclude with, if one wishes to describe small systems by means of a thermodynamic approach, then the
non-equivalence of the different statistical ensembles [43] renders necessary to specify in advance, whether or
not a heat bath (thermostat) is coupled to the small system under consideration. The discussion in the present
paper has focussed on two extreme limit cases, corresponding to a vanishing heat bath (MCE) and an infinite
7This also explains why microscopic PTs appear more pronounced for larger L.
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heat bath (CE). In the future, it would also be interesting to study PT-like phenomena in small systems
coupled to a finite heat bath [68–70], e.g., on the basis of Tsallis’ generalized statistics [71–73].
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