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Kramers problem in evolutionary strategies
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We calculate the escape rates of different dynamical processes for the case of a one-dimensional symmetric
double-well potential. In particular, we compare the escape rates of a Smoluchowski process, i.e., a corre-
sponding overdamped Brownian motion dynamics in a metastable potential landscape, with the escape rates
obtained for a biologically motivated model known as the Fisher-Eigen process. The main difference between
the two models is that the dynamics of the Smoluchowski process is determined by local quantities, whereas
the Fisher-Eigen process is based on a global couptinglocal interaction If considered in the context of
numerical optimization algorithms, both processes can be interpreted as archetypes of physically or biologi-
cally inspired evolutionary strategies. In this sense, the results discussed in this work are utile in order to
evaluate the efficiency of such strategies with regard to the problem of surmounting various barriers. We find
that a combination of both scenarios, starting with the Fisher-Eigen strategy, provides a most effective evolu-
tionary strategy.
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[. INTRODUCTION the methods developed in classical reaction théery., rate
description, first passage time approdehk-4|) can also be
Since Kramers cornerstone paper on thermal activateduccessfully used in the characterization of evolutionary
barrier crossind1] published in 1940, reaction rate theory strategies.
has become an established discipline of nonlinear science, In this paper we will conventionally confine ourselves to
relevant in almost all scientific aref®-5|. Alongside tradi- transitions between minima, since any maximum problem as
tional problems from chemical reaction kinetics or electricgiven in Eqg.(1) can be transformed into a minimum problem
transport theory, the problem of escape from metastablby simply exchanging the sign dfl. Moreover, we shall
states has gained importance also in modern fields of scadopt a physical point of view by considering functionas
ence, such as evolutionary computat[@7]. a “physical potential.” This is no restriction, because the
Generally, evolutionary numerical methdd@s9] were de-  generalization to nonphysical optimization problems is
veloped in order to solve complicated optimization prob-straightforward.
lems, for instance, of the type The primary objective of the present work is to compare a
thermodynamic strategy featuring local coupling and a bio-
! ! logical strategy based on global coupling with regard to tran-
Ux)=min  or U(x)=max, (1) sitions between metastable states. More precisely, we calcu-
late the reaction rates of the biologically motivated Fisher-
whereU:R"—R andn>1. A very recent application of evo- Eigen process for the symmetric Kramers potential, see Fig.
lutionary algorithms in the context of materials design was,1, by use of the eigenvalue method, which is well-known
for example, reported in Ref10]. With regard to nonphysi- from the classical escape rate thef2y. As helpful guide in
cal applications, functiot) can also be, e.g., a cost or fitness our calculations of the Fisher-Eigen escape rates, we shall
function. A physically motivated class of evolutionary algo-
rithms, aiming at such problems, is constituted by the so-
called thermodynamic strategies. These strategies are based 04 |
on ensembles of overdamped Brownian particles and, thus,
can be modeled by Smoluchowski equatiofx11,13.
Other, rather biologically oriented examples of evolutionary
strategies include genetic algorithrfig and also ensemble

0
strategies wittglobal coupling[13-17.
The essential connection between reaction rate theory and 02}
evolutionary optimization consists in the fact that in both

cases the fundamental process is given by the transition be-
tween two neighboring wells or barriers, respectively. Thus,
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FIG. 1. Symmetric double-well potentiald(x)=—ax?/2
*Electronic address: dunkel@physik.hu-berlin.de +bx*4 as used in the rate calculations performed below.
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use the well-investigated Smoluchowski process. Since, as In contrast to the Smoluchowski process, the biologically
mentioned above, a Smoluchowski process can be intemotivated Fisher-Eigen proceisk3,14,1§ is based on global
preted as a thermodynamic evolutionary stratelf17, it  selection, i.e., members of the ensemble are reproduced or
will be interesting to compare the rates of the two processedestroyed according to their status in the overall ensemble.
from the point of view of evolutionary optimization. Put dif- The evolutionary equation of this model is the generalized
ferently, we would like to inquire in what situations an algo- Fisher-Eigen equation, reading

rithm with global coupling might be more efficient with re-

gard to the problem of surmounting a barrier. ap —
The two prototypes of evolutionary strategies that we plan ot q[U(H)~U]p+DV?p, @)
to investigate are based on the idea that a statistical ensemble

of pointlike objects or particles, respectively, move in thewhere
potentialU(x). In both cases the ensembles are described by
atim_e-dependent, normalize(_j probability dengify,t) pos- U(t)zf dxU(x)p(x.t) ®)
sessing the common properties Q

p(x,t)=0 V xeQ, teT=[0x), (28 s the time-dependent ensemble averageJoind q>0 a
coupling parameter. Note that the Fisher-Eigen equdf@n

_ constitutes a nonlinear partial differential equatid?DE),
fngp(X’t) L Vitel (2b) whereas the Smoluchowski equati@@) is linear. The effect

of the selective first term on the right-hand sides) of Eq.

Thus, for both strategies the total number of ensemble memZ) is obvious. It leads to an increase of the local population,
bers is conserved; am{x,t)dx characterizes the fraction of it yqlue U(x) is lower than the ensemble averalaet) and
the ensemble in the intervek,x+dx] of the search space g 3 decrease, otherwise. In clear contrast to the local Smolu-
QCR" at timet. The main difference between the two mod- chowski equatior(5), we have a nonlocal selection criterion
els is given by the underlying principlegor selection in the case of Eq(7); i.e., the change of the local population
schem_e)s according to which the ensembles evolve on thep, [x,x+dx] betweert andt+dt can also be strongly influ-
potential landscap@l(x). . . enced by those parts of the overall population which are

We start with the Smoluchowski dynamics that corre-|ocated at far distances from In this sense, the models with
sponds to overdamped Brownian motion. Without loss ofy nonlocal selection scheme are always based on the assump-
generality, it is sufficient for the subsequent discussion whesgn that the corresponding system includes long-ranging in-

we consider the one-dimensional case. _ formation transfer mechanisms as a fundamental feature. It
The dynamics of overdamped Brownian particles can bgomes at no surprise that typical examples exhibiting such
described by the overdamped Langevin equatii2] global coupling mechanisms are biological systems.
dx We note that in previous papefd&5-17 dealing with
my g = —VU(X)+ &), (3y  these two evolutionary models, the Sm_oIL:chowsk| process
was also referred to as a thermodynamic “Boltzmann strat-

) . egy” and the Fisher-Eigen process as “Darwin strategy.”
wherem denotes the mass of the Brownian particless the £ rihermore, we would like to mention that numerical meth-

yiscous friction coeff_icient,_ ang(t) is a5_—correlated Gauss-  5gg realizing Eq(5) are, for example, based on a discretized
ian random forcéwhite nois¢ characterized by version of the Langevin equatia3); whereas the selection
scheme of the Fisher-Eigen process can be realized via reac-
(£1)=0, (&VEs)=2mykgTo(t=s). (4 Shel=gen p e

tion mechanisms as known from the description of chemical
As usual, we have denoted Boltzmann’s constankpyand reactions. For a detailed discussion of this issue, including

T is the temperature of the heat bath modeledébt). An applications to optimization problenis.g., optimization of

equivalent description of the Langevin dynamigsis given ~ road networks we refer the reader to Refgl6,19-21. _
by Smoluchowski’'s equatiof2,11,17 We next present a brief overview of the structure of this

paper. In the explicit rate calculations performed below, we

p 1 kT _, exclusively concentrate on one-dimensional problems; more
i m—yV[(VU)IO]Jr m_yV p. (5  exactly, we are interested in transitions between the wells of
the symmetric Kramers potential
The parameter b
a
=— x>+ x4 >
keT U(x) > X+ X a,b>0, 9
D=— (6)
my

which is shown in Fig. 1.
in Eq. (5) is the diffusion constant, or noise strength, respec- Because, for the Smoluchowski equation, the rate prob-
tively. Note that Smoluchowski’s equation is a local equationlem for the Kramers potenti@b) has been extensively stud-
in the sense that only local properties W{x) and p(x,t) ied in the pasf1-4,12, our primary aim is to derive corre-
influence the dynamics of the ensemble. sponding analytic expressions for the reaction rate of the
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Fisher-Eigen problem by following a similar sequence ofpS'(x) possesses maxima at the minimalg), the Smolu-
steps. In order to clarify the analogies in the derivation, wechowski process can be considered as an optimization strat-
first outline the well-known calculation of the reaction rate egy. In order to construct time-dependent solutions of Eq.
for the Smoluchowski equation. (11), it is convenient to use the ansgiiA|

The paper is organized as follows. In Sec. I, general so-
lution techniques are briefly reviewed, which are put to use (x)
later on in Sec. Il wherein we evaluate the escape rates. p(x,t)zg(x,t)ex;{—ﬁ}. (15)
Section IV comprises a summary of the main results and
conclusions. In Appendix C the details on numerical methodsnserting this very ansatz into E¢L1) leads to
applied to the corresponding PDE are given.

JQ

—=DV?%—

1 1
2 2
Il. GENERAL SOLUTION TECHNIQUES at ap (VU -5 VUe. (16)

The Smoluchowski equatiotb) was derived in 1915 by . _—
von Smoluchowsk{11] in order to describe the motion of Mathematically, Eq.(16) can be treated as a Schioger

overdamped Brownian particles in an external potentiafequ""t'?r‘[z;_h2 3 Thusl, assunlnn_g a dllcscrete spectrum of ei-
U(x). Since, this equation has been studied in detall foracnva Lée.s’ the co;npr)]ete SO ution o _E(q'l) can be ex-
different types of potential functionsl(x), and we shall pressed in terms of the series expansion
make use of results presented in R¢%12,29 during our
subsequent discussion. Furthermore, for the Fisher-Eigen p(x,t):exp{—
process, some results can be found in RES].

The essence of this section can be summarized as follows:
Both, the Smoluchowski equation as well as the Fisher-Eigewhere\, are the eigenvalues of the Hamilton operator
equation can be transformed into a Salinger equation.

[}

> Cadn(x)e ™ (17)

n=0

U(x)
2D

. 1 1
Hs=—DV?+v(x), v(x)=ﬁ(VU)2— EVZU
(18

A. Smoluchowski equation
To start, it is useful to introduce dimensionless quantities

i T with corresponding time-independent eigenfunctigngx).
xi’ T=—, D=—2_ PED=p(x, )X, AssumingL?(Q)-normalized eigenfunctiong,(x), i.e.,
m

; L
axi

<

(10 (G )= fﬂdw:(xmm(x):anm, (19

where x,,= +a/b is the distance between the maximum
and minimum of the Kramers potenti@). Dropping, for the

. X . the coefficientc,, in Eq. (17) are determined by the initial
sake of convenience, all tildes we can rewrite the Smolu n a- (A7) y

chowski equatior(5) in dimensionless form condition
’ ] U

corresponding to the motion in the rescaleimensionless ~ Wherego(x) =¢(x,0). Furthermore, fot— oo, the series ex-
Kramers potential pansion(17) must converge to the stationary solutigiB).

Thus one finds that =0, c,=1/y/Z%, and

U(x)=3x*—3x2 (12)
e~ U()/2D e~ U()/2D
As one can readily check upon an insertion, the stationary bo(X)= - (21)
solution of Eq.(11) is given by the Boltzmann distribution f S 172 [zst
e~ UMD @
Stry) —
p=(x) zst ' (13 Hence, as we can immediately see from EL7), for t>0
the eigenvalua ; dominates the dynamics of densfiyx,t).
where We note that although the solution of the Smoluchowski
equation is formally known by Eq17), it is of use, only in
Zst:J' dxeU()/D (14) parts, in more complicated applications. This is due to the
a fact that apart from some very simple potentiblsthe ei-

genvalues and eigenfunctions of the Hamilton operét8y
is the stationary normalization constant. Equati®8) is the  with the effective potentiab are unknown.
reason why the process described by Bq) is sometimes For the rescaled potentiél?) the effective potentiab(x)
also termed the thermodynamical Boltzmann strategy. Sincis given by
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FIG. 2. Double-well potentiall (x) =x*/4—x?/2, and the corre-
sponding effective potential(x) and supersymmetric partner po-
tentialw(x) of v(x) as used in the calculation of the eigenvalye
(a) For strong noise strength=1/6, the effective potential(x)
exhibits also a double-well potential structure and Boe 1/18 the
fermionic partner potentialv(x) becomes monostabl¢b) In the
case ofD<1/6, the shape of the effective potentiglx) is essen-
tially different from the shape dfl(x).

1 1
v(x)=ﬁ(x3—x)2—§(3x2—l). (22

PHYSICAL REVIEW E 67, 061118 (2003

_ / 1
V= 3+ E (26)

of w at the bottom of the well at=0.

B. Fisher-Eigen process

Before we discuss solutions of the Fisher-Eigen equation

@)

mp
=AU —Ulp+ DV?p,

it is advantageous to introduce dimensionless quantities

D
qax,

- X - -
x=—, t=tqax,, D=
Xm

PX, 1) =p(X,1)Xp. (27)

By virtue of these transformations the form of the rescaled
(dimensionlessKramers potential is given by Eq12), i.e.,

U(x)=x*4—%?2. For the sake of convenience, we drop
again all tildes from now on and obtain the following dimen-
sionless version of the Fisher-Eigen equati@hn

p —
—r =[U(H~-Ulp+DV?p. (28)

We have already mentioned that in contrast to the Smolu-
chowski equatiori1l), the generalized Fisher-Eigen equation
(28) is a nonlinear PDE. Nevertheless, it can also be trans-
formed into a PDE of Schabinger type(16) by using the
ansatz 18]

We shall need it later, since, as briefly reviewed in Sec. I,

the escape rate is closely related to the first nonvanishing

eigenvalue\;. In Fig. 2 we have depicted boti(x) and
v (x) for different noise strengthd. Given the Taylor expan-
sion

=

1
v(x)=§+ﬁ(l—6D)x2+O(x4) (23)

at x=0, we deduce thab(x), as given in Eq.(22), is a
double-well potential only as long as

D=

ol

(29)

Otherwise, v(x) possesses three minima, see Figb)2
Moreover, the supersymmetriermionic) partner potential
[22,26,21

W(X)= i(VU)2+ EV2U= i(x3—x)2+ 1(3x2—1)
4D 2 4D 2
(29

is monostable as long a®=1/18. In order to obtain a
simple estimate of the eigenvalg in the strong noise limit
D>0, we also need the frequency

p(x,t)=g(x,t)ex;{ fotU(s)ds , (29

where in contrast to the probability densjtyx,t) the auxil-
iary function o(x,t) stays not normalized. Inserting ansatz
(29) into Eq.(28), one finds the result

o 5
pr =DV<ep—-Upg. (30
Compared with Eq(16) the essential difference consists in
the fact that instead of the effective potentiglx) in Eq.

(16), the original potentialJ(x) appears in Eq(30). Thus,
assuming a discrete spectrum of eigenvalues again, the for-
mal solution of Eq.(28) reads

[’

> Cadn(x)e M, (31)

n=0

t__
p(x,t)zexp{ fOU(s)ds

where ¢, is a L2(Q)-normalized eigenfunction of the
Hamilton operator

Hee= —DV2+U(X) (32)
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and A\, is the corresponding eigenvalue. The coefficients bo(X)
sty 20

(40)

Co= f dx% (X)p(x,0) (33
o where 25'=|,.
On the basis of the exact solutiofik7) and (36), we are
now able to calculate approximate analytic expressions for
the escape rates of both processes, which will be the subject
of the following section.

are again determined by the initial condition. In order to
identify the prefactor in Eq(31), we can use the fact that
p(x,t) stays normalized at all timeésMore precisely, we can
integrate Eq(31) overx, yielding

¢ @ Ill. CROSSING OVER A BARRIER
= Ul —Apt . . .
1—exp{ fOU(s)ds 2‘0 Coln€™ "1, (34 In this section we study the following problem. We con-
sider Kramers symmetric double-well potent{@), and all
wherein we defined the coefficients members of the ensemble initially situated at the bottom of

the left well, i.e., atx=—1. Using, as in the previous sec-
tions, dimensionless quantities, this special initial condition
Im= deXd)m(X). (39  corresponds to

Therefore, the final result for the probability densidj) can P(x.0)=8(x+1). D
be written as The quantity we intend to estimate analytically is the escape
ratek characterizing the decline of the population in the left
E Cob(x)e Mt well or the increase of the population in the right well. The
= nn population in the left well, denoted by_, and that in the
(36)  right well, denoted byp, , are given by

o

p(xX,t)= —=
mE:O lel’ﬂe_)\mt 0 + o

pf(t)Ef_ dxp(xt), p+(t)5fo dxp(x,t),

Put differently, the solution of the generalized Fisher-Eigen (42)
problem (28) can be expressed in terms of characteristic

quantities of the eigenvalue problei@0). Moreover, by vir-  and from Eq(41) follow the initial conditionsp_(0)=1 and
tue of (34) we also immediately obtain p.(0)=0. Of course, for Smoluchowski and Fisher-Eigen
processes, the dynamics pf (t) is governed by the respec-
tive evolutionary equation fop(x,t) and can be evaluated

[

B % HE Calnhpe ' numerically. However, in order to derive also analytical es-
U(t)=— —InE Colpe M= —————— (37 timates, it is appropriate to approximate the actual process by
dt" =0 2 e 1 oA the following set of(two-stat¢ master equations:
= m'm -
p-=—kp_+kp. (439
and the additional condition _
. p+=kp-—kp;, (43b)
gfo Cnln=1. (38) wherebt =dp- /dt. The quantityk, appearing on the rhs of

Egs. (43 is the escape rate, respectively. Note, that only
The latter result follows from Eq:34) by settingt=0. Also  because of the symmetric test potential chosen here, the rates
note that in the case of the symmetric double-well potentiafOr the left and right wells are identical. As one can easily
considered below,,=0 holds ifn=odd. This is due to the check, the solution of Eq43) reads

symmetry properties of the eigenfunctions of Hge. —p® 4 o .
Let us now still have a closer look at the stationary situ- P+(D)=p-+[p=(0)—p. Jexp — 2k ), (44)

ation. Assuming a time-independent solutipfi(x) of Eg. wherep’ represents the respective stationary value. For our
(28), for t—e, we fmd_from th? rhs of Eq(37) that .the symmetric double-well potentigh” =1/2, and we can re-
stationary valueJst of U(t) is given by the lowest eigen- write Eq. (44) in the simplified form
value

_ p-(t)=37 zexp(—2k ). (45)

USt:)\(), (39)

Apparently, the escape rakecan be considered as a measure

and, furthermore, from Eq:36) that the stationary solution for the ability of a certain strategy to surmount a barrier, i.e.,
psY(x) is proportional togy(X), i.e., we assess that stratedyis “more mobile” than strategyy, if
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k*>kY (46) 0 " analytical (wihidy, D=1.0) —
a K analytical (winig,, D=0.5) -~
is true. _ Smilated (B=0.8
) 2t
A. Rates for the Smoluchowski process é: -3 .
In principle, for the Smoluchowski process, several excel- Z:’CL 4 ’ \1‘\;\
lent analytical estimates for the escape rateare known, 51 N
which are based on different approximation technigees., »\;\\
eigenvalue method, flux over population methg2]. Since '60 2 4 6 8 10 12 “14
the eigenvalue method turns out to be successfully applicable \
to the Smoluchowski as well as to the Fisher-Eigen strategy, 0 : _ :
we shall briefly outline this method by means of the Smolu- simred (o6 1)
chowski process in the following, where the case of strong ! simulated (D=0.04)
noise is discussed. Later on, in Sec. llIB, we also give a g2
well-known rate result for the opposite case of weak noise, Lo
which is based on the stationary flux metH@d. 8
(a) Strong noise (eigenvalue methot)sing the solution |
(17) of the Smoluchowski equatiofil) we can write 5| o
o -6 : : : :
0
p,(t)=%+j dxe’U(X)’ZDZl 6. du(x) e M (47) 0 1000 2000 t 3000 4000 5000
Cw =
) ) FIG. 3. Semilogarithmic plots of the decrease of the population
Thus, fort>0 we find asymptotically p_(t) in the left well (reduced by its stationary valyg’ =0.5) for
1 0 the Smoluchowski proces&) Strong and moderate noise: For the
. _ U(x)/2D analytical curves we used the rate expres¥gp, from Eg. (53),
p-(O= §+exr(—)\1t)J_mdxe 0Eey (), and 3t/;e ratekS, from Eq. (57), respectivﬂly.(b)évl%/yeak noisqe: Both

(48 analytical graphs are based on the tateas given in Eq(56).

where according to Eq$20) and (41) [2,22,26—3( Using SUSY methods, one finds by quadratic
approximation for relatively strong noise

C1= fﬁ dxep7 (x)e”0 p(x,0)= ¢ (— 1) "D,

D>1/18, (52
(49)
For the special initial conditiof41), we can estimate the rate
0 - 0 B 1 1 2D 11
J_ dxc, ¢q(x)e U(X)’2D~f_ dxcy do(X)e U(X)/2D=§, kfusy:—z+ V=77 7/6D+1, (53

(50

where v was defined in Eq(26) as the frequency of the
fermionic partner potentialv(x) at x=0. In Fig. 3a one
can contemplate that for strong noiBe=1 the analytical
approximation, given by(ﬁusyinserted into Eq(45), yields
good agreement with numerical results based on simulations
of the PDE(11). Details regarding the numerical simulation

A of the PDE are presented in Appendix C.
kS:—l, (51 (b) Moderate to weak noise strengtAs already men-

2 tioned, there exist many results obtained by working directly
with the Smoluchowski equatiof2]. Here we shall apply
some of them to our rescaled dimensionless stochastic dy-

becausepq(x)~ ¢1(x) holds in the vicinity ofx=—1 [we
assumed additionally a normalization such thax) >0 for
x<0]. Upon inserting this estimate into EGI8) and com-
paring the result with Eq(45), we can expect that for the
Smoluchowski process the rate is approximately given by

where N\, is the lowest nonvanishing eigenvalue of the
Hamilton operator(18). Since, as mentioned earlié,=0  pamics. A general result based on the stationary flux method
hOIdS} we could also write™=AN/2, Wher_eA)\=)\l—)\o IS is given by the following integral formula for the inverse rate
the difference between the lowest two eigenvalues. [2]:

exactly for the effective potential(x) from Eg. (22), and o .

one has to employ approximation techniques, e.g., WKB or (kS)—:L:if dyex;{— U(V)U dzex;{U(Z) _
supersymmetridSUSY) methods as known from quantum DJ-« D |Jy D

Unfortunately, it is generally impossible to determixge
mechanics and widely applied in statistical physics (59

061118-6
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We remark that this result may as well be derived by a mean 0 simulated (D=1.0)
first time passage time approaf®]. In the case of weak PR simulated (D=0.1)
noise « analytical (with k)

Q-2
W 55 =
—_—— ~
D 4D 7 (55) g |
£ 4
one can evaluate Ed54) by a Gaussian steepest-descent 5
approximation, yielding the dimensionless estimak 8 . . .
0 10 20 30 40
KS= 00 291 3p+ome 56 t
2w ex D 2 (D91, (56) 0 analytical (win g5 D=0.04) ——
4 b= analytical (with ki, D=0.01) -
' e, simulated §D=0.04;
whereAU = 1/4 is the depth of the rescaled double-well po- ~ "1, simulated (D=0.01
tential, wo= /2 is the dimensionless angular frequency at the o i
bottom of the minimum at=—1, andw,=1 is the dimen- i 3
sionless angular frequency at the top of the barrier=a0. € 4t
The prefactor before the brackets corresponds to the well- 5|
known Kramers resultl,2] valid for strong dampingthat is, )
. : " , , , , L
very weak _r10|seD—>(_)). In Fig. _:{b) one can see that the 0 500 1000 1500 2000 2500 3000
.correspondmg.anlalytlcal apprOX|mat|on,_ g|venlb°ynsert_ed t
into Eq. (45), is in good agreement with the numerically _ o
calculated relaxation dynamics as |Ong Bs<0.1 holds, FIG. 4. Semilogarithmic plots of the decay curves of the popu-
which is in accordance with weak noise. lation p_(t) in the left well (reduced by the stationary valyg®
In the intermediate region of moderate noise strength=0.5) for the Fisher-Eigen proceds) Strong noise: For the ana-
0.1<D=1.0, the average escape rate lytical curves the rat&™ from Eq.(65) was used(b) Moderate and

weak noise: Here the analytical graphs are basekﬁ@as given in
Eq. (66), andk5, as given in Eq(62). Note that compared with the

kgvz l kgus 4 ! exr( — A_U) (57) Smoluchowski process, see Figbg the Fisher-Eigen process is
2 Y \/5 T D “more mobile” at moderate to weak noise corresponding to param-
eter valueD=<1.0.
yields satisfactory analytical estimates for the simulated de-
cay curves, see Fig(8d. for the escape rate for the Fisher-Eigen process. Before we
proceed, we would like to emphasize again that, in contrast
B. Rates for the Fisher-Eigen process to the Smoluchowski rat&S, the eigenvalues appearing in

Having discussed the rate problem for the SmoluchowskFd- (60) are those of the Hamilton operatbli-e containing
process, we next address the Fisher-Eigen process. Befoie original potential) (). _ _ _
we can actually calculate a rat€® for the Fisher-Eigen Of course, the problem of calculayng.the eigenvalue dif-
model, it is again necessary to take a closer look at théerenceAx for the double-well potentiall is a key problem
asymptotic behavior of this strategy. For0, the lowest N guantum mechanics, see Ref86,29-31, and also refer-
lying eigenvalues dominate the numerator and the denomfnces therein. For small dimensionless noise parameters
nator of the time-dependent solutiq86). If we neglect
termsn,m=2 in Eq.(36) and also consider the well-known D=1/16, (61)
fact that for symmetric potentials the first eigenfunction is . ) _
asymmetric, ¢,(x)=— &,(—x), which again leads td, & WKB approximation(see Appendix A for detaijsyields

=0, we attain the asymptotic solution the rate

D(x.0)= ¢(I)ix) N %ﬁ:@ e (Aot (58) kVFVEb=D7mexp( - é—i) , (62)
For the special initial conditiort41) and sufficiently weak \\here
noise, we can approximatg~cqy= ¢o(—1) and
2 2
fldx%(x)w fldxd:l(x): IEO. (59 b= %22 S(i—% — 2DV 2_%) ] (63
Thus, we find and
KFE=L1(A;—Ng)=3AN (60) z,=\1-2D"  z,=\1+2D™% (64)
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1+ 1}
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FIG. 5. Comparison of the nu-
12} Dw0d simulated (t=150) —— 121 Do simulated (t=50) —— merically calculated “stationary”
1 "l solutions(taken at time as given
in the diagramk for the particle
08| 0.8 | ) )
= = density. It becomes obvious that
% 06| e 06 the stationary solutions of the
04| 04 1 Smoluchowski process, repre-
0z | 02 | sented in diagram$a)—(c),_ pos-
(b) o (e . . ‘ sess much better properties with
0_3 2 0 1 2 3 3 2 0 1 2 3 regard to ensemble minima search
X X than those of the Fisher-Eigen
process given irid)—(f).
14| D-oos simulated (:=5000) —— 12 Deoos simulated (t=200) ——
12t Il
Y o8
X o8t =
" o6l %, 06}
04| 04y /\/\
0.2t 0.2t
f
o L@ , o LO N
3 2 A 0 1 2 3 3 2 A 0 1 2 3
X X

Furthermore/C and £ denote the complete elliptic integrals
of the first and the second kind, respectively, as defined in
Egs. (A9) and (A10). In the limit of very weak noiseD yields a satisfactory analytical estimate of the numerical re-
—0, one findsd— 1/3. Compared with the Smoluchowski sults, see Fig. @).

process the essential observation is that at small noise param-
etersD<1 the Fisher-Eigen process is more mobile than the
Smoluchowski process. Put differently, in the weak noise

regime t.h.e global selection criterion turn§ out to pe muchmportant which of the two strategies approaches its station-

more efficient fqr the process of overcoming a barrier. .ary distribution most rapidly. One certainly also needs to

In the opposite case of strong noise stren_gth, we ObtalQnow about the quality of the stationary distributions. In the
from the_ standard time-independent perturbation thésep context of a computational optima search those strategies are

Appendix B to be favored where, in the stationary state, the majority of
the members of the search ensemble is located near the op-

kEv=15 (K4 kiyp (66)

C. Comparison of the stationary solutions

With regard to evolutionary optimization, it is not only

2\ 13 13 timum.
3D D . . . -
kFE:( ) _ (_) (65) In Fig. 5 we have depicted the stationary probability den-
4 48 sities for the Smoluchowski and the Fisher-Eigen processes,

based on simulations with identical parameters. As one can
clearly deduce from the results, the stationary distribution of
This approximation can principally be valid only as long asthe Smoluchowski process possesses advantageous proper-
D>1/36, because otherwise the rate would assume negatites as compared to the corresponding Fisher-Eigen process.
values. As shown in Fig.(4) this estimate for rat€65) can  In particular, the stationary distribution of the latter process
successfully be applied to describe the relaxation dynamicpossesses only a single maximum at the bawie0, if the
of the populationp_(t) if D=0.1. dimensionless noise strength becomes sulfficiently large.
As before, in the case of the Smoluchowski process, there This observation means that we face a situation typically
exists an intermediate region, now corresponding to 1/3@eferred to as “frustrated problem.” On the one hand, the
=<D=0.1, where the average rate Fisher-Eigen process is more mobile than the Smoluchowski
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scenario, i.e., it is more efficient if a barrier of the landscape ACKNOWLEDGMENTS
must be crossed. In contrast, the stationary probability den- This work was supported by the DFG via Grant Nos.

sity is lesser peaked at the minima of the potential. A quans g, 555(1.S.-G. and J.D, Sfb-486(P.H), and by the Stu-
titative explanation for this effect based on the special Casﬂienstiftuné 'des' deutséhén VolkeBD.j. o

with harmonic potentials can be found in RE32]. There it

was shown that the two processes exhibit different functional
dependencies between the angular frequency at the minimum
and the variance of the stationary distribution.

APPENDIX A: WKB APPROXIMATION
FOR THE FISHER-EIGEN PROCESS

The eigenvalue problem corresponding to E2f) reads

IV. CONCLUSIONS Np=—D et U, U=— %x2+ %X4. (A1)

In this work we have calculated and compared escape ) . ) .
rates of the Smoluchowski and Fisher-Eigen processes bl)p the W',(B .apprOX|mat|on the eigenvalue differende
applying the eigenvalue method. While the escape probler M1~ Xo iS given by
is well investigated in the Smoluchowski case, the results \/EDl’zw
obtained for the Fisher-Eigen strategy are not so. A=~ ™0 ,{
Even though we confined our quantitative discussion to o
the one-dimensional symmetric Kramers potential, the re-
sults seemingly indicate some rather general and robug¥nere
properties of the two strategies. As we have discovered from
our rate calculations in Sec. lll, for weaklimensionless
noise strengtd, the Fisher-Eigen process with global selec-js the ground-state eigenvalue obtained for the parabolic ap-
tion is much more efficient if a barrier has to be Overcome proximation ofU(x) at the minimum ak=1, andwy= 2
We are confident that this property remains trué also fofs the corresponding dimensionless angular frequency. Fur-

high-dimensional problems. The main reason for this conjeCener, the upper boundagy of the integral corresponds to the
ture is that with regard to high-dimensional search spacegmgjiest positive solution of the problem

the one-dimensional model represents a good approximation
for the ensemble dynamics in the vicinity of the shortest link G(2)=VU(2) —£0=0. (Ad)
between two neighboring optima.
Moreover, in a different investigation of the two models
for a simple harmonic potential, we could establi88] that ] a1
for sufficiently low noise parameters the stationary solution 21=y1-2D7, Z=\1+2D7 (AS)
of the Smoluchowski process possesses better properties fgrom z, we obtain the condition
garding the local concentration of the stationary distribution
around a minimum. Thus, from the evolutionary optimiza- D=<1/16, (AB)
tion point of view we herewith do recommend the following
combination of the two strategie€t) To start with, use the 1-e., the WKB approximation is valid for weak noise
Fisher-Eigen process in the beginning of the search processtrength. The exact value of integral
(2) then switch to a local Smoluchowski processath very z
small D) at the final stages. (I)Ef dxyU(x)—gg (A7)
Finally, we would like to comment on the approach cho- 0
sen in this paper. Obviously, in the general casés ihot
possibleto transform the Schainger equation into a Smolu-

. (A2)

2 z
- — 1dx\/U(x)—s(J
Dl/2 0

go=—3+D¥ (A3)

The positive solutions of EqA4) are

in Eqg. (A2) is given by

chowski equation, albeit one can always transform a Smolu- 1 Zi Zi
chowski equation into an equation of Sctiiger type(the b= 32 &l | —2DYK| 5| |, (A8)
latter result was first discovered by Favelgd]). This non- Z %

equivalence of the Smoluchowski and Satinger equations

is also evident in the case of the Fisher-Eigen process whe?@here’C denotes the complete elliptic integral of the first

the eigenvalue method is thus far the only technique allowl(Ind

ing for an estimate of the crossing dynamics. From this point /2 )

of view, the Smoluchowski process is technically simpler ’C(m)Efo (1-msirf9) Yo, (A9)
and we actually can choose from several different techniques

[2]. In particular, there also exists a great variety of suitable;ng ¢ denotes the complete elliptic integral of the second
methods such as the MFPT-approach, the stationary fluging

method, etc., to name but a few, which generally yield supe- /2

rior results over t_he WKB approximation that is rooted in S(m)sf (1—msirPe)Y2do.
guantum mechanics. However, when we are interested in 0

evolutionary strategies of the Fisher-Eigen type, we exclu-

sively depend on such an eigenvalue analysis. Hence, the final result reads

(A10)
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D12 2P 121 bao " simulated (t=15) -
A A= X _ (All) analytlcal
T Dl/2 1}
0.8 |
We mention that we checked the correctness of B®) =
numerically, too. Moreover, fob —0 one findsb — 1/3. o 08
04|

APPENDIX B: FISHER-EIGEN PROCESS AND 02} /\’/\
MODERATE TO STRONG NOISE 0 (@) ‘ . ‘

We intend to calculate the rate for the Fisher-Eigen pro-
cess at moderate to strong noise. To this end, we use Schro

dinger’s time- mdependent perturbation theory. In the first 12 D=1 S‘m“'a*e;’n%Tylii‘;%
step we split operatdn H,:E/D 1r
Y __ost
h=h"+ah", (B1) % o6l
into an anharmonic oscillator pdtf and a perturbatiofthe 04 r
barrie) h?, that is, 0.2 o)
0
o dz x4 - NG -3 2 1 1 2 3
h——a D’ h“ﬁ- (B2)

FIG. 6. Comparison of the exact time-independent solution
By settinga=1 we obtain the original problem. In order to psi(x)=exd —U(x)/D])/Z5! of the Smoluchowski equation with nu-
calculate an apprOX|mat|op(°) for the ground-state eigen- merically obtained stationary solutions for different values of the
value u of the anharmonic oscillatgicorresponding to the noise parametdd. The stationary normalization consta#s' were
situation, when there is no barrier=0), we apply the Ritz numerically calculated ag *'=3.905 in(a) and 2°'=15.170 in(b).
method using the Gaussian test function

1 1 1/3
2c 1/4 (1)— J hl N
wc(x) _ (? EX[X _ CX2), (83) dX‘/’c b= 6D2 ) (B8a)
where ¢ denotes the variation parameter. By applying the o [* - 1 3
. e — * = — — —
Ritz condition to M3 _ledXXch Xe=~ 5 2] (B8h)
(h%= i dxy* hOy.=c+ 3 (B4) for a=1
= Ve Ve 640D’ we get(for a=1)
1/3
we get 6\1/3 1
J Au=~Ap O+ a(pP-p)=|5] —| ==
113 D 6D?
TR T @5 ®9)
214D #o=4\ap) -
. . We remark that this approximative result can, in principle,
Using the test function only be valid as long aB>1/36, because otherwise the rate
23\ 1/4 kFE=A uD/2 would become negative.
Xc(X)=2(7) x exp(—cx?) (B6)

APPENDIX C: NUMERICAL METHODS

orthogonal toy., we find . . . .
In our numerical simulations of the PDE we used a simple

6\13 algorithm characterized as follows.
(5 . (1) Discretization Spatial derivatives are realized by sym-
(B7) metric quotients, that isgdp(x,t)/dx=[p(x+dx,t)—p(x
—dx,t)]/(2dx) and #%p(x,t)/ax>=[p(x+dx,t)—2p(x,t)
The result for the difference of eigenvalues in EB7) can  +p(x—dx,t)]/dx?. Partial time derivatives are realized by
be used to calculate a first estimate for the Fisher-Eigen egorward quotientsgp(x,t)/dt=[p(x,t+dt) —p(x,t)]/dt. In
cape ratek"®~A 1(9D/2. In the remaining part, we calcu- all simulations we used a spatial inten@l=[—5,5] with
late the corrections corresponding @(1/D) by following 301 equidistant spatial grid pointsvith distancedx). The
the standard procedure of quantum mechanical timetime stepdt was always chosen adt=0.05dx?. Further-
independent perturbation theory. From more, we fixed the boundary valup$+5;t)=0.

0 11( 3

1/3
A u@= (0)_ (0)_
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(2) Non-negativity If the probability density becomes agreement between the numerics and the approximation.
negative at some grid poink(t) during the simulation, we We also note, that we used harmonic test functions
setp(x,t)=0. U(x) = w?x?/2 in order to check the temporal behavior of the

(3) RenormalizationAfter each integration step the prob- algorithm. This is possible, since for both the Smoluchowski
ability density at each grid point is multiplied by a constantand the Fisher-Eigen equation one can find explicit time-

such thatf odxp(x,t)=1 holds. dependent solutions of the form
There exist more refined numerical methods for these
types of problems, for our purpose, however, the above al- p(x,t)= Z(t)~texd — BHU(X)] (C1)

gorithm proved to be completely satisfactory. For example,

we plotted in Fig. 6 both the exactly known stationary solu-

tions of the Smoluchowski equation and the numerically ob-corresponding to the special case of Gaussian initial condi-
tained solution. As can be deduced, there occurs an excelletions (see Ref[32] for further details.
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