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Abstract
In this paper two different evolutionary strategies are tested by means of harmonic
landscapes. Both strategies are based on ensembles of searchers, spreading over the
search space according to laws inspired by nature. The main difference between the
two prototypes is given by the underlying selection mechanism, governing the increase
or decrease of the local population of searchers in certain regions of the search space.
More precisely, we compare a thermodynamic strategy, which is based on a physi-
cally motivated local selection criterion, with a biologically motivated strategy, which
features a global selection scheme (i.e., global coupling of the searchers). Confining
ourselves to a special class of initial conditions, we show that, in the simple case of
harmonic test potentials, both strategies possess particular analytical solutions of the
same type. By means of these special solutions, the velocities of the two strategies can
be compared exactly. In the last part of the paper, we extend the scope of our discussion
to a mixed strategy, combining local and global selection.

Keywords
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1 Introduction

In various fields of sciences one has to deal with optimization problems of the type

U(x)
!

= min x ∈ Ω ⊆ Rn, (1)

where U is some given scalar function, which we refer to as landscape or potential. In
general, for a given function U defined on a high-dimensional search space Ω, it is im-
possible to calculate the exact position x∗ of a global optimum and numerical methods
must be applied. Modern numerical algorithms developed for optimization problems
(Kirkpatrick et al., 1983; Rechenberg, 1973; Holland, 1975; Fogel, 1995; Koza, 1992) are
often based on physical or biological principles (gradient descent, selection schemes)
and also include stochastic elements (diffusion, temperature). Such algorithms are usu-
ally referred to as evolutionary algorithms.

While there are many proposals regarding diffusion or temperature control, e.g.,
cooling schedules in ‘Simulated Annealing’ strategies (Mahnig and Mühlenbein, 2001;
Andresen and Gordon, 1994; Andresen and Gordon, 1993), the present paper exclu-
sively focuses on the efficiency of different selection schemes at constant temperature.
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More exactly, we compare the behavior of two prototypes of evolutionary strategies,
referred to as the Boltzmann strategy and the Darwin strategy (Boseniuk et al., 1987;
Asselmeyer and Ebeling, 1996; Asselmeyer et al., 1997). Both strategies are based on the
ideas that (i) an ensemble of searchers moves on the landscapeU , and (ii) this ensemble
can be described by means of a time-dependent probability density f(x, t). The main
difference between the two models lies in the underlying principles (selection schemes)
according to which the ensembles evolve. The Boltzmann strategy is physically moti-
vated and only includes local selection, i.e., it only compares local properties of U and
f , whereas the biologically oriented Darwin strategy (Fisher, 1930; Eigen, 1971; Ebeling
et al., 1990; Schweitzer et al., 1998) is based on global selection, i.e., searchers survive or
die according to their status in the overall ensemble (global coupling). At the founda-
tion of the Boltzmann strategy is the concept of over-damped Brownian motion (Ein-
stein and von Smoluchowski, 1999), which was well-investigated in various fields of
physics over the past decades (Hänggi et al., 1990; Chandrasekhar, 1943). We are going
to consider this strategy and related results as a guide for the investigation of the less
common Darwin strategy.

Even though both strategies have been successfully applied to a number of com-
plex optimization problems (Schweitzer et al., 1998; Asselmeyer and Ebeling, 1996;
Asselmeyer et al., 1997; Feistel and Ebeling, 1989; Rosenkranz, 1996), we still do not
know quantitatively which of them is more efficient with respect to certain properties
of U . The main cause for this dilemma is that analytical investigations of the corre-
sponding partial differential equations (PDE) for the evolution of the density f are
difficult to handle if U is complicated. However, as we shall work out below, in the
case of harmonic potentials, one can find, for both strategies, particular analytical so-
lutions, jointly based on the ansatz of a generalized Boltzmann distribution (Mahnig
and Mühlenbein, 2001). Even though harmonic landscapes must of course be consid-
ered as relatively simple examples, the results obtained from them can be used in order
to elucidate some more general advantages and disadvantages of either strategies. In
particular, we emphasize the fact that in the vicinity of their minima each sufficiently
smooth landscape U can always be approximated by a harmonic function (by virtue of
a Taylor expansion). Thus, the analysis of a strategy’s behavior for a simple harmonic
test function may also reveal some insight with regard to more complicated applica-
tions.

In order to simplify navigation through this paper, we will end the introduction
with some remarks on its structure. Section 2.1 is dedicated to the Boltzmann strategy.
Subsequently, we will discuss the Darwin strategy in Section 2.2, following an analo-
gous sequence of steps as before for the Boltzmann strategy. In principle, we always
begin by briefly reviewing some well-known results. Then, in the second part, a special
class of time-dependent solutions is identified, which allows for an explicit comparison
of the strategies’ efficiency. On the basis of the results derived in Sections 2.1 and 2.2,
we proceed by analyzing a mixed strategy in Section 3, combining selection schemes of
Boltzmann and Darwin type. Finally, Section 4 contains a summary of the main results
and some conclusions.

2 Boltzmann and Darwin strategy

In this paper we compare evolutionary strategies on a landscape U : Rn → R, x 7→
U(x). We assume that an ensemble of searchers on U can be described by a normalized
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probability density

f(x, t) ≥ 0 , ∀ x ∈ Ω, t ∈ T = [0,∞) ; (2a)∫

Ω

dx f(x, t) = 1 , ∀ t ∈ T . (2b)

This means, that the total number of searchers is conserved, and that f(x, t)dx charac-
terizes the fraction of searchers in the interval [x, x+ dx] of the search space Ω at time t.
Each of the strategies we are interested in can be described by a PDE of the following
type

∂tf(x, t) = (Ŝ + M̂) f(x, t) , (3)

where the initial distribution

f(x, 0) = f0(x) (4)

is given. In (3) the operator Ŝ is a so-called selection operator and M̂ is the mutation
operator. In principle, there exist several possible choices for M̂ ; for example, it can
be chosen explicitly time-dependent, as in ’Simulated Annealing’ strategies. However,
for the time being, we concentrate on the case where mutation is realized by a simple
diffusion process on the search space Ω corresponding to

M̂ = D∇2. (5)

This automatically implies that mutations do not depend on the landscape U , but in-
stead on some external parameter D > 0, referred to as the diffusion constant or the
temperature of a strategy. In Sections 2.1.1 and 2.2.1, where we discuss simple algo-
rithms which realize the respective strategies, we shall also clarify how the mutation
operator (5) is connected with mutations of individual searchers in an ensemble.

In contrast to M̂ , the selection operator Ŝ has to depend on U , since it governs
the increase or decrease of the local population density in [x, x + dx] during the time
interval [t, t+ dt].

2.1 Boltzmann strategy

In the Boltzmann model, which is the first model we are studying, the selection opera-
tor is given by

ŜB := (∇2U) + (∇U )∇. (6)

For convenience, we apply the compact notation fx := ∇f , fxx := ∇2f , Uxx := ∇2U ,
and ft := ∂tf from now on. Inserting (6) into (3) yields the well-known Smoluchowski
equation (Einstein and von Smoluchowski, 1999; ?; Hänggi et al., 1990)

ft = (Uxf)x +Dfxx, (7)

governing the motion of over-damped Brownian particles in an external potential U .
Since the selection operator (6) only depends on local quantities, we may speak of local
selection here. With the definitions

τ := Dt , u(x) :=
U(x)

D
, p(x, τ) := f(x, t) , (8)
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we can rewrite (7) in the simplified form

pτ = (uxp)x + pxx. (9)

To distinguish u from U , we also refer to the function u as a reduced potential. As one
can easily check by insertion, the stationary solution of (9) is given by the stationary
Boltzmann distribution

pst(x) =
e−u(x)

Zst , (10)

where the stationary normalization constant reads

Zst =

∫

Ω

dx e−u(x) . (11)

Hence, a strategy described by (9) is also called a thermodynamical Boltzmann strategy.
Since pst possesses maxima at the minima of U , it can be considered as an evolutionary
strategy (with local selection).

2.1.1 Numerical algorithms
There exist different numerical algorithms realizing this type of Boltzmann search.
They all have in common that they are based on a finite ensemble of N searchers, and
that in the limit N → ∞, the density of searchers p is described by the Smoluchowski
equation (9). For the sake of simplicity, here we only consider the 1d-case Ω = R, and
discuss a straightforward approach, which is based on discretized Langevin equations

xi(τ + ∆τ) = xi(τ) −∇u
(
xi(τ)

)
∆τ +

√
2∆τ ξi (12)

governing the dynamics of each individual searcher (i = 1, . . . , N ). In (12) the quantity
xi(τ) is the coordinate of the ith searcher at time τ , and the ξi’s are random variables
taken from a Gaussian standard normal distribution. In the physical picture, (12) de-
scribes the stochastic motion of an over-damped Brownian particle in the potential u.
It is a well-known textbook result of statistical physics (Chandrasekhar, 1943; Hänggi
et al., 1990) that an ensemble of infinitely many, independent particles, which move ac-
cording to (12), can also be described by the Smoluchowski equation (9), if additionally
∆τ → 0 is assumed. Note, that (12) combines gradient descent via the ∇U -term and
diffusion in the search space Ω = R by virtue of the stochastic forces ξi. The diffusion
process can also be interpreted as a mutation process.

For further possible implementations of the Boltzmann search, we refer the reader
to (Asselmeyer et al., 1997; Rosé, 1996; Schweitzer et al., 1998).

2.1.2 General time-dependent solution
In this section, we briefly summarize some well-known analytical results concerning
the Boltzmann strategy (Asselmeyer et al., 1997; Asselmeyer and Ebeling, 1996). In
order to construct the general time-dependent solutions of (9), the ansatz

p(x, τ) = %(x, τ) e−u(x)/2 , (13)

is used leading to

%τ = %xx −
(

1

4
u2
x −

1

2
uxx

)
% . (14)
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Mathematically, this equation (14) can be treated like a Schrödinger equation. Thus,
assuming a discrete, non-degenerate spectrum of eigenvalues1, the complete solution
of (9) can be expressed by the series expansion

p(x, τ) = e−u(x)/2
∞∑

n=0

cn φn(x) e−Enτ (15)

where the φn(x) are the L2(Ω)-normalized time-independent eigenfunctions, i.e.,

(φn, φm) :=

∫

Ω

dx φ∗n(x) φm(x) = δnm , (16)

of the Hamilton operator

ĤB = −∇2 + v(x) , v(x) =
1

4
u2
x −

1

2
uxx (17)

with corresponding eigenvalues En. The coefficients cn in (15) are determined by the
initial condition

cn = (φn, %0) =

∫

Ω

dx φ∗n(x) eu(x)/2 p(x, 0), (18)

where %0(x) = %(x, 0) is known via f0(x). For t → ∞ the series expansion (15) must
converge to the stationary solution (10). Thus one finds, that E0 = 0, c0 = 1/

√
Zst and

φ0(x) =
e−u(x)/2

[∫
Ω

dz e−u(z)
]1/2 =

e−u(x)/2

√
Zst

. (19)

As we can immediately see from (15), the eigenvalue difference ∆E := E1 − E0 = E1

dominates the dynamics of the density p(x, τ) for τ � 0. In other words, for landscapes
U with a large eigenvalue difference ∆E � 0 or large eigenvalue E1 � 0, respectively,
the ensemble of the Boltzmann strategy approaches its stationary distribution faster
compared to the case where E1 ≈ 0 (a detailed discussion of this problem with regard
to the problem of overcoming barriers in a landscape U can be found in (Dunkel et al.,
2003)).

We note, that although the solution of the Smoluchowski equation is formally
known by (15), it is only in parts useful with regard to general applications. One rea-
son for this is, that, apart from some very simple examples, for a given potential U the
eigenvalues and eigenfunctions of the Hamilton operator (17) with the effective poten-
tial v are unknown. Hence, following the approach outlined in the introduction we
shall have a closer look at harmonic landscapes. For this particular class of test poten-
tials particular analytical representations of certain symmetric solutions can be found,
which are not only more elegant than the series expansion (15), but also turn out to
be very fruitful for a quantitative comparison with the biologically oriented Darwin
strategy discussed in Section 2.2.

1We note that in principle the more complicated case of a degenerate eigenvalue spectrum can be treated
in a very similar manner.
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2.1.3 Particular solutions for harmonic landscapes
We begin with the simplest case of the one-dimensional harmonic oscillator

U(x) =
1

2
Ax2 , x ∈ R, A > 0, (20)

since n-dimensional convex problems can be reduced to this case, as we shall outline
at the end of this subsection. Defining the reduced frequency ω :=

√
A/D, the corre-

sponding reduced potential reads

u(x) =
ω2

2
x2. (21)

Using the well-known results from the quantum harmonic oscillator, it is straightfor-
ward to write down the complete analytic solution in terms of Hermitian polynomials
and corresponding eigenvalues. Indeed, for the Boltzmann and the Darwin strategy
this has already been done earlier (Asselmeyer et al., 1997; Asselmeyer and Ebeling,
1996). Hence, as a kind of complement, we concentrate on a particular class of solu-
tions of (9), which is based on the ansatz

p(x, τ) =
1

Z(τ)
exp
[
−β(τ) u(x)

]
, β(τ) > 0 ∀ τ ≥ 0 ; (22a)

Z(τ) =

∫

Ω

dx exp
[
−β(τ) u(x)

]
, (22b)

representing a generalized Boltzmann distribution (Mahnig and Mühlenbein, 2001).
Later, in Sections 2.2.3 and 3.1 we will show that this ansatz also represents a solution
for the Darwin strategy and the mixed strategy.

A general property of the distribution (22) is, that the ensemble average value u(τ)
is simply given by

u(τ) = − d

dβ(τ)
lnZ(τ) , (23)

and the corresponding variance by

var[u](τ) := u2(τ) − u(τ)2 =
d2

dβ2
lnZ . (24)

Additionally, we shall study the velocity

vel[u](τ) :=
d

dτ
u(τ), (25)

representing a measure for the change of the expectation value u(τ), i.e., for the speed
of the strategy. Inserting (21) into (22b) yields

Z(t) =

√
2π

ω2β(τ)
, (26)

and one obtains

u(τ) =
1

2 β(τ)
, var[u](τ) =

1

2 β(τ)2
. (27)
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Furthermore, the velocity reads

vel[u](τ) = − 1

2 β(τ)2

d

dτ
β(τ) = −var[u](τ)

d

dτ
β(τ). (28)

We note that thus far the expressions for u(τ), var[u](τ) and vel[u](τ) are general results
that are valid for any distribution of type (22). In order to relate them to the Boltzmann
strategy, we have to determine β(τ) by inserting (22) into Smoluchowski’s equation (9).
This leads to the following ordinary differential equation (ODE) for β(τ)

0 =
dβ

dτ
+ 2ω2(β − 1)β, (29)

with some initial condition β(0) > 0. Although this ODE is nonlinear, it can be solved
exactly and the solution is given by

β(τ) =
β(0) e2ω2τ

1 + β(0) (e2ω2τ − 1)
. (30)

In fact, due to the rather special ansatz (22), the respective solutions can only cover
a relatively small subset of all possible initial conditions. However, the special case
of a uniform initial distribution p(x, 0) = const is asymptotically included in (22), if
β(0) → 0 is considered. The opposite case β(0) → ∞ corresponds to an initial δ-
distribution concentrated in the minimum x = 0. This special case has already been
discussed by Smoluchowski in one of his fundamental papers on Brownian motion
(Einstein and von Smoluchowski, 1999).

(a)

ω =1.0, β(0)=0.01

-3 -2 -1 0 1 2
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0
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0.3
0.4

p(x,τ)

(b)

ω =1.0, β(0)=0.01

-3 -2 -1 0 1 2
x 0

1

2

3

4

τ

0
0.1
0.2
0.3
0.4

p(x,τ)

Figure 1: Spatio-temporal development of the probability density for (a) thermody-
namical Boltzmann strategy and (b) Darwin strategy with identical parameters and
initial conditions. As one can see, for the chosen parameters, the Darwin strategy (b)
approaches the stationary state much ‘faster’ than the Boltzmann strategy, but the sta-
tionary distribution of the latter possesses better properties with regard to the concen-
tration of searchers around the minimum of the landscape (at x = 0).

The stationary distribution of the Boltzmann strategy is readily obtained from (22)
and (30)

pst(x) =

√
ω2

2π
exp

(
−ω

2

2
x2

)
, (31)
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and leads to the stationary values

ust =
1

2
, var[u]st =

1

2
. (32)

We note, that both quantities are independent of ω for the Boltzmann strategy. The
velocity velB [u](τ) of the Boltzmann strategy for the harmonic oscillator is given by

velB [u](τ) =
β(0)− 1

β(0)
ω2 e−2ω2t. (33)

In Fig. 1 we plotted the spatio-temporal development of p(x, τ) for an almost uniform
initial distribution.

(a)

0
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4

5

0 1 2 3 4 5

– u 
(τ

)

τ

β(0)=0.1 ω =0.7
ω =1.0
ω =2.0

(b)

0

1

2

3

4

5

0 1 2 3 4 5

– u 
(τ

)

τ

β(0)=0.1 ω =0.7
ω =1.0
ω =2.0

Figure 2: Ensemble average value u(τ) = 1/(2β(τ)) of the harmonic oscillator for (a)
thermodynamical Boltzmann strategy and (b) generalized Fisher-Eigen (Darwin) strat-
egy. Only for the Boltzmann strategy is the stationary value ust independent from ω.

We will complete this section with a short remark on n-dimensional problems. As
n-dimensional harmonic landscape we consider

U(x1, . . . , xn) =
1

2

n∑

i=1

Ai x
2
i , xi ∈ R, Ai > 0 ∀ i = 1, . . . , n , (34)

where the corresponding reduced potential is now

u(x1, . . . , xn) =
1

2

n∑

i=1

ω2
i x

2
i , ωi :=

√
Ai
D

. (35)

For this case, a generalized Boltzmann distribution can be written in the product form

p(x1, . . . , xn, τ) =

n∏

i=1

pi(xi, τ) (36)

where

pi(x, τ) =
1

Zi(τ)
exp
[
−βi(τ) ui(xi)

]
, βi(τ) > 0 ∀ τ ≥ 0 ; (37a)

ui(xi) =
1

2
ω2
i x

2
i , (37b)

Zi(τ) =

∫

R
dxi exp

[
−βi(τ) ui(xi)

]
=

√
2π

ω2
i βi(τ)

(37c)

8 Evolutionary Computation Volume 12, Number 1



Exact Solutions for Evolutionary Strategies

for i = 1, . . . , n. Furthermore, if each of the (normalized) pi’s satisfies a one-
dimensional Smoluchowski equation, then p satisfies a n-dimensional Smoluchowski
equation. Thus we can construct a solution of the n-dimensional problem from the
above solutions of the one-dimensional problem.

2.2 Darwin strategy

Having discussed the physically motivated Boltzmann strategy with local selection in
the previous sections, we will now study a biologically motivated model of an evo-
lutionary strategy featuring non-local selection. After briefly introducing the corre-
sponding PDE, we will outline the main features of a related numerical algorithm in
2.2.1. Section 2.2.2 reviews some known facts concerning general solutions, and in 2.2.3
we concentrate once again on harmonic test functions.

If instead of (6) we choose a selection operator defined by

ŜD := U(t)− U(x), (38)

where

U(t) =

∫

Ω

dx U(x) f(x, t) (39)

is the time-dependent ensemble average of U , we obtain as dynamical equation for the
related ensemble density f a generalized Fisher-Eigen equation (Fisher, 1930; Eigen,
1971; Ebeling et al., 1990; Feistel and Ebeling, 1989)

ft = [U(t)− U ] f +Dfxx. (40)

The effect of the biologically motivated Fisher-Eigen operator (38) is obvious. It leads
to an increase of the local population, if the value U(x) is lower than the ensemble av-
erage U(t) and to a decrease, otherwise. In contrast to the purely local selection scheme
represented by (6) we have a non-local selection criterion in the case of (38). In other
words, the change of the local population in [x, x+ dx] between t and t+ dt can also be
strongly influenced by those parts of the overall population which are located at far dis-
tances from x. In this sense, models with non-local selection are always based on the
assumption that the corresponding system includes, as a fundamental feature, long-
range information transfer mechanisms, i.e., communication between its constituents,
as for example met in biological systems. In agreement with the terminology of pre-
vious articles (Boseniuk et al., 1987; Asselmeyer and Ebeling, 1996; Schweitzer et al.,
1998), we speak of a Darwin strategy when considering the generalized Fisher-Eigen
equation (40).

2.2.1 Numerical algorithm
As with the Boltzmann strategy, there exist several numerical algorithms realizing a
Fisher-Eigen ensemble described by (40). A typical implementation is described in
(Rosé, 1996; Rosenkranz, 1996). It is based on a finite ensemble withN searchers, evolv-
ing in the search space Ω. In order to explain the main features, it is again sufficient to
confine ourselves to the simple 1d-case Ω = R. As for the Boltzmann strategy, each
searcher is described by a coordinate xi(t); and the mutation (diffusion) of a searcher is
again realized by Langevin dynamics (i = 1, . . . , N )

xi(t+ ∆t) = xi(t) +
√

2D∆t ξi, (41)

Evolutionary Computation Volume 12, Number 1 9
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where ξi is a random variable taken from a Gaussian standard normal distribution. The
main difference compared with the Boltzmann search is given by the selection proce-
dure applied in the Fisher-Eigen ensemble. It works as follows: For each particle i one
picks randomly (with uniform probability) a second particle, say j, from the remaining
N − 1 particles. Then one applies the following selection rules

(i, j)
|w(xi)|−→ (i, i), if w(xi(t)) < 0; (42a)

(i, j)
|w(xi)|−→ (j, j), if w(xi(t)) > 0, (42b)

where the (‘reaction’) rate |w| is determined by

w(xi(t)) = U(xi(t))− U(t), U(t) =
1

N

N∑

i=1

U(xi(t)). (43)

In the case of (42a) this means, for example, that particle j is likely to be replaced by a
copy of particle i, if U(xi(t)) is much smaller than the ensemble averageU(t). Note that
|w| is not a selection probability, but the rate for the ‘two-particle-reactions’. Thus, the
actual numerical realization of this selection procedure includes some further technical
subtleties, which are extensively discussed in (Asselmeyer et al., 1997). There, it was
also shown by means of computer experiments that already relatively small ensembles
of searchers (e.g., N = 10 or N = 100), which evolve according to the above algorithm,
are well described by the Fisher-Eigen equation (40).

Moreover, applications of this Darwinian strategy to simple quantum-mechanical
problems can also be found in (Rosenkranz, 1996).

2.2.2 General time-dependent solution
Before we study the solutions of the Fisher-Eigen equation (40), it is useful to apply the
substitutions from (8), leading to the slightly simplified equation

pτ = [u(τ) − u] p+ pxx. (44)

In contrast to the Smoluchowski equation (9), the generalized Fisher-Eigen equa-
tion (44) is a nonlinear PDE. Nevertheless, it can also be transformed into a PDE of
Schrödinger type (14) by using the ansatz (Feistel and Ebeling, 1989)

p(x, τ) = %(x, τ) exp

[∫ τ

0

u(s) ds

]
. (45)

By insertion one obtains

%τ = %xx − u%. (46)

Compared with (14) the only difference is that instead of the effective potential v in (14),
now the original function u appears in (46). Thus, assuming a discrete, non-degenerate
spectrum of eigenvalues again, the formal solution of (44) is given by

p(x, τ) = exp

[∫ τ

0

u(s) ds

] ∞∑

n=0

cn φn(x) e−Enτ , (47)

where φn is a L2(Ω)-normalized eigenfunction of the Hamilton operator

ĤD = −∇2 + u(x) , (48)
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and En the corresponding eigenvalue. The coefficients

cn =

∫

Ω

dx φ∗n(x) p(x, 0) (49)

are again determined by the initial condition. In order to identify the pre-factor in (47),
one integrates (47) over x and makes use of the fact that p(x, τ) is normalized. Then the
final result is

p(x, τ) =

∑∞
n=0 cn φn(x) e−Enτ∑∞
m=0 cm lm e

−Emτ , (50)

where

lm =

∫

Ω

dx φm(x). (51)

Hence, the solution of the generalized Fisher-Eigen problem (44) can be expressed ex-
clusively in terms of characteristic quantities of the eigenvalue problem (46).

Let us now have a closer look yet at the stationary situation. Assuming a time-
independent solution pst(x) of (44), we find that the stationary value ust of u(τ) is
given by the lowest eigenvalue

ust = E0, (52)

and the stationary solution pst(x) is proportional to φ0(x), i.e.,

pst(x) =
φ0(x)

Zst , (53)

where Zst = l0.
Despite the fact that the time-dependent solution of the generalized Fisher-Eigen

equation (44) is formally known, for complicated functions u only approximate an-
alytical results can be derived (due to the same reasons as for the Boltzmann strat-
egy). Hence, we concentrate in the following again on special solutions obtainable
for harmonic landscapes. These results are compared with those of the Boltzmann
strategy. Furthermore, in the remainder of the paper we confine the discussion to one-
dimensional problems, since the Darwin strategy solutions of n-dimensional problems
can also be constructed as products, in a similar manner as outlined in Section 2.1.3 for
the Boltzmann strategy.

2.2.3 Particular solutions for 1d-harmonic landscapes
It is a very fortunate fact2 that the generalized Boltzmann distribution (22)

p(x, τ) =
1

Z(τ)
exp
[
−β(τ) u(x)

]
, β(τ) > 0 ∀ τ ≥ 0 ;

Z(τ) =

∫

Ω

dx exp
[
−β(τ) u(x)

]
,

can also be used to solve the Fisher-Eigen equation (44). Inserting this ansatz into the
Fisher-Eigen equation (44) leads to the following ODE for β(τ)

0 =
dβ

dτ
− 1 + 2ω2 β2. (55)

2We are grateful to H. Mühlenbein for bringing this to our attention.
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Note that this equation slightly differs from (29), which was obtained when we used
the same ansatz in order to solve the Smoluchowski equation (9). A solution of the
nonlinear ODE (55) is given by

β(τ) =
(
2ω2

)−1/2
tanh

{√
2ω2 τ + tanh−1

[√
2ω2 β(0)

]}
, (56)

where tanh−1 denotes the inverse function of tanh. Again, β(0)→ 0 corresponds to an
initial uniform distribution.

The velocity velD[u](τ) of the Darwin strategy in the harmonic oscillator is given
by

velD[u](τ) =
−ω2

sinh
{√

2ω2 τ + tanh−1
[√

2ω2 β(0)
]}2 . (57)

In Fig. 2 we plotted u(τ) for both strategies, and in Fig. 3 one can see the ratio

R(τ) :=
velB[u](τ)

velD[u](τ)
(58)

between the velocities of the two strategies. The stationary distribution of the Darwin

R > 1
R < 1

R < 1

β(0)=0.1

0
1

2
3

ω
0

1
2

3
4

τ

0

50

100

150

R

Figure 3: In regions with R < 1 the thermodynamical Boltzmann strategy is ’slower’
than the Fisher-Eigen strategy, and for R > 1 the opposite is true. We note, that an
evaluation of the efficiency of the strategies must always be based on both, the velocity
vel[u](τ) and the respective value u(τ).

strategy is obtained from (22) and (56)

pst(x) =

√
ω

2π
√

2
exp

(
− ω√

8
x2

)
, (59)
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and leads us to

ust =
ω√
2
, var[u]st =

ω2

2
. (60)

In contrast to the thermodynamical Boltzmann strategy, ust and also var[u]st are ω-
dependent for the Darwin strategy. Thus, for small values ω < ωc = 1/

√
2, correspond-

ing to weak curvature of u, the non-local Darwin strategy possesses a lower stationary
expectation value ust than the Boltzmann strategy with local selection. On the other
hand, for a given parameter A of the original potential U = Ax2/2 and a sufficiently
small temperature parameter D, i.e., more exactly for

D < 2A, (61)

the stationary distribution (31) of the Boltzmann strategy is always more concentrated
around the minimum than the stationary distribution (59) of the Darwin strategy.

3 Mixed strategy

Although the stationary distributions of the thermodynamical Boltzmann strategy and
biological Darwin strategy are qualitatively similar, i.e., they are both concentrated
around the minima of the landscape U , the quantitative behavior of the two strate-
gies might be significantly different depending on the special structure of a given U .
With regard to applications of the strategies to real optimization problems, one cer-
tainly wants to know:

1. Which strategy converges faster towards its stationary distribution?

2. Which stationary distribution is more concentrated around the minima of U?

In the general case, one should expect that neither one nor the other strategy is prefer-
able. Thus, the idea of combining the two strategies to one so-called mixed strategy is
obvious and some work on this subject was started some years ago (Asselmeyer et al.,
1997; Schweitzer et al., 1998).

Here, we intend to deal with a mixed strategy realized by a one-parametric cou-
pling. The corresponding selection-operator reads

Ŝ := α ŜB + (1− α) ŜD α ∈ [0, 1] , (62)

and leads to the evolutionary equation

ft = α (Uxf)x + (1− α) [U (t)− U ] f +Dfxx, (63)

which, by virtue of (8), is equivalent to

pτ = α (uxp)x + (1− α) [u(τ) − u] p+ pxx. (64)

Using the ansatz

p(x, τ) = %(x, τ) exp

[
(1− α)

∫ τ

0

u(s) ds− α u(x)

2

]
(65)

we get

%τ = %xx −
[
(1− α)u+

α2

4
u2
x −

α

2
uxx

]
%. (66)
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We merely note that, on the analogy of (14) and (46), the last equation can also be
treated like a Schrödinger equation; i.e., in principle it is again possible to write down
the exact solution for the combined strategy in terms of a series expansion based on the
corresponding eigenfunctions and eigenvalues.

3.1 Harmonic oscillator

Considering the one-dimensional harmonic oscillator as before, we may again look for
solutions based on the generalized Boltzmann distribution (22)

p(x, τ) =
1

Z(τ)
exp
[
−β(τ) u(x)

]
, β(τ) > 0 ∀ τ ≥ 0 ;

Z(τ) =

∫

Ω

dx exp
[
−β(τ) u(x)

]
.

Inserting this ansatz now into the mixed equation (64) leads again to a nonlinear ODE
for β(τ)

0 =
dβ

dτ
− 1 + α− 2ω2β(α− β) (68)

generalizing ODE (29) and (55). With the abbreviation

γ :=
√

2α− ω2α2 − 2 (69)

a solution of (68) reads

β(τ) =
1

2

{
α− γ

ω
tan

[
ωγ τ + tan−1

[
ωα− 2ωβ(0)

γ

]]}
, (70)

where β(0) > 0 is the initial condition and tan−1 the inverse function of tan. In the
limit cases α = 1 and α = 0 the solution (70) reduces to (30) and (56), respectively.

In Fig. 4 we plotted the average value u(τ) = [2β(τ)]−1 of the mixed strategy for
different values of ω and α. In diagram 4 (a) one can see that for high values ω > ωc =
1/
√

2 the parameter value α = 1, corresponding to a pure Boltzmann strategy, gives the
best (that is the lowest) stationary value u(τ). In contrast to this, for subcritical values
ω < ωc as shown in Fig. 4 (b), the parameter value α = 0, corresponding to a pure
Fisher-Eigen (Darwinian) search, yields the best result. Since ω was earlier defined as
ω =

√
A/D, where A is the parameter of the potential U and D the temperature of

the strategy, one can apparently change ω by varying the temperature D (note, that in
practice the parameter A must be considered as fixed for a given function U , whereas
D can be varied during the course of the simulation).

4 Conclusions

Even though we confined our discussion to simple harmonic test functions, we can use
the results obtained above, to predict some general properties of the two strategies.
One reason for this is, for example, that in the vicinity of a minimum each sufficiently
smooth landscape U can be approximated by a harmonic potential. Thus, we may con-
clude that compared with the Darwin strategy, the stationary distribution of the Boltz-
mann strategy possesses better properties, if the temperature parameter D is chosen
sufficiently small.
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(a)
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Figure 4: Ensemble average value u(τ) = 1/(2β(τ)) of the harmonic oscillator for the
mixed strategy with different parameter values: (a)ω > ωc, and (b)ω < ωc. The contour
levels not labeled in (b) correspond to those in (a). The initial condition β(0) = 0.1 is the
same as used in Fig. 2. One can see that for small ω the Darwin strategy (corresponding
to α→ 0) is preferable.

We also want to note that from an investigation of the symmetric double-well po-
tential (Dunkel et al., 2003), one can learn that for low temperatures D corresponding
to high barriers of the reduced potentials U/D, searchers following a Darwin strategy
with global selection are more efficient, if a barrier must be surmounted. One should
expect that this property is kept for high-dimensional problems too.

With regard to these results, we would therefore recommend the following combi-
nation of the two strategies:

1. Use the Darwin strategy (with global selection) in the beginning of the search pro-
cess.

2. Switch to the Boltzmann strategy (with small D → 0) at the final stages.

In terms of a combined strategy as introduced in Section 3, this proposal (except from
the variation of D) could also be expressed using a time-dependent coupling constant

α(t) = Θ(t− t′) t′ � 0, (71)

where Θ denotes Heaviside’s step-function

Θ(y) =

{
0, y < 0,

1, y ≥ 0.
(72)

Of course, instead of using the step-function, one could also think of a continuous vari-
ation of α(t), starting at α(0) = 0 and converging to α = 1 for t� 0. Such a variation of
α could then also be directly connected with a continuous decrease of the temperature
D as widely applied in the field of ‘Simulated Annealing’ .

Finally, due to the special shape of the generalized Boltzmann ansatz, the relax-
ation of related solutions to the stationary state could also be interpreted as a self-
consistent change of temperature.
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Rosenkranz, D. (1996). Anwendung evolutionärer Algorithmen auf quantenmechanis-
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