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Consider an abelian variety A of dimension g≥ 1 defined over a number field K.

• Associated to each non-zero prime ideal p⊆OK for which A has good reduction, there is a
Frobenius polynomial

Pp(x) ∈ Z[x].

Here is one characterization: for n ∈ Z, Pp(n) is the degree of the endomorphism n−πp of
the reduction of A modulo p, where πp is the Frobenius endomorphism.

• For concreteness, you can think of A as being the Jacobian of an explicit smooth projective
curve C over K with genus g≥ 1.

If C has good reduction at p, the polynomial Pp(x) is the (reverse) of the numerator of the
zeta function of the reduction of C modulo p.

The polynomials Pp(x) are computable by point counting (see Drew’s talk for more
sophisticated methods).
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• From Weil, we know that all of the roots of Pp(x) in C have absolute
value

√
N(p). Let

P̃p(x) ∈ R[x]

be the monic polynomial obtained by scaling the roots of Pp(x) so that they all have
absolute value 1.

• The coefficients of P̃p(x) ∈ R[x] are bounded independent of p. It is natural to study how
these polynomials vary with respect to the real topology.

The Sato–Tate conjecture (preliminary version)
As the prime ideal p⊆ OK varies, the polynomials P̃p(x) are distributed like the characteristic
polynomial of a random matrix in a certain compact Lie group STA ⊆ USp(2g).

We will define the Sato–Tate group STA. First we consider the `-adic representations of A.
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`-adic Galois representations
Take any prime `.
• The set of points A(K) is an abelian group with an action of GalK := Gal(K/K)
that respects the group structure.

• For each positive integer n, let A[`n] be the `n-torsion subgroup of A(K). The group A[`n] is
a free Z/`nZ-module of rank 2g and comes with a natural GalK-action.

• Define
V` := (lim←−n

A[`n])⊗Z`
Q`;

it is a Q`-vector space of dimension 2g with a GalK-action. We can express this Galois
action in terms of a representation

ρ` : GalK → AutQ`
(V`) = GLV`(Q`)

Choosing a basis for V` would give a representation ρ` : GalK → GL2g(Q`). It is better for
us not to make such a choice.
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Compatibility

The representation
ρ` : GalK → GLV`(Q`)

encodes the Frobenius polynomials Pp(x).

Take any non-zero prime ideal p⊆OK for which A has good reduction and p - `.

The representation ρ` is unramified at p and we have

Pp(x) = det(xI−ρ`(Frobp)) ∈Q`[x].

Recall that Pp(x) has coefficients in Z and is independent of `.
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`-adic monodromy group

For each prime `, we have defined a representation

ρ` : GalK → GLV`(Q`),

where V` is a Q`-vector space of dimension 2g.

Definition
The `-adic monodromy group of A is the Zariski closure G` of ρ`(GalK) in GLV` ; it is a linear
algebraic group over Q`.

Aside: The group ρ`(GalK) is an open subgroup of G`(Q`) with respect to the `-adic topology.
In particular, G` determines the image of ρ` up to commensurability.
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Definition of Sato–Tate group

We have an abelian variety A of dimension g≥ 1 over a number field K.
• Choose a prime ` and an embedding i : Q` ↪→ C.
• We have defined an algebraic group G` ⊆ GLV` . Using the Weil pairing on V` and a
polarization, we in fact have an inclusion G` ⊆ GSpV` . Define

G1
` := G`∩SpV` .

Definition
The Sato–Tate group STA is a maximal compact subgroup of G1

`(C) with respect to the usual
analytic topology, where we have used the embedding i.

We can view STA as a compact subgroup of USp(2g) by choosing a basis for V`⊗Q`,i C.
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We have constructed a compact Lie group STA ⊆ USp(2g).
• Take any prime ideal p⊆ OK for which A has good reduction and p - `.
The matrix

i(ρ`(Frobp))√
N(p)

∈ G1
`(C). (F)

is semisimple and has characteristic polynomial P̃p(x).
• Since the complex roots of P̃p(x) have absolute value 1, there is an element ϑp ∈ STA that
is conjugate in G1

`(C) to (F).

Note that ϑp is well-defined up to conjugacy and has characteristic polynomial P̃p(x).

The Sato–Tate conjecture says that the elements {ϑp}p are equidistributed in the conjugacy
classes of STA with respect to the Haar measure.

Computing Sato-Tate and monodromy groups David Zywina



8/32

The Sato–Tate conjecture says that the elements {ϑp}p are equidistributed in the conjugacy
classes of STA with respect to the Haar measure.

Equivalently:

The Sato–Tate conjecture
For any continuous central function f : STA→ C, we have

lim
x→∞

1
|P(x)| ∑

p∈P(x)
f (ϑp) =

∫
STA

f dµ,

where P(x) is the set of good prime ideals p⊆OK of norm at most x and µ is the Haar measure
on STA normalized so that µ(STA) = 1.
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A few moments

One technique that has been used to help figure out the group STA is to compute some
moments.

Let tr : STA→ R be the trace function; so tr(ϑp) is the sum of the roots of Pp(x) divided by√
N(p). For an integer n≥ 0, define the n-th moment

mn :=
∫

STA

trn dµ.

By computing tr(ϑp)
n for many p, we get approximations for mn (assuming the Sato–Tate

conjecture).
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Let A be the Jacobian of the curve y3 = x4 + x+1 over Q(
√
−3).

Here is a histogram1 of tr(ϑp) for p of norm at most 230.

The actual moments mn are: 1, 0, 2, 0, 12, 0, 120, 0, 1610, 0, 25956, ....
1See https://math.mit.edu/~drew/g3SatoTateDistributions.html
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Problem
Compute/predict the group STA ⊆ USp(2g).

• The possible Sato–Tate groups STA ⊆ USp(2g) have been classified by Fité, Kedlaya,
Rotger and Sutherland for small dimensions (g≤ 3).

• When g = 3, there are 410 possibilities for STA and 14 possibilities for the identity
component ST◦A.

• The classification of the groups gets much harder as g grows.

When g≥ 4, the endomorphism ring of AK need no longer determine the group STA.

When g≥ 4, we do not know if the group STA, as defined above, is independent of the
initial choice of `.
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Connectedness assumption
For simplicity, we now assume that all the groups G` are connected.
Serre: this can be achieved by replacing K by an appropriate finite extension.

Equivalently, STA is connected.

How to describe STA?
• From Faltings, we know that G` is reductive. So G` over Q` is determined, up to
isomorphism, by its root datum.

• The natural representation of G` is then determined, up to isomorphism, from the
corresponding weights (with multiplicities).

• So the group STA ⊆ USp(2g) can be described in terms of this combinatorial data.
• Via Weyl’s integration formula, this data is useful for computing integrals like those that
occur in the Sato–Tate conjecture.

Idea: Look at Pp(x) for a few primes p and try to guess G` and hence STA.
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Theorem (Z.)
Assume that the Mumford–Tate conjecture and the Strong compatibility conjecture for A hold.
Then for “most” primes ideals p and q of OK , the polynomials

Pp(x) and Pq(x)

determine the Sato-Tate group STA ⊆ USp(2g) up to conjugacy.

Moreover, they determine the group G` and its representation V`, up to isomorphism, for all
sufficiently large `.

Remarks
• ”most”?: the theorem holds for all p /∈ S and q /∈ Sp, where S and Sp have density 0 (and Sp
depends on p).

• Two primes suffice!!
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Theorem (Z.)
Assume that the Mumford–Tate conjecture and the Strong compatibility conjecture for A hold.
Then for “most” primes ideals p and q of OK , the polynomials

Pp(x) and Pq(x)

determine the Sato-Tate group STA ⊆ USp(2g) up to conjugacy.

Moreover, they determine the group G` and its representation V`, up to isomorphism, for all
sufficiently large `.

More remarks
The proof actually gives an algorithm (implemented with Magma).

Can consider more primes for confidence. It is essentially a Monte Carlo algorithm; the
probability that a incorrect answer is outputted decays exponentially in terms of the number of
primes considered.
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Aside: what does a prediction for G` tell us?

• A prediction for G` gives a prediction for the dimensions of the Q`-vector spaces

H2i
ét(A

j
K
,Q`(i))GalK .

• The Tate conjecture says that this space should be spanned by classes arising from
subvarieties of A j

K
of codimension i.

• If you can find/prove the existence of these algebraic cycles, then you should be able to
actually determine G` unconditionally.

So another way to view the above theorem, is as a way to make predictions about the
algebraic cycles of an abelian variety.

(Due to the Mumford–Tate conjecture hypothesis, similar remarks will hold for the Hodge
conjecture for powers of A.)
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The Mumford–Tate conjecture
• Fix an embedding K ⊆ C. Define the Q-vector space V := H1(A(C),Q).
• The Mumford–Tate group is a certain connected and reductive group

G⊆ GLV

defined over Q; it is constructed using the Hodge decomposition of
(V ⊗QC)∨ = H1(A(C),C).

• For each prime `, we have a comparison isomorphism V` =V ⊗QQ`. So we can view GQ`
as

a subgroup of GLV` .

The Mumford–Tate conjecture
For each prime `, we have G` = GQ`

.

So conjecturally, the G` arise from a common group G. We should try to find the root data of
G!
Also the Mumford–Tate conjecture implies that our construction of STA does not depend on
the choice of prime ` or embedding Q` ↪→ C. (The conjecture can also be used to show that
STA is well-defined without our ongoing connected assumption.)
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Strong compatibility conjecture

Choose a prime ` and an embedding i : Q` ↪→ C.
Assume that the Mumford–Tate conjecture for A holds.

Take any prime ideal p⊆ OK satisfying p - ` for which A has good reduction.

Strong compatibility conjecture
The conjugacy class of G(C) containing i(ρ`(Frobp)) does not depend on the choice of ` or i.

Equivalently, the conjugacy class of ϑp in STA does not depend on the choice of ` or i.

Remark:
• This is stronger than usual (unconditional) compatibility that says that the characteristic
polynomial Pp(x) of i(ρ`(Frobp)) does not depend on ` or i.

• Actually known quite generally....
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Frobenius torus
The first step in computing the root datum of the Mumford–Tate group G is
to choose a maximal torus.
Assume the Mumford–Tate conjecture for A and Strong compatibility conjecture

• Take a “random” prime p⊆ OK .
• Let

Xp ⊆Q×

be the subgroup generated by the roots of Pp(x). It has a GalQ-action and is computable!
• Up to isomorphism, there is a unique torus Tp defined over Q for which we have an
isomorphism

X(Tp) = Xp

of GalQ-modules, where X(Tp) is the group of characters (Tp)Q→Gm,Q.
• We can identify Tp with a maximal torus of G
(this is a white lie, it might only give a maximal torus of the quasi-split inner form of G.)
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An example

• Let A be the Jacobian of the curve y2 = x9−1 over K =Q(ζ9); it has dimension 4.
• A has CM, so G is a torus. Therefore,

G = Tp

for “most” p.
• Without more info, one expects that G is a torus of dimension 5. Note that the group

X(Tp) = Xp has rank at most 5 when one takes into account the relations ππ = N(p) for a
root π of Pp(x).

• Actually G has dimension 4 which implies that there is an unexpected multiplicative relation
in the roots of Pp(x).
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An example (continued)

• A is the Jacobian of the curve y2 = x9−1 over K =Q(ζ9). We have

A∼ B×E,

where B is a simple abelian variety of dimension 3 and E is an elliptic curve. So

Pp(x) = PB,p(x) ·PE,p(x).

• There are roots a,b,c ∈Q of PB,p(x) such that

−abc/N(p)

is a root of PE,p(x). This is our unexpected relation between the roots of Pp(x).
• Geometric explanation: A has an exceptional algebraic cycle.
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The Weyl group

• Back to our general setting: A is a non-zero abelian variety over a number field K and G is
the Mumford–Tate group.

For a “random” p, we have a maximal torus Tp ⊆ G, where we have an isomorphism
X(Tp) = Xp that respects the GalQ-actions.

• The Weyl group of G is
W (G,Tp) := NG(Tp)(Q)/Tp(Q),

where NG(Tp) is the normalizer of Tp in G.

The group W (G,Tp) is finite and conjugation induces a faithful action on Tp and X(Tp).
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The Weyl group (continued)

• Recall, the Weyl group W (G,Tp) acts faithfully on X(Tp) = Xp.
• Now choose a second prime q. Let L be the splitting field of Pq(x) over Q.

Theorem
For “most” p and q, GalL acts on X(Tp) as the Weyl group W (G,Tp).

So the first prime p gives us a maximal torus Tp of G.

The second prime q gives us the Weyl group W (G,Tp) with its action on X(Tp).
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• We have now described how to find a maximal torus Tp of G and have found
the Weyl group W (G,Tp) via its action on X(Tp).

• The next major step is to find the set of roots

R(G,Tp)⊆ X(Tp)

of G with respect to Tp.
• From the triple (

X(Tp),W (G,Tp), R(G,Tp)
)

one can recover the root datum of G; this describes G up to isomorphism over Q.

We can also describe the natural representation of GQ on V ⊗QQ. The weights in
X(Tp) = Xp of the representation G⊆ GLV are given by the roots of Pp(x) (with
multiplicities).

From this information, we can compute the Sato–Tate group STA ⊆ USp(2g).
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Finding roots

• Let Ω⊆ X(Tp) be the set of weights of the representation V` of G`.
• The set Ω corresponds with the roots of Pp(x) under the isomorphism X(Tp) = Xp.
Set

W :=W (G,Tp).

• Let Ω1, . . . ,Ωs be the W -orbits in Ω. One can show that

R(G,Tp)⊆
s⋃

i=1

Ci,

where Ci := {αβ−1 : α,β ∈Ωi, α 6= β}.
This gives R(G,Tp) in a computable finite set. Now need to “sieve” it out.

KEY INPUT: the irreducible representations of GQ on V ⊗QQ are minuscule.
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Sieving for roots (technical slide 1/3)

Let’s give some details on the first step to pick out R(G,Tp) from ∪iCi.
• Choose a W -orbit O in ∪iCi of minimal cardinality. We have O ⊆ Ci for some i.
• Let S1 be the set of elements in Ci that are in the span of O in X(Tp)⊗ZQ.
Let r be the dimension of the span of O in X(Tp)⊗ZQ.

Proposition
There is a unique irreducible component R1 of the root system R(G,Tp) with R1 ⊆ S1; it has
rank r.
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Sieving for roots (technical slide 2/3)

We can determine the Lie type of R1!

Proposition

i) If r ≥ 1, then R1 has type Ar if and only if |W |= (r+1)!.
ii) If r ≥ 3, then R1 has type Br if and only if |W |= 2rr! and S1 consists of at least three

W -orbits.
iii) If r ≥ 2, then R1 has type Cr if and only if |W |= 2rr! and S1 consists of two W -orbits.
iv) If r ≥ 4, then R1 has type Dr if and only if |W |= 2r−1r!.

Note: exceptional Lie types do not occur.
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Sieving for roots (technical slide 3/3)

We can finally determine R1.

Proposition

i) If r ≥ 1 and R1 is of type Ar, then R1 is the unique W -orbit of S1 of cardinality r(r+1).
ii) If r ≥ 3 and R1 is of type Br, then R1 is the union of the unique W -orbits of S1 of

cardinality 2r and 2r(r−1).
iii) If r ≥ 2 and R1 is of type Cr, then R1 = S1.
iv) If r ≥ 4 and R1 is of type Dr, then R1 is the unique W -orbit of S1 with cardinality 2r(r−1).

Working in the orthogonal complement in X(Tp)⊗ZQ of R1, we can continue in a similar
manner and find R(G,Tp) and its decomposition into irreducible components.
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• We now have root datum for G and a natural GalQ-action on it. Unfortunately, this is not
enough to recover G.

• It is enough info to determine the quasi-split inner form G0 of G.
• For ` sufficiently large, we have

(G0)Q`
= GQ`

and hence (G0)Q`
= G`.

So we have found G` for all ` sufficiently large.
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Another example

Let A be the Jacobian of the curve
y3 = x4 + x+1

over K :=Q(
√
−3). The groups G` are in fact connected.

• Let p⊆ OK be one of the prime ideals that divides 109. We have

Pp(x) = x6−14x5 +224x4−1871x3 +109 ·224x2−14 ·1092x+1093.

• Choose roots π1,π2,π3 ∈Q of Pp(x) such that all the roots of Pp(x) are either πi or
πi = 109/πi. Moreover, we may choose the πi so that they are roots of a cubic with
coefficients in Q(

√
−3).

• The group Xp ⊆Q× generated by the roots of Pp(x) is free abelian of rank 4. In particular,
it has basis

π1,π2,π3,109.

With respect to the basis, we fix an isomorphism Xp = Z4.
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We have fixed an isomorphism Xp = Z4. The roots of Pp(x) is given by the set

Ω = {(1,0,0,0),(0,1,0,0),(0,0,1,0),(−1,0,0,1),(0,−1,0,1),(0,0,−1,1)}.
• Now choose a prime ideal q⊆OK dividing 127; the group Xq also has rank 4. Let L be the
splitting field of Pq(x) and let W be the Galois group of Pp(x) over L.
With respect to the action on Xp = Z4, we have

W =
{(

B
1

)
: B ∈ GL3(Z) a permutation matrix

}
∼= S3.

• The set Ω has two W -orbits Ω1 and Ω2, and R(G,Tp) is a subset of

2⋃
i=1

{α−β : α,β ∈Ωi,α 6= β}= {±(1,−1,0,0),±(1,0,−1,0),±(0,1,−1,0)}.

• We find that the Lie type of the root system R(G,Tp) is of type A2 and

R(G,Tp) = {±(1,−1,0,0),±(1,0,−1,0),±(0,1,−1,0)}.
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Summary of our example
Recall that A is the Jacobian of the curve

y3 = x4 + x+1

over Q(
√
−3).

The root datum of G is determined by the following:
• X(Tp) = Z4,
• W (G,Tp) acts on Z4 by arbitrarily permuting the first three terms and fixing the last one,
• R(G,Tp) = {±(1,−1,0,0),±(1,0,−1,0),±(0,1,−1,0)}.

The weights are

Ω = {(1,0,0,0),(0,1,0,0),(0,0,1,0),(−1,0,0,1),(0,−1,0,1),(0,0,−1,1)}.

One can then show that, up to conjugacy,

ST(A) =
{(B 0

0 B

)
: B ∈U(3)

}
⊆ USp(6).
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Conclusions
Some pros to our approach for determining STA of an abelian variety A:
• Requires fewer primes.
• Does not require a classification and so one can consider higher g; I have done a lot of
computations with g = 8.

• Root data gives a concise description. Moments are easy to compute (via Weyl integration
formula).

Major con:
• Only computes ST◦A.
[But ideally this would be useful info to then compute STA]

Request
Do you have some interesting examples of abelian varieties over number fields? In particular,
some which might have exceptional algebraic cycles.

Please send me an equation (or even better, a few dozen Frobenius polynomials!).

The end.
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