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Abstract. Using primarily numerical methods we study clustering processes and collective excitations
in a one-dimensional ring chain. The ring chain is constituted by N identical point particles with next
neighbors interacting via nonlinear Morse springs. If the system is coupled to a heat bath (Gaussian white
noise and viscous friction), then depending on the particle density and the bath temperature different
phase-like states can be distinguished. This will be illustrated by means of numerically calculated phase
diagrams. In order to identify collective excitations activated by the heat bath we calculate the spectrum of
the normalized dynamical structure factor (SDF). Our numerical results show that the transition regions
between different phase-like states are typically characterized by a 1/f -type SDF spectrum, reflecting the
fact that near critical points correlations on all length and time scales become important. In the last part
of the paper we also discuss a non-equilibrium effect, which occurs if an additional nonlinearly velocity-
dependent force is included in the equations of motions. In particular it will be shown that such additional
dissipative effects may stabilize cluster configurations.

PACS. 05.70.Fh Phase transitions: general studies – 05.70.Ln Non-equilibrium and irreversible processes
– 05.40.-a Fluctuation phenomena, random processes, noise and Brownian motion

1 Introduction

Initiated by the pioneering work of Fermi, Pasta and
Ulam [1], studies of nonlinear one-dimensional model sys-
tems have essentially contributed to the understanding of
nonlinear effects in physical systems, such as polymers and
quasi-1D-lattices [2]. Fundamental analytic results in this
field of research were obtained by Toda [3,4] in the early
1980’s, when he was able to find exact solutions for the
dynamics and statistical thermodynamics of a chain with
exponentially repulsive next neighbor (n.n.) interactions.
In particular, Toda calculated the exact partition function
of this model and proved the existence of soliton excita-
tions for the case of an infinite chain. Nonlinear soliton-like
excitations propagating in finite Toda chains with periodic
boundary conditions are referred to as cnoidal waves. The
coupling of finite size Toda ring chains to a heat bath
(white noise) and properties of the resulting excitation
spectra are, for instance, discussed in [5–8].

Recently, the investigation of cnoidal waves was ex-
tended to systems featuring nonlinear dissipation, both
on the theoretical [9,10] as well as on the experimen-
tal sector [11]. In this context, the concepts of negative
friction and active Brownian motion play an important
role [12–14]. Moreover, also several types of more com-
plicated nonlinear n.n. interactions were analyzed, e.g.,
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interactions based on Lennard-Jones and Morse poten-
tials [15–18]. These models exhibit several new phenom-
ena, e.g., clustering effects, since in contrast to the ef-
fectively purely repulsive forces in Toda ring chains the
respective potentials can also lead to attraction, if the dis-
tance between n.n. becomes sufficiently large.

In the present paper we continue the numerical inves-
tigation of thermal excitations and clustering processes
in one-dimensional Morse ring chains with small particle
number N [16,17]. In particular, phase diagrams for the
case N = 4 are determined. In order to analyze collective
excitations in presence of a Gaussian heat bath, we use
the dynamical structure factor (SDF) [19]. This quantity
has already been successfully applied in previous theo-
retical investigations of finite-size ring chains with Toda
and Lennard-Jones interactions [20,21]. Another impor-
tant reason for studying the SDF is that it can be mea-
sured directly for real systems in inelastic scattering ex-
periments. With regard to the results we can anticipate,
that a strong correlation between 1/f -behavior in SDF
spectrum and phase transition-like events in the chain is
found.

The paper is organized as follows. In Sections 1.1
and 1.2 we introduce the equations of motion and review
essential results from earlier investigations. Section 2 gives
a survey of the numerical algorithms and of the quanti-
ties, typically measured in the simulations (cluster dis-
tributions, structure factor etc.). In Section 3 results for
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the equilibrium system with purely linear friction are pre-
sented, and in Section 4 we begin the discussion of non-
equilibrium effects. Finally, Section 5 contains a summary
of the main results.

1.1 Equations of motion

We consider a one-dimensional model of N identical Brow-
nian point-particles with masses m. Each particle is de-
scribed by its position coordinate xi(t) and velocity vi(t),
i = 1, . . . , N . Throughout this paper, we assume periodic
boundary conditions

xi+N = xi + L, (1)

that is, we consider a ring of length L. For our model the
full potential energy stored in the ring reads

U =
N∑

i=1

UM
i (ri), (2)

where UM
i (ri) = UM

i (xi+1 − xi) denotes the Morse pair
interaction potential [15] explicitely given by

UM
i (ri) =

a

2b

[
e−b(ri−σ) − 1

]2 − a

2b
(3)

with positive parameters a, b, σ > 0. Originally, this po-
tential, which is qualitatively very similar to the well-
known Lennard-Jones (LJ) potential

ULJ
i (ri) =

a

2b

[(
ri

σ

)−12

− 2
(

ri

σ

)−6]
, (4)

was used to describe diatomic molecules. Inserted into
Schrödinger’s equation the Morse potential allows the ex-
act calculation of the vibrational energy levels [15]. As ev-
ident from (3) and (4), and also illustrated in Figure 1a,
both Morse and LJ potential take their only minimum at
ri = σ and tend asymptotically to 0 for ri → ∞. Accord-
ingly, their depth ε is defined by

ε := U
M/LJ
i (∞) − U

M/LJ
i (σ) =

a

2b
· (5)

The Morse potential (3) can also be considered as a gen-
eralization of Toda’s exponential potential [3]

UT
i (ri) =

a

b
[e−b(ri−σ) − 1] + a(ri − σ) − a

2b
, (6)

widely appreciated due to the fact, that it yields an exactly
solvable nonlinear model. In (3) and (6) the parameter a
controls the amplitude of the corresponding force, whereas
b can be interpreted as the stiffness parameter of the spring
that connects two interacting particles. In this picture σ
gives the equilibrium length of such a spring. For all three
potentials the angular frequency ω0 near the minimum is
defined as

ω0 =
1
m

√
d2Ui

dr2
(σ), (7)
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Fig. 1. (a) Morse potential UM (r), LJ potential ULJ (r) and
Toda potential UT (r) for the parameter value b = 1. For r � σ
a Morse force with parameter b behaves like a Toda force with
parameter 2b. (b) Friction coefficient γ(v) = γ0 + γ1(v) for
different parameter values µ. In case of µ < 0 the friction
coefficient is always positive (pure damping), whereas for µ > 0
there also exists a negative (pumping) region. For high absolute
velocities v2 � µ we observe that γ(v) → γ0 holds, i.e., in
this limit the dynamics reduces to standard Brownian motion.
Remark on the units: In the characteristic unit system (c.u.)
defined by m = ω0 = σ = 1 we obtain [a] = mσω2

0, [b] = σ−1,
[r] = σ, [U ] = mσ2ω2

0 , [γ(v)] = ω0 , [v] = σω0, [µ] = [κ] =
σ2ω2

0 .

and one finds explicitely

ω0 = ω
M/T
0 =

ωLJ
0

3
√

8
=

√
ab

m
· (8)

One may further notice, that the linear (attractive) part
of the Toda potential (6) has no effect on the dynamics, if
a ring chain is considered. This fact follows directly, if one
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inserts the Toda potential into the Langevin equations

d

dt
xi = vi,

m
d

dt
vi +

∂U

∂xi
= −m γ(vi) vi +

√
2D ξi(t), (9)

governing the stochastic motion of the ith particle on the
ring. The stochastic forces

√
2D ξi(t), which model a sur-

rounding heat bath (Gaussian white noise), are character-
ized by

〈ξi(t)〉 = 0, 〈ξi(t′)ξj(t)〉 = δij δ(t′ − t). (10)

In the present paper we confine ourselves to cases where
the velocity-dependent friction coefficient can be written
in the form

γ(v) = γ0 + γ1(v). (11)

Here only the constant part γ0 describes the viscous fric-
tion between particle and surrounding heat bath. In fact,
the biggest part of this paper is dedicated to the stan-
dard equilibrium situation where γ1(v) ≡ 0. Only in the
last part we are going to consider the following additional
nonlinear coefficient

γ1(v) = − q

(c/d2) + v2
· (12)

This friction coefficient was introduced in [14,22,23] to
model active Brownian particles that carry refillable en-
ergy depots (internal degrees of freedom). In (12) the pa-
rameter q > 0 describes the flux of energy from an external
reservoir or field into the depots carried by the particles.
The parameter c > 0 is connected to internal dissipation
and d2 > 0 controls the conversion of the energy taken up
from the external field into kinetic energy. Actually, the
parameter q and the ratio

κ = c/d2 (13)

are the essential parameters of this model. The parame-
ter choice κ = 0, for example, describes particles without
internal dissipation. In the limit cases q = 0 and κ = ∞
(no energy conversion) we regain the equilibrium system,
characterized by purely viscous friction, γ(v) ≡ γ0.

If one is interested in the non-equilibrium case, γ1(v) �=
0, then it is convenient to introduce a new parameter

µ =
q

γ0
− κ, (14)

and to rewrite

γ(v) = γ0

(
1 − κ + µ

κ + v2

)
= γ0

v2 − µ

κ + v2
· (15)

Obviously the parameter µ plays the role of a bifurcation
parameter since γ(v) = 0 if v = ±√

µ. In terms of µ one
can summarize the effect of the combined friction coeffi-
cient γ(v) as follows:

(i) For µ < 0 the friction coefficient γ(v) is always
positive, and therefore leads to damping of the particle
motion;

(ii) according to (15) for µ > 0 the effective friction
coefficient γ(v) converges to γ0 for large velocities v2 � µ,
but for small velocities v2 < µ the friction coefficient γ(v)
is negative, generating so-called active motions.

Conventionally, we shall speak of active Brownian par-
ticles if q > 0 holds. In Figure 1b we have plotted the
friction coefficient γ(v) for different values of µ.

Characteristic units

In order to reduce the number of parameters in our model
it is useful to choose an appropriate set of characteristic
units (c.u.) Since we intend to focus on homogeneous rings,
a natural choice corresponds to the unit system where
m = 1, σ = 1 and ω0 = 1 holds. Obviously, the first
two conventions simply correspond to fixing unit mass and
unit distance, whereas the third gives a characteristic unit
time, because ω0 was defined as the angular frequency
for the Morse potential. Choosing these c.u., our working
equations take the form

d

dt
xi = vi,

d

dt
vi +

∂U

∂xi
= γ0

[
κ + µ

κ + v2
i

− 1
]
vi +

√
2D ξi(t). (16)

In particular, for the parameters a and b of the Morse
potential we find that a = 1/b in c.u. Conventionally, from
now on all quantities appearing in equations, diagrams etc.
will be given in c.u.

Fluctuation-dissipation-theorem

We conclude this part with a remark on the fluctuation-
dissipation theorem (FDT). Generally, the FDT links the
amplitude D of the stochastic force with the physical tem-
perature T of the heat bath and the viscous friction coeffi-
cient γ(v). Now it is important to notice, that we assume
in our model, that the nonlinear part γ1(v) is absolutely
independent of the fluctuations in the heat bath. Occupy-
ing this point of view, it is reasonable to postulate that
the Einstein relation, which reads for kB = 1

D = Tγ0 , (in c.u.), (17)

is also valid for our non-equilibrium system [16]. Hence,
whenever we speak of the temperature T below, we exclu-
sively refer to the temperature of the heat bath. We em-
phasize that, in general, T will be non-trivially connected
with the average kinetic energy Tkin of active particles.

An extensive discussion of examples, where the FDT
differs from the Einstein relation (17), as for instance
in models with velocity-dependent viscous friction coef-
ficients, can be found in [24].
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1.2 Some results of previous studies

We already anticipated above that, compared with Toda
rings, in Morse ring chains new phenomena such as clus-
tering may arise. The main reason for this is that, in con-
trast to the effectively purely repulsive Toda interaction,
the Morse potentials lead to attractive forces between n.n.,
if their distance is sufficiently large. This observation im-
plies that the mean particle density

n := N/L (18)

is one of the most important macroscopic quantities for
the characterization of Morse rings. Of course, the same
is true for the qualitatively very similar Lennard-Jones
interactions.

In order to illustrate the effects of a density variation,
it is convenient to consider the related change of the full
potential energy

UT/M (x1, . . . , xN ) =
N∑

i=1

U
T/M
i .

We say that a particle configuration is a stable state of
the ring, if it realizes a local minimum of UT/M . Due to
the purely repulsive interaction in the Toda case it is clear
that for arbitrary values of n there is only one stable state
given by the equidistant configuration (more precisely, this
minimum of UT is degenerated with respect to rotations
of the ring, but this is not relevant for our discussion). In
contrast to the n-invariant structural behavior of UT , one
can show that in Morse rings depending on the density
n there may exist different types of stable states [17]. In
particular, it can be proved that for an arbitrary particle
number N the equidistant configuration corresponds to a
minimum of UM only as long as

n >
b

ln 2 + b
=: nc (19)

Otherwise, the equidistant configuration becomes a max-
imum of UM and, therefore, unstable. Thus, in the high
density limit n � nc Morse and Toda rings are qualita-
tively similar. In particular, one can show that for n → ∞
Morse rings with parameter b behave like Toda rings with
parameter 2b. Intuitively, this becomes clear if one con-
siders the square in definition of the Morse potential, see
equation (3).

However, for Morse rings there still exists a second crit-
ical value n̄c(N) ≥ nc, such that for n < n̄c(N) new min-
ima of UM can be observed. These new stable states can
be identified as N equivalent configurations each corre-
sponding to a single cluster of size N , see rightmost con-
figuration in Figure 2, which we refer to as ‘N -mer’ in the
following. Only for the simplest nontrivial case of a ring
with N = 2 particles the two critical density values are
equal, nc = n̄c(2), and for N = 3 one finds

n̄c(3) =
3b

ln 27
4 + 3b

> nc· (20)

(1, 1, 1) (1, 1, 0)
(1, 0, 1)
(0, 1, 1)

(1, 0, 0)
(0, 1, 0)
(0, 0, 1)

Fig. 2. Schematic representation of the Morse ring with N = 3
particles. The vectors (s1, s2, s3) indicate, whether the par-
ticle i is the first particle of a cluster (then si = 1) or not
(si = 0). This labeling of configurations yields a simple count-
ing procedure for the number of critical points of UM . The
equidistant configuration (1, 1, 1) is a minimum of UM as long
as the density is high, n > nc. The three cluster configura-
tions (right) correspond to minima of UM if the density is low,
n < n̄c(3). In the critical interval (n, n̄c) both equidistant and
cluster configurations are stable states. Finally, configurations
in the middle represent saddle-points of UM if n < n̄c(3).

Furthermore, numerical calculations have shown that
n̄c(N) increases monotonically with N , even though it is
in principle bounded from above by n = 1/σ. The main
consequence of these results is that there exists a transi-
tion interval (nc, n̄c) for N ≥ 3, where both the N -mers
and the equidistant configuration represent stable states;
put differently, there is a coexistence region for qualita-
tively very different stable states.

In the remaining low density region n < nc the N -mers
are the only stable configurations, and one can evaluate
Zs

N = 2N − 2 − N as lower boundary for the number
of saddle points in the (N − 1)-dimensional potential en-
ergy landscape UM . These metastable points correspond
to symmetric combinations of smaller clusters (‘k-mers’
with 1 ≤ k < N), as illustrated for N = 3 in Figure 2.

Before we proceed by discussing some of the numerical
methods applied in the investigations, it might be useful
to summarize the main features of the model once again
in brief:

(i) In the high density limit Morse ring chains with
parameter b behave like Toda rings chains with parame-
ter 2b;

(ii) clustering effects can only occur at sufficiently low
density;

(iii) there exists a critical density interval, where both
equidistant and cluster configurations correspond to local
minima of the potential energy;

(iv) by varying the parameters in the friction coeffi-
cient γ1(v) the model can be driven from the thermody-
namic equilibrium to far-from-equilibrium states.

In previous studies [16,17] we primarily concentrated
on the limit case of high density (Toda limit), n � n̄c >
nc, and very low densities, n � nc, respectively. Hence,
it is also a main objective of this paper to extend the
investigation to the critical transition region (n, n̄c). As
we shall see below, the dynamic structure factor (SDF)
exhibits a characteristic 1/f -behavior in this region.
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2 Numerical aspects and measured quantities

In contrast to earlier investigations of deterministic sys-
tems [10,11,17], which also included extensive analytic
discussions, the present paper focuses on numerical re-
sults. In this part we give a brief survey of the algorithms
used in our studies, and also introduce typical quantities
(cluster probabilities, structure factor etc.) measured in
the computer experiments.

2.1 Algorithm

The numerical integration of the stochastic Langevin
equation (16) was performed by using a fourth-order
Runge-Kutta algorithm, especially adapted for solving
stochastic problems [25]. We used this special algorithm
instead of the more common Euler algorithm, because it
yields better results in simulations of dissipative systems
with coupling to a heat bath as well as in simulations of
the related conservative (deterministic) system, required
for the calculation of the dynamic structure factor, which
is explained in more detail in Section 2.4.

In all computer experiments the heat bath is realized
by Gaussian random numbers taken from a standard nor-
mal distribution. Moreover, we always start with equal
distances between the particles, ri = 1/n, and all parti-
cles initially at rest, vi(0) = 0. The integration step is
always fixed as dt = 0.001 (in c.u).

Each simulation consists of two stages: First the ring
chain is heated to the given temperature T = D/γ0; at the
second stationary stage, i.e., when the time averages of
characteristic physical quantities do not change anymore,
measurements are made. In addition to typical physical
quantities as kinetic energy Tkin, potential energy U , full
energy E or trajectories, we also considered the proba-
bility of cluster configurations, the average absolute force
and the dynamic structure factor (SDF).

2.2 The probability of cluster configurations

In agreement with [17] we introduce the cluster size vari-
able K, which can take values k ∈ {1, . . . , N} for a
ring with N particles. Then PD[K = k] is defined as
the (stationary) probability for finding a cluster of size
k on the ring at time t � 0, where D is the respective
noise strength. For example, in the deterministic limit case
D = 0 with purely viscous damping γ(v) ≡ γ0

P0[K < N ] = 0, P0[K = N ] = 1 (21)

if n < nc, since then only the N -mer configurations
are stable states. For D > 0 the probabilities PD[k] =
PD[K = k] can only be determined numerically. In com-
puter experiments one can calculate PD>0[k] from the rel-
ative frequency of finding a cluster of size k during sev-
eral independent measurements over time intervals ∆t =
t2 − t1, where t2 > t1 � 0.

We now still need to define ‘clusters’. At low densities
n < nc, we define that n.n. particles belong to the same

cluster or k-mer, respectively, if their distance ri is smaller
than 1/nc. For instance, if b = 1 as used in most simula-
tions, then 1/nc ≈ 1.7 in c.u. Obviously, this definition is
in agreement with (21), but also it only makes sense for
n < nc. Hence, for the complementary case n ≥ nc we de-
fine that a ‘cluster state’ is observable, if there is at least
one ri with ri > 1/nc. Otherwise, we speak of a solid-like
state. Actually, at supercritical density n > max{nc, n̄c} it
is more appropriate to say that the chain exhibits gaps or
strongly localized compressions, respectively, if ri > 1/nc

holds for some ri.
Note that in this form our ‘geometrical’ definition of

the probabilities PD[k] does not distinguish between clus-
ters with negative energy Ecl =

∑
i Ei < 0, where Ei is

the sum of kinetic and potential energy of the ith parti-
cle in the cluster, and compressions with Ecl > 0, only
existing for a very short time. For example, a nonlinear
soliton excited in a dense chain at high temperature may
be qualified by this definition as a cluster of constant size,
even though the set of particles forming the soliton is per-
manently changed, while it travels along the chain.

The main reason for us to choose a geometrical def-
inition is that it will work equally well for both equilib-
rium and non-equilibrium (active) systems. For instance,
in an active chain there may also exist very stable clusters,
which move at very high velocities on the ring (due to the
pumping). This makes it difficult to find a straightforward
energetic criterion.

Nevertheless it must be mentioned that especially in
a small density region n ≈ nc our criteria are by nature
not very trustworthy. In fact, purely geometric definitions
are always limited, and to us the use of the characteristic
length scale 1/nc seems quite reasonable at this point. It
was also checked that moderate variations of the critical
distance, 1/nc → 1/nc ± δ, merely lead to slight quanti-
tative changes in the numerically measured cluster distri-
butions.

2.3 The average force

In addition to the classification of cluster states, we are
also interested in thermodynamic properties of finite size
rings. Above we already defined the density n and the
temperature T in a rather straightforward manner. With
regard to the thermodynamic quantity ‘pressure’ the sit-
uation is more complicated, for there is no general rule
how to measure pressure for a finite size 1d-system with
periodic boundary conditions. Since it is sufficient for our
purpose, we are going to consider here the average of the
(absolute) forces

P := lim
τ→∞

1
τ

∫ τ

0

1
N

N∑
i=1

∂UM

∂xi

dt, (22)

which is numerically easy to calculate. For simplicity we
shall refer to P as pressure, while always keeping in mind
the ad hoc character of its definition. Below we analyze
how P depends on n and T . Then it will turn out that
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definition (22) is quite useful. We still remark that (22)
does not include static pressure, and that without taking
the absolute values the sum in (22) would vanish.

2.4 The dynamic structure factor (SDF)

The dynamic structure factor (SDF) is a useful tool in the
analysis of collective excitations [5,6,19–21]. All results
presented below are based on the following definition of
the SDF [19]

S(ω, k) =
1
2π

∫ ∞

−∞
eiωt

〈
ρ(k, t)ρ(−k, 0)

〉
dt , (23)

where

ρ(k, t) =
1
N

N∑
i=1

exp[−ikxi(t)] (24)

is the Fourier transformed of the mass density in the chain
(normalized to the particle number), and 〈 · 〉 denotes an
ensemble average. Generally, the SDF allows to estimate
the time behavior of collective structures (excitations)
formed by particles on specific length and time scales in a
chain. By fixing the wave number k one can determine the
corresponding frequency composition Sk(ω) = S(ω, k).
The width of a peak in the Sk(ω) spectrum gives an esti-
mate the stability of the related excitation and of its veloc-
ity in the chain. For example, peaks with small width ∆ω
indicate high stability of the corresponding excitation.

Recently, the SDF was used to study nonlinear excita-
tions in high-density rings [6]. In a ring the spectrum of
wave numbers k takes discrete values ki due to the peri-
odic boundary conditions. More exactly, one finds

ki =
2πi

L
, (25)

where i = ±1,±2, ...,±(N − 1)/2 for excitations traveling
to the right (+) or left (−), respectively. In particular,
i = 0 corresponds to slow rotations of the ring as a whole,
and if N = even then i = N/2 corresponds to optical
anti-phase oscillations of neighbor particles. As will be
demonstrated below, the SDF is an efficient tool for the
analysis of excitations in low-density rings also.

All of our simulations for SDF calculations were car-
ried out for rings with N = 10 particles. This has the
advantage that the number of excitations is still rather
small, allowing to observe in detail their transformation
under parameter changes. Generally, all SDF plots will
show normalized values ‘SDF/SDFmax’, where ‘SDFmax’
corresponds to the highest peak of the respective spec-
trum.

As a general rule, it is preferable to carry out time
averages over many consecutive or partially overlapping
time intervals ∆t � 1 (in. c.u.) belonging to the same
simulation run, instead of considering a large number of
runs with different initial conditions. In particular, for
the results presented in this paper we used simulation
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Fig. 3. Cluster phase diagram for the Morse ring with pa-
rameters N = 4, b = 1, µ = −κ, γ0 = 1 (no active friction).
For this parameter setting the critical density value is given
by nc = 0.59. The lines symbolize transitions between dif-
ferent phase states: (1) solid-like lattice, (2) one big cluster
(N-mer), (3) monomers prevail (gas-like), (4) small clusters
(liquid-like), (5) strongly localized compressions (liquid-like).
Note, that near the horizontal line, which indicates the critical
density nc, the other curves are not very reliable due to the es-
pecial geometrical definition used to characterize clusters. For
example, for n < nc clustering states are destroyed if T > ε,
where ε = 0.5 is the depth of Morse potential for b = 1.

runs of length ∆t = 4000 (in c.u.), which were subdi-
vided into 200 partially overlapping measurement inter-
vals ∆it = 800π � 1. This choice takes into account, that
the frequency of oscillations is of order ω0 = 1 and, thus,
the related period of oscillations T = 2π.

If the system has reached the stationary state, then it
is sometimes also useful to switch off the heat bath during
the SDF measurement by setting γ0 = 0 and D = 0. This
procedure allows to investigate the undisturbed dynamics
of the collective excitations activated by the heat bath.

3 Results for the equilibrium system
with γ(v) ≡ γ0

3.1 Clustering phases in a finite-size Morse ring

In Figure 3 we plotted a ‘phase diagram’ constructed on
the basis of numerically determined values for the clus-
ter size probabilities PD[k] defined in Section 2.2. The
diagram shows regions with different phase states for an
ensemble with N = 4 particles in the temperature-density-
plane. Although the particle number is very small, several
different states can be observed. We also remark that Fig-
ure 3 essentially improves a rather rough schematic repre-
sentation that was given in [17] and based on simulations
with a less accurate Euler algorithm.
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Low-density Morse ring (n < nc)

Apparently, the corresponding region below the horizontal
line in Figure 3 is divided in three parts by two curves in-
dicating the transitions between different states. For very
low temperature T = D/γ0 the particles are primarily
bound in one big cluster (region ‘2’), i.e., they constitute
with high probability an N -mer. With increasing temper-
ature T particles are more frequently split off the N -mer,
leading to a change in the shape of the probability distri-
bution PD[k]. The temperature curve Tc1(n), separating
region ‘2’ with PD[N ] = 1 from region ‘4’ with PD[N ] < 1,
may be considered as the first of several transition temper-
atures Tcj of the Morse chain. Even at very low densities
the value Tc1(n) ≈ 0.03 is noticeably less than the depth
ε = 0.5 of the Morse potential with b = 1. A possible ex-
planation might be that nonlinear collective excitations in
the N -mer, similar to those in the high-density Toda-like
chain, are responsible for its destruction at relatively low
temperature values.

As already mentioned, with further increasing bath
temperature T several k-mers may exist (region ‘4’), fre-
quently splitting into smaller ones or recombining to
bigger ones. Put differently, the system visits different
metastable states corresponding to a mixture of clusters
with different sizes – from the N -mer to monomers. Fi-
nally, there is a second critical temperature curve Tc2(n)
indicated by the dotted line, separating regions ‘4’ and ‘3’.
For T > Tc2(n), in region ‘3’, the cluster size distribution
has only a single maximum PD[1], which is approximately
equal to 0.2 at very low n and increases with n ↗ nc. Since
the monomers have the highest probability here, this state
may be classified as gas-like. Note, that due to our geomet-
ric cluster definition also Tc2(n) is smaller than the depth
ε of the potential (at least in the reliable region n �≈ nc).
It was also checked that the simulations yield a positive
energy E > 0 for T > 0.5 = ε, as it should be.

High-density Morse ring (n > nc)

The high-density region n > nc in Figure 3 is divided in
two parts. In the low-temperature region ‘1’ clusters or
compressions, respectively, do not exist. In contrast, such
configurations sometimes arise in the high-temperature re-
gion ‘5’. This region can be interpreted as a liquid-like
state, whereas the low-temperature region ‘1’ is solid-like
and phonon-dominated, respectively. Here distances be-
tween n.n. particles only slightly vary around l = L/N .
Similar to before, we denote the critical temperature curve
separating regions ‘5’ and ‘1’ by Tc3(n). For n = 1 we find
Tc3(1) ≈ 0.2. If one takes into account, that

(i) the transition temperature Ttr for the specific heat
of a Toda systems with our parameters is given by Ttr =
0.1 according to Bolterauer and Opper [26] and Ttr = 0.16
according to Ebeling and Jenssen [27], and

(ii) in Lennard-Jones systems Ttr approximately equals
the depth ε of the potential well, then it is reasonable to
assume that for Morse rings with b = 1 the inequality

0.1 < Ttr < 0.5 (26)

holds, since they exhibit properties of both Toda and
LJ systems. Thus, Tc3 and Ttr can be considered as quan-
titatively closely related. Both quantities characterize the
transition from solid-like to liquid-like states or phonons
to cnoidal waves, respectively. This conclusion is also sup-
ported by the results presented of the subsequent sections.

3.2 Thermodynamic quantities

In this section we concentrate on the average force P , de-
fined in equation (22) as a combined time and ensemble
average. As already mentioned, we consider P as ‘pres-
sure’, and, therefore, we are particularly interested in its
behavior with respect to variations of temperature T and
density n. Our numerical results, again for a ring with
N = 4 particles, are represented in Figure 4a as isotherms
P vs. l at T =const., where

l := 1/n = L/N (27)

is the specific volume, and in Figure 4b as isochors P vs.
T at l =const.

In Figure 4a one can observe anomalous behavior of
the isotherms at small T near the critical density nc. This
effect is caused by the changing topological structure of
the potential energy UM (x1, . . . , xN ) in this parameter
region, i.e., by the appearance of new minima and max-
ima of UM . In contrast to this, there is no anomalous
behavior at high densities and low densities, since in both
cases the thermodynamic properties are determined by
phonons. More exactly, at low T and high density n > n̄c

the particles form an almost equidistant lattice on the
ring, whereas at low T and small n � nc the N -mer is
formed, which can be considered as a piece of solid with
free ends and n.n. distances given by σ. Based on the prop-
erties of phonons we may deduce that P ∼ ω(n), where
for high-densities ω(n) is the linear oscillation frequency
at the bottom of the effective potential, generated by the
right and left neighbor of a particle. Furthermore, we can
estimate that P ∼ ω(1/σ) =const. at low densities. Upon
considering the motion of the ith particle in the effective
potential

U eff
i =

1
2
(UM

i + UM
i−1), (28)

it is not difficult to determine, that for high densities n >
n̄c and small oscillations at low T

ω2(n) = ω2
0

(
2e

−2b(1−n)
n − e

−b(1−n)
n

)
(29)

holds, where ω0 =
√

ab = 1 (in c.u.) as before. In partic-
ular, one obtains for b = 1, ω0 = ω(1/σ) and n ≈ 1

P ∼ ω(n) ≈ √
3n − 2 =

√
3/l − 2. (30)

For T < 0.1 the two estimations for P are in good agree-
ment with the numerically calculated isotherms in Fig-
ure 4a, as long as n �≈ nc, n̄c. In particular, the pressure in
the N -mer approximately equals the pressure in a system
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Fig. 4. Morse ring with N = 4 and b = 1. (a) Isotherms P vs.
specific volume l = 1/n at T =const. (b) Isochors P vs. T at
l =const.

.

with density n = 1 and same temperature. For isotherms
at T > 0.2 a region with power law behavior

P (l) ∼ l−α , α > 0, (31)

can be found for low density. Furthermore, with increas-
ing temperature T the anomalous part of the isotherms
disappears. For 0.5 < T ↗ 1.0, the numerical isotherms
can, generally, in good approximation be described by
the power law expression (31), but still with α < 1.
Thus, the system behaves rather liquid-like or real-gas-like
than ideal-gas-like in this range. Another interesting effect

is the intersection of the 0.1-isotherm with the 0.3/0.5-
isotherms at low density in Figure 4a. The system may
have the same pressure P at different temperature values,
because there can exist different phase states in the Morse
ring.

In Figure 4b characteristic isochors P vs. T at con-
stant specific volumes l are shown. The system with l = 1
corresponds to the the high density case, and, thus, its
behavior is very similar to that of a Toda rings studied
earlier [6]. Assuming that

P ∼ T β , β > 0, (32)

we find β = 0.5 at small temperature, as well-known from
linear chain models. Then, for increasing temperature the
characteristic exponent β also increases, that is, the Toda-
like Morse lattice becomes more ‘liquid’.

In the opposite case of very low density n = 0.2 <
nc = 0.59 corresponding to l = 5 a Morse ring behaves at
small T like a solid or crystal, respectively. Its behavior
changes dramatically near Tc2 = 0.2, that is in the liquid-
like region where β ≈ 0. Then the isochor again rises with
increasing β, approaching a gas-like state, though a pure
gas state obeying a Clapeyron law with β = 1 is not yet
reached at T < 1. In order to achieve ideal gas behavior
the temperature must be increased further.

Finally, it is interesting to compare two Morse rings
with slightly different densities near the critical value nc =
0.59. The system with l = 1.67 (n = 0.60) behaves like a
solid at small T , then transforms into a liquid-like state. In
contrast, the ring with l = 1.54 (n = 0.63) behaves liquid-
like both at small and high temperatures. In particular,
its pressure P at low T differs essentially from that of
the other three examples, which are rather solid-like at in
the low temperature region. Consequently, in contrast to
Toda systems, a Morse ring with n slightly higher than the
critical density nc may transform into a liquid-like state
at low temperature due to the coexistence of qualitatively
different stable configurations.

3.3 Microscopic properties: SDF spectra
for a Morse ring with N = 10

Having so far only discussed macroscopic thermodynamic
quantities, we now have a closer look at microscopic prop-
erties of Morse rings using the SDF S(ω, k).

All results presented in this part are based on com-
puter simulations for rings with N = 10 particles and,
as before, stiffness parameter b = 1. In particular, we
are interested in the transformations of thermally excited
excitations under variations of temperature and density.
Generally, we concentrate on two types of excitations:

– excitations with spatial magnitude of a ring length L
corresponding to the wave number k = k1 where k1 =
2π/L,

– excitations with spatial magnitude of an N -mer’s
length Lcl = (N − 1)σ corresponding to k = kcl where
kcl = π/Lcl. This case is interesting if both temper-
ature T and density n are low. Also note, that due
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Fig. 5. High-density Morse chain with N = 10 and b = 1. Normalized dynamic structure factor SDF/SDFmax vs. ω for different
temperatures values T and wave number k1 = 2π/L. In (a-d) we have used density n = 1 and, thus, k1 = 0.628. The last two
pictures (e) and (f) are obtained for n = 2 and, thus, k1 = 1.257. During the measurement of the spectrum the heat bath was
switched off, γ0 = 0 and D = 0. (a) For very low temperature T = 0.0001 one observes a phonon spectrum, similar to that of a
linear chain. (b) For increased but still small temperature T = 0.01 nonlinearity effects lead to weak mixing of phonons. (c) In
the region of the transition temperature, T = 0.2 ≈ Ttr, the spectrum clearly changes. (d) For T = 1.0 > Ttr the spectrum is
very noisy. If the density is increased, as in Figures (e) and (f) where n = 2 was used, the Morse ring becomes more Toda-like.
Then for T = 0.2, see Figure (e), the spectrum still looks very similar to (b) rather than (c). Moreover, for T = 1.0, as shown
in (f), the first phonon begins to transform into a soliton-like structure, even though this excitation as well as the other phonons
are less stable then in comparable Toda rings [21]. To summarize, compared with (c) and (d) the spectra in (e) and (f) are
essentially less noisy, indicating that in a Morse chain collective excitations become more stable at high density.

to the different boundary conditions (open ends of the
N -mer) there is no factor 2 in the wave number kcl.

Before we discuss the results it might be useful to recall,
when it is helpful to consider the SDF spectrum of a chain.
The coupling of the chain to the heat bath is determined
by the viscous friction coefficient γ0 and the white noise
amplitude D. Let us assume, that ω0 is the characteristic
frequency for the internal dynamics of the chain (dynamics
without heat bath). Then one usually studies the SDF of
the stationary state only if γ0 � ω0 and D � ω0T holds.
Otherwise, the noise perturbs the internal dynamics too
strongly.

In contrast to macroscopic thermodynamic quantities
like pressure, which should be merely connected to other
thermodynamic quantities, e.g., temperature or density,
the SDF essentially depends on the microscopic parame-
ters, as γ0 or D in our case. More precisely, for different
values of γ0 or D realizing the same temperature value T ,
the SDF can be very different. As it turns out for our
model, for n �≈ n̄c the SDF results only slightly depend
on the above condition γ0 � ω0, and we can neglect the
influence of γ0-variations in those cases. The situation is
different for n ∈ [nc, n̄c]. Here the evolution of collective

structures strongly depends on γ0 and D, for they essen-
tially determine the frequency of transitions between dif-
ferent potential minima and other metastable states. Due
to this reason, we consider the SDF for different values
of γ0 and D, when dealing with the critical density re-
gion. In summary, we concentrate on the following three
situations:

(i) high density n = 1 and n = 2, constant γ0 � 1 and
varying T ;

(ii) low density, n = 1/3, constant γ0 � 1 and vary-
ing T ;

(iii) critical density n ∈ (nc, n̄c) and varying T for
different constant values γ0.

High-density Morse ring (Fig. 5)

We study the evolution of the SDF S(ω, k1), where k1 =
2π/L corresponds to the resonance excitation in the ring
with biggest spatial magnitude. At very small T this ex-
citation is a phonon and its SDF spectrum, see Figure 5a
for n = 1/σ = 1, is a single spectral line at ω = ω1. Anal-
ogously, the spectra S(ω, ki) with higher wave numbers
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ki = 2πi/L, i = 2, 3, . . . consist of a single spectral line at
ωi(ki), corresponding to the ith phonon with frequency

ωi(ki) = 2
∣∣∣∣ω0 sin

(
2πi

L

)∣∣∣∣ · (33)

For increasing but still small T the phonons begin to
weakly interact with each other due to the nonlinearity
of the potentials and, therefore, give birth to new peaks
at small frequencies ω < ω1, see Figure 5b. If the tempera-
ture is close to the transition temperature Ttr the structure
of the spectrum changes essentially. The spatial structures
are not very stable anymore. They interact and deform
strongly, leading to many combined frequency components
with ω < ω1, see Figures 5c and d. This is different com-
pared with Toda rings, in which at high temperatures rel-
atively stable soliton-like excitations dominate the SDF
spectrum. It can be supposed that this difference is due
to the fact, that the topological properties of the Toda
chain remain unchanged under variations of n, whereas
in the Morse chain there may appear new local potential
maxima/saddles if the distance between two n.n. particles
becomes sufficiently large. Such topological changes may
perturb nonlinear excitations and, thus, leads to a more
continuous SDF spectrum, but nevertheless with prevail-
ing components corresponding to nonlinear quasi-soliton-
like structures. As pointed out several times before, with
increasing density a Morse ring becomes more and more
similar to a Toda ring. This is illustrated in Figures 5e
and f, which were obtained for the same temperature val-
ues as in Figures 5c and d but higher density n = 2.
Obviously, for an increased density value the excitations
are more stable; the SDF spectrum becomes less noisy.

In Figure 6 we illustrated the fact that the SDF spec-
trum depends on the microscopic parameters γ0 and D.
One can readily see in this figure, how the spectrum essen-
tially changes for γ0 ≥ 0.1ω0 and D ≥ 0.1ω0T . Intuitively,
this can be explained by the now dominating influence of
the heat bath, resulting in the destruction of collective
particle dynamics. In this regime particles behave rather
individually and the SDF spectrum is very noisy for a wide
temperature range.

Low-density Morse ring (Fig. 7)

In case of n < nc the potential energy UM has N equiv-
alent minima, each corresponding to an N -mer configu-
ration. For arbitrary initial conditions and small T , the
influence of the surrounding bath causes the particles to
choose one of the minima. Hence, the related excitations
in the N -mer are phonons again. In particular, the inter-
nal dynamics is qualitatively similar to that of the chain
with n = 1, even though the frequency composition of
the SDF is different. The latter is now determined by the
new boundary conditions, i.e., by the free ends of the N -
mer. Therefore, the phonon of the biggest magnitude has
a wave number kcl = π/(N − 1), that is kcl ≈ k1/2 for N
large enough. For n = 1/3 the corresponding spectral line
ω(kcl) can be clearly distinguished in Figure 7a. In fact,
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Fig. 6. γ0-dependence of the SDF spectrum with k1 = 2π/L =
0.628. Normalized dynamic structure factor SDF/SDFmax vs.
ω for a Morse ring with n = 1, N = 10, b = 1 at very low
temperature T = 0.0001. During the measurement for both
pictures the heat bath was not switched off. (a) Weak friction
γ0 = 0.001 and (b) strong friction γ0 = 1.0. One can clearly
see, that for parameter values γ0 ≥ ω0 the SDF spectrum is of
little value, if one wants to study collective excitations.

this picture also exhibits other lines at ω(ikcl) since the
value k = 0.628, used for Figure 7a–d, is neither exactly
equal to kcl nor to k1 = 2π/L. With increasing tempera-
ture the phonons are transformed into cnoidal waves, see
Figure 7b; but when the cluster begins to break down
at T = 0.1 ≈ Tc1/2 a new effect is observed, see Fig-
ure 7c. Now the SDF spectrum looks like a 1/f -spectrum,
even if the heat bath is switched off during the stationary
SDF measurement interval (i.e., γ0 = 0 and D = 0). Put
differently, the heat bath has excited a 1/f -type internal
dynamics. We suppose, that this is because the N -mer
sometimes splits into two or three smaller clusters, which
strike each other as big particles. In particular, a 1/f -
structure of the SDF spectrum is to be interpreted as an
indicator for phase transitions in the chain, for it reflects
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Fig. 7. Low-density Morse chain with n = 1/3 and N = 10,
b = 1. Normalized dynamic structure factor SDF/SDFmax vs.
ω for different temperatures and k = 0.628 in all pictures.
During the measurement of the spectrum the heat bath was
switched off, γ0 = 0 and D = 0. (a) T = 0.001, (b) T = 0.07,
(c) T = 0.1 and (d) T = 0.5.

the well-known fact that near critical points correlations
on all length and time scales become relevant.

At higher (super-critical) temperatures T ≥ Tc2 the
clusters with smaller size and the monomers dominate,
i.e., the related cluster distribution function PD[k] ex-
hibits only a single maximum at k = 1. The smaller k-mers
create unstable excitations, similar to the high density
case n = 1 discussed above. Consequently, the correspond-
ing SDF spectrum looks similar to that of the high-density
Morse ring. In particular this also means that beyond the
critical temperature region the 1/f -behavior is destroyed
as shown in Figure 7d.

Morse ring in the critical density interval (Figs. 8–10)

All results presented in this part refer to the density value
n = 0.599. According to equations (19, 20) and the facts
summarized in Section 1.2, we find for the same value
b = 1 as used before

nc = 0.59, n̄c(10) > n̄c(3) = 0.61. (34)

Thus, n = 0.599 lies within the critical interval
[nc, n̄c(10)], where both the equidistant distribution of the
particles as well as the N -mers correspond to stable states,
i.e., they are minima of the full potential energy UM .
Hence, already at relatively low temperature values the
system spontaneously switches from the state with uni-
form density to an N -mer configuration and vice versa.

According to our numerical results, for n ∈ [nc, n̄c(10)]
there exist 1/f -behavior of the SDF over a wide tem-
perature range, see Figures 8, 9 and 10. However, the
most interesting effects are observed at small tempera-
tures. In Figure 8 one can see SDF spectra for very low
temperature T = 10−4 and different values of γ0. Obvi-
ously, the SDF spectrum is essentially transformed, if γ0

is changed. If the heat bath is switched off (i.e., γ0 = 0
and D = 0) during the SDF measurement (pure inter-
nal dynamics) one observes discrete peaks in Figure 8a
corresponding to phonons. If γ0 is increased while keep-
ing T = 10−4 constant, the SDF spectrum becomes more
and more similar to a 1/f -type spectrum, see Figures 8b
and c. This fact indicates an increased destruction of reg-
ular collective excitations. During an intermediate stage,
represented in Figure 8b, the SDF spectrum represents a
mixture of the phonon spectrum and 1/f -behavior. Which
of the signals, phonons or 1/f -noise, eventually dominate
the SDF is mainly determined by the time that the sys-
tem spends in the different metastable states. Compared
with the phase diagram in Figure 3, we are dealing with
the small transition area between regions ‘1’ and ‘2’ at low
temperature, which also corresponds to the critical region
in Figure 4a, where the isotherms show anomalous behav-
ior. Most likely this state can be interpreted as a two-phase
state. It is an interesting property of the Morse ring model,
that such a state can exist at very low temperatures, and,
in particular, in a narrow density interval between regions
corresponding to two rather solid-like states (lattice for
n > n̄c and N -mer state for n < nc).
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Fig. 8. Morse ring with density n = 0.599 ∈ (nc, n̄c) and
parameters N = 10, b = 1. SDF/SDFmax vs. ω for k1 =
2πn/N = 0.376, very low temperature T = 10−4 and different
values γ0. In (a) the heat bath was switched of during the mea-
surement, i.e., γ0 = 0 and D = 0, whereas in (b) γ0 = 10−8

and in (c) γ0 = 10−5. Note, that in (b) and (c) the values cor-
responding to SDFmax cannot be seen, since they are located
in the region ω < 0.01, which is not shown here. As one can
readily see in (b) and (c), the presence of the heat bath dur-
ing the measurement induces a 1/f -behavior in the formerly
phonon-dominated spectrum.
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Fig. 9. Morse ring with density n = 0.599 ∈ (nc, n̄c), N = 10
and b = 1. Normalized dynamic structure factor SDF/SDFmax
vs. ω at moderate temperature T = 0.1 for k = 0.376. During
the measurement of (a) the heat bath was switched off γ0 = 0
and D = 0. During the measurement of (b) the heat bath was
present with γ0 = 1. In both diagrams the values corresponding
to SDFmax cannot be seen, since they are located in the region
ω < 0.01. In contrast to the low temperature case shown in
Figure 8, there now also exists 1/f -behavior if the heat bath is
switched off during the measurement, compare Figure 8a and
Figure 9a.

For higher temperature T = 0.1 there is again 1/f -
behavior as shown in Figure 9. The difference to before
is that this behavior is now also observable, when the
heat bath is switched off during the measurement as the
case in Figure 9a. That means that at this temperature
the internal dynamics is characterized by 1/f , as it was
also observed for low density n = 1/3 < nc in Figure 7c.
Moreover, for T = 0.1 the coupling to the heat bath dur-
ing the SDF measurement merely enhances the internal
1/f -behavior, see Figure 9b. In principle this is similar to
Figure 8c.

Finally, in Figure 10 we also plotted the SDF for rel-
atively high temperature T = 0.5. This value exactly cor-
responds to the depth of the Morse potential with b = 1.
Generally, at high temperature the peculiarities in the
spectra disappear due to the now dominating influence
of the bath. At small γ0-values, see Figure 10a and b, the
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Fig. 10. Morse ring with density n = 0.599 ∈ (nc, n̄c), N = 10
and b = 1 at high temperature T = 0.5 and different values γ0

during the measurement. Normalized dynamic structure factor
SDF/SDFmax vs. ω for k = 0.376 and (a) γ0 = 0, (b) γ0 =
0.001, (c) γ0 = 1.

SDF spectrum looks more or less similar to those obtained
for n = 1 and n = 1/3, compare Figure 5d and 7d. On
the other hand, at large γ0-values, see Figure 10c, the re-
lated SDF is not very different from the spectrum at, for
example, n = 1 and γ0 = 1, that was shown in Figure 6b.
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Fig. 11. Active Morse ring with parameters N = 4, γ0 = 1,
n = 1/3, κ = 1. Critical noise amplitude Dc2 as function of µ.
As before all quantities are given in c.u.

4 A far-from-equilibrium effect

Until now we exclusively discussed results for the equi-
librium system with purely viscous friction, i.e., γ1(v) ≡
0. In the remainder we turn our attention to the non-
equilibrium case characterized by a nonlinear contribu-
tion γ1(v) �= 0 to the effective friction coefficient γ(v) =
γ0 + γ1(v), as given in equation (16). The deterministic
limit case, corresponding to temperature T = 0 of the
heat bath, has already been extensively studied for ac-
tive Toda ring chains [10,28], as well as for active Morse
rings [17]. The main results of these to a large extent an-
alytical studies can be summarized as follows: Generally,
for active systems one can find stable stationary states (at-
tractors), either corresponding to rotational or oscillating
modes (nonlinear waves). The stationary energy of such
stable motions is primarily determined by the parame-
ters of the combined friction coefficient γ(v) = γ0 + γ1(v).
Moreover, the stationary modes always look very simi-
lar to sinusoidal phonon excitations at small energies or
cnoidal soliton-like waves at high energies, known from
the related conservative system. In particular this means
that in active Toda rings stable running soliton excita-
tions may be generated [8,10,28]. In [10] this was even
experimentally confirmed for Rayleigh friction.

In the remainder of this paper, we focus on the proper-
ties of an active Morse system at low density. In particular,
we would like to know how the fragmentation of the N -mer
into smaller k-mers depends on the parameter µ, which en-
codes the uptake of energy from an external reservoir and
its conversion into kinetic energy of motion. To this end,
we determine the critical noise amplitude Dc1 = Tc1γ0, at
which destruction of the N -mer begins, as a function of
the parameter µ. As before in Section 3.1, the probabil-
ity distribution PD[k] will be used for the identification of
this transition.

In Figure 11 one can see the results for an active Morse
ring with parameters N = 4, γ0 = 1, κ = 1 and n = 1/3.
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The diagram shows, how the value Dc1 behaves, when
the parameter µ is increased from the equilibrium value
µeq = −κ to values µ > 0 corresponding to over-critical
pumping.

Interestingly, the curve Dc1 vs. µ exhibits a minimum
at µc ≈ 0.25. This means that there exists a minimal
value Dc1min ≈ 0.025, such that the big cluster is never
destroyed by increasing µ, as long as Dc1 < Dc1min. Al-
ternatively one can say that for µ > µc pumping stabilizes
the cluster compared with the case Dc1 = Dc1min.

An explanation for this unusual effect might be, that
for µ > µc the deterministic energy, pumped into the par-
ticles by virtue of γ1(v), is primarily converted into ‘well-
directed’ kinetic energy of motion. For large enough value
of µ the dissipative force connected with γ1(v) dominates
over the noise and, in particular, stabilizes rotating clus-
ter on the ring (the particles feel an effective temperature,
which is lower than the actual temperature of the heat
bath). Such cluster stabilizing effects of nonlinear friction
should be subject of more detailed investigations in the
future.

5 Summary and conclusions

In this work we discussed numerical results for a 1d-model
of N Brownian particles with periodic boundary condi-
tions (N ≤ 10). We considered n.n. Morse interactions,
which are repulsive at short distances and attracting at
intermediate and long distances. Using this type of inter-
action our model converges to the well-known Toda model
at high densities, whereas at low densities clustering ef-
fects dominate (similar to Lennard-Jones chains).

A Morse ring can be characterized by two different
critical density values nc and n̄c, where nc = n̄c for N =
2 and nc < n̄c for N > 3. For n > nc the equidistant
configuration is a minimum of the full potential energy
UM , and for n < n̄c there exist N equivalent minima of
UM corresponding to clustering states (N -mers). In the
critical interval (nc, n̄c) both types of minima coexist. This
leads to interesting effects, when the ring is coupled to a
heat bath.

The stochastic Langevin equations of motion (e.o.m.)
were numerically integrated using an adapted 4th order
Runge-Kutta method. On the basis of the numerical so-
lutions, phase diagrams for different density and temper-
ature values were calculated. By analyzing the diagrams
for a finite-size Morse ring (N = 4), five different ther-
modynamic states can be classified. Simple analytic esti-
mates for the related pressure support the numerical re-
sults. Moreover, we also investigated collective excitations
in a Morse ring with N = 10 particles by means of the
spectrum of the dynamical structure factor (SDF).

In particular, one is able to distinguish two different
types of liquid-like states of the Morse chain. The first
one is observed at subcritical density values n < nc and
moderate temperature of the heat bath. It can be char-
acterized as mixture of meta-stable k-mers (smaller clus-
ters of bound particles). The second liquid-like state can

be observed at intermediate-to-high temperatures and su-
percritical densities, n > nc. This state is very similar to
the high-temperature state of the Toda chain, which is
characterized by thermally excited cnoidal waves.

The transition regions between different phase states
are related to changes in the SDF spectrum, where sev-
eral types of 1/f -behavior can be observed. In principle,
this reflects the well-known fact that near critical points
correlations on all length and time scales are important.
Since the SDF can be measured in inelastic scattering ex-
periments, it can be a useful tool in order to investigate
phase transitions in real systems.

In the last part, we still presented a numerical result
for an active chain, which is realized by an additional non-
linear dissipative force term in the equations of motions.
By virtue of this force, which can lead to negative friction
due to external non-thermal pumping, the system may
be driven to far-from-equilibrium states. The numerical
results indicate that such an additional energy exchange
mechanism can stabilize cluster configurations.
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