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Kramers problem in evolutionary strategies
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We calculate the escape rates of different dynamical processes for the case of a one-dimensional symmetric
double-well potential. In particular, we compare the escape rates of a Smoluchowski process, i.e., a corre-
sponding overdamped Brownian motion dynamics in a metastable potential landscape, with the escape rates
obtained for a biologically motivated model known as the Fisher-Eigen process. The main difference between
the two models is that the dynamics of the Smoluchowski process is determined by local quantities, whereas
the Fisher-Eigen process is based on a global coupling~nonlocal interaction!. If considered in the context of
numerical optimization algorithms, both processes can be interpreted as archetypes of physically or biologi-
cally inspired evolutionary strategies. In this sense, the results discussed in this work are utile in order to
evaluate the efficiency of such strategies with regard to the problem of surmounting various barriers. We find
that a combination of both scenarios, starting with the Fisher-Eigen strategy, provides a most effective evolu-
tionary strategy.
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I. INTRODUCTION

Since Kramers cornerstone paper on thermal activa
barrier crossing@1# published in 1940, reaction rate theo
has become an established discipline of nonlinear scie
relevant in almost all scientific areas@2–5#. Alongside tradi-
tional problems from chemical reaction kinetics or elect
transport theory, the problem of escape from metasta
states has gained importance also in modern fields of
ence, such as evolutionary computation@6,7#.

Generally, evolutionary numerical methods@8,9# were de-
veloped in order to solve complicated optimization pro
lems, for instance, of the type

U~x!5
!

min or U~x!5
!

max, ~1!

whereU:Rn→R andn@1. A very recent application of evo
lutionary algorithms in the context of materials design w
for example, reported in Ref.@10#. With regard to nonphysi-
cal applications, functionU can also be, e.g., a cost or fitne
function. A physically motivated class of evolutionary alg
rithms, aiming at such problems, is constituted by the
called thermodynamic strategies. These strategies are b
on ensembles of overdamped Brownian particles and, t
can be modeled by Smoluchowski equations@2,11,12#.
Other, rather biologically oriented examples of evolutiona
strategies include genetic algorithms@7# and also ensemble
strategies withglobal coupling@13–17#.

The essential connection between reaction rate theory
evolutionary optimization consists in the fact that in bo
cases the fundamental process is given by the transition
tween two neighboring wells or barriers, respectively. Th
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the methods developed in classical reaction theory~e.g., rate
description, first passage time approach@2–4#! can also be
successfully used in the characterization of evolution
strategies.

In this paper we will conventionally confine ourselves
transitions between minima, since any maximum problem
given in Eq.~1! can be transformed into a minimum proble
by simply exchanging the sign ofU. Moreover, we shall
adopt a physical point of view by considering functionU as
a ‘‘physical potential.’’ This is no restriction, because th
generalization to nonphysical optimization problems
straightforward.

The primary objective of the present work is to compar
thermodynamic strategy featuring local coupling and a b
logical strategy based on global coupling with regard to tr
sitions between metastable states. More precisely, we ca
late the reaction rates of the biologically motivated Fish
Eigen process for the symmetric Kramers potential, see
1, by use of the eigenvalue method, which is well-know
from the classical escape rate theory@2#. As helpful guide in
our calculations of the Fisher-Eigen escape rates, we s

FIG. 1. Symmetric double-well potentialU(x)52ax2/2
1bx4/4 as used in the rate calculations performed below.
©2003 The American Physical Society18-1
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use the well-investigated Smoluchowski process. Since
mentioned above, a Smoluchowski process can be in
preted as a thermodynamic evolutionary strategy@15–17#, it
will be interesting to compare the rates of the two proces
from the point of view of evolutionary optimization. Put di
ferently, we would like to inquire in what situations an alg
rithm with global coupling might be more efficient with re
gard to the problem of surmounting a barrier.

The two prototypes of evolutionary strategies that we p
to investigate are based on the idea that a statistical ense
of pointlike objects or particles, respectively, move in t
potentialU(x). In both cases the ensembles are described
a time-dependent, normalized probability densityp(x,t) pos-
sessing the common properties

p~x,t !>0 ; xPV, tPT5@0,̀ !, ~2a!

E
V

dxp~x,t !51 ; tPT. ~2b!

Thus, for both strategies the total number of ensemble m
bers is conserved; andp(x,t)dx characterizes the fraction o
the ensemble in the interval@x,x1dx# of the search spac
V#Rn at timet. The main difference between the two mo
els is given by the underlying principles~or selection
schemes!, according to which the ensembles evolve on
potential landscapeU(x).

We start with the Smoluchowski dynamics that cor
sponds to overdamped Brownian motion. Without loss
generality, it is sufficient for the subsequent discussion w
we consider the one-dimensional case.

The dynamics of overdamped Brownian particles can
described by the overdamped Langevin equation@2,12#

mg
dx

dt
52“U~x!1j~ t !, ~3!

wherem denotes the mass of the Brownian particles,g is the
viscous friction coefficient, andj(t) is ad-correlated Gauss
ian random force~white noise! characterized by

^j~ t !&50, ^j~ t !j~s!&52 mg kBTd~ t2s!. ~4!

As usual, we have denoted Boltzmann’s constant bykB , and
T is the temperature of the heat bath modeled byj(t). An
equivalent description of the Langevin dynamics~3! is given
by Smoluchowski’s equation@2,11,12#

]p

]t
5

1

mg
“@~“U !p#1

kBT

mg
¹2p. ~5!

The parameter

D[
kBT

mg
~6!

in Eq. ~5! is the diffusion constant, or noise strength, resp
tively. Note that Smoluchowski’s equation is a local equat
in the sense that only local properties ofU(x) and p(x,t)
influence the dynamics of the ensemble.
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In contrast to the Smoluchowski process, the biologica
motivated Fisher-Eigen process@13,14,18# is based on globa
selection, i.e., members of the ensemble are reproduce
destroyed according to their status in the overall ensem
The evolutionary equation of this model is the generaliz
Fisher-Eigen equation, reading

]p

]t
5q@Ū~ t !2U#p1D¹2p, ~7!

where

Ū~ t !5E
V

dxU~x!p~x,t ! ~8!

is the time-dependent ensemble average ofU and q.0 a
coupling parameter. Note that the Fisher-Eigen equation~7!
constitutes a nonlinear partial differential equation~PDE!,
whereas the Smoluchowski equation~5! is linear. The effect
of the selective first term on the right-hand side~rhs! of Eq.
~7! is obvious. It leads to an increase of the local populati
if value U(x) is lower than the ensemble averageŪ(t) and
to a decrease, otherwise. In clear contrast to the local Sm
chowski equation~5!, we have a nonlocal selection criterio
in the case of Eq.~7!; i.e., the change of the local populatio
in @x,x1dx# betweent andt1dt can also be strongly influ-
enced by those parts of the overall population which
located at far distances fromx. In this sense, the models wit
a nonlocal selection scheme are always based on the ass
tion that the corresponding system includes long-ranging
formation transfer mechanisms as a fundamental featur
comes at no surprise that typical examples exhibiting s
global coupling mechanisms are biological systems.

We note that in previous papers@15–17# dealing with
these two evolutionary models, the Smoluchowski proc
was also referred to as a thermodynamic ‘‘Boltzmann st
egy’’ and the Fisher-Eigen process as ‘‘Darwin strateg
Furthermore, we would like to mention that numerical me
ods realizing Eq.~5! are, for example, based on a discretiz
version of the Langevin equation~3!; whereas the selection
scheme of the Fisher-Eigen process can be realized via r
tion mechanisms as known from the description of chem
reactions. For a detailed discussion of this issue, includ
applications to optimization problems~e.g., optimization of
road networks!, we refer the reader to Refs.@16,19–21#.

We next present a brief overview of the structure of th
paper. In the explicit rate calculations performed below,
exclusively concentrate on one-dimensional problems; m
exactly, we are interested in transitions between the well
the symmetric Kramers potential

U~x!52
a

2
x21

b

4
x4, a,b.0, ~9!

which is shown in Fig. 1.
Because, for the Smoluchowski equation, the rate pr

lem for the Kramers potential~9! has been extensively stud
ied in the past@1–4,12#, our primary aim is to derive corre
sponding analytic expressions for the reaction rate of
8-2
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Fisher-Eigen problem by following a similar sequence
steps. In order to clarify the analogies in the derivation,
first outline the well-known calculation of the reaction ra
for the Smoluchowski equation.

The paper is organized as follows. In Sec. II, general
lution techniques are briefly reviewed, which are put to u
later on in Sec. III wherein we evaluate the escape ra
Section IV comprises a summary of the main results a
conclusions. In Appendix C the details on numerical meth
applied to the corresponding PDE are given.

II. GENERAL SOLUTION TECHNIQUES

The Smoluchowski equation~5! was derived in 1915 by
von Smoluchowski@11# in order to describe the motion o
overdamped Brownian particles in an external poten
U(x). Since, this equation has been studied in detail
different types of potential functionsU(x), and we shall
make use of results presented in Refs.@2,12,22# during our
subsequent discussion. Furthermore, for the Fisher-E
process, some results can be found in Ref.@18#.

The essence of this section can be summarized as follo
Both, the Smoluchowski equation as well as the Fisher-Ei
equation can be transformed into a Schro¨dinger equation.

A. Smoluchowski equation

To start, it is useful to introduce dimensionless quantit

x̃[
x

xm
, t̃[

t a

mg
, D̃[

kBT

a xm
2

, p̃~ x̃, t̃ ![p~x,t !xm ,

~10!

where xm51Aa/b is the distance between the maximu
and minimum of the Kramers potential~9!. Dropping, for the
sake of convenience, all tildes we can rewrite the Smo
chowski equation~5! in dimensionless form

]p

]t
5“@~x32x!p#1D¹2p, ~11!

corresponding to the motion in the rescaled~dimensionless!
Kramers potential

U~x!5 1
4 x42 1

2 x2. ~12!

As one can readily check upon an insertion, the station
solution of Eq.~11! is given by the Boltzmann distribution

pst~x!5
e2U(x)/D

Z st
, ~13!

where

Zst5E
V

dxe2U(x)/D ~14!

is the stationary normalization constant. Equation~13! is the
reason why the process described by Eq.~11! is sometimes
also termed the thermodynamical Boltzmann strategy. S
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pst(x) possesses maxima at the minima ofU(x), the Smolu-
chowski process can be considered as an optimization s
egy. In order to construct time-dependent solutions of
~11!, it is convenient to use the ansatz@18#

p~x,t !5%~x,t !expF2
U~x!

2D G . ~15!

Inserting this very ansatz into Eq.~11! leads to

]%

]t
5D¹2%2F 1

4D
~“U !22

1

2
¹2UG%. ~16!

Mathematically, Eq.~16! can be treated as a Schro¨dinger
equation@23–25#. Thus, assuming a discrete spectrum of
genvalues, the complete solution of Eq.~11! can be ex-
pressed in terms of the series expansion

p~x,t !5expF2
U~x!

2D G (
n50

`

cnfn~x!e2lnt, ~17!

whereln are the eigenvalues of the Hamilton operator

ĤS52D¹21v~x!, v~x!5
1

4D
~“U !22

1

2
¹2U

~18!

with corresponding time-independent eigenfunctionsfn(x).
AssumingL2(V)-normalized eigenfunctionsfn(x), i.e.,

~fn ,fm![E
V

dxfn* ~x!fm~x!5dnm , ~19!

the coefficientscn in Eq. ~17! are determined by the initia
condition

cn5~fn ,%0!5E
V

dxfn* ~x!expFU~x!

2D Gp~x,0!, ~20!

where%0(x)5%(x,0). Furthermore, fort→`, the series ex-
pansion~17! must converge to the stationary solution~13!.
Thus one finds thatl050, c051/AZ st, and

f0~x!5
e2U(x)/2D

F E
V

dz e2U(z)G1/25
e2U(x)/2D

AZ st
. ~21!

Hence, as we can immediately see from Eq.~17!, for t@0
the eigenvaluel1 dominates the dynamics of densityp(x,t).

We note that although the solution of the Smoluchow
equation is formally known by Eq.~17!, it is of use, only in
parts, in more complicated applications. This is due to
fact that apart from some very simple potentialsU, the ei-
genvalues and eigenfunctions of the Hamilton operator~18!
with the effective potentialv are unknown.

For the rescaled potential~12! the effective potentialv(x)
is given by
8-3
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v~x!5
1

4D
~x32x!22

1

2
~3x221!. ~22!

We shall need it later, since, as briefly reviewed in Sec.
the escape rate is closely related to the first nonvanish
eigenvaluel1. In Fig. 2 we have depicted bothu(x) and
v(x) for different noise strengthsD. Given the Taylor expan-
sion

v~x!5
1

2
1

1

4D
~126 D !x21O~x4! ~23!

at x50, we deduce thatv(x), as given in Eq.~22!, is a
double-well potential only as long as

D> 1
6 . ~24!

Otherwise, v(x) possesses three minima, see Fig. 2~b!.
Moreover, the supersymmetric~fermionic! partner potential
@22,26,27#

w~x![
1

4D
~“U !21

1

2
¹2U5

1

4D
~x32x!21

1

2
~3x221!

~25!

is monostable as long asD>1/18. In order to obtain a
simple estimate of the eigenvaluel1 in the strong noise limit
D@0, we also need the frequency

FIG. 2. Double-well potentialU(x)5x4/42x2/2, and the corre-
sponding effective potentialv(x) and supersymmetric partner po
tentialw(x) of v(x) as used in the calculation of the eigenvaluel1.
~a! For strong noise strengthD>1/6, the effective potentialv(x)
exhibits also a double-well potential structure and forD>1/18 the
fermionic partner potentialw(x) becomes monostable.~b! In the
case ofD,1/6, the shape of the effective potentialv(x) is essen-
tially different from the shape ofU(x).
06111
,
g

n5A31
1

2D
~26!

of w at the bottom of the well atx50.

B. Fisher-Eigen process

Before we discuss solutions of the Fisher-Eigen equa
~7!

]p

]t
5q@Ū~ t !2U#p1D¹2p,

it is advantageous to introduce dimensionless quantities

x̃[
x

xm
, t̃[t q a xm

2 , D̃[
D

q a xm
4

,

p̃~ x̃, t̃ ![p~x,t !xm . ~27!

By virtue of these transformations the form of the resca
~dimensionless! Kramers potential is given by Eq.~12!, i.e.,
Ũ( x̃)5 x̃4/42 x̃2/2. For the sake of convenience, we dro
again all tildes from now on and obtain the following dime
sionless version of the Fisher-Eigen equation~7!:

]p

]t
5@Ū~ t !2U#p1D¹2p. ~28!

We have already mentioned that in contrast to the Smo
chowski equation~11!, the generalized Fisher-Eigen equatio
~28! is a nonlinear PDE. Nevertheless, it can also be tra
formed into a PDE of Schro¨dinger type~16! by using the
ansatz@18#

p~x,t !5%~x,t !expF E
0

t

Ū~s!dsG , ~29!

where in contrast to the probability densityp(x,t) the auxil-
iary function %(x,t) stays not normalized. Inserting ansa
~29! into Eq. ~28!, one finds the result

]%

]t
5D¹2%2U%. ~30!

Compared with Eq.~16! the essential difference consists
the fact that instead of the effective potentialv(x) in Eq.
~16!, the original potentialU(x) appears in Eq.~30!. Thus,
assuming a discrete spectrum of eigenvalues again, the
mal solution of Eq.~28! reads

p~x,t !5expF E
0

t

Ū~s!dsG (
n50

`

cnfn~x!e2lnt, ~31!

where fn is a L2(V)-normalized eigenfunction of the
Hamilton operator

ĤFE52D¹21U~x! ~32!
8-4
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andln is the corresponding eigenvalue. The coefficients

cn5E
V

dxfn* ~x!p~x,0! ~33!

are again determined by the initial condition. In order
identify the prefactor in Eq.~31!, we can use the fact tha
p(x,t) stays normalized at all timest. More precisely, we can
integrate Eq.~31! over x, yielding

15expF E
0

t

Ū~s!dsG (
n50

`

cnl ne2lnt, ~34!

wherein we defined the coefficients

l m5E
V

dxfm~x!. ~35!

Therefore, the final result for the probability density~31! can
be written as

p~x,t !5

(
n50

`

cnfn~x!e2lnt

(
m50

`

cm l m e2lmt

. ~36!

Put differently, the solution of the generalized Fisher-Eig
problem ~28! can be expressed in terms of characteris
quantities of the eigenvalue problem~30!. Moreover, by vir-
tue of ~34! we also immediately obtain

Ū~ t !52
d

dt
ln(

n50

`

cnl ne2lnt5

(
n50

`

cnl nlne2lnt

(
m50

`

cm l m e2lmt

, ~37!

and the additional condition

(
n50

`

cn l n51. ~38!

The latter result follows from Eq.~34! by settingt50. Also
note that in the case of the symmetric double-well poten
considered below,l n50 holds if n5odd. This is due to the
symmetry properties of the eigenfunctionsfn of ĤFE.

Let us now still have a closer look at the stationary si
ation. Assuming a time-independent solutionpst(x) of Eq.
~28! for t→`, we find from the rhs of Eq.~37! that the
stationary valueŪst of Ū(t) is given by the lowest eigen
value

Ūst5l0 , ~39!

and, furthermore, from Eq.~36! that the stationary solution
pst(x) is proportional tof0(x), i.e.,
06111
n
c

l

-

pst~x!5
f0~x!

Zst
, ~40!

whereZst5 l 0.
On the basis of the exact solutions~17! and ~36!, we are

now able to calculate approximate analytic expressions
the escape rates of both processes, which will be the sub
of the following section.

III. CROSSING OVER A BARRIER

In this section we study the following problem. We co
sider Kramers symmetric double-well potential~9!, and all
members of the ensemble initially situated at the bottom
the left well, i.e., atx521. Using, as in the previous sec
tions, dimensionless quantities, this special initial condit
corresponds to

p~x,0!5d~x11!. ~41!

The quantity we intend to estimate analytically is the esc
ratek characterizing the decline of the population in the l
well or the increase of the population in the right well. Th
population in the left well, denoted byp2 , and that in the
right well, denoted byp1 , are given by

p2~ t ![E
2`

0

dxp~x,t !, p1~ t ![E
0

1`

dxp~x,t !,

~42!

and from Eq.~41! follow the initial conditionsp2(0)51 and
p1(0)50. Of course, for Smoluchowski and Fisher-Eig
processes, the dynamics ofp6(t) is governed by the respec
tive evolutionary equation forp(x,t) and can be evaluate
numerically. However, in order to derive also analytical e
timates, it is appropriate to approximate the actual proces
the following set of~two-state! master equations:

ṗ252k p21k p1 ~43a!

ṗ15k p22k p1 , ~43b!

whereṗ65dp6 /dt. The quantityk, appearing on the rhs o
Eqs. ~43! is the escape rate, respectively. Note, that o
because of the symmetric test potential chosen here, the
for the left and right wells are identical. As one can eas
check, the solution of Eq.~43! reads

p6~ t !5p6
` 1@p6~0!2p6

` #exp~22k t!, ~44!

wherep6
` represents the respective stationary value. For

symmetric double-well potentialp6
` 51/2, and we can re-

write Eq. ~44! in the simplified form

p6~ t !5 1
2 7 1

2 exp~22k t!. ~45!

Apparently, the escape ratek can be considered as a measu
for the ability of a certain strategy to surmount a barrier, i.
we assess that strategyX is ‘‘more mobile’’ than strategyY, if
8-5
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kX.kY ~46!

is true.

A. Rates for the Smoluchowski process

In principle, for the Smoluchowski process, several exc
lent analytical estimates for the escape ratekS are known,
which are based on different approximation techniques~e.g.,
eigenvalue method, flux over population method! @2#. Since
the eigenvalue method turns out to be successfully applic
to the Smoluchowski as well as to the Fisher-Eigen strate
we shall briefly outline this method by means of the Smo
chowski process in the following, where the case of stro
noise is discussed. Later on, in Sec. III B, we also give
well-known rate result for the opposite case of weak no
which is based on the stationary flux method@2#.

(a) Strong noise (eigenvalue method). Using the solution
~17! of the Smoluchowski equation~11! we can write

p2~ t !5
1

2
1E

2`

0

dxe2U(x)/2D (
n51

`

cn fn~x! e2lnt. ~47!

Thus, fort@0 we find asymptotically

p2~ t !>
1

2
1exp~2l1 t !E

2`

0

dxe2U(x)/2Dc1 f1~x!,

~48!

where according to Eqs.~20! and ~41!

c15E
2`

`

dxf1* ~x!eU(x)/2D p~x,0!5f1* ~21!eU(21)/2D.

~49!

For the special initial condition~41!, we can estimate

E
2`

0

dxc1 f1~x!e2U(x)/2D'E
2`

0

dxc0 f0~x!e2U(x)/2D5
1

2
,

~50!

becausef0(x)'f1(x) holds in the vicinity ofx521 @we
assumed additionally a normalization such thatf1(x).0 for
x,0]. Upon inserting this estimate into Eq.~48! and com-
paring the result with Eq.~45!, we can expect that for the
Smoluchowski process the rate is approximately given b

kS5
l1

2
, ~51!

where l1 is the lowest nonvanishing eigenvalue of t
Hamilton operator~18!. Since, as mentioned earlier,l050
holds, we could also writekS5Dl/2, whereDl[l12l0 is
the difference between the lowest two eigenvalues.

Unfortunately, it is generally impossible to determinel1
exactly for the effective potentialv(x) from Eq. ~22!, and
one has to employ approximation techniques, e.g., WKB
supersymmetric~SUSY! methods as known from quantum
mechanics and widely applied in statistical phys
06111
l-

le
y,
-
g
a
,

r

@2,22,26–30#. Using SUSY methods, one finds by quadra
approximation for relatively strong noise

D@1/18, ~52!

the rate

ksusy
S 52

1

4
1

A2D

4
n52

1

4
1

1

4
A6D11, ~53!

where n was defined in Eq.~26! as the frequency of the
fermionic partner potentialw(x) at x50. In Fig. 3~a! one
can contemplate that for strong noiseD>1 the analytical
approximation, given byksusy

S inserted into Eq.~45!, yields
good agreement with numerical results based on simulat
of the PDE~11!. Details regarding the numerical simulatio
of the PDE are presented in Appendix C.

(b) Moderate to weak noise strength. As already men-
tioned, there exist many results obtained by working direc
with the Smoluchowski equation@2#. Here we shall apply
some of them to our rescaled dimensionless stochastic
namics. A general result based on the stationary flux met
is given by the following integral formula for the inverse ra
@2#:

~kS!215
1

DE
2`

0

dy expF2
U~y!

D G E
y

`

dzexpFU~z!

D G .
~54!

FIG. 3. Semilogarithmic plots of the decrease of the populat
p2(t) in the left well ~reduced by its stationary valuep2

` 50.5) for
the Smoluchowski process.~a! Strong and moderate noise: For th
analytical curves we used the rate expressionksusy

S from Eq. ~53!,
and the ratekav

S from Eq. ~57!, respectively.~b! Weak noise: Both
analytical graphs are based on the ratekS as given in Eq.~56!.
8-6
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We remark that this result may as well be derived by a m
first time passage time approach@2#. In the case of weak
noise

DU

D
5

1

4D
@1, ~55!

one can evaluate Eq.~54! by a Gaussian steepest-desce
approximation, yielding the dimensionless estimate@2#

kS5
v0vb

2p
expS 2

DU

D D F12
3

2
D1O~D2!G , ~56!

whereDU51/4 is the depth of the rescaled double-well p
tential,v05A2 is the dimensionless angular frequency at
bottom of the minimum atx521, andvb51 is the dimen-
sionless angular frequency at the top of the barrier atx50.
The prefactor before the brackets corresponds to the w
known Kramers result@1,2# valid for strong damping~that is,
very weak noiseD→0). In Fig. 3~b! one can see that th
corresponding analytical approximation, given bykS inserted
into Eq. ~45!, is in good agreement with the numerical
calculated relaxation dynamics as long asD<0.1 holds,
which is in accordance with weak noise.

In the intermediate region of moderate noise streng
0.1<D<1.0, the average escape rate

kav
S [

1

2 Fksusy
S 1

1

A2 p
expS 2

DU

D D G ~57!

yields satisfactory analytical estimates for the simulated
cay curves, see Fig. 3~a!.

B. Rates for the Fisher-Eigen process

Having discussed the rate problem for the Smoluchow
process, we next address the Fisher-Eigen process. B
we can actually calculate a ratekFE for the Fisher-Eigen
model, it is again necessary to take a closer look at
asymptotic behavior of this strategy. Fort@0, the lowest
lying eigenvalues dominate the numerator and the deno
nator of the time-dependent solution~36!. If we neglect
termsn,m>2 in Eq. ~36! and also consider the well-know
fact that for symmetric potentials the first eigenfunction
asymmetric,f1(x)52f1(2x), which again leads tol 1
50, we attain the asymptotic solution

p~x,t !>
f0~x!

l 0
1

c1 f1~x!

c0 l 0
e2(l12l0)t. ~58!

For the special initial condition~41! and sufficiently weak
noise, we can approximatec1'c05f0(21) and

E
2`

0

dxf0~x!'E
2`

0

dxf1~x!5
l 0

2
. ~59!

Thus, we find

kFE5 1
2 ~l12l0!5 1

2 Dl ~60!
06111
n

t

-
e

ll-

,

-

ki
ore

e

i-

for the escape rate for the Fisher-Eigen process. Before
proceed, we would like to emphasize again that, in cont
to the Smoluchowski ratekS, the eigenvalues appearing i
Eq. ~60! are those of the Hamilton operatorĤFE containing
the original potentialU(x).

Of course, the problem of calculating the eigenvalue d
ferenceDl for the double-well potentialU is a key problem
in quantum mechanics, see Refs.@26,29–31#, and also refer-
ences therein. For small dimensionless noise parameters

D<1/16, ~61!

a WKB approximation~see Appendix A for details! yields
the rate

kwkb
FE 5

D1/2

p
expS 2

2 F

D1/2D , ~62!

where

F5
1

3
z2FES z1

2

z2
2D 22D1/4KS z1

2

z2
2D G ~63!

and

z15A122D1/4, z25A112D1/4. ~64!

FIG. 4. Semilogarithmic plots of the decay curves of the pop
lation p2(t) in the left well ~reduced by the stationary valuep2

`

50.5) for the Fisher-Eigen process.~a! Strong noise: For the ana
lytical curves the ratekFE from Eq.~65! was used.~b! Moderate and
weak noise: Here the analytical graphs are based onkav

FE as given in
Eq. ~66!, andkwkb

FE as given in Eq.~62!. Note that compared with the
Smoluchowski process, see Fig. 3~b!, the Fisher-Eigen process i
‘‘more mobile’’ at moderate to weak noise corresponding to para
eter valuesD<1.0.
8-7
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FIG. 5. Comparison of the nu-
merically calculated ‘‘stationary’’
solutions~taken at timet as given
in the diagrams! for the particle
density. It becomes obvious tha
the stationary solutions of the
Smoluchowski process, repre
sented in diagrams~a!–~c!, pos-
sess much better properties wit
regard to ensemble minima searc
than those of the Fisher-Eige
process given in~d!–~f!.
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Furthermore,K andE denote the complete elliptic integra
of the first and the second kind, respectively, as defined
Eqs. ~A9! and ~A10!. In the limit of very weak noiseD
→0, one findsF→1/3. Compared with the Smoluchows
process the essential observation is that at small noise pa
etersD!1 the Fisher-Eigen process is more mobile than
Smoluchowski process. Put differently, in the weak no
regime the global selection criterion turns out to be mu
more efficient for the process of overcoming a barrier.

In the opposite case of strong noise strength, we ob
from the standard time-independent perturbation theory~see
Appendix B!

kFE5S 3D2

4 D 1/3

2S D

48D
1/3

. ~65!

This approximation can principally be valid only as long
D.1/36, because otherwise the rate would assume neg
values. As shown in Fig. 4~a! this estimate for rate~65! can
successfully be applied to describe the relaxation dynam
of the populationp2(t) if D>0.1.

As before, in the case of the Smoluchowski process, th
exists an intermediate region, now corresponding to 1
<D<0.1, where the average rate
06111
in

m-
e
e
h

in
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re
6

kav
FE[ 1

2 ~kFE1kwkb
FE ! ~66!

yields a satisfactory analytical estimate of the numerical
sults, see Fig. 4~b!.

C. Comparison of the stationary solutions

With regard to evolutionary optimization, it is not onl
important which of the two strategies approaches its stat
ary distribution most rapidly. One certainly also needs
know about the quality of the stationary distributions. In t
context of a computational optima search those strategies
to be favored where, in the stationary state, the majority
the members of the search ensemble is located near the
timum.

In Fig. 5 we have depicted the stationary probability de
sities for the Smoluchowski and the Fisher-Eigen proces
based on simulations with identical parameters. As one
clearly deduce from the results, the stationary distribution
the Smoluchowski process possesses advantageous pr
ties as compared to the corresponding Fisher-Eigen proc
In particular, the stationary distribution of the latter proce
possesses only a single maximum at the barrierx50, if the
dimensionless noise strength becomes sufficiently large.

This observation means that we face a situation typica
referred to as ‘‘frustrated problem.’’ On the one hand, t
Fisher-Eigen process is more mobile than the Smoluchow
8-8
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scenario, i.e., it is more efficient if a barrier of the landsca
must be crossed. In contrast, the stationary probability d
sity is lesser peaked at the minima of the potential. A qu
titative explanation for this effect based on the special c
with harmonic potentials can be found in Ref.@32#. There it
was shown that the two processes exhibit different functio
dependencies between the angular frequency at the minim
and the variance of the stationary distribution.

IV. CONCLUSIONS

In this work we have calculated and compared esc
rates of the Smoluchowski and Fisher-Eigen processes
applying the eigenvalue method. While the escape prob
is well investigated in the Smoluchowski case, the res
obtained for the Fisher-Eigen strategy are not so.

Even though we confined our quantitative discussion
the one-dimensional symmetric Kramers potential, the
sults seemingly indicate some rather general and ro
properties of the two strategies. As we have discovered f
our rate calculations in Sec. III, for weak~dimensionless!
noise strengthD, the Fisher-Eigen process with global sele
tion is much more efficient if a barrier has to be overcom
We are confident that this property remains true also
high-dimensional problems. The main reason for this con
ture is that with regard to high-dimensional search spa
the one-dimensional model represents a good approxima
for the ensemble dynamics in the vicinity of the shortest l
between two neighboring optima.

Moreover, in a different investigation of the two mode
for a simple harmonic potential, we could establish@32# that
for sufficiently low noise parameters the stationary solut
of the Smoluchowski process possesses better propertie
garding the local concentration of the stationary distribut
around a minimum. Thus, from the evolutionary optimiz
tion point of view we herewith do recommend the followin
combination of the two strategies:~1! To start with, use the
Fisher-Eigen process in the beginning of the search proc
~2! then switch to a local Smoluchowski process~with very
small D) at the final stages.

Finally, we would like to comment on the approach ch
sen in this paper. Obviously, in the general case itis not
possibleto transform the Schro¨dinger equation into a Smolu
chowski equation, albeit one can always transform a Sm
chowski equation into an equation of Schro¨dinger type~the
latter result was first discovered by Favella@24#!. This non-
equivalence of the Smoluchowski and Schro¨dinger equations
is also evident in the case of the Fisher-Eigen process w
the eigenvalue method is thus far the only technique allo
ing for an estimate of the crossing dynamics. From this po
of view, the Smoluchowski process is technically simp
and we actually can choose from several different techniq
@2#. In particular, there also exists a great variety of suita
methods such as the MFPT-approach, the stationary
method, etc., to name but a few, which generally yield su
rior results over the WKB approximation that is rooted
quantum mechanics. However, when we are intereste
evolutionary strategies of the Fisher-Eigen type, we exc
sively depend on such an eigenvalue analysis.
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APPENDIX A: WKB APPROXIMATION
FOR THE FISHER-EIGEN PROCESS

The eigenvalue problem corresponding to Eq.~30! reads

lf52Dfxx1Uf, U52 1
2 x21 1

4 x4. ~A1!

In the WKB approximation the eigenvalue differenceDl
5l12l0 is given by

Dl5
A2D1/2v0

p
expF2

2

D1/2E0

z1
dxAU~x!2«0G , ~A2!

where

«052 1
4 1D1/2 ~A3!

is the ground-state eigenvalue obtained for the parabolic
proximation ofU(x) at the minimum atx51, andv05A2
is the corresponding dimensionless angular frequency.
ther, the upper boundaryz1 of the integral corresponds to th
smallest, positive solution of the problem

G~z![AU~z!2«050. ~A4!

The positive solutions of Eq.~A4! are

z15A122D1/4, z25A112D1/4. ~A5!

From z1 we obtain the condition

D<1/16, ~A6!

i.e., the WKB approximation is valid for weak nois
strength. The exact value of integral

F[E
0

z1
dxAU~x!2«0 ~A7!

in Eq. ~A2! is given by

F5
1

3
z2FES z1

2

z2
2D 22D1/4KS z1

2

z2
2D G , ~A8!

where K denotes the complete elliptic integral of the fir
kind

K~m![E
0

p/2

~12m sin2u!21/2du, ~A9!

and E denotes the complete elliptic integral of the seco
kind

E~m![E
0

p/2

~12m sin2u!1/2du. ~A10!

Hence, the final result reads
8-9
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Dl5
2D1/2

p
expS 2

2F

D1/2D . ~A11!

We mention that we checked the correctness of Eq.~A8!
numerically, too. Moreover, forD→0 one findsF→1/3.

APPENDIX B: FISHER-EIGEN PROCESS AND
MODERATE TO STRONG NOISE

We intend to calculate the rate for the Fisher-Eigen p
cess at moderate to strong noise. To this end, we use Sc¨-
dinger’s time-independent perturbation theory. In the fi
step we split operatorĥ[ĤFE/D,

ĥ5ĥ01aĥ1, ~B1!

into an anharmonic oscillator partĥ0 and a perturbation~the
barrier! ĥ1, that is,

ĥ052
d2

dx2
1

x4

4D
, ĥ152

x2

2D
. ~B2!

By settinga51 we obtain the original problem. In order t
calculate an approximationm0

(0) for the ground-state eigen
valuem0 of the anharmonic oscillator~corresponding to the
situation, when there is no barrier,a50), we apply the Ritz
method using the Gaussian test function

cc~x!5S 2c

p D 1/4

exp~2cx2!, ~B3!

where c denotes the variation parameter. By applying t
Ritz condition to

^h0&[E
2`

`

dxcc* ĥ0cc5c1
3

64c2D
, ~B4!

we get

c5
1

2 S 3

4D D 1/3

⇒ m0
(0)5

3

4 S 3

4D D 1/3

. ~B5!

Using the test function

xc~x!52S 2c3

p D 1/4

x exp~2cx2! ~B6!

orthogonal tocc , we find

m1
(0)5

11

4 S 3

4D D 1/3

⇒ Dm (0)[m1
(0)2m0

(0)5S 6

D D 1/3

.

~B7!

The result for the difference of eigenvalues in Eq.~B7! can
be used to calculate a first estimate for the Fisher-Eigen
cape rate,kFE'Dm (0)D/2. In the remaining part, we calcu
late the corrections corresponding toO(1/D) by following
the standard procedure of quantum mechanical tim
independent perturbation theory. From
06111
-
ro
t

e

s-

-

m0
(1)5E

2`

`

dxcc* ĥ1cc52
1

2 S 1

6D2D 1/3

, ~B8a!

m1
(1)5E

2`

`

dxxc* ĥ1xc52
1

2 S 9

2D2D 1/3

, ~B8b!

we get~for a51)

Dm'Dm (0)1a~m1
(1)2m0

(1)!5S 6

D D 1/3

2S 1

6D2D 1/3

.

~B9!

We remark that this approximative result can, in princip
only be valid as long asD.1/36, because otherwise the ra
kFE5DmD/2 would become negative.

APPENDIX C: NUMERICAL METHODS

In our numerical simulations of the PDE we used a sim
algorithm characterized as follows.

~1! Discretization. Spatial derivatives are realized by sym
metric quotients, that is,]p(x,t)/]x5@p(x1dx,t)2p(x
2dx,t)#/(2dx) and ]2p(x,t)/]x25@p(x1dx,t)22p(x,t)
1p(x2dx,t)#/dx2. Partial time derivatives are realized b
forward quotients,]p(x,t)/]t5@p(x,t1dt)2p(x,t)#/dt. In
all simulations we used a spatial intervalV5@25,5# with
301 equidistant spatial grid points~with distancedx). The
time stepdt was always chosen asdt50.05dx2. Further-
more, we fixed the boundary valuesp(65,t)[0.

FIG. 6. Comparison of the exact time-independent solut
pst(x)5exp@2U(x)/D#/Z st of the Smoluchowski equation with nu
merically obtained stationary solutions for different values of t
noise parameterD. The stationary normalization constantsZ st were
numerically calculated asZ st53.905 in~a! andZ st515.170 in~b!.
8-10
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~2! Non-negativity. If the probability density become
negative at some grid point (x,t) during the simulation, we
setp(x,t)50.

~3! Renormalization. After each integration step the prob
ability density at each grid point is multiplied by a consta
such that*Vdxp(x,t)51 holds.

There exist more refined numerical methods for th
types of problems, for our purpose, however, the above
gorithm proved to be completely satisfactory. For examp
we plotted in Fig. 6 both the exactly known stationary so
tions of the Smoluchowski equation and the numerically
tained solution. As can be deduced, there occurs an exce
l

v.

i-
,

of

s-
on

er

06111
t

e
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nt

agreement between the numerics and the approximation
We also note, that we used harmonic test functio

U(x)5v2x2/2 in order to check the temporal behavior of th
algorithm. This is possible, since for both the Smoluchow
and the Fisher-Eigen equation one can find explicit tim
dependent solutions of the form

p~x,t !5Z~ t !21exp@2b~ t !U~x!# ~C1!

corresponding to the special case of Gaussian initial co
tions ~see Ref.@32# for further details!.
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