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Fix a ground field .  k

Definition (Kronecker, Chebotarev, Buhler-Reichstein) 
Let  be a finite extension of -fields. The essential 
dimension  is the least  for which there exists: 
1. a -field  with , 
2. an inclusion of -fields , 
3. a finite extension , and 
4. an isomorphism  over .

K ↪ L k
edk(L/K) d

k K0 tr . degk(K0) = d
k K0 ↪ K

K0 ↪ L0
K ⊗K0

L0 ≅ L K
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Proof: 

(quadratic formula) ∎
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Fix a ground field .  k

Definition (Chebotarev, Brauer, Arnold-Shimura) 
Let  be a finite extension of -fields. The resolvent 
degree  is the least  for which there exists: 
1. a finite extension  over , and 
2. a finite sequence of subfields  

such that  for all . (“Accessory 
irrationalities”)

K ↪ L k
rdk(L/K) d

L ↪ K′ K
K = K0 ↪ ⋯ ↪ Kr = K′ 

edk(Ki+1/Ki) ≤ d i
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Theorem (Bring, Klein) 
Let  be a field of characteristic not 2, 3 or 5. Let  be 
a quintic extension of -fields. Then .

k K ↪ L
k rdk(L/K) = 1

Theorem (Hamilton, Klein) 
Let  be a field of characteristic not 2, 3. Let  be a 
sextic extension of -fields. Then .

k K ↪ L
k rdk(L/K) ≤ 2
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Problem (Hilbert, Segre) 
For each , prove there exists an extension of -fields 

 with 
n > 0 k

K ↪ L rdk(L/K) > n .



Essence of H13

Problem (Hilbert) 
Prove there exists an extension of -fields  with k K ↪ L
rdk(L/K) > 1.

What kind of problem is this?
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.

∃ K ↪ K0 ↪ K1 ↪ ⋯ ↪ Kd = K̄
d = tr . degk(K)
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Properties 
1.  factors through   .  
2.  is Galois for all  
3. Let  be a map of -fields with . 

Then  
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H13 as Galois theory

Resolvent filtration K ↪ K0 ↪ K1 ↪ ⋯ ↪ Kd = K̄

Properties 
1. Maps of -fields preserve the filtration. 
2.  s.t. 

k
rdk > 1 ⇔ ∃K Γ1

K ≠ 1.

Resolvent filtration ΓK ⊵ ΓKk̄ ⊵ Γ1
K ⊵ ⋯ ⊵ Γd
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Resolvent filtration ΓK ⊵ ΓKk̄ ⊵ Γ1
K ⊵ ⋯ ⊵ Γd

K = 1.

Resolvent filtration: 
 πet

1 (X, η̄) ⊵ πet
1 (Xk̄, η̄) ⊵ πet

1 (X, η̄)1 ⊵ ⋯ ⊵ πet
1 (X, η̄)d = 1.

 - -scheme, ,  geometric point.  X k dimk X = d η̄ → X

Same idea  ↝

For  over , 
  

f : (X, η̄) → (Y, η̄) k
f*(πet

1 (X, η̄)i) ⊂ πet
1 (Y, η̄)i .
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Theorem (Farb-Kisin-W) 

Let , and . Then  N ≥ 3 p ∤ N πet
1 (Ag,N/ℂ, η̄)(g + 1

2 )−1 ≠ 1.

Proof: 1) Reduce to showing that for any étale  
such that  is surjective, 
then ,  étale, and  if 

. 
2) Congruence Subgroup Property  with  s.t. 

. 
3) FKW2021  ,  étale, and 

if .   

E → Ag,N/ℂ
πet

1 (E, η̄) → πet
1 (Ag,N/ℂ, η̄) → Sp2g(𝔽p)

∄ f : E → Z Z̃ → Z f*Z̃ ≃ Ag,pN |E
dim Z < Ag,N

⇒ ∃ℓ p ∤ ℓ
Ag,ℓN/ℂ → E → Ag,N/ℂ

⇒ ∄ f : Ag,ℓN/ℂ → Z Z̃ → Z
f*Z̃ ≃ Ag,pN |Ag,ℓN/ℂ

dim Z < Ag,N ∎



H13 as Galois theory
Theorem (Farb-Kisin-W) 

Let , and . Then  N ≥ 3 p ∤ N πet
1 (Ag,N, η̄)(g + 1

2 )−1 ≠ 1.

 Core challenge is birational!∴
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H13 as Galois theory
Counterpoint:  minimizes over accessory irrationalities.  
Disallow these but allow birational trans.

rdk

Definition (Buhler-Reichstein) 
Let  be a finite map of -schemes. The essential 
dimension  is the least  for which there exists: 
1. a rational map  with , 
2. a finite map , and 
3. a birational isomorphism  over .

Y → X k
edk(Y/X) d

f : X ⤏ Z dimk Z ≤ d .
Z̃ → Z

f*Z̃ ≃ Y X

 For every ,  with .∴ n ∃Y → X edk(Y/X) > n
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H13 as Galois theory

 Challenge is interaction of birationality and accessory 
irrationalities.
∴

Problem Does there exist a local ring  such that 
?

A
πet

1 (Spec(A))1 ≠ 1



H13 as Group Theory

Definition 
Let  be a field. Define the resolvent degree of a finite 
group  by  

k
G

rdk(G) := sup
L/K Galois G−ext.

rdk(L/K)



H13 as Group Theory

Definition 
Let  be a field. Define the resolvent degree of a finite 
group  by  

k
G

rdk(G) := sup
L/K Galois G−ext.

rdk(L/K)

Properties 
1.  
2.  
3. .

H ⊂ G ⇒ rdk(H) ≤ rdk(G)
rdk(G) ≤ max{rdk(Gi) | Gi simple factor of G}
rdk(G) ≤ min{dimk V | ∃ ρ : G → GL(V )}



H13 as Group Theory

What’s known:



H13 as Group Theory

What’s known: 
1.  rdk(Cp) = rdk(A5) = rdk(PSL2(𝔽7)) = 1.



H13 as Group Theory

What’s known: 
1.  
2.  

rdk(Cp) = rdk(A5) = rdk(PSL2(𝔽7)) = 1.
rdk(A6), rdk(PSL2(𝔽11)) ≤ 2.



H13 as Group Theory

What’s known: 
1.  
2.  
3.

rdk(Cp) = rdk(A5) = rdk(PSL2(𝔽7)) = 1.
rdk(A6), rdk(PSL2(𝔽11)) ≤ 2.
rdk(A7), rdk(W(E6)+) ≤ 3.



H13 as Group Theory

What’s known: 
1.  
2.  
3.  
4.

rdk(Cp) = rdk(A5) = rdk(PSL2(𝔽7)) = 1.
rdk(A6), rdk(PSL2(𝔽11)) ≤ 2.
rdk(A7), rdk(W(E6)+) ≤ 3.
rdk(A8), rdk(A9), rdk(W(E7)+) ≤ 4.



H13 as Group Theory

What’s known: 
1.  
2.  
3.  
4.  

rdk(Cp) = rdk(A5) = rdk(PSL2(𝔽7)) = 1.
rdk(A6), rdk(PSL2(𝔽11)) ≤ 2.
rdk(A7), rdk(W(E6)+) ≤ 3.
rdk(A8), rdk(A9), rdk(W(E7)+) ≤ 4. rdk(W(E8)+) ≤ 5.



H13 as Group Theory

What’s known: 
1.  
2.  
3.  
4.   
5. Upper bounds for sporadic groups.

rdk(Cp) = rdk(A5) = rdk(PSL2(𝔽7)) = 1.
rdk(A6), rdk(PSL2(𝔽11)) ≤ 2.
rdk(A7), rdk(W(E6)+) ≤ 3.
rdk(A8), rdk(A9), rdk(W(E7)+) ≤ 4. rdk(W(E8)+) ≤ 5.



H13 as Group Theory

What’s known: 
1.  
2.  
3.  
4.   
5. Upper bounds for sporadic groups. 
6.

rdk(Cp) = rdk(A5) = rdk(PSL2(𝔽7)) = 1.
rdk(A6), rdk(PSL2(𝔽11)) ≤ 2.
rdk(A7), rdk(W(E6)+) ≤ 3.
rdk(A8), rdk(A9), rdk(W(E7)+) ≤ 4. rdk(W(E8)+) ≤ 5.

lim
n

(n − rdk(An)) = ∞ .



H13 as Group Theory

What’s known: 
1.  
2.  
3.  
4.   
5. Upper bounds for sporadic groups. 
6.

rdk(Cp) = rdk(A5) = rdk(PSL2(𝔽7)) = 1.
rdk(A6), rdk(PSL2(𝔽11)) ≤ 2.
rdk(A7), rdk(W(E6)+) ≤ 3.
rdk(A8), rdk(A9), rdk(W(E7)+) ≤ 4. rdk(W(E8)+) ≤ 5.

lim
n

(n − rdk(An)) = ∞ .

Conjectures (Hilbert) 
1.  (Sextic conj.) 
2.  (H13) 
3.  (Octic and Nonic conj.)

rdℂ(A6) = 2.
rdℂ(A7) = 3.
rdℂ(A8) = rdℂ(A9) = 4.



H13 as Group Theory

What’s known: 
1.  
2.  
3.  
4.   
5. Upper bounds for sporadic groups. 
6.

rdk(Cp) = rdk(A5) = rdk(PSL2(𝔽7)) = 1.
rdk(A6), rdk(PSL2(𝔽11)) ≤ 2.
rdk(A7), rdk(W(E6)+) ≤ 3.
rdk(A8), rdk(A9), rdk(W(E7)+) ≤ 4. rdk(W(E8)+) ≤ 5.

lim
n

(n − rdk(An)) = ∞ .

Problem Find any finite group  with .G rdk(G) > 1



H13 as Group Theory

Idea expand the context!
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Definition 
Let  be a functor.  Let   
1. The essential dimension of , , is the least  such 

that  with  and . 
2. The resolvent degree of  is 

. 

3. The essential dimension of  is . 

4. The  resolvent degree of  is .

F : Fieldsk → Set α ∈ F(K) .
α edk(α) d

∃L tr . degk(L) ≤ d α ∈ Im(F(L) → F(K))
α

rdk(α) := min
L/K

{max{rdk(L/K), edk(α |L )}}

F edk(F) := sup
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H13 as Group Theory
Examples 
1. fin. s.s. comm. . Then

 when  is a field. 
2.  algebraic group. . 
3.  arithmetic group. .

Fin(K) := {α : K ↪ A | α }/ ≅
rdk(α) = rdk(A/K) A
G rdk(G) := rdk(H1( − ; G))
Γ rdk(Γ) := rdk(H1( − ; Γ̂))
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and  if  has no simple factors of type 

G rdk(G) ≤ 5
rdk(G) = 1 G E8 .

Conjecture (Tits) 
Let  be a connected algebraic group. Then every 
-torsor over a solvably closed field splits.

G G
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H13 as Group Theory
Theorem (Reichstein) 
Let  be a connected algebraic group. Then , 
and  if  has no simple factors of type 

G rdk(G) ≤ 5
rdk(G) = 1 G E8 .

Theorem (Farb-Kisin-W) 
Let  be a reductive group over  with hermitian 
symmetric domain . Let  be a cocompact 
arithmetic group. Then .

G ℚ
X Γ ⊂ G(ℝ)

rdℂ(Γ) ≥ dimℂ X

Question Is a finite group more like a connected 
algebraic group or an arithmetic lattice?



H13 via Hodge Theory?

“Perhaps there is some kind of a 
mixed Hodge structure whose 
weight filtration provides the 
information . . .”
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H13 via Hodge Theory?
Theorem (Farb-Kisin-W) 
Let  be a smooth complex variety. Let  be an 
integral VHS with period map . Let  be 
any quasifinite map. Then 

X Hℤ → X
π : X → Γ∖D E → X

rdℂ(Hℤ |E ) ≥ dimℂ π(X) .

Idea use -adic Hodge theory to adapt this argument to 
finite covers, e.g. .

p
Ag,p → Ag

Problem Heuristic is too strong :(

Proposition 
Let  be a finite group, and  a connected -cover. 
There exists  gen. finite, such that  is 
connected, and 

G X̃ → X G
E → X X̃ |E → E

rdℂ(X̃ |E /E) = 1.
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H13 via Hodge Theory?
Theorem (Farb-Kisin-W) 
Let  be a smooth complex variety. Let  be an 
integral VHS with period map . Let  be 
any quasifinite map. Then 

X Hℤ → X
π : X → Γ∖D E → X

rdℂ(Hℤ |E ) ≥ dimℂ π(X) .

Idea use -adic Hodge theory to adapt this argument to 
finite covers, e.g. .

p
Ag,p → Ag

Theorem (Farb-Kisin-W) 
Let  and  Let  be quasifinite of 
degree prime to . Then 

N ≥ 3 p ∤ N . E → Ag,N
p edℂ(Ag,pN |E /E) = dimℂ Ag,N .

Question Is there a different Hodge theoretic approach?



H13 via Characteristic Classes?



Arnold’s Dictionary

Algebraic Function Vector bundle

Bn GLn

Fox-Neuwirth cells Schubert cells

Characteristic classes Characteristic classes

Confn(ℂ) BGLn

H13 via Characteristic Classes?
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Can characteristic classes detect ?rd > 1

No :(

Norm-Residue Isomorphism (Bloch-Kato)
.⇒ rdk(H*( − ; 𝔽p)) = 1

H13 via Characteristic Classes?



Can characteristic classes detect ?rd > 1

No :(

Norm-Residue Isom.  every mod  Galois 
cohomology class dies after after pulling back 
along a -cover.

⇒ p

p
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Work-in-progress Let  be a complex variety. For 
any , there exists a -power branched cover 

 such that . 

X
p p

E → X Im(H*(X; 𝔽p) → H*(E; 𝔽p)) = 0



Can characteristic classes detect ?rd > 1

No :(

H13 via Characteristic Classes?

Work-in-progress Let  be a complex variety. For 
any , there exists a -power branched cover 

 such that . 

X
p p

E → X Im(H*(X; 𝔽p) → H*(E; 𝔽p)) = 0

 Characteristic classes can’t obstruct (enough) accessory 
irrationalities. 
∴



H13 via “Special” Points

“[We must] fathom the nature 
and significance of the necessary 
accessory irrationalities.”
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Definition 
A saturated class of accessory irrationalities 

 is a sub-functor  such that 
1. . 
2. . 
3.  fin.,  s.t. , then 

 
4.  fin.,  s.t. , then 

ℰ : Fieldsk → Set ℰ ⊂ Fin
∀K, K ∈ ℰ(K)
E, E′ ∈ ℰ(K) ⇒ E ⊗K E′ ∈ ℰ(K)
∀K ↪ L E ∈ Fin(L) (K ↪ L ↪ E) ∈ ℰ(K)
E ∈ ℰ(L) .
∀K ↪ L E ∈ Fin(L) (K ↪ L ↪ E) ∈ ℰ(K)
L ∈ ℰ(K) .
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H13 via “Special” Points

Given  and     - -closureℰ K ∈ Fieldsk ↝ Kℰ ⊂ K̄ ℰ

Examples 
1. ,  - usual abelian closure. 
2. ,  - usual solvable closure. 
3. , 

 (resolvent filtration).

Ab K ↪ KAb

Sol K ↪ KSol

rd≤d
k (K) := {K ↪ A | rdk(A/K) ≤ d}/ ≅

K ↪ Krd≤d
k = Kd
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H13 via “Special” Points
Conjecture (Hilbert’s Sextic) 
Let  be the -torsor associated to the 
Valentiner action . Let  be a faithful 
action on a smooth, irreducible curve. Then 

.

T → Spec(ℂ(x, y)) A6
A6 ↺ ℂℙ2 A6 ↺ X

TX(ℂ(x, y)1) = ∅

Question Can we show ?TX(ℂ(x, y)Sol) = ∅

Problem How do we obstruct solvable points?



Arnold’s Mushroom





Thank you!


