Computing Sato-Tate and monodromy groups

VaNTAGe Seminar, May 5th 2020

David Zywina

Consider an abelian variety A of dimension $g \geq 1$ defined over a number field K.

- Associated to each non-zero prime ideal $\mathfrak{p} \subseteq \mathscr{O}_{K}$ for which A has good reduction, there is a Frobenius polynomial

$$
P_{\mathfrak{p}}(x) \in \mathbb{Z}[x]
$$

Here is one characterization: for $n \in \mathbb{Z}, P_{\mathfrak{p}}(n)$ is the degree of the endomorphism $n-\pi_{\mathfrak{p}}$ of the reduction of A modulo \mathfrak{p}, where $\pi_{\mathfrak{p}}$ is the Frobenius endomorphism.

- For concreteness, you can think of A as being the Jacobian of an explicit smooth projective curve C over K with genus $g \geq 1$.
If C has good reduction at \mathfrak{p}, the polynomial $P_{\mathfrak{p}}(x)$ is the (reverse) of the numerator of the zeta function of the reduction of C modulo \mathfrak{p}.

The polynomials $P_{\mathfrak{p}}(x)$ are computable by point counting (see Drew's talk for more sophisticated methods).

- From Weil, we know that all of the roots of $P_{\mathfrak{p}}(x)$ in \mathbb{C} have absolute value $\sqrt{N(\mathfrak{p})}$. Let

$$
\widetilde{P}_{\mathfrak{p}}(x) \in \mathbb{R}[x]
$$

be the monic polynomial obtained by scaling the roots of $P_{\mathfrak{p}}(x)$ so that they all have absolute value 1 .

- The coefficients of $\widetilde{P}_{\mathfrak{p}}(x) \in \mathbb{R}[x]$ are bounded independent of \mathfrak{p}. It is natural to study how these polynomials vary with respect to the real topology.

The Sato-Tate conjecture (preliminary version)

As the prime ideal $\mathfrak{p} \subseteq \mathscr{O}_{K}$ varies, the polynomials $\widetilde{P}_{\mathfrak{p}}(x)$ are distributed like the characteristic polynomial of a random matrix in a certain compact Lie group $\mathrm{ST}_{A} \subseteq \operatorname{USp}(2 g)$.

We will define the Sato-Tate group ST_{A}. First we consider the ℓ-adic representations of A.

ℓ-adic Galois representations

Take any prime ℓ.

- The set of points $A(\bar{K})$ is an abelian group with an action of $\mathrm{Gal}_{K}:=\operatorname{Gal}(\bar{K} / K)$ that respects the group structure.
- For each positive integer n, let $A\left[\ell^{n}\right]$ be the ℓ^{n}-torsion subgroup of $A(\bar{K})$. The group $A\left[\ell^{n}\right]$ is a free $\mathbb{Z} / \ell^{n} \mathbb{Z}$-module of rank $2 g$ and comes with a natural Gal_{K}-action.
- Define

$$
V_{\ell}:=\left(\lim _{\rightleftarrows_{n}} A\left[\ell^{n}\right]\right) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell} ;
$$

it is a \mathbb{Q}_{ℓ}-vector space of dimension $2 g$ with a Gal_{K}-action. We can express this Galois action in terms of a representation

$$
\rho_{\ell}: \operatorname{Gal}_{K} \rightarrow \operatorname{Aut}_{\mathbb{Q}_{\ell}}\left(V_{\ell}\right)=\mathrm{GL}_{V_{\ell}}\left(\mathbb{Q}_{\ell}\right)
$$

Choosing a basis for V_{ℓ} would give a representation $\rho_{\ell}: \mathrm{Gal}_{K} \rightarrow \mathrm{GL}_{2 g}\left(\mathbb{Q}_{\ell}\right)$. It is better for us not to make such a choice.

Compatibility

The representation

$$
\rho_{\ell}: \mathrm{Gal}_{K} \rightarrow \mathrm{GL}_{V_{\ell}}\left(\mathbb{Q}_{\ell}\right)
$$

encodes the Frobenius polynomials $P_{\mathfrak{p}}(x)$.

Take any non-zero prime ideal $\mathfrak{p \subseteq} \mathscr{O}_{K}$ for which A has good reduction and $\mathfrak{p} \nmid$.
The representation ρ_{ℓ} is unramified at \mathfrak{p} and we have

$$
P_{\mathfrak{p}}(x)=\operatorname{det}\left(x I-\rho_{\ell}\left(\operatorname{Frob}_{\mathfrak{p}}\right)\right) \in \mathbb{Q}_{\ell}[x] .
$$

Recall that $P_{\mathfrak{p}}(x)$ has coefficients in \mathbb{Z} and is independent of ℓ.

ℓ-adic monodromy group

For each prime ℓ, we have defined a representation

$$
\rho_{\ell}: \mathrm{Gal}_{K} \rightarrow \mathrm{GL}_{V_{\ell}}\left(\mathbb{Q}_{\ell}\right),
$$

where V_{ℓ} is a \mathbb{Q}_{ℓ}-vector space of dimension $2 g$.

Definition

The ℓ-adic monodromy group of A is the Zariski closure G_{ℓ} of $\rho_{\ell}\left(\mathrm{Gal}_{K}\right)$ in $\mathrm{GL}_{V_{\ell}}$; it is a linear algebraic group over \mathbb{Q}_{ℓ}.

Aside: The group $\rho_{\ell}\left(\operatorname{Gal}_{K}\right)$ is an open subgroup of $G_{\ell}\left(\mathbb{Q}_{\ell}\right)$ with respect to the ℓ-adic topology. In particular, G_{ℓ} determines the image of ρ_{ℓ} up to commensurability.

Definition of Sato-Tate group

We have an abelian variety A of dimension $g \geq 1$ over a number field K.

- Choose a prime ℓ and an embedding $i: \mathbb{Q}_{\ell} \hookrightarrow \mathbb{C}$.
- We have defined an algebraic group $G_{\ell} \subseteq \mathrm{GL}_{V_{\ell}}$. Using the Weil pairing on V_{ℓ} and a polarization, we in fact have an inclusion $G_{\ell} \subseteq \mathrm{GSp}_{V_{\ell}}$. Define

$$
G_{\ell}^{1}:=G_{\ell} \cap \mathrm{Sp}_{V_{\ell}} .
$$

Definition

The Sato-Tate group ST_{A} is a maximal compact subgroup of $G_{\ell}^{1}(\mathbb{C})$ with respect to the usual analytic topology, where we have used the embedding i.

We can view ST_{A} as a compact subgroup of $\operatorname{USp}(2 g)$ by choosing a basis for $V_{\ell} \otimes_{\mathbb{Q}_{\ell}, i} \mathbb{C}$.

We have constructed a compact Lie group $\mathrm{ST}_{A} \subseteq \mathrm{USp}(2 g)$.

- Take any prime ideal $\mathfrak{p} \subseteq \mathscr{O}_{K}$ for which A has good reduction and $\mathfrak{p} \nmid \ell$.

The matrix

$$
\frac{i\left(\rho_{\ell}\left(\operatorname{Frob}_{\mathfrak{p}}\right)\right)}{\sqrt{N(\mathfrak{p})}} \in G_{\ell}^{1}(\mathbb{C})
$$

is semisimple and has characteristic polynomial $\widetilde{P}_{\mathfrak{p}}(x)$.

- Since the complex roots of $\widetilde{P}_{\mathfrak{p}}(x)$ have absolute value 1 , there is an element $\vartheta_{\mathfrak{p}} \in \mathrm{ST}_{A}$ that is conjugate in $G_{\ell}^{1}(\mathbb{C})$ to (\star).
Note that $\vartheta_{\mathfrak{p}}$ is well-defined up to conjugacy and has characteristic polynomial $\widetilde{P}_{\mathfrak{p}}(x)$.
The Sato-Tate conjecture says that the elements $\left\{\vartheta_{\mathfrak{p}}\right\}_{\mathfrak{p}}$ are equidistributed in the conjugacy classes of ST_{A} with respect to the Haar measure.

The Sato-Tate conjecture says that the elements $\left\{\vartheta_{\mathfrak{p}}\right\}_{\mathfrak{p}}$ are equidistributed in the conjugacy classes of ST_{A} with respect to the Haar measure.

Equivalently:

The Sato-Tate conjecture

For any continuous central function $f: \mathrm{ST}_{A} \rightarrow \mathbb{C}$, we have

$$
\lim _{x \rightarrow \infty} \frac{1}{|P(x)|} \sum_{\mathfrak{p} \in P(x)} f\left(\vartheta_{\mathfrak{p}}\right)=\int_{\mathrm{ST}_{A}} f d \mu
$$

where $P(x)$ is the set of good prime ideals $\mathfrak{p} \subseteq \mathscr{O}_{K}$ of norm at most x and μ is the Haar measure on ST_{A} normalized so that $\mu\left(\mathrm{ST}_{A}\right)=1$.

A few moments

One technique that has been used to help figure out the group ST_{A} is to compute some moments.

Let $\operatorname{tr}: \mathrm{ST}_{A} \rightarrow \mathbb{R}$ be the trace function; so $\operatorname{tr}\left(\vartheta_{\mathfrak{p}}\right)$ is the sum of the roots of $P_{\mathfrak{p}}(x)$ divided by $\sqrt{N(\mathfrak{p})}$. For an integer $n \geq 0$, define the n-th moment

$$
m_{n}:=\int_{\mathrm{ST}_{A}} \operatorname{tr}^{n} d \mu .
$$

By computing $\operatorname{tr}\left(\vartheta_{\mathfrak{p}}\right)^{n}$ for many \mathfrak{p}, we get approximations for m_{n} (assuming the Sato-Tate conjecture).

Let A be the Jacobian of the curve $y^{3}=x^{4}+x+1$ over $\mathbb{Q}(\sqrt{-3})$. Here is a histogram ${ }^{1}$ of $\operatorname{tr}\left(\vartheta_{\mathfrak{p}}\right)$ for \mathfrak{p} of norm at most 2^{30}.

The actual moments m_{n} are: $1,0,2,0,12,0,120,0,1610,0,25956, \ldots$.
${ }^{1}$ See https://math.mit.edu/~drew/g3SatoTateDistributions.html

Problem

Compute/predict the group $\mathrm{ST}_{A} \subseteq \mathrm{USp}(2 g)$.

- The possible Sato-Tate groups $\mathrm{ST}_{A} \subseteq \mathrm{USp}(2 g)$ have been classified by Fité, Kedlaya, Rotger and Sutherland for small dimensions ($g \leq 3$).
- When $g=3$, there are 410 possibilities for ST_{A} and 14 possibilities for the identity component ST_{A}°.
- The classification of the groups gets much harder as g grows.

When $g \geq 4$, the endomorphism ring of $A_{\bar{K}}$ need no longer determine the group ST_{A}.

When $g \geq 4$, we do not know if the group ST_{A}, as defined above, is independent of the initial choice of ℓ.

Connectedness assumption

For simplicity, we now assume that all the groups G_{ℓ} are connected.
Serre: this can be achieved by replacing K by an appropriate finite extension.
Equivalently, ST_{A} is connected.
How to describe ST_{A} ?

- From Faltings, we know that G_{ℓ} is reductive. So G_{ℓ} over $\overline{\mathbb{Q}}_{\ell}$ is determined, up to isomorphism, by its root datum.
- The natural representation of G_{ℓ} is then determined, up to isomorphism, from the corresponding weights (with multiplicities).
- So the group $\mathrm{ST}_{A} \subseteq \mathrm{USp}(2 g)$ can be described in terms of this combinatorial data.
- Via Weyl's integration formula, this data is useful for computing integrals like those that occur in the Sato-Tate conjecture.
Idea: Look at $P_{\mathfrak{p}}(x)$ for a few primes \mathfrak{p} and try to guess G_{ℓ} and hence ST_{A}.

Theorem (Z.)

Assume that the Mumford-Tate conjecture and the Strong compatibility conjecture for A hold. Then for "most" primes ideals \mathfrak{p} and \mathfrak{q} of \mathscr{O}_{K}, the polynomials

$$
P_{\mathfrak{p}}(x) \quad \text { and } \quad P_{\mathfrak{q}}(x)
$$

determine the Sato-Tate group $\mathrm{ST}_{A} \subseteq \mathrm{USp}(2 g)$ up to conjugacy.
Moreover, they determine the group G_{ℓ} and its representation V_{ℓ}, up to isomorphism, for all sufficiently large ℓ.

Remarks

- "most"?: the theorem holds for all $\mathfrak{p} \notin S$ and $\mathfrak{q} \notin S_{\mathfrak{p}}$, where S and $S_{\mathfrak{p}}$ have density 0 (and $S_{\mathfrak{p}}$ depends on \mathfrak{p}).
- Two primes suffice!!

Theorem (Z.)

Assume that the Mumford-Tate conjecture and the Strong compatibility conjecture for A hold.
Then for "most" primes ideals \mathfrak{p} and \mathfrak{q} of \mathscr{O}_{K}, the polynomials

$$
P_{\mathfrak{p}}(x) \quad \text { and } \quad P_{\mathfrak{q}}(x)
$$

determine the Sato-Tate group $\mathrm{ST}_{A} \subseteq \mathrm{USp}(2 g)$ up to conjugacy.
Moreover, they determine the group G_{ℓ} and its representation V_{ℓ}, up to isomorphism, for all sufficiently large ℓ.

More remarks

The proof actually gives an algorithm (implemented with Magma).
Can consider more primes for confidence. It is essentially a Monte Carlo algorithm; the probability that a incorrect answer is outputted decays exponentially in terms of the number of primes considered.

Aside: what does a prediction for G_{ℓ} tell us?

- A prediction for G_{ℓ} gives a prediction for the dimensions of the \mathbb{Q}_{ℓ}-vector spaces

$$
H_{\mathrm{et}}^{2 i}\left(A_{\bar{K}}^{j}, \mathbb{Q}_{\ell}(i)\right)^{\mathrm{Gal}_{K}} .
$$

- The Tate conjecture says that this space should be spanned by classes arising from subvarieties of $A_{\bar{K}}^{j}$ of codimension i.
- If you can find/prove the existence of these algebraic cycles, then you should be able to actually determine G_{ℓ} unconditionally.

So another way to view the above theorem, is as a way to make predictions about the algebraic cycles of an abelian variety.
(Due to the Mumford-Tate conjecture hypothesis, similar remarks will hold for the Hodge conjecture for powers of A.)

The Mumford-Tate conjecture

- Fix an embedding $\bar{K} \subseteq \mathbb{C}$. Define the \mathbb{Q}-vector space $V:=H_{1}(A(\mathbb{C}), \mathbb{Q})$.
- The Mumford-Tate group is a certain connected and reductive group

$$
G \subseteq \mathrm{GL}_{V}
$$

defined over \mathbb{Q}; it is constructed using the Hodge decomposition of $\left(V \otimes_{\mathbb{Q}} \mathbb{C}\right)^{\vee}=H^{1}(A(\mathbb{C}), \mathbb{C})$.

- For each prime ℓ, we have a comparison isomorphism $V_{\ell}=V \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$. So we can view $G_{\mathbb{Q}_{\ell}}$ as a subgroup of $\mathrm{GL}_{V_{\ell}}$.

The Mumford-Tate conjecture

For each prime ℓ, we have $G_{\ell}=G_{\mathbb{Q}_{\ell}}$.
So conjecturally, the G_{ℓ} arise from a common group G. We should try to find the root data of G !
Also the Mumford-Tate conjecture implies that our construction of ST_{A} does not depend on the choice of prime ℓ or embedding $\mathbb{Q}_{\ell} \hookrightarrow \mathbb{C}$. (The conjecture can also be used to show that ST_{A} is well-defined without our ongoing connected assumption.)

Strong compatibility conjecture

Choose a prime ℓ and an embedding $i: \mathbb{Q}_{\ell} \hookrightarrow \mathbb{C}$.
Assume that the Mumford-Tate conjecture for A holds.
Take any prime ideal $\mathfrak{p} \subseteq \mathscr{O}_{K}$ satisfying $\mathfrak{p} \not \ell$ for which A has good reduction.

Strong compatibility conjecture

The conjugacy class of $G(\mathbb{C})$ containing $i\left(\rho_{\ell}\left(\operatorname{Frob}_{\mathfrak{p}}\right)\right)$ does not depend on the choice of ℓ or i.
Equivalently, the conjugacy class of $\vartheta_{\mathfrak{p}}$ in ST_{A} does not depend on the choice of ℓ or i.

Remark:

- This is stronger than usual (unconditional) compatibility that says that the characteristic polynomial $P_{\mathfrak{p}}(x)$ of $i\left(\rho_{\ell}\left(\right.\right.$ Frob $\left.\left._{\mathfrak{p}}\right)\right)$ does not depend on ℓ or i.
- Actually known quite generally....

Frobenius torus

The first step in computing the root datum of the Mumford-Tate group G is to choose a maximal torus.
Assume the Mumford-Tate conjecture for A and Strong compatibility conjecture

- Take a "random" prime $\mathfrak{p} \subseteq \mathscr{O}_{K}$.
- Let

$$
X_{\mathfrak{p}} \subseteq \overline{\mathbb{Q}}^{\times}
$$

be the subgroup generated by the roots of $P_{\mathfrak{p}}(x)$. It has a $\mathrm{Gal}_{\mathbb{Q}}$-action and is computable!

- Up to isomorphism, there is a unique torus $T_{\mathfrak{p}}$ defined over \mathbb{Q} for which we have an isomorphism

$$
X\left(T_{\mathfrak{p}}\right)=X_{\mathfrak{p}}
$$

of Gal $\mathbb{Q}_{\mathbb{Q}}$-modules, where $X\left(T_{\mathfrak{p}}\right)$ is the group of characters $\left(T_{\mathfrak{p}}\right)_{\overline{\mathbb{Q}}} \rightarrow \mathbb{G}_{m, \overline{\mathbb{Q}}}$.

- We can identify $T_{\mathfrak{p}}$ with a maximal torus of G (this is a white lie, it might only give a maximal torus of the quasi-split inner form of G.)

An example

- Let A be the Jacobian of the curve $y^{2}=x^{9}-1$ over $K=\mathbb{Q}\left(\zeta_{9}\right)$; it has dimension 4 .
- A has CM, so G is a torus. Therefore,

$$
G=T_{\mathfrak{p}}
$$

for "most" \mathfrak{p}.

- Without more info, one expects that G is a torus of dimension 5 . Note that the group $X\left(T_{\mathfrak{p}}\right)=X_{\mathfrak{p}}$ has rank at most 5 when one takes into account the relations $\pi \bar{\pi}=N(\mathfrak{p})$ for a root π of $P_{\mathfrak{p}}(x)$.
- Actually G has dimension 4 which implies that there is an unexpected multiplicative relation in the roots of $P_{\mathfrak{p}}(x)$.

An example (continued)

- A is the Jacobian of the curve $y^{2}=x^{9}-1$ over $K=\mathbb{Q}\left(\zeta_{9}\right)$. We have

$$
A \sim B \times E,
$$

where B is a simple abelian variety of dimension 3 and E is an elliptic curve. So

$$
P_{\mathfrak{p}}(x)=P_{B, \mathfrak{p}}(x) \cdot P_{E, \mathfrak{p}}(x) .
$$

- There are roots $a, b, c \in \overline{\mathbb{Q}}$ of $P_{B, \mathfrak{p}}(x)$ such that

$$
-a b c / N(\mathfrak{p})
$$

is a root of $P_{E, \mathfrak{p}}(x)$. This is our unexpected relation between the roots of $P_{\mathfrak{p}}(x)$.

- Geometric explanation: A has an exceptional algebraic cycle.

The Weyl group

- Back to our general setting: A is a non-zero abelian variety over a number field K and G is the Mumford-Tate group.

For a "random" \mathfrak{p}, we have a maximal torus $T_{\mathfrak{p}} \subseteq G$, where we have an isomorphism $X\left(T_{\mathfrak{p}}\right)=X_{\mathfrak{p}}$ that respects the $\mathrm{Gal}_{\mathbb{Q}}$-actions.

- The Weyl group of G is

$$
W\left(G, T_{\mathfrak{p}}\right):=N_{G}\left(T_{\mathfrak{p}}\right)(\overline{\mathbb{Q}}) / T_{\mathfrak{p}}(\overline{\mathbb{Q}}),
$$

where $N_{G}\left(T_{\mathfrak{p}}\right)$ is the normalizer of $T_{\mathfrak{p}}$ in G.
The group $W\left(G, T_{\mathfrak{p}}\right)$ is finite and conjugation induces a faithful action on $T_{\mathfrak{p}}$ and $X\left(T_{\mathfrak{p}}\right)$.

The Weyl group (continued)

- Recall, the Weyl group $W\left(G, T_{\mathfrak{p}}\right)$ acts faithfully on $X\left(T_{\mathfrak{p}}\right)=X_{\mathfrak{p}}$.
- Now choose a second prime \mathfrak{q}. Let L be the splitting field of $P_{\mathfrak{q}}(x)$ over \mathbb{Q}.

Theorem

For "most" \mathfrak{p} and $\mathfrak{q}, \mathrm{Gal}_{L}$ acts on $X\left(T_{\mathfrak{p}}\right)$ as the Weyl group $W\left(G, T_{\mathfrak{p}}\right)$.

So the first prime \mathfrak{p} gives us a maximal torus $T_{\mathfrak{p}}$ of G.
The second prime \mathfrak{q} gives us the Weyl group $W\left(G, T_{\mathfrak{p}}\right)$ with its action on $X\left(T_{\mathfrak{p}}\right)$.

- We have now described how to find a maximal torus $T_{\mathfrak{p}}$ of G and have found the Weyl group $W\left(G, T_{\mathfrak{p}}\right)$ via its action on $X\left(T_{\mathfrak{p}}\right)$.
- The next major step is to find the set of roots

$$
R\left(G, T_{\mathfrak{p}}\right) \subseteq X\left(T_{\mathfrak{p}}\right)
$$

of G with respect to $T_{\mathfrak{p}}$.

- From the triple

$$
\left(X\left(T_{\mathfrak{p}}\right), W\left(G, T_{\mathfrak{p}}\right), R\left(G, T_{\mathfrak{p}}\right)\right)
$$

one can recover the root datum of G; this describes G up to isomorphism over $\overline{\mathbb{Q}}$.
We can also describe the natural representation of $G_{\overline{\mathbb{Q}}}$ on $V \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}$. The weights in $X\left(T_{\mathfrak{p}}\right)=X_{\mathfrak{p}}$ of the representation $G \subseteq \mathrm{GL}_{V}$ are given by the roots of $P_{\mathfrak{p}}(x)$ (with multiplicities).

From this information, we can compute the Sato-Tate group $\mathrm{ST}_{A} \subseteq \mathrm{USp}(2 g)$.

Finding roots

- Let $\Omega \subseteq X\left(T_{\mathfrak{p}}\right)$ be the set of weights of the representation V_{ℓ} of G_{ℓ}.
- The set Ω corresponds with the roots of $P_{\mathfrak{p}}(x)$ under the isomorphism $X\left(T_{\mathfrak{p}}\right)=X_{\mathfrak{p}}$. Set

$$
W:=W\left(G, T_{\mathfrak{p}}\right) .
$$

- Let $\Omega_{1}, \ldots, \Omega_{s}$ be the W-orbits in Ω. One can show that

$$
R\left(G, T_{\mathfrak{p}}\right) \subseteq \bigcup_{i=1}^{s} \mathscr{C}_{i},
$$

where $\mathscr{C}_{i}:=\left\{\alpha \beta^{-1}: \alpha, \beta \in \Omega_{i}, \alpha \neq \beta\right\}$.
This gives $R\left(G, T_{\mathfrak{p}}\right)$ in a computable finite set. Now need to "sieve" it out.
KEY INPUT: the irreducible representations of $G_{\overline{\mathbb{Q}}}$ on $V \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}$ are minuscule.

Sieving for roots (technical slide $1 / 3$)

Let's give some details on the first step to pick out $R\left(G, T_{\mathfrak{p}}\right)$ from $\cup_{i} \mathscr{C}_{i}$.

- Choose a W-orbit \mathscr{O} in $\cup_{i} \mathscr{C}_{i}$ of minimal cardinality. We have $\mathscr{O} \subseteq \mathscr{C}_{i}$ for some i.
- Let S_{1} be the set of elements in \mathscr{C}_{i} that are in the span of \mathscr{O} in $X\left(T_{\mathfrak{p}}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$. Let r be the dimension of the span of \mathscr{O} in $X\left(T_{\mathfrak{p}}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$.

Proposition

There is a unique irreducible component R_{1} of the root system $R\left(G, T_{\mathfrak{p}}\right)$ with $R_{1} \subseteq S_{1}$; it has rank r.

Sieving for roots (technical slide 2/3)

We can determine the Lie type of R_{1} !

Proposition

i) If $r \geq 1$, then R_{1} has type A_{r} if and only if $|W|=(r+1)$!.
ii) If $r \geq 3$, then R_{1} has type B_{r} if and only if $|W|=2^{r} r$! and S_{1} consists of at least three W-orbits.
iii) If $r \geq 2$, then R_{1} has type C_{r} if and only if $|W|=2^{r} r$! and S_{1} consists of two W-orbits.
iv) If $r \geq 4$, then R_{1} has type D_{r} if and only if $|W|=2^{r-1} r$!.

Note: exceptional Lie types do not occur.

Sieving for roots (technical slide 3/3)

We can finally determine R_{1}.

Proposition

i) If $r \geq 1$ and R_{1} is of type A_{r}, then R_{1} is the unique W-orbit of S_{1} of cardinality $r(r+1)$.
ii) If $r \geq 3$ and R_{1} is of type B_{r}, then R_{1} is the union of the unique W-orbits of S_{1} of cardinality $2 r$ and $2 r(r-1)$.
iii) If $r \geq 2$ and R_{1} is of type C_{r}, then $R_{1}=S_{1}$.
iv) If $r \geq 4$ and R_{1} is of type D_{r}, then R_{1} is the unique W-orbit of S_{1} with cardinality $2 r(r-1)$.

Working in the orthogonal complement in $X\left(T_{\mathfrak{p}}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$ of R_{1}, we can continue in a similar manner and find $R\left(G, T_{\mathfrak{p}}\right)$ and its decomposition into irreducible components.

- We now have root datum for G and a natural $\mathrm{Gal}_{\mathbb{Q}}$-action on it. Unfortunately, this is not enough to recover G.
- It is enough info to determine the quasi-split inner form G_{0} of G.
- For ℓ sufficiently large, we have

$$
\left(G_{0}\right)_{\mathbb{Q}_{\ell}}=G_{\mathbb{Q}_{\ell}}
$$

and hence $\left(G_{0}\right)_{\mathbb{Q}_{\ell}}=G_{\ell}$.

So we have found G_{ℓ} for all ℓ sufficiently large.

Another example

Let A be the Jacobian of the curve

$$
y^{3}=x^{4}+x+1
$$

over $K:=\mathbb{Q}(\sqrt{-3})$. The groups G_{ℓ} are in fact connected.

- Let $\mathfrak{p} \subseteq \mathscr{O}_{K}$ be one of the prime ideals that divides 109 . We have

$$
P_{\mathfrak{p}}(x)=x^{6}-14 x^{5}+224 x^{4}-1871 x^{3}+109 \cdot 224 x^{2}-14 \cdot 109^{2} x+109^{3} .
$$

- Choose roots $\pi_{1}, \pi_{2}, \pi_{3} \in \overline{\mathbb{Q}}$ of $P_{\mathfrak{p}}(x)$ such that all the roots of $P_{\mathfrak{p}}(x)$ are either π_{i} or $\bar{\pi}_{i}=109 / \pi_{i}$. Moreover, we may choose the π_{i} so that they are roots of a cubic with coefficients in $\mathbb{Q}(\sqrt{-3})$.
- The group $X_{\mathfrak{p}} \subseteq \overline{\mathbb{Q}}^{\times}$generated by the roots of $P_{\mathfrak{p}}(x)$ is free abelian of rank 4. In particular, it has basis

$$
\pi_{1}, \pi_{2}, \pi_{3}, 109
$$

With respect to the basis, we fix an isomorphism $X_{\mathfrak{p}}=\mathbb{Z}^{4}$.

We have fixed an isomorphism $X_{\mathfrak{p}}=\mathbb{Z}^{4}$. The roots of $P_{\mathfrak{p}}(x)$ is given by the set $\Omega=\{(1,0,0,0),(0,1,0,0),(0,0,1,0),(-1,0,0,1),(0,-1,0,1),(0,0,-1,1)\}$.

- Now choose a prime ideal $\mathfrak{q} \subseteq \mathscr{O}_{K}$ dividing 127; the group $X_{\mathfrak{q}}$ also has rank 4 . Let L be the splitting field of $P_{\mathfrak{q}}(x)$ and let W be the Galois group of $P_{\mathfrak{p}}(x)$ over L. With respect to the action on $X_{\mathfrak{p}}=\mathbb{Z}^{4}$, we have

$$
W=\left\{\left({ }^{B}{ }_{1}\right): B \in \mathrm{GL}_{3}(\mathbb{Z}) \text { a permutation matrix }\right\} \cong S_{3} .
$$

- The set Ω has two W-orbits Ω_{1} and Ω_{2}, and $R\left(G, T_{\mathfrak{p}}\right)$ is a subset of

$$
\bigcup_{i=1}^{2}\left\{\alpha-\beta: \alpha, \beta \in \Omega_{i}, \alpha \neq \beta\right\}=\{ \pm(1,-1,0,0), \pm(1,0,-1,0), \pm(0,1,-1,0)\} .
$$

- We find that the Lie type of the root system $R\left(G, T_{\mathfrak{p}}\right)$ is of type A_{2} and

$$
R\left(G, T_{\mathfrak{p}}\right)=\{ \pm(1,-1,0,0), \pm(1,0,-1,0), \pm(0,1,-1,0)\} .
$$

Summary of our example

Recall that A is the Jacobian of the curve

$$
y^{3}=x^{4}+x+1
$$

over $\mathbb{Q}(\sqrt{-3})$.
The root datum of G is determined by the following:

- $X\left(T_{\mathfrak{p}}\right)=\mathbb{Z}^{4}$,
- $W\left(G, T_{\mathfrak{p}}\right)$ acts on \mathbb{Z}^{4} by arbitrarily permuting the first three terms and fixing the last one,
- $R\left(G, T_{\mathfrak{p}}\right)=\{ \pm(1,-1,0,0), \pm(1,0,-1,0), \pm(0,1,-1,0)\}$.

The weights are

$$
\Omega=\{(1,0,0,0),(0,1,0,0),(0,0,1,0),(-1,0,0,1),(0,-1,0,1),(0,0,-1,1)\} .
$$

One can then show that, up to conjugacy,

$$
\mathrm{ST}(A)=\left\{\left(\begin{array}{cc}
B & \frac{0}{B} \\
0
\end{array}\right): B \in U(3)\right\} \subseteq \mathrm{USp}(6) .
$$

Conclusions

Some pros to our approach for determining ST_{A} of an abelian variety A :

- Requires fewer primes.
- Does not require a classification and so one can consider higher g; I have done a lot of computations with $g=8$.
- Root data gives a concise description. Moments are easy to compute (via Weyl integration formula).
Major con:
- Only computes ST_{A}°.
[But ideally this would be useful info to then compute ST_{A}]

Conclusions

Some pros to our approach for determining ST_{A} of an abelian variety A :

- Requires fewer primes.
- Does not require a classification and so one can consider higher g; I have done a lot of computations with $g=8$.
- Root data gives a concise description. Moments are easy to compute (via Weyl integration formula).
Major con:
- Only computes ST_{A}°. [But ideally this would be useful info to then compute ST_{A}]

Request

Do you have some interesting examples of abelian varieties over number fields? In particular, some which might have exceptional algebraic cycles.

Please send me an equation (or even better, a few dozen Frobenius polynomials!).

