
Journal of Statistical Physics, Vol. 101, Nos. 1�2, 2000

Nonlinear Dynamics and Fluctuations of
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The dynamics of a ring of masses including dissipative forces (passive or active
friction) and Toda interactions between the masses is investigated. The charac-
teristic attractor structure and the influence of noise by coupling to a heat bath
are studied. The system may be driven from the thermodynamic equilibrium to
far from equilibrium states by including negative friction. We show, that over-
critical pumping with free energy may lead to a partition of the phase space into
attractor regions corresponding to several types of collective motions including
uniform rotations, one- and multiple soliton-like excitations and relative oscilla-
tions. The distribution functions in the phase space and the correlation functions
of the forces and the spectra of nonlinear excitations are calculated. We show
that a finite-size Toda ring with weak thermal coupling develops at intermediate
temperatures a broadband colored noise spectrum with an 1� f tail at low fre-
quencies.

KEY WORDS: 1� f noise; soliton like excitations; energy localization; correla-
tion spectrum; activation processes; Active Brownian particles; energy supply;
nonlinear friction.

1. INTRODUCTION

The nonlinear excitations in Toda chains coupled to a heat bath or other
environments were studied in several recent papers.(1�8) One of the reasons
for the special interest in Toda systems is the existence of exact solutions
for the dynamics and the statistical thermodynamics. On this basis it was
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shown in refs. 2 and 3 that phonon excitations determine the spectrum at low
temperatures and strongly localized soliton excitations are the most rele-
vant at high temperatures. In this paper we study dissipative Toda lattices
including noise and passive or active (velocity-dependent) friction. In par-
ticular we will investigate far from equilibrium conditions.

In our earlier work we have studied several special effects in Toda
rings including noise and passive friction, the influence of non-uniformities
and several temperature regimes.(4�8) In subsequent work it was shown by
MD-simulations for 1d-, 2d-, and 3d-systems of up to 200 molecules with
Morse-interactions and with finite-range Lennard�Jones potentials(9, 10) as
well as for the full Lennard�Jones interaction(11) that the basic effects
observed in Toda rings, as e.g., the existence of ``optimal'' temperature
regimes persists for typical molecular forces and in higher dimensions. We
studied energy localization effects in the spectrum of correlations(7, 8) and
the tails of the one-particle distribution function at high energies.(6, 10)

This paper is devoted to the study of dissipative Toda systems including
active friction effects and the influence of noise. Models of active Brownian
particles were recently used for modeling several new types of complex
motion.(12�17) We will study here only one-dimensional systems of N active
Brownian particles with Toda interactions, which form a ring. In recent
works we already studied several phenomena in Toda rings with passive
friction and noise.(7, 8) A first approach to investigate Toda rings of active
particles with the aim to model dissipative solitons was given recently.(13)

In the mentioned work it was shown theoretically and by simulations that
in active Toda rings running excitations may be generated. Here we extend
these studies and introduce a more realistic model for active friction accord-
ing to refs. 12 and 16. First we will investigate the attractor structure for
small and for large strength of pumping, illustrating the transition to a
multistable attractor regime. Then the influence of noise and in particular
the properties of the correlation function of the stochastic forces are
investigated. By numerical integration of Langevin equations we find the
time correlations of the force fluctuations and the power spectrum. The
influence of system size and the role of nonlinear excitations on the low fre-
quency part of the spectrum are discussed. Finally the role of noise beyond
the bifurcation point and in particular the destruction of the attractors of
coherent motion by noise is discussed.

2. THE MODEL OF DISSIPATIVE TODA CHAINS

Our one-dimensional model of active Brownian particles consists of N
point masses mi located at the coordinates xi on a ring with the total
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length L. The particles are connected to their next neighbors at both sides
by pair interactions. The Toda spring energy is described by

U(ri ; |0 , b)=
m|2

0

b2 (exp[&bri]&1+br i ) (1)

where ri=xi+1&xi&_ is the distance to the next particle less the equi-
librium distance _, further b is the stiffness of the springs and |0 is the
linear oscillation frequency around the equilibrium distance _.

We assume in the following that all masses have the same value m=1.0
and that all potential parameters have the same values. Closely related to the
Toda potential is the exponential potential U(ri )=(m|2

0 �b2) exp[&bri]. In
both cases the dynamics on a ring is equivalent. We will assume here that
the average distance of the particles on the ring is equal to the equilibrium
distance _. This is not an essential restriction, since any change of the
average distance may be compensated by a change of other parameters.
For any choice of the parameters the global minimum of the potential
corresponds to the equal distance of the particles. The dynamics of our
Brownian particles is determined by the following Langevin equation for
the individual velocities vi :

dvi

dt
&A[e&b(xi&xi&1)&e&b(xi+1&xi)]=- 2D `i (t)&#(vi) vi (2)

where A=(m|2
0 �b) exp(b_). The terms at the l.h.s. are of conservative

nature and the terms on the r.h.s are of dissipative origin. The first term on
the r.h.s. describes the white noise created by a thermal reservoir

(`i (t))=0 (`i (t) `j (t$)) =$ij$(t&t$) (3)

and the second one the active friction. The parameter D gives the strength
of noise. The case where the friction is purely passive, i.e., #(v)=#0=const
and there is no external force has been studied in detail in refs. 7 and 8.
Here we would like to include the effect of active (negative) friction. As a
simple model of active friction we consider the friction function proposed in
recent work(12, 14, 16) which aims to model active particles with stationary depots:

#(v)=#0&
dq

1+dv2=#0 _1&d \1+dV 2

1+dv2 +& (4)

Here #0 is the usual passive friction, q is the parameter of pumping
strength. The second contribution in Eq. (4) comes from the energy reser-
voir and we will assume here that this energy input does not fluctuate.
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In our model all noise comes from the thermal heat bath. The parameters
q, d, V characterize the pumping. If q>#0 then at small velocities v<V the
friction is negative. The critical velocity is

V=+� :
d

(5)

where

:=
q
#0

&1 (6)

plays the role of the bifurcation parameter. The region :>0 where the fric-
tion function is negative at v<V corresponds to a pumping with free
energy on the cost of the energy reservoir.(12, 16) For simplicity we will
assume throughout this paper that the reservoir is stationary and does not
fluctuate.

3. NONLINEAR DYNAMICS WITHOUT NOISE

Let us now study the solutions of Eq. (2) in the case of zero noise
D=0 considering : as the bifurcation parameter. We have to differ
between two different situations: In the simplest case of passive friction
:<0, i.e., q<#0 all motions come to rest after a finite relaxation time
which is of the order 1�#(0). The dynamical system has only one attractor.
Any initial condition converges to the only stationary and stable solution

vi=0, ri=_, i=1, 2,..., N (7)

corresponding to the rest of all particles on the ring at equal distances. The
system has neutral stability with respect to a drift on the ring. Near to the
point :=0 we may develop

#(vi )=&#0(:&dv2
i +O(v4

i )) (8)

We see that at :=0 a bifurcation occurs. Due to the degeneration of the
problem N of the 2N roots of the linear problem disappear. For :>0
we observe the appearance of N+1 coexisting attractors. The attractors
posses left-right symmetry with respect to rotations on the ring. The main
difference between the attractor states is in qualitative respect given by
different average velocities of the particles on the ring

(v) t=
1
{ |

{

0

1
N

:
N

i=1

vi (9)
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where { is the largest period of oscillations. We mention that the possibility
of non-zero average velocities is connected with the fact that the particles
are provided with free energy. The two left-right symmetrical attractors
which correspond to the largest mean velocity are

vi=\V, ri=_, i=1, 2,..., N (10)

The particles are located at equal distances with the mean density \=N�L
on the ring and rotate with the constant velocity V either in clockwise or
in counter-clockwise direction. This is a point attractor, the stability
follows by an elementary analysis.

The remaining attractors correspond to excitations of two or more local
compression pulses. Generally we can say that in areas where the nonlinear
interaction forces are smaller than the pumping influence (e.g., around equi-
librium distance) the particles aim to reach velocities vi=\V. In areas
dominated by the interaction the particles are forced to slow down and finally
change their directions of motion. In first approximation for large b the com-
bination of (N&k) particles moving clockwise (vi >0) and k counter-
clockwise prepares an attractor with a temporal mean of velocity per particle

(v) tr
N&2k

N �:
d

, k=0 } } } N (11)

It depends on the initial conditions, which attractor is finally visited by the
system.

Numerical investigations of the deterministic system confirm the exist-
ence of these attractors. In case of strongly nonlinear interaction forces we
observe for k>0 different combinations of stationary soliton excitations.
For a ring with N=odd we find in addition to the left-right constant rota-
tions (N&1) attractors with non-zero average velocity all having left-right
symmetry. The two attractors with the second-largest average velocity are
characterized by local compressions which are concentrated mostly on one
of the springs and which are running left-right around the ring. This kind
of excitation reminds of a dissipative soliton. Soliton-like excitations in a
closely related model were investigated in ref. 13. The subsequent attractors
show with decreasing average velocity, i.e., increasing k more complicated
compression patterns running left-right around the ring. Simulations with
stochastic initial conditions (random particle distribution and Gaussian
velocity distribution) always lead to one of the attractors and give an idea
of the attractor basins (see Fig. 1a). All our computer simulations corre-
spond to _=1.0 and |0=1.0, in other words these quantities serve as the
length and time units. The first and last line in Fig. 1a corresponds to the
uniform rotations ((v) t=\V ). In this case the mean energy is minimal
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Fig. 1. (a) Attractors for N=8, \=1.0, m=1.0 in case of over-critical pumping (#0=1.0,
d=1.0, V=1.0) and strongly nonlinear interaction forces (b=10.0). Thin lines represent fre-
quency of appearance per 1000 runs (each with stochastic initial conditions: random particle
distribution, initial velocities vi (0)=- 12 ` where ` is taken from a Gaussian distribution with
standard deviation (1.0) vs. characteristic temporal mean of velocity (horizontal) and
energy(vertical) per particle. (b) Melting away of discrete attractor structure for D=0.03.

(represented by the vertical boxes in Fig. 1a). The second lines, counted
from outside, represent stationary one-soliton excitations of the type found
in ref. 13. Here we find always one particle moving in opposite direction to
the others. For a detailed investigation including the stability analysis of
this attractor see ref. 13. While with stochastic initial conditions the already
described attractors do not appear very often, the most frequently visited
attractor is the central one with (v) t=0 which exists only for N=even.
Neighboring particles oscillate opposingly (vi=&vi&1) around the equi-
librium distance. Similar to the optical excitations in lattice systems, this
attractor is connected to the highest mean energy due to big contributions
of potential energy. For stability discussion concerning this attractor we
introduce new coordinates qi=xi&xi&1&_. Because of xi+1&xi&1#2_
the equations of motion for qi can be written

q* i=2vi , v* i=&#(vi ) vi&2A exp \&
b
\+ sinh bqi (12)
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Fig. 1. (Continued )

This is equivalent to

dvi

dqi
=&

1
2

#(vi )&
A
vi

exp \&
b
\+ sinh bqi (13)

For conservative rings (#(vi )#0) integration of Eq. (13) leads to

v2
i (qi )=v2

i, 0&
A
b

exp \&
b
\+ (cosh bqi&cosh bqi, 0) (14)

The last equation describes a periodic motion in the qi-v-space. The
difference between conservative and dissipative vector-field (Eq. (13)) is
given by

2=&1
2 #(v) (15)

Since 2<0 for V 2<v2 and 2>0 for V 2>v2 the superposition of the con-
servative vector-field and 2 creates the stable periodic attractor for k=N�2
(Fig. 2c).
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Fig. 2. Phaseportraits of the dynamics of the coordinates qi=xi&xi&1&1�\ of one particle
just with nonlinear friction (a), only with Toda-interaction (b) and the same particle under
friction and interaction influences (c). (a) Here it can be seen that moving with \V represents
a stable attractor basin which will be reached for over-critical pumping.

4. THE INFLUENCE OF NOISE

Let us begin with the discussion of the statistical properties of the first
case of purely passive friction (q=0). For under-critical pumping strength
q<#0, i.e., :<0 the phenomena are in qualitative respect very similar to
the case q=0. As shown above the deterministic attractor corresponds to

450 Ebeling et al.



File: 822J 705509 . By:XX . Date:20:09:00 . Time:07:45 LOP8M. V8.B. Page 01:01
Codes: 1627 Signs: 873 . Length: 44 pic 2 pts, 186 mm

Fig. 2. (Continued )

a state where all particles are at rest and have equal distance; the stability
is neutral with respect to rotations. Now we add white noise according to
Eqs. (2) and (3) and assume the validity of an Einstein relation kBT=mD�#0 .
Then the statistical properties are described by a canonical ensemble with
given pressure P and temperature T. Explicite calculations were given in
refs. 1�8. Let us repeat in short a few of the results: Using the abbreviations

X=
=

_bkBT
, Y=

P
bkBT

, ==
m|2

0 _
b

(16)

the distribution function of a single molecule reads

f ( p, r)=Z&1
1 exp \&

p2�2m+Ueff

kBT +
(17)

Z&1
1 =

bX X+Y

- 2?mkBT exp(X ) 1 (X+Y )

with the effective potential

Ueff(r)=U(r)+Pr (18)

Here kB denotes the Boltzmann constant and P the pressure. U(r) is the
Toda potential according to Eq. (1). All thermodynamical functions follow
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by derivation of the partition function with respect to the corresponding
parameters. The specific heat is given by

cV=kB \1
2

+X+Y&
1

9$(X+Y )+ (19)

where the trigamma-function 9$ is defined as usual by the second
logarithmic derivative of the 1-function. This function tends to kB in the
low-temperature regime due to the thermal energy kBT of each phonon.
On the other hand, cV shows the properties of a 1d hard-sphere gas at
high temperatures, i.e., cV tends to 1�2kB . In the middle between the two
limits a weak transition occurs from the phonon-determined regime to a
soliton-determined regime. We introduced a transition temperature Ttr

corresponding to cV=3�4kB . For b=100�_ we get for example kBTtr=
1.6 } 10&3m|2

0_2. In the region around Ttr thermal excitations should be
described more generally as cnoidal waves which contain both phonons
and solitons as special cases in the low- and high- amplitude limit, respec-
tively.(1) Loosely speaking, cnoidal or solitary waves can be considered as
deformed phonons with more or less steep compression humps and shallow
dilatation valleys between them. In the transition region the interaction
between solitary-wave excitations leads to interesting physical effects.

In particular it was shown that a nonlinear Toda chain with periodic
boundary condition is able to transform the uncorrelated, white noise of the
surroundings into noise of 1�|-type.(8) This is a typical finite size effect which
disappears in the thermodynamic limit N � �. In Fig. 3 we have shown the
force-force time-correlation function obtained from simulations for rings
with N=5 and N=30 particles respectively. Both curves show a correlation
minimum and a distinct positive peak corresponding to solitary waves
moving around the ring. The soliton which moves to lower frequency with
increasing particle number on the ring. The power spectrum represented
in Fig. 4 shows a high frequency structure beginning with a soliton peak and
followed by a broad shoulder which decays at high frequencies. At low values
of | we observe a very specific noise which over a few decades behaves like
1�|. In this respect the type of noise we have observed corresponds to the
flicker-noise in small systems investigated by Klimontovich.(18) We observe
also a decrease of amplitude with N. Due to the limited accuracy of our
calculations in the region of low | we cannot make a quantitative statement
about the scaling with N. Klimontovich derives a scaling with N &1.(18) For
Toda rings the 1�f spectrum implies a hierarchy of beatings where periods
with more energetic compression pulses are more probable to appear at
longer time intervals. The internal dynamics is accompanied by a long-term
correlated random rotation of the whole ring. This effect is closely connected
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Fig. 3. The influence of the system size on the autocorrelation functions ACF(t) of a random
force F demonstrated for a 5-particle (dotted) and a 30-particle (solid) Toda ring (parameters:
b=100�_, kB T=0.26=, #=10&3|0). The peaks at tr2.5|&1

0 for N=5 and at tr15|&1
0 for

N=30 correspond to soliton excitations. Compared to the 5-particle ring, in the 30-particle
ring the solitary-wave peak is shifted to the right but also less pronounced because higher
frequencies are thermally activated too.

with the neutral stability with respect to rotations of the ring as a whole.
These coherent fluctuations of the ring correspond to a diffusion regime. We
stress that the Toda ring is in thermal equilibrium and the 1�f tail of the spec-
trum reflects the character of equilibrium fluctuations. The hierarchical order
of the fluctuations is due to the superposition of mainly two soliton-like
waves of similar amplitude and frequency running in opposite directions. The
fluctuations of their amplitudes and frequencies lead to some kind of non-
linear beating phenomenon that is connected to a region of the spectrum that
is similar to 1� f-noise.(8) As shown by Klimontovich flicker-noise may be
interpreted as a diffusion regime of the dynamics of finite systems. Typical
properties of the flicker-noise of Klimontovich-type are:(18)

(i) The flicker noise appears in small systems at frequencies |f l

bounded from above by the diffusion time L2�D and from below by the
observation time tobs

1
tobs

<|f l<
D
L2 (20)
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Fig. 4. Spectra (FF)| corresponding to the ACF of the 5-particle (dashed) and the 30-par-
ticle (solid) Toda rings presented in Fig. 3. The intensity of the 1� f noise at the lower end of
the spectrum is clearly diminished in the 30-particle compared to the 5-particle system indicat-
ing the finite-size character of the 1�f noise.

were D is the diffusion constant (corresponding here to a rotational
stochastic motion of the whole ring) and L is the length of the system
(corresponding here to N_).

(ii) The amplitude of the flicker noise is proportional to 1�(N|),
where N is the particle number.

The 1� f-noise observed here on finite Toda systems is not connected to
a fine-tuning of temperature, structural parameters, particle number, or
thermal coupling, but occurs in a wide range of these quantities with vary-
ing intensity. The deciding property of the underlying deterministic system
is the neutral stability of the ring and the nonlinear coupling between the
modes of oscillation.

So far we considered the passive case q=0. We have shown above that
with increasing q at q=#0 a bifurcation to multistable attractor regime is
observed. Let us now discuss the influence of noise in the case :>0, i.e.,
q>#0 . For that much more complicated case no analytical theory is
available. We may expect however that the monomodal momentum dis-
tributions in the passive case are replaced by multimodal momentum
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distributions. As we have shown the deterministic system is characterized
by an attractor structure corresponding to discrete temporal means of the
average momenta. The fixation of initial conditions corresponds to selec-
tion of a certain attractor, which will be approached by the system. Includ-
ing the white noise term in Eq. (2) by choosing D>0 may allow the system
to switch from approaching one attractor in favor of others. This leads to
transparent separatrices between the attractors and finally to a loss of the
discrete structure in the attractor representation of Fig. 1a, as one can see
in Fig. 1b. We observe transitions between the attractor basins of the
system, which is far from equilibrium and may switch permanently between
the attractor basins. With increasing noise we find a destruction of the
deterministic attractor structure beginning with the outer attractors in Fig. 1.
In other words the coherent motions of the ring with the highest average
velocity are the most sensitive with respect to noise. Figure 5 shoes prob-
ability distributions for the mean velocity of N=2 particles in dependence
on the noise strength. We see that the outer peaks corresponding to
coherent left-right rotations disappear at a noise strength of D&0.15. For
larger N qualitatively similar phenomena are observed.

Fig. 5. Stochastic Bifurcation of an active Toda ring with N=2. The outer maxima, which
correspond to coherent motions, disappear at a noise level of about D&0.15. The center peak
still refers to the most probable attractor because of its bigger width even so it seems to look
smaller.
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5. DISCUSSION AND CONCLUSIONS

The investigation of the dynamics, the statistical properties and excita-
tion spectra in classical nonlinear chains is of central importance to several
branches of physics and chemical kinetics. As simple 1d models of excita-
tions in molecular systems we investigated here Toda systems including
velocity-dependent friction which includes negative parts. The advantage of
this model is that it admits exact solutions for the dynamics and statistical
thermodynamics in the limit of passive friction and on the other hand for
strong negative friction the system may be driven to far from equilibrium
states.

We have shown, that far from equilibrium beyond critical pumping
strength the system develops a rather complicated attractor structure corre-
sponding to more complex nonlinear excitations. In particular we could show
that for strong pumping q>#0 , single rotations of the ring, solitonic excitations,
optical excitations etc. may be realized in dependence of the initial conditions.

The second part of the paper is devoted to the influence of noise. We
started with the case of passive friction #0>q and investigated in particular
q=0. In supplementing the investigations in previous papers(5�11) which
were concentrated on energy localization and distribution functions for
passive systems we presented here new simulations of the time correlations.
We observed a transformation of the uncorrelated noise of a surrounding
heat bath into a broadband colored noise with a long tail at low frequen-
cies confirming the previous findings in refs. 7 and 8. This behavior was
proven here for finite-size Toda rings of N=5 and N=30 particles with
weak thermal coupling in the transition-temperature range. Such systems
seem to be ideal hosts for the excitation of special active sites possessing
resonance frequencies inside this low frequency band. The finite-size Toda
ring with moderate coupling to a surrounding heat bath in the transition-
temperature region is perhaps the simplest classical model of a ring-shaped
biomolecule in solution. The basic idea, which still has to be worked out,
is that the long-term correlated conformational changes which are relevant
in context with protein-folding processes and enzyme reactions might be
related to dynamical mechanisms similar to those observed in our simple
Toda model. We have demonstrated here that the inclusion of energy
supply, which in our case could model the ADP�ATP-exchange, leads to a
more rich multistable dynamics. Beyond critical pumping i.e., at q>#0 we
observed N+1 attractors between which the trajectories may switch under
the influence of noise. This way we observed N+1 different stochastic
regimes corresponding to the deterministic attractors and stochastic transi-
tions between the regimes. With increasing noise first the coherent motions
with the highest average speed of rotation are destroyed as in ref. 19.
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We express the hope that the further investigation of the simple model
system investigated here in this paper will support the understanding of
complex molecular motions, including active motion supported by energy
supply.
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