Perspectives on Hilbert's 13th Problem

Jesse Wolfson University of California, Irvine

> VaNTAGe November 7, 2023

Joint with Benson Farb and Mark Kisin

Alex Sutherland and Claudio Gómez-Gonzáles

Goals for Talk

1. Share perspectives on Hilbert's 13th problem.

Goals for Talk

- 1. Share perspectives on Hilbert's 13th problem.
- 2. Entice more people to think about and work on H13 and surrounding problems.

Goals for Talk

- 1. Share perspectives on Hilbert's 13th problem.
- 2. Entice more people to think about and work on H13 and surrounding problems. (more people, more progress)

Fix a ground field k. (Classically, $k = \mathbb{C}$.)

Definition (Kronecker, Chebotarev, Buhler-Reichstein) Let $K \hookrightarrow L$ be a finite extension of k-fields. The essential dimension $ed_k(L/K)$ is the least d for which there exists: 1. a k-field K_0 with $tr \cdot deg_k(K_0) = d$,

- 1. a k-field K_0 with $tr \cdot deg_k(K_0) = d$,
- 2. an inclusion of k-fields $K_0 \hookrightarrow K$,

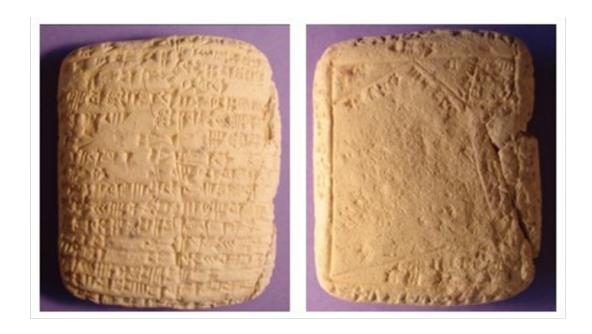
- 1. a k-field K_0 with $tr \cdot deg_k(K_0) = d$,
- 2. an inclusion of k-fields $K_0 \hookrightarrow K$,
- 3. a finite extension $K_0 \hookrightarrow L_{0'}$

- 1. a k-field K_0 with $tr \cdot deg_k(K_0) = d$,
- 2. an inclusion of k-fields $K_0 \hookrightarrow K$,
- 3. a finite extension $K_0 \hookrightarrow L_0$, and
- 4. an isomorphism $K \bigotimes_{K_0} L_0 \cong L$ over K.

Theorem (Babylonians) Let k be a field of characteristic not 2. Let $K \hookrightarrow L$ be a quadratic extension of k-fields. Then $ed_k(L/K) = 1$.

Theorem (Babylonians) Let k be a field of characteristic not 2. Let $K \hookrightarrow L$ be a quadratic extension of k-fields. Then $ed_k(L/K) = 1$.

Proof:



Theorem (Babylonians) Let k be a field of characteristic not 2. Let $K \hookrightarrow L$ be a quadratic extension of k-fields. Then $ed_k(L/K) = 1$.

Proof:

(quadratic formula)

Definition (Chebotarev, Brauer, Arnold-Shimura) Let $K \hookrightarrow L$ be a finite extension of k-fields. The resolvent degree $rd_k(L/K)$ is the least d for which there exists:

Definition (Chebotarev, Brauer, Arnold-Shimura) Let $K \hookrightarrow L$ be a finite extension of k-fields. The *resolvent degree* $rd_k(L/K)$ is the least d for which there exists: 1. a finite extension $L \hookrightarrow K'$ over K, and

Definition (Chebotarev, Brauer, Arnold-Shimura) Let $K \hookrightarrow L$ be a finite extension of *k*-fields. The *resolvent degree* $rd_k(L/K)$ is the least *d* for which there exists:

- 1. a finite extension $L \hookrightarrow K'$ over K, and
- 2. a finite sequence of subfields $K = K_0 \hookrightarrow \cdots \hookrightarrow K_r = K'$ such that $ed_k(K_{i+1}/K_i) \le d$ for all *i*.

Definition (Chebotarev, Brauer, Arnold-Shimura) Let $K \hookrightarrow L$ be a finite extension of *k*-fields. The *resolvent degree* $rd_k(L/K)$ is the least *d* for which there exists:

- 1. a finite extension $L \hookrightarrow K'$ over K, and
- 2. a finite sequence of subfields $K = K_0 \hookrightarrow \cdots \hookrightarrow K_r = K'$ such that $ed_k(K_{i+1}/K_i) \le d$ for all *i*. ("Accessory irrationalities")

Theorem (Italians)

Let k be a field of characteristic not 2 or 3. Let $K \hookrightarrow L$ be an extension of k-fields with $[L : K] \leq 4$. Then $rd_k(L/K) = 1$.

Theorem (Italians)

Let k be a field of characteristic not 2 or 3. Let $K \hookrightarrow L$ be an extension of k-fields with $[L:K] \leq 4$. Then $rd_k(L/K) = 1$.

Theorem (Bring, Klein)

Let k be a field of characteristic not 2, 3 or 5. Let $K \hookrightarrow L$ be a quintic extension of k-fields. Then $rd_k(L/K) = 1$. **Theorem** (Bring, Klein) Let k be a field of characteristic not 2, 3 or 5. Let $K \hookrightarrow L$ be a quintic extension of k-fields. Then $rd_k(L/K) = 1$.

Theorem (Hamilton, Klein)

Let k be a field of characteristic not 2, 3. Let $K \hookrightarrow L$ be a sextic extension of k-fields. Then $rd_k(L/K) \leq 2$.

Problem (Hilbert)

Prove there exists an extension of k-fields $K \hookrightarrow L$ with $rd_k(L/K) > 1$.

Problem (Hilbert)

Prove there exists an extension of k-fields $K \hookrightarrow L$ with $rd_k(L/K) > 1$. (for at least one k)

Problem (Hilbert)

Prove there exists an extension of k-fields $K \hookrightarrow L$ with $rd_k(L/K) > 1$.

Problem (Hilbert, Segre)

For each n > 0, prove there exists an extension of k-fields $K \hookrightarrow L$ with $rd_k(L/K) > n$.

Problem (Hilbert)

Prove there exists an extension of k-fields $K \hookrightarrow L$ with $rd_k(L/K) > 1$.

What kind of problem is this?

Arnold's Mushroom

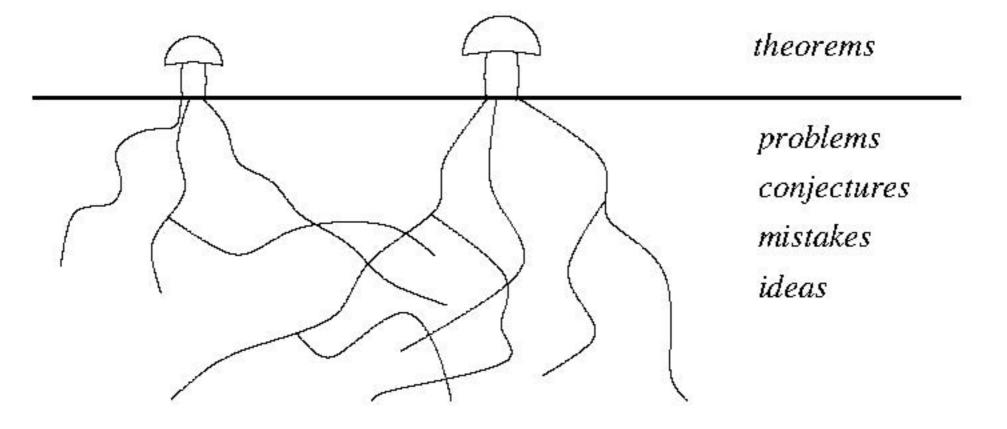


Figure 1: The Mathematical Mushroom

K - finitely generated *k*-field.

K - finitely generated *k*-field. $K \hookrightarrow \overline{K}$ an algebraic closure.

K - finitely generated k-field. $K \hookrightarrow \overline{K}$ an algebraic closure. \exists resolvent filtration $K \hookrightarrow K^0 \hookrightarrow K^1 \hookrightarrow \cdots \hookrightarrow K^d = \overline{K}$ where $d = tr \cdot deg_k(K)$.

Resolvent filtration $K \hookrightarrow K^0 \hookrightarrow K^1 \hookrightarrow \cdots \hookrightarrow K^d = \bar{K}$

Properties

Resolvent filtration $K \hookrightarrow K^0 \hookrightarrow K^1 \hookrightarrow \cdots \hookrightarrow K^d = \bar{K}$

Properties

1. $K \hookrightarrow L$ factors through $K^i \Leftrightarrow rd_k(L/K) \leq i$.

Resolvent filtration $K \hookrightarrow K^0 \hookrightarrow K^1 \hookrightarrow \cdots \hookrightarrow K^d = \bar{K}$

Properties

- 1. $K \hookrightarrow L$ factors through $K^i \Leftrightarrow rd_k(L/K) \leq i$.
- 2. $K \hookrightarrow K^i$ is Galois for all i.

Resolvent filtration $K \hookrightarrow K^0 \hookrightarrow K^1 \hookrightarrow \cdots \hookrightarrow K^d = \bar{K}$

Properties

- 1. $K \hookrightarrow L$ factors through $K^i \Leftrightarrow rd_k(L/K) \leq i$.
- 2. $K \hookrightarrow K^i$ is Galois for all i.
- 3. Let $\varphi \colon \overline{K} \to \overline{K'}$ be a map of k-fields with $\varphi(K) \subset K'$. Then $\varphi(K^i) \subset (K')^i$.

Resolvent filtration $K \hookrightarrow K^0 \hookrightarrow K^1 \hookrightarrow \cdots \hookrightarrow K^d = \overline{K}$

- 1. $K \hookrightarrow L$ factors through $K^i \Leftrightarrow rd_k(L/K) \leq i$.
- 2. $K \hookrightarrow K^i$ is Galois for all i.
- 3. Let $\varphi \colon \overline{K} \to \overline{K'}$ be a map of k-fields with $\varphi(K) \subset K'$. Then $\varphi(K^i) \subset (K')^i \cdot (\Rightarrow Aut_k(K) \cdot K^i = K^i)$

Resolvent filtration $K \hookrightarrow K^0 \hookrightarrow K^1 \hookrightarrow \cdots \hookrightarrow K^d = \bar{K}$

- 1. $K \hookrightarrow L$ factors through $K^i \Leftrightarrow rd_k(L/K) \leq i$.
- 2. $K \hookrightarrow K^i$ is Galois for all i.
- 3. Let $\varphi \colon \overline{K} \to \overline{K'}$ be a map of k-fields with $\varphi(K) \subset K'$. Then $\varphi(K^i) \subset (K')^i$.
- 4. K^i is solvably closed for $i \ge 1$.

Resolvent filtration $K \hookrightarrow K^0 \hookrightarrow K^1 \hookrightarrow \cdots \hookrightarrow K^d = \overline{K}$

- 1. $K \hookrightarrow L$ factors through $K^i \Leftrightarrow rd_k(L/K) \leq i$.
- 2. $K \hookrightarrow K^i$ is Galois for all i.
- 3. Let $\varphi \colon \overline{K} \to \overline{K'}$ be a map of k-fields with $\varphi(K) \subset K'$. Then $\varphi(K^i) \subset (K')^i$.
- 4. K^i is solvably closed for $i \ge 1$. ($\Rightarrow K^i$ is perfect for $i \ge 1$)

Resolvent filtration $K \hookrightarrow K^0 \hookrightarrow K^1 \hookrightarrow \cdots \hookrightarrow K^d = \bar{K}$

- 1. $K \hookrightarrow L$ factors through $K^i \Leftrightarrow rd_k(L/K) \leq i$.
- 2. $K \hookrightarrow K^i$ is Galois for all i.
- 3. Let $\varphi \colon \overline{K} \to \overline{K'}$ be a map of k-fields with $\varphi(K) \subset K'$. Then $\varphi(K^i) \subset (K')^i$.
- 4. K^i is solvably closed for $i \ge 1$.
- 5. $K^0 = K \bigotimes_k \bar{k}$.

Resolvent filtration $K \hookrightarrow K^0 \hookrightarrow K^1 \hookrightarrow \cdots \hookrightarrow K^d = \bar{K}$

- 1. $K \hookrightarrow L$ factors through $K^i \Leftrightarrow rd_k(L/K) \leq i$.
- 2. $K \hookrightarrow K^i$ is Galois for all i.
- 3. Let $\varphi \colon \overline{K} \to \overline{K'}$ be a map of k-fields with $\varphi(K) \subset K'$. Then $\varphi(K^i) \subset (K')^i$.
- 4. K^i is solvably closed for $i \ge 1$.
- 5. $K^0 = K \bigotimes_k \overline{k} . (rd_k = rd_{\overline{k}})$

Resolvent filtration $K \hookrightarrow K^0 \hookrightarrow K^1 \hookrightarrow \cdots \hookrightarrow K^d = \overline{K}$

Resolvent filtration $\Gamma_K \succeq \Gamma_{K\bar{k}} \trianglerighteq \Gamma_K^1 \trianglerighteq \cdots \trianglerighteq \Gamma_K^d = 1$.

Properties

1. Maps of k-fields preserve the filtration.

Resolvent filtration $K \hookrightarrow K^0 \hookrightarrow K^1 \hookrightarrow \cdots \hookrightarrow K^d = \overline{K}$

Resolvent filtration $\Gamma_K \succeq \Gamma_{K\bar{k}} \trianglerighteq \Gamma_K^1 \trianglerighteq \cdots \trianglerighteq \Gamma_K^d = 1$.

Properties

1. Maps of *k*-fields preserve the filtration. (Is filtration characteristic?)

Resolvent filtration $K \hookrightarrow K^0 \hookrightarrow K^1 \hookrightarrow \cdots \hookrightarrow K^d = \overline{K}$

Resolvent filtration $\Gamma_K \succeq \Gamma_{K\bar{k}} \trianglerighteq \Gamma_K^1 \trianglerighteq \cdots \trianglerighteq \Gamma_K^d = 1$.

- 1. Maps of k-fields preserve the filtration.
- 2. $rd_k > 1 \Leftrightarrow \exists K \text{ s.t. } \Gamma_K^1 \neq 1.$

Resolvent filtration
$$\Gamma_K \succeq \Gamma_{K\bar{k}} \trianglerighteq \Gamma_K^1 \trianglerighteq \cdots \trianglerighteq \Gamma_K^d = 1$$
.

Resolvent filtration $\Gamma_K \succeq \Gamma_{K\bar{k}} \trianglerighteq \Gamma_K^1 \trianglerighteq \cdots \trianglerighteq \Gamma_K^d = 1$. X - k-scheme, $\dim_k X = d, \bar{\eta} \to X$ geometric point.

Resolvent filtration $\Gamma_K \supseteq \Gamma_{K\bar{k}} \supseteq \Gamma_K^1 \supseteq \cdots \supseteq \Gamma_K^d = 1$. $X \cdot k$ -scheme, $\dim_k X = d, \bar{\eta} \to X$ geometric point. Same idea \sim

Resolvent filtration $\Gamma_K \succeq \Gamma_{K\bar{k}} \trianglerighteq \Gamma_K^1 \trianglerighteq \cdots \trianglerighteq \Gamma_K^d = 1$. $X \cdot k$ -scheme, $\dim_k X = d, \bar{\eta} \to X$ geometric point. Same idea \prec Resolvent filtration:

 $\pi_1^{et}(X,\bar{\eta}) \ge \pi_1^{et}(X_{\bar{k}},\bar{\eta}) \ge \pi_1^{et}(X,\bar{\eta})^1 \ge \cdots \ge \pi_1^{et}(X,\bar{\eta})^d = 1.$

Resolvent filtration $\Gamma_{K} \succeq \Gamma_{K\bar{k}} \trianglerighteq \Gamma_{K}^{1} \trianglerighteq \cdots \trianglerighteq \Gamma_{K}^{d} = 1.$ X - k-scheme, $\dim_k X = d, \bar{\eta} \to X$ geometric point. Same idea 🛹 **Resolvent filtration:** $\pi_1^{et}(X,\bar{\eta}) \ge \pi_1^{et}(X_{\bar{k}},\bar{\eta}) \ge \pi_1^{et}(X,\bar{\eta})^1 \ge \cdots \ge \pi_1^{et}(X,\bar{\eta})^d = 1.$ For $f: (X, \overline{\eta}) \to (Y, \overline{\eta})$ over k_i $f_*(\pi_1^{et}(X,\bar{\eta})^i) \subset \pi_1^{et}(Y,\bar{\eta})^i.$

Theorem (Farb-Kisin-W) Let $N \geq 3$, and let $A_{g,N}$ be the (fine) moduli space of PPAVs. Let $\bar{\eta} \rightarrow A_{g,N}$ be a geometric point. Let $p \nmid N$ be a prime. Then $\pi_1^{et}(A_{g,N/\mathbb{C}}, \bar{\eta})^{\binom{g+1}{2}-1} \neq 1$.

Theorem (Farb-Kisin-W)

Let $N \ge 3$, and $p \nmid N$. Then $\pi_1^{et}(A_{g,N/\mathbb{C}}, \bar{\eta})^{\binom{g+1}{2}-1} \neq 1$.

Proof:

Theorem (Farb-Kisin-W)

Let $N \ge 3$, and $p \nmid N$. Then $\pi_1^{et}(A_{g,N/\mathbb{C}}, \bar{\eta})^{\binom{g+1}{2}-1} \neq 1$.

Proof: 1) Reduce to showing that for any étale $E \to A_{g,N/\mathbb{C}}$ such that $\pi_1^{et}(E,\bar{\eta}) \to \pi_1^{et}(A_{g,N/\mathbb{C}},\bar{\eta}) \to Sp_{2g}(\mathbb{F}_p)$ is surjective,

Theorem (Farb-Kisin-W)

Let $N \ge 3$, and $p \nmid N$. Then $\pi_1^{et}(A_{g,N/\mathbb{C}}, \bar{\eta})^{\binom{g+1}{2}-1} \neq 1$.

Proof: 1) Reduce to showing that for any étale $E \to A_{g,N/\mathbb{C}}$ such that $\pi_1^{et}(E, \bar{\eta}) \to \pi_1^{et}(A_{g,N/\mathbb{C}}, \bar{\eta}) \to Sp_{2g}(\mathbb{F}_p)$ is surjective, then $\nexists f: E \to Z, \tilde{Z} \to Z$ étale, and $f^*\tilde{Z} \simeq A_{g,pN}|_E$ if $\dim Z < A_{g,N}$.

Theorem (Farb-Kisin-W)

Let $N \ge 3$, and $p \nmid N$. Then $\pi_1^{et}(A_{g,N/\mathbb{C}}, \bar{\eta})^{\binom{g+1}{2}-1} \neq 1$.

Proof: 1) Reduce to showing that for any étale $E \to A_{g,N/\mathbb{C}}$ such that $\pi_1^{et}(E,\bar{\eta}) \to \pi_1^{et}(A_{g,N/\mathbb{C}},\bar{\eta}) \to Sp_{2g}(\mathbb{F}_p)$ is surjective, then $\nexists f: E \to Z, \tilde{Z} \to Z$ étale, and $f^*\tilde{Z} \simeq A_{g,pN}|_E$ if dim $Z < A_{g,N}$. 2) Congruence Subgroup Property $\Rightarrow \exists \ell$ with $p \nmid \ell$ s.t. $A_{g,\ell N/\mathbb{C}} \to E \to A_{g,N/\mathbb{C}}$.

Theorem (Farb-Kisin-W)

Let $N \ge 3$, and $p \nmid N$. Then $\pi_1^{et}(A_{g,N/\mathbb{C}}, \bar{\eta})^{\binom{g+1}{2}-1} \neq 1$.

Proof: 1) Reduce to showing that for any étale $E \to A_{g,N/\mathbb{C}}$ such that $\pi_1^{et}(E,\bar{\eta}) \to \pi_1^{et}(A_{g,N/\mathbb{C}},\bar{\eta}) \to Sp_{2g}(\mathbb{F}_p)$ is surjective, then $\nexists f: E \to Z, \tilde{Z} \to Z$ étale, and $f^*\tilde{Z} \simeq A_{g,pN}|_F$ if $\dim Z < A_{g,N}.$ 2) Congruence Subgroup Property $\Rightarrow \exists \ell \text{ with } p \nmid \ell \text{ s.t.}$ $A_{g,\ell N/\mathbb{C}} \to E \to A_{g,N/\mathbb{C}}.$ 3) FKW2021 $\Rightarrow \nexists f: A_{g,\ell N/\mathbb{C}} \rightarrow Z, \tilde{Z} \rightarrow Z$ étale, and $f^* \tilde{Z} \simeq A_{g,pN} |_{A_{g,\ell N/\mathbb{C}}}$ if dim $Z < A_{g,N}$.

Theorem (Farb-Kisin-W) Let $N \ge 3$, and $p \nmid N$. Then $\pi_1^{et}(A_{g,N}, \bar{\eta})^{\binom{g+1}{2}-1} \neq 1$.

.: Core challenge is birational!

Counterpoint: rd_k minimizes over accessory irrationalities. Disallow these but allow birational trans.

Counterpoint: rd_k minimizes over accessory irrationalities. Disallow these but allow birational trans.

Definition (Buhler-Reichstein)

Let $Y \rightarrow X$ be a finite map of k-schemes. The essential dimension $ed_k(Y|X)$ is the least d for which there exists:

- 1. a rational map $f: X \rightarrow Z$ with $\dim_k Z \leq d$.,
- 2. a finite map $\tilde{Z} \rightarrow Z$, and
- 3. a birational isomorphism $f^*\tilde{Z} \simeq Y$ over X.

Counterpoint: rd_k minimizes over accessory irrationalities. Disallow these but allow birational trans.

Definition (Buhler-Reichstein)

Let $Y \rightarrow X$ be a finite map of k-schemes. The essential dimension $ed_k(Y|X)$ is the least d for which there exists:

- 1. a rational map $f: X \rightarrow Z$ with $\dim_k Z \leq d$.,
- 2. a finite map $\tilde{Z} \rightarrow Z$, and
- 3. a birational isomorphism $f^*\tilde{Z} \simeq Y$ over X.
- : For every n, $\exists Y \to X$ with $ed_k(Y|X) > n$.

. Challenge is interaction of birationality and accessory irrationalities.

. Challenge is interaction of birationality and accessory irrationalities.

Problem Does there exist a local ring A such that $\pi_1^{et}(Spec(A))^1 \neq 1$?

Definition

Let k be a field. Define the *resolvent degree* of a finite group G by

 $rd_k(G) := \sup_{L/K \text{ Galois } G-ext.} rd_k(L/K)$

Definition

Let k be a field. Define the resolvent degree of a finite group G by

$$rd_k(G) := \sup_{L/K \text{ Galois } G-ext.} rd_k(L/K)$$

1.
$$H \subset G \Rightarrow rd_k(H) \leq rd_k(G)$$

- 2. $rd_k(G) \le \max\{rd_k(G_i) \mid G_i \text{ simple factor of } G\}$
- 3. $rd_k(G) \le \min\{\dim_k V \mid \exists \rho : G \to GL(V)\}.$

1.
$$rd_k(C_p) = rd_k(A_5) = rd_k(PSL_2(\mathbb{F}_7)) = 1.$$

What's known:

1.
$$rd_k(C_p) = rd_k(A_5) = rd_k(PSL_2(\mathbb{F}_7)) = 1.$$

2. $rd_k(A_6), rd_k(PSL_2(\mathbb{F}_{11})) \le 2.$

1.
$$rd_k(C_p) = rd_k(A_5) = rd_k(PSL_2(\mathbb{F}_7)) = 1.$$

- 2. $rd_k(A_6), rd_k(PSL_2(\mathbb{F}_{11})) \le 2.$
- 3. $rd_k(A_7), rd_k(W(E_6)^+) \le 3$.

1.
$$rd_k(C_p) = rd_k(A_5) = rd_k(PSL_2(\mathbb{F}_7)) = 1.$$

- 2. $rd_k(A_6), rd_k(PSL_2(\mathbb{F}_{11})) \le 2.$
- 3. $rd_k(A_7), rd_k(W(E_6)^+) \le 3$.
- 4. $rd_k(A_8), rd_k(A_9), rd_k(W(E_7)^+) \le 4.$

1.
$$rd_k(C_p) = rd_k(A_5) = rd_k(PSL_2(\mathbb{F}_7)) = 1.$$

- 2. $rd_k(A_6), rd_k(PSL_2(\mathbb{F}_{11})) \le 2.$
- 3. $rd_k(A_7), rd_k(W(E_6)^+) \le 3.$
- 4. $rd_k(A_8), rd_k(A_9), rd_k(W(E_7)^+) \le 4. rd_k(W(E_8)^+) \le 5.$

1.
$$rd_k(C_p) = rd_k(A_5) = rd_k(PSL_2(\mathbb{F}_7)) = 1.$$

- 2. $rd_k(A_6), rd_k(PSL_2(\mathbb{F}_{11})) \le 2.$
- 3. $rd_k(A_7), rd_k(W(E_6)^+) \le 3.$
- 4. $rd_k(A_8), rd_k(A_9), rd_k(W(E_7)^+) \le 4. rd_k(W(E_8)^+) \le 5.$
- 5. Upper bounds for sporadic groups.

1.
$$rd_k(C_p) = rd_k(A_5) = rd_k(PSL_2(\mathbb{F}_7)) = 1.$$

- 2. $rd_k(A_6), rd_k(PSL_2(\mathbb{F}_{11})) \le 2.$
- 3. $rd_k(A_7), rd_k(W(E_6)^+) \le 3.$
- 4. $rd_k(A_8), rd_k(A_9), rd_k(W(E_7)^+) \le 4. rd_k(W(E_8)^+) \le 5.$
- 5. Upper bounds for sporadic groups.

6.
$$\lim_{n} (n - rd_k(A_n)) = \infty$$
.

What's known:

1.
$$rd_k(C_p) = rd_k(A_5) = rd_k(PSL_2(\mathbb{F}_7)) = 1.$$

- 2. $rd_k(A_6), rd_k(PSL_2(\mathbb{F}_{11})) \le 2.$
- 3. $rd_k(A_7), rd_k(W(E_6)^+) \le 3$.
- 4. $rd_k(A_8), rd_k(A_9), rd_k(W(E_7)^+) \le 4. rd_k(W(E_8)^+) \le 5.$
- 5. Upper bounds for sporadic groups.

6.
$$\lim_{n} (n - rd_k(A_n)) = \infty$$
.

Conjectures (Hilbert)

1.
$$rd_{\mathbb{C}}(A_6) = 2$$
. (Sextic conj.)

- 2. $rd_{\mathbb{C}}(A_7) = 3.$ (H13)
- 3. $rd_{\mathbb{C}}(A_8) = rd_{\mathbb{C}}(A_9) = 4$. (Octic and Nonic conj.)

What's known:

1.
$$rd_k(C_p) = rd_k(A_5) = rd_k(PSL_2(\mathbb{F}_7)) = 1.$$

- 2. $rd_k(A_6), rd_k(PSL_2(\mathbb{F}_{11})) \le 2.$
- 3. $rd_k(A_7), rd_k(W(E_6)^+) \le 3.$
- 4. $rd_k(A_8), rd_k(A_9), rd_k(W(E_7)^+) \le 4. rd_k(W(E_8)^+) \le 5.$
- 5. Upper bounds for sporadic groups.

6.
$$\lim_{n} (n - rd_k(A_n)) = \infty$$
.

Problem Find *any* finite group G with $rd_k(G) > 1$.

Idea expand the context!

Definition

Let $F: Fields_k \to Set$ be a functor. Let $\alpha \in F(K)$.

Definition

Let $F: Fields_k \to Set$ be a functor. Let $\alpha \in F(K)$.

1. The essential dimension of α , $ed_k(\alpha)$, is the least d such that $\exists L$ with $tr \cdot deg_k(L) \leq d$ and $\alpha \in Im(F(L) \rightarrow F(K))$.

Definition

Let $F: Fields_k \to Set$ be a functor. Let $\alpha \in F(K)$.

- 1. The essential dimension of α , $ed_k(\alpha)$, is the least d such that $\exists L$ with $tr \cdot deg_k(L) \leq d$ and $\alpha \in Im(F(L) \rightarrow F(K))$.
- 2. The resolvent degree of α is

 $rd_{k}(\alpha) := \min_{L/K} \{ max\{ rd_{k}(L/K), ed_{k}(\alpha|_{L}) \} \}.$

Definition

Let $F: Fields_k \to Set$ be a functor. Let $\alpha \in F(K)$.

- 1. The essential dimension of α , $ed_k(\alpha)$, is the least d such that $\exists L$ with $tr \cdot deg_k(L) \leq d$ and $\alpha \in Im(F(L) \rightarrow F(K))$.
- The resolvent degree of α is
 rd_k(α) := min{max{rd_k(L/K), ed_k(α|_L)}}.
 3. The essential dimension of F is ed_k(F) := sup ed_k(α).

 $\alpha \in F(K)$

Definition

Let $F: Fields_k \to Set$ be a functor. Let $\alpha \in F(K)$.

- 1. The essential dimension of α , $ed_k(\alpha)$, is the least d such that $\exists L$ with $tr \cdot deg_k(L) \leq d$ and $\alpha \in Im(F(L) \rightarrow F(K))$.
- The resolvent degree of α is
 rd_k(α) := min {max {rd_k(L/K), ed_k(α|_L)}}.
 3. The essential dimension of F is ed_k(F) := sup ed_k(α).
- 4. The resolvent degree of F is $rd_k(F) := \sup_{\alpha \in F(K)} rd_k(\alpha)$.

Examples

1. $Fin(K) := \{ \alpha \colon K \hookrightarrow A \mid \alpha \text{ fin. s.s. comm.} \} / \cong .$ Then $rd_k(\alpha) = rd_k(A/K)$ when A is a field.

Examples

1. $Fin(K) := \{ \alpha \colon K \hookrightarrow A \mid \alpha \text{ fin. s.s. comm.} \} / \cong .$ Then

 $rd_k(\alpha) = rd_k(A/K)$ when A is a field (agrees with above)

- 1. $Fin(K) := \{ \alpha \colon K \hookrightarrow A \mid \alpha \text{ fin. s.s. comm.} \} / \cong .$ Then $rd_k(\alpha) = rd_k(A/K)$ when A is a field.
- 2. *G* algebraic group. $rd_k(G) := rd_k(H^1(-;G))$.

- 1. $Fin(K) := \{ \alpha \colon K \hookrightarrow A \mid \alpha \text{ fin. s.s. comm.} \} / \cong .$ Then $rd_k(\alpha) = rd_k(A/K)$ when A is a field.
- 2. *G* algebraic group. $rd_k(G) := rd_k(H^1(-;G))$. (agrees with above for finite groups)

- 1. $Fin(K) := \{ \alpha \colon K \hookrightarrow A \mid \alpha \text{ fin. s.s. comm.} \} / \cong .$ Then $rd_k(\alpha) = rd_k(A/K)$ when A is a field.
- 2. *G* algebraic group. $rd_k(G) := rd_k(H^1(-;G))$.
- 3. Γ arithmetic group. $rd_k(\Gamma) := rd_k(H^1(-;\hat{\Gamma}))$.

Theorem (Reichstein)

Let G be a connected algebraic group. Then $rd_k(G) \leq 5$, and $rd_k(G) = 1$ if G has no simple factors of type E_8 .

Theorem (Reichstein)

Let G be a connected algebraic group. Then $rd_k(G) \leq 5$, and $rd_k(G) = 1$ if G has no simple factors of type E_8 .

Conjecture (Tits)

Let G be a connected algebraic group. Then every G -torsor over a solvably closed field splits.

Theorem (Reichstein)

Let G be a connected algebraic group. Then $rd_k(G) \leq 5$, and $rd_k(G) = 1$ if G has no simple factors of type E_8 .

Conjecture (Tits)

Let G be a connected algebraic group. Then every G -torsor over a solvably closed field splits. (Type E_8 only remaining open case)

Theorem (Reichstein)

Let G be a connected algebraic group. Then $rd_k(G) \leq 5$, and $rd_k(G) = 1$ if G has no simple factors of type E_8 .

Conjecture (Tits)

Let G be a connected algebraic group. Then every G -torsor over a solvably closed field splits.

Conjecture $\Rightarrow rd_k(G) = 1$ for G connected.

Theorem (Reichstein)

Let G be a connected algebraic group. Then $rd_k(G) \leq 5$, and $rd_k(G) = 1$ if G has no simple factors of type E_8 .

Theorem (Farb-Kisin-W)

Let G be a reductive group over \mathbb{Q} with hermitian symmetric domain X. Let $\Gamma \subset G(\mathbb{R})$ be a cocompact arithmetic group.

Theorem (Reichstein)

Let G be a connected algebraic group. Then $rd_k(G) \leq 5$, and $rd_k(G) = 1$ if G has no simple factors of type E_8 .

Theorem (Farb-Kisin-W)

Let G be a reductive group over \mathbb{Q} with hermitian symmetric domain X. Let $\Gamma \subset G(\mathbb{R})$ be a cocompact arithmetic group. Then $rd_{\mathbb{C}}(\Gamma) \geq \dim_{\mathbb{C}} X$.

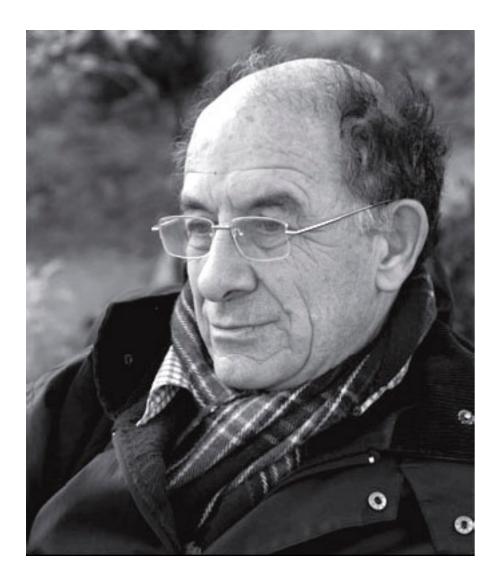
Theorem (Reichstein)

Let G be a connected algebraic group. Then $rd_k(G) \leq 5$, and $rd_k(G) = 1$ if G has no simple factors of type E_8 .

Theorem (Farb-Kisin-W)

Let G be a reductive group over \mathbb{Q} with hermitian symmetric domain X. Let $\Gamma \subset G(\mathbb{R})$ be a cocompact arithmetic group. Then $rd_{\mathbb{C}}(\Gamma) \geq \dim_{\mathbb{C}} X$.

Question Is a finite group more like a connected algebraic group or an arithmetic lattice?



"Perhaps there is some kind of a mixed Hodge structure whose weight filtration provides the information . . ."

Theorem (Farb-Kisin-W) Let *X* be a smooth complex variety.

Theorem (Farb-Kisin-W)

Let X be a smooth complex variety. Let $H_{\mathbb{Z}} \to X$ be an integral VHS with period map $\pi \colon X \to \Gamma \setminus D$.

Theorem (Farb-Kisin-W) Let X be a smooth complex variety. Let $H_{\mathbb{Z}} \to X$ be an integral VHS with period map $\pi \colon X \to \Gamma \setminus D$. Then $rd_{\mathbb{C}}(H_{\mathbb{Z}}) \geq \dim_{\mathbb{C}} \pi(X)$.

Theorem (Farb-Kisin-W) Let X be a smooth complex variety. Let $H_{\mathbb{Z}} \to X$ be an integral VHS with period map $\pi \colon X \to \Gamma \setminus D$. Then $rd_{\mathbb{C}}(H_{\mathbb{Z}}) \geq \dim_{\mathbb{C}} \pi(X)$.

In fact, theorem of the fixed part implies:

Theorem (Farb-Kisin-W)

Let X be a smooth complex variety. Let $H_{\mathbb{Z}} \to X$ be an integral VHS with period map $\pi \colon X \to \Gamma \setminus D$. Let $E \to X$ be any quasifinite map. Then $rd_{\mathbb{C}}(H_{\mathbb{Z}}|_{E}) \ge \dim_{\mathbb{C}} \pi(X)$.

Theorem (Farb-Kisin-W)

Let X be a smooth complex variety. Let $H_{\mathbb{Z}} \to X$ be an integral VHS with period map $\pi \colon X \to \Gamma \setminus D$. Let $E \to X$ be any quasifinite map. Then $rd_{\mathbb{C}}(H_{\mathbb{Z}}|_{E}) \ge \dim_{\mathbb{C}} \pi(X)$.

Idea use *p*-adic Hodge theory to adapt this argument to finite covers, e.g. $A_{g,p} \rightarrow A_g$.

Theorem (Farb-Kisin-W)

Let X be a smooth complex variety. Let $H_{\mathbb{Z}} \to X$ be an integral VHS with period map $\pi \colon X \to \Gamma \setminus D$. Let $E \to X$ be any quasifinite map. Then $rd_{\mathbb{C}}(H_{\mathbb{Z}}|_{E}) \ge \dim_{\mathbb{C}} \pi(X)$.

Idea use *p*-adic Hodge theory to adapt this argument to finite covers, e.g. $A_{g,p} \rightarrow A_g$.

Problem Heuristic is too strong :(

Theorem (Farb-Kisin-W)

Let X be a smooth complex variety. Let $H_{\mathbb{Z}} \to X$ be an integral VHS with period map $\pi \colon X \to \Gamma \setminus D$. Let $E \to X$ be any quasifinite map. Then $rd_{\mathbb{C}}(H_{\mathbb{Z}}|_E) \ge \dim_{\mathbb{C}} \pi(X)$.

Idea use *p*-adic Hodge theory to adapt this argument to finite covers, e.g. $A_{g,p} \rightarrow A_g$.

Problem Heuristic is too strong :(

Proposition

Let G be a finite group, and $\tilde{X} \rightarrow X$ a connected G-cover.

Theorem (Farb-Kisin-W)

Let X be a smooth complex variety. Let $H_{\mathbb{Z}} \to X$ be an integral VHS with period map $\pi \colon X \to \Gamma \setminus D$. Let $E \to X$ be any quasifinite map. Then $rd_{\mathbb{C}}(H_{\mathbb{Z}}|_{E}) \ge \dim_{\mathbb{C}} \pi(X)$.

Idea use *p*-adic Hodge theory to adapt this argument to finite covers, e.g. $A_{g,p} \rightarrow A_g$.

Problem Heuristic is too strong :(

Proposition

Let G be a finite group, and $\tilde{X} \to X$ a connected G-cover. There exists $E \to X$ gen. finite, such that $\tilde{X}|_E \to E$ is connected, and $rd_{\mathbb{C}}(\tilde{X}|_E/E) = 1$.

Theorem (Farb-Kisin-W)

Let X be a smooth complex variety. Let $H_{\mathbb{Z}} \to X$ be an integral VHS with period map $\pi \colon X \to \Gamma \setminus D$. Let $E \to X$ be any quasifinite map. Then $rd_{\mathbb{C}}(H_{\mathbb{Z}}|_{E}) \ge \dim_{\mathbb{C}} \pi(X)$.

Idea use *p*-adic Hodge theory to adapt this argument to finite covers, e.g. $A_{g,p} \rightarrow A_g$.

Theorem (Farb-Kisin-W) Let $N \ge 3$ and $p \nmid N$. Let $E \to A_{g,N}$ be quasifinite of degree prime to p. Then $ed_{\mathbb{C}}(A_{g,pN}|_E/E) = \dim_{\mathbb{C}} A_{g,N}$.

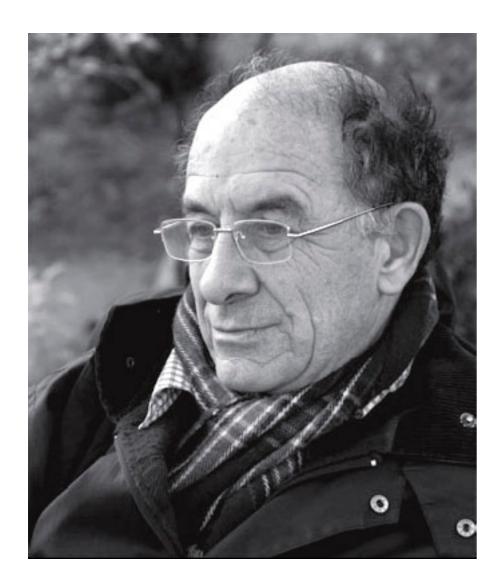
Theorem (Farb-Kisin-W)

Let X be a smooth complex variety. Let $H_{\mathbb{Z}} \to X$ be an integral VHS with period map $\pi \colon X \to \Gamma \setminus D$. Let $E \to X$ be any quasifinite map. Then $rd_{\mathbb{C}}(H_{\mathbb{Z}}|_{E}) \ge \dim_{\mathbb{C}} \pi(X)$.

Idea use *p*-adic Hodge theory to adapt this argument to finite covers, e.g. $A_{g,p} \rightarrow A_g$.

Theorem (Farb-Kisin-W) Let $N \ge 3$ and $p \nmid N$. Let $E \to A_{g,N}$ be quasifinite of degree prime to p. Then $ed_{\mathbb{C}}(A_{g,pN}|_E/E) = \dim_{\mathbb{C}} A_{g,N}$.

Question Is there a different Hodge theoretic approach?



Trudy Moskov. Mat. Obšč. Tom 21 (1970) Trans. Moscow Math. Soc. Vol. 21 (1970)

ON SOME TOPOLOGICAL INVARIANTS OF ALGEBRAIC FUNCTIONS¹) UDC 513.83

V. I. ARNOL'D

CONTENTS

§0. Notation	
§1. Squares and cubes	
§2. Punctures	
§3. Finiteness, repetition, and stability theorems	
§4. Computations for small values of n	
Bibliography	

There are some interesting connections between the theory of algebraic functions and Artin's theory of braids. For instance, the space G_n of polynomials of

Arnold's Dictionary

Algebraic Function Vector bundle GL_n B_n BGL_n $Conf_n(\mathbb{C})$ Fox-Neuwirth cells Schubert cells Characteristic classes Characteristic classes

Can characteristic classes detect rd > 1?

Can characteristic classes detect rd > 1?

No :(

Can characteristic classes detect rd > 1?

No :(

Norm-Residue Isomorphism (Bloch-Kato)

$$\Rightarrow rd_k(H^*(-;\mathbb{F}_p)) = 1.$$

H13 via Characteristic Classes?

Can characteristic classes detect rd > 1?

No :(

Norm-Residue Isom. \Rightarrow every mod p Galois cohomology class dies after after pulling back along a $\sqrt[p]{}$ -cover.

H13 via Characteristic Classes?

Can characteristic classes detect rd > 1?

No :(

Work-in-progress Let X be a complex variety. For any p, there exists a p-power branched cover $E \to X$ such that $Im(H^*(X; \mathbb{F}_p) \to H^*(E; \mathbb{F}_p)) = 0.$

H13 via Characteristic Classes?

Can characteristic classes detect rd > 1?

No :(

Work-in-progress Let X be a complex variety. For any p, there exists a p-power branched cover $E \to X$ such that $Im(H^*(X; \mathbb{F}_p) \to H^*(E; \mathbb{F}_p)) = 0$.

∴ Characteristic classes can't obstruct (enough) accessory irrationalities.

"[We must] fathom the nature and significance of the necessary accessory irrationalities."

Definition

A saturated class of accessory irrationalities

 \mathscr{C} : *Fields*_k \rightarrow *Set* is a sub-functor $\mathscr{C} \subset$ *Fin* such that

Definition

- \mathscr{C} : *Fields*_k \rightarrow *Set* is a sub-functor $\mathscr{C} \subset Fin$ such that
- 1. $\forall K, K \in \mathscr{E}(K)$.

Definition

- \mathscr{C} : *Fields*_k \rightarrow *Set* is a sub-functor $\mathscr{C} \subset Fin$ such that
- 1. $\forall K, K \in \mathscr{E}(K)$.
- 2. $E, E' \in \mathscr{C}(K) \Rightarrow E \otimes_K E' \in \mathscr{C}(K)$.

Definition

- \mathscr{C} : *Fields*_k \rightarrow *Set* is a sub-functor $\mathscr{C} \subset$ *Fin* such that
- 1. $\forall K, K \in \mathscr{E}(K)$.
- 2. $E, E' \in \mathscr{E}(K) \Rightarrow E \otimes_K E' \in \mathscr{E}(K)$.
- 3. $\forall K \hookrightarrow L \text{ fin.}, E \in Fin(L) \text{ s.t.} (K \hookrightarrow L \hookrightarrow E) \in \mathscr{C}(K), \text{ then}$ $E \in \mathscr{C}(L).$

Definition

- \mathscr{C} : *Fields*_k \rightarrow *Set* is a sub-functor $\mathscr{C} \subset$ *Fin* such that
- 1. $\forall K, K \in \mathscr{E}(K)$.
- 2. $E, E' \in \mathscr{E}(K) \Rightarrow E \otimes_K E' \in \mathscr{E}(K)$.
- 3. $\forall K \hookrightarrow L \text{ fin.}, E \in Fin(L) \text{ s.t.} (K \hookrightarrow L \hookrightarrow E) \in \mathscr{C}(K), \text{ then}$ $E \in \mathscr{C}(L).$
- 4. $\forall K \hookrightarrow L \text{ fin.}, E \in Fin(L) \text{ s.t.} (K \hookrightarrow L \hookrightarrow E) \in \mathscr{C}(K), \text{ then}$ $L \in \mathscr{C}(K).$

Given \mathscr{C} and $K \in Fields_k$

Given \mathscr{E} and $K \in Fields_k \sim K^{\mathscr{E}} \subset \overline{K} - \mathscr{E}$ -closure

Given \mathscr{C} and $K \in Fields_k \leadsto K^{\mathscr{C}} \subset \overline{K} - \mathscr{C}$ -closure

Examples

1. $Ab, K \hookrightarrow K^{Ab}$ - usual abelian closure.

Given \mathscr{E} and $K \in Fields_k \sim K^{\mathscr{E}} \subset \overline{K} - \mathscr{E}$ -closure

Examples

- 1. $Ab, K \hookrightarrow K^{Ab}$ usual abelian closure.
- 2. Sol, $K \hookrightarrow K^{Sol}$ usual solvable closure.

Given \mathscr{C} and $K \in Fields_k \sim K^{\mathscr{C}} \subset \overline{K} - \mathscr{C}$ -closure

Examples

- 1. $Ab, K \hookrightarrow K^{Ab}$ usual abelian closure.
- 2. Sol, $K \hookrightarrow K^{Sol}$ usual solvable closure.
- 3. $rd_k^{\leq d}(K) := \{K \hookrightarrow A \mid rd_k(A/K) \leq d\}/\cong$, $K \hookrightarrow K^{rd_k^{\leq d}} = K^d$ (resolvent filtration).

Let G be a smooth alg. group /k.

 \mathscr{E} : *Fields*_k \rightarrow *Set* saturated class of accessory irrationalities

Let G be a smooth alg. group /k. \mathscr{E} : Fields_k \rightarrow Set saturated class of accessory irrationalities

Definition

A faithful *G*-variety *X* is \mathscr{C} -versal if for all *G*-torsors $T \to Spec(K), {}^{T}X(K^{\mathscr{C}}) \subset {}^{T}X$ is dense.

Let G be a smooth alg. group /k. $\mathscr{C}: Fields_k \rightarrow Set$ saturated class of accessory irrationalities

Definition

A faithful *G*-variety *X* is \mathscr{C} -versal if for all *G*-torsors $T \to Spec(K), {}^{T}X(K^{\mathscr{C}}) \subset {}^{T}X$ is dense.

Theorem (Gómez-Gonzáles-Sutherland-W.) $rd_k(G) = \min_{d>0} \{\max\{d, \dim_k X\} \mid X \ rd_k^{\leq d} - versal \ G \ var.\}$

Theorem (Gómez-Gonzáles-Sutherland-W.) $rd_k(G) = \min_{d \ge 0} \{ \max\{d, \dim_k X\} \mid X \ rd_k^{\le d} - versal \ G \ var. \} \}$

Theorem (Gómez-Gonzáles-Sutherland-W.) $rd_k(G) = \min_{d \ge 0} \{ \max\{d, \dim_k X\} \mid X \ rd_k^{\le d} - versal \ G \ var. \} \}$

Conjecture (Hilbert's Sextic) Let $T \to Spec(\mathbb{C}(x, y))$ be the A_6 -torsor associated to the Valentiner action $A_6 \oslash \mathbb{CP}^2$. Let $A_6 \oslash X$ be a faithful action on a smooth, irreducible curve. Then ${}^TX(\mathbb{C}(x, y)^1) = \emptyset$.

Theorem (Gómez-Gonzáles-Sutherland-W.) $rd_k(G) = \min_{d \ge 0} \{\max\{d, \dim_k X\} \mid X \ rd_k^{\le d} - versal \ G \ var.\}$

Conjecture (Hilbert's Sextic) Let $T \to Spec(\mathbb{C}(x, y))$ be the A_6 -torsor associated to the Valentiner action $A_6 \oslash \mathbb{CP}^2$. Let $A_6 \oslash X$ be a faithful action on a smooth, irreducible curve. Then ${}^TX(\mathbb{C}(x, y)^1) = \emptyset$.

Question Can we show ${}^{T}X(\mathbb{C}(x, y)^{Sol}) = \emptyset$?

Conjecture (Hilbert's Sextic) Let $T \to Spec(\mathbb{C}(x, y))$ be the A_6 -torsor associated to the Valentiner action $A_6 \oslash \mathbb{CP}^2$. Let $A_6 \oslash X$ be a faithful action on a smooth, irreducible curve. Then ${}^TX(\mathbb{C}(x, y)^1) = \emptyset$.

Question Can we show ${}^{T}X(\mathbb{C}(x, y)^{Sol}) = \emptyset$?

Conjecture (Hilbert's Sextic) Let $T \to Spec(\mathbb{C}(x, y))$ be the A_6 -torsor associated to the Valentiner action $A_6 \oslash \mathbb{CP}^2$. Let $A_6 \oslash X$ be a faithful action on a smooth, irreducible curve. Then ${}^TX(\mathbb{C}(x, y)^1) = \emptyset$.

Question Can we show ${}^{T}X(\mathbb{C}(x, y)^{Sol}) = \emptyset$?

Problem How do we obstruct solvable points?

Arnold's Mushroom

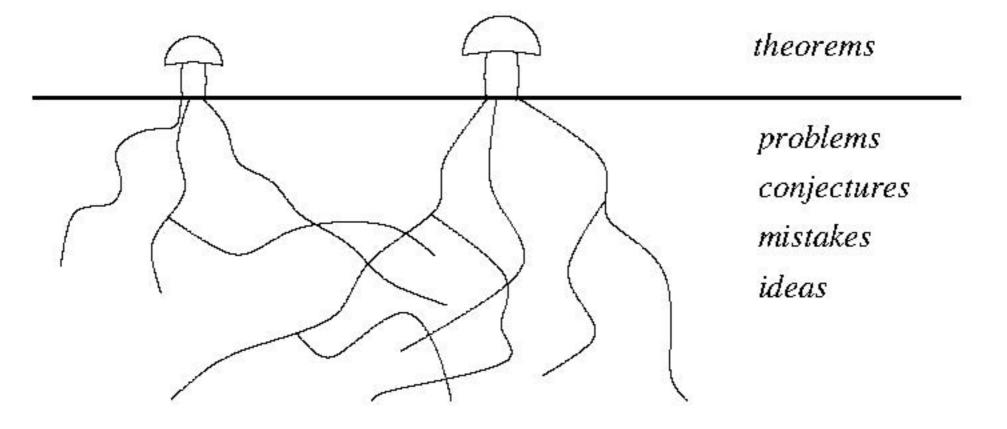


Figure 1: The Mathematical Mushroom

Thank you!