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We construct a theory for thes1+1d-dimensional Brownian motion in a viscous medium, which issid
consistent with Einstein’s theory of special relativity andsii d reduces to the standard Brownian motion in the
Newtonian limit case. In the first part of this work the classical Langevin equations of motion, governing the
nonrelativistic dynamics of a free Brownian particle in the presence of a heat bathswhite noised, are general-
ized in the framework of special relativity. Subsequently, the corresponding relativistic Langevin equations are
discussed in the context of the generalized Itosprepoint discretization ruled versus the Stratonovichsmidpoint
discretization ruled dilemma: It is found that the relativistic Langevin equation in the Hänggi-Klimontovich
interpretationswith the postpoint discretization ruled is the only one that yields agreement with the relativistic
Maxwell distribution. Numerical results for the relativistic Langevin equation of a free Brownian particle are
presented.
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I. INTRODUCTION

For almost 100 years, Einstein’s theory of special relativ-
ity f1,2g is serving as the foundation of our most successful
physical standard modelssapart from gravityd. The most
prominent and, probably, also the most important feature of
this theory is the absolute character of the speed of lightc,
representing an unsurmountable barrier for the velocity of
any smacroscopicd physical process. Due to the great experi-
mental success of the original theory, almost all other physi-
cal theories have successfully been adapted to the framework
of special relativity over the past decades. Surprisingly, how-
ever, the scientific literature provides relatively few publica-
tions on the subject of relativistic Brownian motionssclassi-
cal references aref3–5g and more recent contributions
include f6–13gd.

Brownian particles are physical objectsse.g., dust grainsd
that move randomly through a surrounding mediumsheat
bathd. Their stochastic motions are caused by permanent col-
lisions with much lighter constituents of the heat bathse.g.,
molecules of a liquidd. The classical theory of Brownian mo-
tion or nonrelativisticdiffusion theory, respectively, was de-
veloped by Einsteinf14g and Einstein and von Smolu-
chowski f15g. Since the beginning of the last century, when
their seminal papers were published, the classical theory has
been investigated and generalized by a large number of
physicistsf16–20g and mathematiciansf21–23g. The intense
research led, among others, to different mathematical repre-
sentations of the Brownian motion dynamicsfLangevin
equations, Fokker-Planck equationssFPEd, etc.g f18–20g, to
the notion of the Wiener processesf21g, and to new tech-
niques for solving partial differential equationssFeynman-
Kac formula, etc.f22,23gd.

With regard to special relativity, standard Brownian mo-
tion faces the problem that it permits velocity jumpsDv, that
exceed the speed of lightc ssee also Schayf3gd. This is due
to the fact that in the nonrelativistic theory the velocity in-
crementsDv have a Gaussian distribution, which always as-
signs a nonvanishingsthough smalld probability to events
Dv.c. This problem is also reflected by the Maxwell distri-
bution, which represents the stationary velocity distribution
for an ensemble of free Brownian particles and permits ab-
solute velocity valuesv.c f20g.

The first relativistically consistent generalization of Max-
well’s velocity distribution was introduced by Jüttnerf24g in
1911. Starting from an extremum principle for the entropy,
he obtained the probability distribution function of the rela-
tivistic ideal Boltzmann gasfsee Eq.s67d belowg. In prin-
ciple, however, Jüttner’s approach made no contact with the
theory of Brownian motion. Fifty years after Jüttner’s work,
Schayf3g performed the first comprehensive mathematical
investigation of relativistic diffusion processes based on
Lorentz-invariant transition probabilities. On the mathemati-
cal side, Schay’s analysis was complemented by Hakimf5g
and Dudley f4g, who studied in detail the properties of
Lorentz-invariant Markov processes in relativistic phase
space. After 40 more years, Franchi and Le Janf13g have
presented an extension of Dudley’s work to general relativ-
ity. In particular, these authors discuss relativistic diffusions
in the presence of a Schwarzschild metricf25g. Hence, over
the past 100 years there has been steadysthough relatively
slowd progress in the mathematical analysis of relativistic
diffusion processes.

By contrast, one finds in the physical literature only very
few publications that directly address the topic of the relativ-
istic Brownian motionsdespite the fact that relativistic ki-
netic theory has been fairly well established for more than
30 yearsf26–29gd. Among the few exceptions are the papers
by Boyer f8,9g and Ben-Ya’acovf6g, who have studied the
interaction between two energy-level particles and electro-*Electronic address: dunkel@physik.hu-berlin.de
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magnetic radiation in thermal equilibrium, the latter acting as
a heat bath. In contrast to their specific microscopic model,
we shall adopt a more coarse-grained point of view here by
assuming that the heat bath is sufficiently well described by
macroscopic friction and diffusion coefficients.

Generally, the objective of the present paper can be sum-
marized as follows: We would like to discuss how one can
construct, in a physically straightforward manner, a relativ-
istic theory of Brownian motion for particles moving in a
homogeneous, viscous medium. For this purpose it is suffi-
cient to concentrate on the case of 1+1 dimensionssgener-
alizations to the 1+3 dimensions are straightforward and will
be discussed separately in a forthcoming contributiond. As a
starting point we choose the nonrelativistic Langevin equa-
tions of the free Brownian particle. In Sec. II these equations
will be generalized such that they comply with special rela-
tivity. As we shall see in Sec. III due to multiplicative noise
for the momentum degree of freedom, the resulting relativ-
istic Langevin equations arenot sufficient in order to
uniquely determine the corresponding Fokker-Planck equa-
tion sgeneralized Ito-Stratonovich dilemmad. Furthermore, it
it is shown that the stationary solution of a particular form
for the relativistic Fokker-Planck equation coincides with
Jüttner’s relativistic Maxwell distributionsSec. III B 3d. Fi-
nally, we also discuss numerical results for the mean-square
displacement in Sec. IV.

It might be worthwhile to emphasize that the systematic
Langevin approach pursued below is methodically different
from those in Refs.f3–13g and also from the kinetic theory
approachf26–29g. It is therefore satisfactory that our find-
ings are apparently consistent with rigorous mathematical
results, obtained by Schayf3g and Dudleyf4g for the case of
free relativistic diffusion. Moreover, it will become clear in
Sec. IV that numerical simulations of the relativistic Lange-
vin equations constitute a very useful tool for the numerical
investigation of relativistic diffusion processes, provided that
the discretization rule is carefully chosen.

II. LANGEVIN DYNAMICS

First the main properties of the nonrelativistic Langevin
equations for free Brownian particles are briefly summarized
sSec. II Ad. Subsequently, we construct generalized Lorentz-
covariant Langevin equationssSec. II Bd. Finally, the cova-
riant Langevin equations will be rewritten in laboratory co-
ordinatessSec. II Cd.

The following notations will be used throughout the pa-
per. Since we confine ourselves to thes1+1d-dimensional
case, upper and lower Greek indicesa ,b , . . . cantake values
0, 1, where 0 refers to the time component. The
s1+1d-dimensional Minkowski metric tensor with respect to
Cartesian coordinates is taken as

shabd = shabd = diags− 1,1d.

Moreover, Einstein’s summation convention is invoked
throughout.

A. Physical foundations

Consider the nonrelativistic one-dimensional motion of a
Brownian particle with massm that is surrounded by a heat

bath se.g., small liquid particlesd. In the Langevin approach
the nonrelativistic dynamics of the Brownian particle is de-
scribed by the stochastic dynamical equationsssee, e.g.,f20g
Chap. IXd

dxstd
dt

= vstd, s1ad

m
dvstd

dt
= − nmvstd + Lstd, s1bd

where n is the viscous friction coefficient. The Langevin
force Lstd is characterized by

kLstdl = 0, kLstdLssdl = 2Ddst − sd, s2d

with all higher cumulants being zerosGaussian white noised,
and D being constant. More general models may include
velocity-dependent parametersn and D ssee, e.g.,
f19,30–32gd, but we shall restrict ourselves to the simplest
case here. It is worthwhile to summarize the physical as-
sumptions, implicitly underlying Eqs.s1d as follows:

sid The heat bath is homogeneous.
sii d Stochastic impacts between the Brownian particle and

the constituents of the heat bath occur virtually uncorrelated.
siii d On the macroscopic level, the interaction between

Brownian particle and heat bath is sufficiently well described
by the constant viscous friction coefficientn and the white
noise forceL.

sivd Equationss1d hold in the rest frameS0 of the heat
bath scorresponding to the specific inertial system, in which
the average velocity of the heat bath vanishes for all timestd.
In the following S0 will also be referred to aslaboratory
frame.

In the mathematical literature, Eq.s1bd is usually written
as

dfmvstdg = − nmvstddt + dWstd, s3ad

whereWstd is a one-dimensional Wiener processf19,22,23g,
i.e., the density of the increments

wstd ; dWstd ; Wst + dtd − Wstd s3bd

is given by

P1fwstdg =
1

Î4pD dt
expF−

wstd2

4D dt
G . s3cd

Here the abbreviationw;dW has been introduced to sim-
plify the notation in subsequent formulas. From Eq.s3cd one
finds in agreement withs2d

kwstdl = 0, kwstdwssdl = H 0, t Þ s

2D dt, t = s.
J s4d

Depending on which notation is more convenient for the
current purpose, we shall use below either the physical for-
mulation s1d or the mathematical formulations3d. The two
formulations can be connected bysformallyd setting

wstd = dWstd = Lstddt. s5d
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B. Relativistic generalization

It is well known that in inertial coordinate systems, which
are comoving with a particle at a given momentt, the rela-
tivistic equations must reduce to the nonrelativistic Newton-
ian equationsssee, e.g.,f25g Chap. 2.3d. Therefore, our strat-
egy is as follows. Starting from the Langevin equationss1d
or s3ad, respectively, we construct in the first step the non-
relativistic equations of motion with respect to a coordinate
frame S* , comoving with the Brownian particle at a given
momentt. In the second step, the general form of the cova-
riant relativistic equation motions are found by applying a
Lorentz transformation to the nonrelativistic equations that
have been obtained forS* .

It is useful to begin by considering the deterministic
snoise-freed limit case, corresponding to a pure damping of
the particle’s motion. This will be done Sec. II B 1. Subse-
quently, the stochastic force is separately treated in Sec.
II B 2.

1. Viscous friction

Setting the stochastic force term to zeroscorresponding to
a vanishing temperature of the heat bathd, the nonrelativistic
Eq. s1bd simplifies to

m
dvstd

dt
= − nmvstd. s6d

The energy of the Brownian particle is purely kinetic,

Estd =
mvstd2

2
, s7d

and, by virtue ofs6d, its time derivative is given by

dE

dt
= mv

dv
dt

= − nmv2. s8d

As stated above, in the nonrelativistic theory the last three
equations are assumed to hold in the rest frameS0 of the heat
bath. Now consider another inertial coordinate systemS* , in
which the Brownian particle is temporarily at rest at timet or
t* = t*std, respectively, wheret* denotes theS* -time coordi-
nate. That is, inS* we have at timet

v*std ; v*„t*std… = 0. s9d

fConventionally, we use throughout the lax notationg*std
;g*(t*std), where g* is originally a function of t* .g With
respect to the comoving frameS* , the heat bath will, in
general, have a nonvanishingsaveraged velocity V* . Then,
using a Galilean transformation we find that Eq.s6d in S*
coordinates at timet reads as follows:

m
dv*

dt*
std = − nm„v*std − V*…=

s9d

nmV* . s10ad

Similarly, in S* coordinates Eq.s8d is given by

dE*

dt*
std = − nmv*std„v*std − V*…=

s9d

0. s10bd

Note that in the nonrelativisticsNewtoniand theory the left
equalities in Eqs.s10d are valid for arbitrary timet. By con-

trast, in the relativistic theory these equations are exact at
time t only if S* is comoving at timet. In the latter case, we
can use Eqs.s10d to construct relativistically covariant equa-
tions of motion. Introducing, as usual, the proper timet by
the definition

dt ; dtÎ1 −
v2

c2 = dt*Î1 −
v*

2

c2 , s11d

and combining momentump* =mv* and energy into a
s1+1d-vector sp*

ad=sp0,p*d=sE* /c,p*d, we can rewrite Eqs.
s10d in the covariant form

dp*
a

dt
= f*

a, sf*
ad = − mns0,v* − V*d. s12d

Let su*
ad and sU*

ad denote thes1+1d-velocity components of
Brownian particle and heat bath, respectively. Now it is im-
portant to realize that the covariant force vectorfa cannotbe
simply proportional to thes1+1d-velocity difference,

f*
a Þ − mnsu*

a − U*
ad, s13d

because, in general, at timet in S*

u*
0 − U*

0 =
c

Î1 − v*
2/c2

−
c

Î1 − V*
2/c2

=
s9d

c −
c

Î1 − V*
2/c2

Þ 0.

s14d

However, we can writef*
a in a manifestly covariant form, if

we introduce thefriction tensor

sn*
a

bd = S0 0

0 n
D , s15d

which allows us to rewrites12d as

dp*
a

dt
= − mn*

a
bsu*

b − U*
bd. s16d

This equation is manifestly Lorentz-invariant, and we drop
the asterisk from now on, while keeping in mind that the
diagonal form of the friction tensors15d is linked to the rest
frameS* of the Brownian particle. In this respect the friction
tensor is very similar to the pressure tensor, as known from
the relativistic hydrodynamics of perfect fluidsssee, e.g.,
f25g Chap. 2.10d. This analogy yields immediately the fol-
lowing representation:

na
b = nSha

b +
uaub

c2 D . s17d

It is now interesting to consider Eq.s16d in the laboratory
frame S0, defined above as the rest frame of the heat bath.
There we have

sUbd = sc,0d, subd = sgc,gvd, dt =
dt

g
, g ;

1
Î1 − v2/c2

.

s18d

Combining s16d–s18d we find that the relativistic equations
of motion in S0 are given by
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dp

dt
= − n

mv
Î1 − v2/c2

s19ad

dE

dt
= − n

mv2

Î1 − v2/c2
. s19bd

On comparings19ad with s6d ands19bd with s8d, one readily
observes that the relativistic equationss19d do indeed reduce
to the known Newtonian laws in the limit casev2/c2!1.

Using the relativistic definitions

E = gmc2, p = gmv, s20d

Eqs.s19d can also be rewritten as

dp

dt
= − np, s21ad

dE

dt
= − npv = − nE

v2

c2 . s21bd

In fact, only one of the two Eqs.s19d or s21d, respectively,
must be solved due to the fixed relation between relativistic
energy and momentum:

papa = − E2/c2 + p2 = − m2c2 ⇒ Estd =
mc2

Î1 − v2/c2
.

s22d

The solution ofs21ad reads

pstd = p0 exps− ntd, ps0d = p0, s23d

and, by usings20d, one thus obtains for the velocity of the
particle in the laboratory frameS0 srest frame of the heat
bathd

vstd = v0FS1 −
v0

2

c2De2nt +
v0

2

c2G−1/2

. s24d

Figure 1 depicts a semi-logarithmic representation of the ve-
locity vstd for different values of the initial velocityv0. As
one can see in the diagram, at high velocitiesuvu&c the

relativistic velocity curves, given by Eq.s24d, exhibit essen-
tial deviations from the purely exponential decay, predicted
by the Newtonian theory.

2. Stochastic force

We now construct arelativistic generalization of the sto-
chastic force. To this end, we consider Eq.s11d as anopera-
tional definitionfor the proper time parametert. The gener-
alization procedure will be based on the standard assumption
spostulated that, in temporarily comoving inertial framesS* ,
the relativistic equations of motions must reduce to the New-
tonian equations of motions. According to this assumption,
for framesS* , comoving with the particle at laboratory time
t, the relativistic stochastic differential equation must reduce
to

dp*std = − n„p*std − mV*…dt* + w*std, s25d

where the momentum incrementsw* ;dW* represent a
Wiener-process with parameterD, i.e., the incrementsw*std
have a Gaussian distribution

P*
1fw*stdg =

1
Î4pD dt*

expS−
w*std2

4D dt*
D . s26d

Note that also in the relativistic theory themomentumincre-
mentswstd=dWstd may tend to infinity, as long as the related
velocity increments remain bounded. In other words, in the
relativistic theory one must carefully distinguish between
stochastic momentum and velocity incrementssthis is not
necessary in the nonrelativistic theory, because Newtonian
momenta are simply proportional to their velocitiesd.

The next step is now to define theincrements1+1d-vector
by

sw*
ad = s0,w*d. s27d

This definition is in agreement with the requirement that in a
comoving inertial systemS* the 0-component of the
s1+1d-force vector must vanishssee, e.g.,f25g Chap. 2.3,
and also compare Eqs.s12d, s31d, and s32d of the present
paperd. Moreover, if the Lorentz frameS* is comoving with
the Brownian particle at given timet, then thesequal-timed
white-noise relationss4d generalize to

kw*
astdl = 0, kw*

astdw*
bstdl = H 0, a = 0 and/orb = 0,

2D dt* , otherwise.
h

s28d

The rhs. of the second equation ins28d makes it plausible to
introduce acorrelation tensorby

sD*abd = S0 0

0 2D dt*
D , s29ad

thus,

kw*
astdw*

bstdl = D*
ab. s29bd

Additionally defining an“inverse” correlation tensorby

FIG. 1. Velocity curvesvstd, corresponding to Eq.s24d, for the
purely damped motion of a relativistic particle in the rest frame of
the heat bathslaboratory framed. Especially at high velocitiesuvu
&c, the relativistic velocity curves deviate from the exponential
decay, predicted by the Newtonian theory.
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sD̂*abd = X0 0

0 s2D dt*d−1C , s29cd

allows us to generalize the distribution of the increments
from Eq. s26d as follows:

P*
1+1

„w*
astd… =

1
Î4pD dt*

expF−
1

2
D̂*abw*

astdw*
bstdGd„w*

0std….

s30d

Here, the Diracd-function on the right-hand side accounts
for the fact that the 0 component of the stochastic force must
vanish in every inertial frame, comoving with the Brownian
particle at timet; compare Eq.s27d. This also follows more
generally from the identity

0 ;
d

dt
s− mc2d = m

d

dt
suauad = 2uafa, s31d

which, in the case of the stochastic force, translates to

0 = uawa. s32d

Hence, we can rewrite the probability distributions30d as

P*
1+1

„w*
astd… =

c
Î4pD dt*

expS−
1

2
D̂*abw*

astdw*
bstdD

3d„u*aw*
astd…, s33d

where su*ad=s−c,0d is the covariants1+1d-velocity of the
particle a the comoving rest frame. It should be stressed that,
because of the constraints32d, only one of the two incre-
mentswa;dWa is to be regarded as “independent,” which is
reflected by the appearance of thed function in s33d. Also
note that, due to the prefactorc, the normalization condition
takes the simple form

1 =Hp
a=0

1 E
−`

`

d„w*
astd…JP*

1+1
„w*

astd…. s34d

Furthermore, analogous tos17d, we have the following more
general representation of the correlation tensors:

Dab = 2D dtShab +
uaub

c2 D s35ad

D̂ab =
1

2D dt
Shab +

uaub

c2 D . s35bd

Then, in an arbitrary Lorentz frame, the densitys33d can be
written as

P1+1
„wastd… =

c
Î4pD dt

expF−
1

2
D̂abwastdwbstdG

3d„uawastd…

=
c

Î4pD dt
expF−

wastdwastd
4D dt

Gd„uawastd….

s35cd

To obtain the last line from the first, we have insertedD̂ab

from s35bd and then used thatuawa=0, see Eq.s32d.
By virtue of the above results, we are now in the position

to write down the covariant Langevin equations with respect
to an arbitrary inertial system: If a Brownian particle with
rest massm, proper timet and s1+1d-velocity ub is sur-
rounded by an isotropic, homogeneous heat bath with con-
stant 1+1 velocityUb, then the relativistic Langevin equa-
tions of motions read

dxastd =
pastd

m
dt s36ad

dpastd = − na
b„p

bstd − mUb
…dt + wastd, s36bd

where, according to Eq.s17d, the friction tensor is given by

na
b = nSha

b +
uaub

c2 D , s36cd

with n denoting the viscous friction coefficient measured in
the rest frame of the particle. This is a first main result of this
work. The stochastic incrementswastd;dWastd are distrib-
uted according tos35cd and, therefore, characterized by

kwastdl = 0, s36dd

kwastdwbst8dl = H 0, t Þ t8;

Dab, t = t8,
h s36ed

with Dab given by s35ad. Note that in each comoving Lor-
entz frame, in which, at a given momentt, the particle is at
rest, the marginal distribution of the spatial momentum in-
crements, defined by

P1
„wstd… =E

−`

`

d„w0std…P1+1
„wastd…, s37d

reduces to a Gaussian. In the Newtonian limit case, corre-
sponding tov2!c2, one thus recovers from Eqs.s35d and
s36d the usual nonrelativistic Brownian motion.

C. Langevin dynamics in the laboratory frame

A laboratory frameS0 is, by definition, an inertial system,
in which the heat bath is at rest, i.e., inS0 we havesUbd
=sc,0d for all timest. Hence, with respect toS0 coordinates,
the two stochastic differential Eqs.s36bd assume withs36cd
the form

dp = − npdt + wstd, s38ad

dE = − npvdt + cw0std. s38bd

Here it is important to note that the stochastic increments
wastd, appearing on the right-hand side. ofs38d, are not of
simple Gaussian type anymore. Instead, their distribution
now also depends on the particle velocityv. This becomes
immediately evident, when we rewrite the increment density
s35cd in terms ofS0 coordinates. Using
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suad = s− gc,gvd, g−1 =Î1 −
v2

c2, swad = sw0,wd,

s39d

we find

P1+1
„wastd… = cS g

4pD dt
D1/2

expS−
wstd2 − w0std2

4D dt/g
D

3d„cgw0std − gvwstd…. s40d

As we already pointed out earlier, thed function in s40d
reflects the fact that the energy incrementw0 is coupled to
the spatialsmomentumd incrementw via

0 = uawa = − cgw0 + gvw ⇒ w0 =
vw

c
. s41d

Hence,w0 can be eliminated from the Langevin equations
s38bd, yielding

dE = − npvdt + vwstd = vdp. s42d

Using the identity

v =
cp

Îm2c2 + p2
, s43d

we can further rewrites42d as

dE =
cp

Îm2c2 + p2
dp ⇒ Estd = Îm2c4 + pstd2c2.

s44d

Thus, in the laboratory frameS0 the relativistic Brownian
motion is completely described by the Langevin equation
s38ad already. If we assume that the Brownian particle has
fixed initial momentumps0d=p0 or initial velocity vs0d=v0,
respectively, then the formal solution ofs38ad readssf20g
Chap. IX.1d

pstd = p0e
−nt + e−ntE

0

t

enswssd. s45d

The stochastic processs45d is determined by the marginal
distribution P1(wstd), defined in Eq.s37d. Performing the
integration over thed function in s40d, we find

P1
„wstd… = S 1

4pDg dt
D1/2

expS−
wstd2

4Dg dt
D , s46ad

where

g = F1 −
v2

c2G−1/2

= F1 +
p2

m2c2G1/2

. s46bd

On the basis of Eqs.s38ad and s46d one can immediately
perform computer simulations, provided one still specifies
the rules of stochastic calculus, i.e., which value ofp is to be
taken to determineg in s46d. In Sec. IV several numerical
results are presented. Before, it is useful to consider in more
detail the Fokker-Planck equations of the relativistic Brown-
ian motion in the laboratory frameS0. By doing so in Sec.

III, it will become clear that, for example, choosingp=pstd
in Eqs. s46d would be consistent with an Ito-interpretation
f20,33,34g of the stochastic differential equations38ad. How-
ever, we will also see that alternative interpretations lead to
reasonable results as well.

III. DERIVATION OF CORRESPONDING
FOKKER-PLANCK EQUATIONS

The objective in this part is to derive relativistic Fokker-
Planck equationssFPEd for the momentum densityfst ,pd of
a free particle in the laboratory frameS0. Before we deal
with this problem in Sec. III B, it is useful to briefly recall
the nonrelativistic case.

A. Nonrelativistic case

Consider the nonrelativistic Langevin equations1bd

dp

dt
= − np + Lstd, s47ad

where pstd=mvstd denotes the nonrelativistic momentum,
and, in agreement withs3cd, the Langevin forceLstd is dis-
tributed according to

P„Lstd… = S dt

4pD
D1/2

expS−
dt

4D
Lstd2D . s47bd

As is well knownf20,35g, the related momentum probability
density fst ,pd is governed by the Fokker-Planck equation

]

]t
f =

]

]p
Snpf + D

]

]p
fD , s48d

whose stationary solution is the Maxwell distribution

fspd = S n

2pD
D1/2

expS−
np2

2D
D . s49d

B. Relativistic case

We next discuss three different relativistic Fokker-Planck
equations for the momentum densityfst ,pd, related to the
stochastic processes defined bys38ad and s46d.

Our starting point is the relativistic Langevin equation
s38ad, which holds in the laboratory frameS0 si.e., in the rest
frame of the heat bathd. Next we define a stochastic process
by

ystd =
wstd
Îg

, s50d

and usings46bd, we can rewrites38ad as

dp = − npdt + Îgystd, s51ad

where ystd is distributed according to the momentum-
independent density

Py
1fystdg = S 1

4pD dt
D1/2

expS−
ystd2

4D dt
D . s51bd

Thus, instead of the incrementswstd, which implicitly de-
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pend on the stochastic processp via Eqs. s46d, we consider
ordinary p-independent white noiseystd, determined by
s51bd, from now on. Due to the multiplicative coupling of
ystd in s51ad, we must next specify rules for the “multiplica-
tion with white noise”fnote that, on viewing Eqs.s11d, s35d,
ands36d as postulates of the relativistic Brownian motion, all
above considerations remain valid, independent of this speci-
ficationg.

In Secs. III B 1, III B 2, and III B 3, we shall discuss three
popular multiplication rules, which go back to proposals
made by Hänggi and Thomasf19,42g, Van Kampenf20g, Ito
f33,34g, Stratonovichf36,37g, Fisk f38,39g, Hänggi f40,41g,
and Klimontovichf31g. As it is well-known fromf19,20,30g,
these different interpretations of the stochastic processs51d
result in different Fokker-Planck equations, i.e., the Langevin
equations51d per sedoesnot uniquely determine the corre-
sponding Fokker-Planck equation; it is the stochastic inter-
pretation of the multiplicative noise that matters from a
physical point of view.

Nevertheless, the three approaches discussed below have
in common that, formally, the related Fokker-Planck equa-
tion can be written as a continuity equationf42g

]

]t
fst,pd +

]

]p
jst,pd = 0, s52d

but with different expressions for the probability current
jst ,pd. It is worthwhile to anticipate that only for the Hänggi-
Klimontovich approachssee Sec. III B 3d the currentjst ,pd
takes such a form that the stationary distribution ofs52d can
be identified with Jüttner’s relativistic Maxwell distri-
bution f24g.

1. Ito approach

According to Ito’s interpretation of the Langevin equation
s51ad, the coefficient beforeystd is to be evaluated at the
lower boundary of the intervalft ,t+dtg, i.e., we use the pre-
point discretization rule

g = g„pstd…, s53d

where as before

gspd = S1 +
p2

m2c2D1/2

.

Ito’s choice leads to the following expression for the current
f19,20,33,34g:

j Isp,td = − Fnpf + D
]

]p
gspdfG . s54d

The related relativistic Fokker-Planck equation is obtained
by inserting this current into the conservation laws52d. The
currents54d vanishes identically for

f Ispd =
CI

gspd
expF−

n

D
E dp

p

gspdG , s55d

whereCI is the normalization constant. Consequently,f Ispd
is a stationary solution of the Fokker-Planck equation. In
view of the fact that

E dp
p

gspd
= c2m2Î1 +

p2

c2m2 , s56d

we find the following explicit representation ofs55d:

f Ispd = CIS1 +
p2

m2c2D−1/2

expS− bÎ1 +
p2

c2m2D , s57d

where

b =
nm2c2

D
. s58d

The dimensionless parameterb can be used to define the
scalar temperatureT of the heat bath via the Einstein relation

kBT ;
mc2

b
=

D

mn
, s59d

with kB denoting the Boltzmann constant. Put differently, the
parameterb=mc2/ skBTd measures the ratio between rest
mass and thermal energy of the Brownian particle.

2. Stratonovich approach

According to Stratonovich, the coefficient beforeystd in
s51ad is to be evaluated with the midpoint discretization rule,
i.e.,

g = gSpstd + pst + dtd
2

D . s60d

This choice leads to a different expression for the current
f19,36–38g, namely,

jSsp,td = − Fnpf + DÎgspd
]

]p
ÎgspdfG . s61d

This Stratonovich-Fisk currentjS vanishes identically for

fSspd =
CS

Îgspd
expF−

n

D
E dp

p

gspdG , s62d

and, by virtue ofs56d, the explicit stationary solution of Stra-
tonovich’s Fokker-Planck equation reads

fSspd = CSS1 +
p2

m2c2D−1/4

expS− bÎ1 +
p2

c2m2D . s63d

3. Hänggi-Klimontovich approach

Now let us still consider the Hänggi-Klimontovich sto-
chastic integral interpretation, sometimes referred to as the
transport formf40–42g or also as the kinetic formf31g. Ac-
cording to this interpretation, the coefficient in front ofystd
in s51ad is to be evaluated at the upper boundary value of the
interval ft ,t+dtg; i.e., within the postpoint discretization we
set

g = g„pst + dtd…. s64d

This choice leads to the following expression for the current
f31,41,42g:
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jHKsp,td = − Fnpf + Dgspd
]

]p
fG . s65d

The currentjHK vanishes identically for

fHKspd = CHK expF−
n

D
E dp

p

gspdG , s66d

and, by virtue ofs56d, the stationary solution explicitly reads

fHKspd = CHK expS− bÎ1 +
p2

c2m2D . s67ad

Using the temperature definition ins59d and the relativistic
kinetic energy formulaE=Îm2c4+p2c2, one can further re-
write s67ad in a more concise form as

fHKspd = CHK expS−
E

kBT
D . s67bd

The distribution functions67d is known as the relativistic
Maxwell distribution. It was first obtained by Jüttnerf24g
back in 1911. Pursuing a completely different line of reason-
ing, he found thats67d describes the velocity distribution of
the noninteracting relativistic gasssee alsof43gd. In contrast
to our approach, which started out with constructing the rela-
tivistic generalization of the Langevin equations, Jüttner’s
derivation started from a maximum-entropy-principle for the
gas.

By comparings55d, s63d, and s67ad one readily observes
that the stationary solutionsf I/S differ from the Jüttner func-
tion fHK through additionalp-dependent prefactors. In order
to illustrate the differences between the different stationary
solutions, it useful to consider the related velocity probability
density functionsfI/S/HKsvd, which can be obtained by ap-
plying the general transformation law

fsvd ; f„psvd…U ]p

]v
U s68d

in combination with

p =
mv

Î1 − v2/c2
.

The determinant factoru]p/]vu in s68d is responsible for the
fact that the velocity density functionsfI/S/HKsvd are, in fact,
zero if v2.c2.

In Fig. 2 we have plotted the probability density functions
fI/S/HKsvd for different values of the parameterb. The nor-
malization constants were determined by numerically inte-
gratingfsvd over the intervalf−c,cg. As one can observe in
Fig. 2sad, for large values ofb, corresponding to low-
temperature valueskBT!mc2, the density functions
fI/S/HKsvd approach a common Gaussian shape. On the other
hand, for high-temperature valueskBTùmc2 the deviations
from the Gaussian shape become essential. The reason is
that, for a svirtuald Brownian ensemble in the high-
temperature regime, the majority of particles assumes veloci-
ties that are close to the speed of light. It is also clear that in
other Lorentz framesS8, which are not rest frames of the
heat bath, the stationary distributions will no longer stay

symmetric aroundv=0. Instead, they will be centered around
the nonvanishingS8 velocity V8 of the heat bath.

An obvious question then arises, which of the above ap-
proachessIto, Stratonovich, or Hänggi-Klimontovichd is the
physically correct one. We believe that, at this level of analy-
sis, it is impossible to provide a definite answer to this ques-
tion. Most likely, the answer to this problem requires addi-
tional information about the microscopic structure of the heat
bathssee, e.g., the discussion of Ito-Stratonovich dilemma in
the context of “internal and external” noise as given in Chap.
IX.5 of van Kampen’s textbookf20gd. At this point, it might
be worthwhile to mention that the relativistic Maxwell dis-
tribution s67d is also obtained via the transfer probability
method used by Schay, see Eq.s3.63d ands3.64d in Ref. f3g,

FIG. 2. Stationary solutionsfI/S/HKsvd of the relativistic Fokker-
Planck equations, according to ItosI:solid lined, Stratonovich
sS:dottedd, and Hänggi-KlimontovichsHK:dashed-dottedd. For low
temperatures, i.e., forb@1, a Gaussian shape is approachedfsee
sadg. On the other hand, for very high-temperature values, corre-
sponding tobø1, the distributions exhibit a bistable shape, and the
quantitative deviations betweenfI/S/HKsvd increase significantly as
b→0.

J. DUNKEL AND P. HÄNGGI PHYSICAL REVIEW E71, 016124s2005d

016124-8



and that this distribution also results in the relativistic kinetic
theory f29g. By contrast, the recent work of Franchi and Le
Janf13g is based on the Stratonovich approach. From physi-
cal insight, however, it is the transport form interpretation of
Hänggi and Klimontovich that is expected to provide the
physically correct description.

IV. NUMERICAL INVESTIGATIONS

The numerical results presented in this section were ob-
tained on the basis of the relativistic Langevin equations51d,
which holds in the laboratory frameS0. For simplicity, we
confined ourselves here to considering the Ito-discretization
scheme with fixed time step dt ssee Sec. III B 1d. In all simu-
lations we have used an ensemble size ofN=10 000 par-
ticles. Moreover, a characteristic unit system was fixed by
settingm=c=n=1. Formally, this corresponds to using res-
caled dimensionless quantities, such asp̃=p/mc, x̃=xn /c, t̃
= tn, ṽ=v /c, etc. The simulation time-step was always cho-
sen as dt=0.001n−1, and the Gaussian random variablesystd
were generated by using a standard random number genera-
tor.

A. Distribution functions

In our simulations we have numerically measured the cu-
mulative velocity distribution functionFst ,vd in the labora-
tory frameS0. Given the probability densityfst ,vd, the cu-
mulative velocity distribution function is defined by

Fst,vd =E
−c

v

dufst,ud. s69d

In order to obtainFst ,vd from numerical simulations, one
simply measures the relative fraction of particles with veloci-
ties in the intervalf−c,vg. Figure 3 shows the numerically
determinedstationarydistribution functionsssquaresd, taken
at time t=100n−1 and also the corresponding analytical
curvesFI/S/HKsvd. The latter were obtained by numerically
integrating Eq.s69d using the three different stationary den-
sity functionsfI/S/HKsvd from Sec. III.

As one can see in Fig. 3sad, for low-temperature values
corresponding tob@1, the three stationary distribution func-
tions are nearly indistinguishable. For high temperatures cor-
responding tobø1, the stationary solutions exhibit signifi-
cant quantitative differences,fsee Figs. 3sbd and 3scdg.
Because our simulations are based on an Ito-discretization
scheme the numerical valuesssquaresd are best fitted by the
Ito solutionssolid lined. Also note that the quality of the fit is
very good for the parameters chosen in the simulations, and
that this property is conserved over several magnitudes ofb.
This suggests that numerical simulations of the Langevin
equations provide a very useful tool if one wishes to study
relativistic Brownian motions in more complicated settings
se.g., in higher dimensions or in the presence of additional
external fields and interactionsd. In this context, it should
again be stressed that the appropriate choice of the discreti-
zation rule is especially important in applications to realistic
systems.

B. Mean-square displacement

In this section we consider the spatial mean-square dis-
placement of the freerelativistic Brownian motion. Because
this quantity is easily accessible in experiments, it has played
an important role in the verification of the nonrelativistic
theory.

As before, we consider an ensemble ofN-independent
Brownian particles with coordinatesxsidstd in S0 and initial
conditionsxsids0d=0,vsids0d=0 for i =1,2, . . . ,N. The posi-
tion mean value is defined as

FIG. 3. These diagrams show a comparison between numerical
and analytical results for the stationary cumulative distribution
function Fsvd in the laboratory frameS0. sad In the nonrelativistic
limit b@1 the stationary solutions of the three different FPE are
nearly indistinguishable.sbd–scd In the relativistic limit casebø1,
however, the stationary solutions exhibit deviations from each
other. Because our simulations are based on an Ito-discretization
scheme, the numerical valuesssquaresd are best fitted by the Ito
solution ssolid lined.
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x̄std ;
1

N
o
i=1

N

xsidstd, s70d

and the related second moment is given by

x2std ;
1

N
o
i=1

N

fxsidstdg2. s71d

The empirical mean-square displacement can then be defined
as follows:

s2std ; x2std − „x̄std…2. s72d

Cornerstone results in the nonrelativistic theory of the one-
dimensional Brownian motion are

lim
t→+`

x̄std → 0, s73ad

lim
t→+`

s2std
t

→ 2Dx, s73bd

where the constant

Dx =
kBT

mn
=

D

m2n2 s74d

is the nonrelativistic coefficient of diffusion in coordinate
spacesnot to be confused with noise parameterDd.

It is therefore interesting to consider the asymptotic be-
havior of the quantitys2std / t for relativistic Brownian mo-
tions, using again the Ito-relativistic Langevin dynamics
from Sec. III B 1. In Fig. 4sad one can see the corresponding
numerical results for different values ofb. As one can ob-
serve in this diagram, for each value ofb, the quantity
s2std / t converges to a constant value. This means that, at
least in the laboratory frameS0, the asymptotic mean-square
displacement of the free relativistic Brownian motions in-
creases linearly witht. For completeness, we mention that
according to our simulations the asymptotic relations73ad
holds in the relativistic case, too.

In spite of these similarities between nonrelativistic and
relativistic theory, an essential difference consists of the ex-
plicit temperature dependence of the limit value 2Dx. As il-
lustrated in Fig. 4sbd, the numerical limit values 2D100

x , mea-
sured at timet=100n−1, are well fitted by the empirical
formula

Dx =
c2

nsb + 2d
, s75d

which reduces to the nonrelativistic results74d in the limit
caseb@2.

We will leave it as an open problem here, to find an ana-
lytical justification for the empirically determined formula
s75d. Instead we merely mention that, on notings43d, the
relativistic Fokker-Planck equations for the full-phase space
density reads

]

]t
fst,p,xd +

cp
Îm2c2 + p2

]

]x
fst,p,xd = −

]

]p
j I/S/HKst,p,xd,

s76d

which might serve as a suitable starting point for such an
analysis. Compared to the relativistic Fokker-Planck equa-
tions from Sec. IV, the second term on the left-hand side of
s76d is new. In particular, we recover the relativistic Fokker-
Planck equations for the marginal densityfst ,pd, see Sec. III
by integrating Eq.s76d over a spatial volume with appropri-
ate boundary conditions. Finally, we mention once again that
also s76d, as well as all the other results that have been pre-
sented in this section, exclusively refer to the laboratory
frameS0.

V. CONCLUSION

Concentrating on the simplest case of 1+1 dimensions,
we have put forward the Langevin dynamics for the stochas-
tic motion of free relativistic Brownian particles in a viscous
medium sheat bathd. Analogous to the nonrelativistic
Ornstein-Uhlenbeck theory of Brownian motion
f17,19,20,44g, it was assumed that the heat bath can, in good
approximation, be regarded as homogenous. Based on this
assumption, a covariant generalization of the Langevin equa-

FIG. 4. sad Mean-square displacement divided by timet as nu-
merically calculated for differentb-values in the laboratory frame
S0 srest frame of the heat bathd. As evident from this figure, for the
relativistic Brownian motion the related asymptotic mean-square
displacement grows linearly witht. sbd The coordinate space diffu-
sion constantD100

x sbd was numerically determined at timet
=100n−1. The dashed line corresponds to the empirical fitting for-
mula Dxsbd=c2n−1sb+2d−1, which reduces to the classical nonrel-
ativistic resultDx.c2/ snbd=kT/ smnd for b@2.
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tions has been constructed in Sec. II. According to these
generalized stochastic differential equations, the viscous fric-
tion between Brownian particle and heat bath is modeled by
a friction tensornab. For a homogeneous heat bath this fric-
tion tensor has the same structure as the pressure tensor of a
perfect fluidf25g. In particular, it is uniquely determined by
the value of thesscalard viscous friction coefficientn, mea-
sured in the instantaneous rest frame of the particlesSec.
II B 1d. Similarly, the amplitude of the stochastic force is
also governed by a single parameterD, specifying the Gauss-
ian fluctuations of the heat bath, as seen in the instantaneous
rest frame of the particlesSec. II B 2d.

In Sec. II C the relativistic Langevin equations have been
derived in special laboratory coordinates, corresponding to a
specific class of Lorentz frames, in which the heat bath is
assumed to be at restsat all timesd. One finds that the corre-
sponding relativistic distribution of the momentum incre-
ments now also depends on the momentum coordinate. This
fact is in contrast with the properties of ordinary Wiener
processes f21,23g, underlying nonrelativistic standard
Brownian motions with “additive” Gaussian white noise.
However, as shown in Sec. III it is possible to find an equiva-
lent Langevin equation, containing “multiplicative” Gaussian
white noise.

In order to achieve a more complete picture of the rela-
tivistic Brownian motion, the corresponding relativistic
Fokker-Planck equationssFPEd have been discussed in Sec.
III sagain with respect to the laboratory coordinates with the
heat bath at restd. Analogous to nonrelativistic processes with
multiplicative noise, one can opt for different interpretations
of the stochastic differential equation, which result in differ-
ent FPE. In this paper, we concentrated on the three most
popular cases, namely, the Ito, the Stratonovich-Fisk, and the
Hänggi-Klimontovich interpretations. We discussed and
compared the corresponding stationary solutions for a free
Brownian particle. It could be established that only the
Hänggi-Klimontovich interpretation is consistent with the
relativistic Maxwell distribution. This very distribution was
derived by Jüttnerf24g as the equilibrium velocity distribu-
tion of the relativistic ideal gas. Later on, it was also dis-
cussed by Schay in the context of relativistic diffusionsf3g
and by de Grootet al. in the framework of the relativistic
kinetic theoryf29g.

In Sec. IV we presented numerical results, obtained on the
basis of an Ito prepoint discretization rule. The simulations
indicate that—analogous to the nonrelativistic case—the
relativistic mean-square displacement grows linearly with

the laboratory coordinate time; the temperature dependence
of the related spatial diffusion constant, however, becomes
more intricate. In principle, the numerical results suggest that
simulations of the Langevin equations may provide a very
useful tool for studying the dynamics of relativistic Brown-
ian particles. In this context it has to be stressed that an
appropriate choice of the discretization rule is especially im-
portant in applications to realistic physical systems. If, for
example, agreement with the kinetic theoryf29g is desirable,
then a postpoint discretization rule should be used.

From the methodical point of view, the systematic relativ-
istic Langevin approach of the present paper differs from
Schay’s transition probability approachf3g and also from the
techniques applied by other authorsf4,6,7g. As we shall dis-
cuss in a forthcoming contribution, the above approach can
easily be generalized to settings that are more relevant with
regard to experimentsfsuch as thes1+3d-dimensional case,
the presence of additional external force fields, etc.g.

With regard to future work, several challenges remain to
be solved. For example, one should try to derive an analytic
expression for the temperature dependence of the spatial dif-
fusion constant. A suitable starting point for such studies
might be the FPE for the full-phase space density given in
Eq. s76d. Another possible task consists of finding explicit
exact or at least approximate time-dependent solutions of the
relativistic FPE. Furthermore, it seems also interesting to
consider extensions to general relativity, as, to some extent,
recently discussed in the mathematical literaturef13g. In this
context, the physical consequences of the different interpre-
tations sIto versus Stratonovich versus Hänggi-
Klimontovichd become particularly interesting.

Note added in proof.Recently, we have been informed by
F. Debbasch about two interesting recent papersf45,46g on a
relativistic generalization of the Ornstein-Uhlenbeck process.
These two items are related in spirit to the present work: The
authors of those references have postulated a relativistic
Langevin equation with additive noise and a drift term that
differs from ours; but which also yields the correct relativis-
tic Jüttner distribution. Thus, our HK-approach and theirs
possess the same stationary solution, but notably do exhibit a
different relaxation dynamics.
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