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Definition (Kronecker, Chebotarev, Buhler-Reichstein)

let K & L be a finite extension of k-fields. T

ne essential

dimension ed,(L/K) is the least d for which t
1. ak-tield Ky with tr.deg,(K,) = d,

2. aninclusion of k-fields K, < K,

3. afinite extension Ky < L, and
4.

an isomorphism K ® Ly = L over K.

nere exists:
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Proof:

(quadratic formula) _



Fix a ground field k.

Definition (Chebotarev, Brauer, Arnold-Shimura)
Llet K & L be afinite extension of k-fields. The resolvent

degree rd,(L/K) is the least d for which there exists:



Fix a ground field k.

Definition (Chebotarev, Brauer, Arnold-Shimura)
Llet K & L be a finite extension of k-fields. The resolvent

degree rd,(L/K) is the least d for which there exists:
1. afinite extension L < K’ over K, and



Fix a ground field k.

Definition (Chebotarev, Brauer, Arnold-Shimura)

Let K & L be a finite extension of k-fields. The resolvent

degree rd,(L/K) is the least d for which there exists:

1. afinite extension L < K’ over K, and

2. afinite sequence of subfields K =K, < -+ < K. =K’
such that ed, (K, /K;) < d for all i.



Fix a ground field k.

Definition (Chebotarev, Brauer, Arnold-Shimura)

Let K & L be afinite extension of k-fields. The resolvent
degree rd,(L/K) is the least d for which there exists:

1. afinite extension L. < K’ over K, and

2. atinite sequence of subtields K=K, < -+ & K. =K

such that ed (K, ;/K;) < dtor all i. ("Accessory
irrationalities”)
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rd,(L/K) = 1.
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Theorem (Bring, Klein)
Let k be a field of characteristicnot2, 3or 5. Let K & L be

a quintic extension of k-fields. Then rd,(L/K) = 1.

Theorem (Hamilton, Klein)
Let k be a field of characteristicnot 2, 3. Let K & L be a

sextic extension of k-tields. Then rd (L/K) < 2.
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Essence of H13

Problem (Hilbert)
Prove there exists an extension of k-fields K < L with

rd(LIK) > 1.

What kind of problem is this?



Arnold’s Mushroom

theorems

o 181
problems
conjectures
mistakes
ideas

['igure 1: The Mathematical Mushroom
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K - finitely generated k-field.

K < K an algebraic closure.

J resolvent filtration K & K? o Kl & ... & K9 = K where
d = tr.deg,(K).
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Resolvent filtration K & KV o Kl o .. & K4 =K

Properties
1. K < Lfactors through K' < rd,(L/K) < 1.

2. K< K'is Galois for all i..

3. Letgp: K = K'be a map of k-fields with ¢(K) C K'.
Then p(KY) C (K')'.

4. K'is solvably closed fori > 1.

5. K’=K®, k. (rd, = rd; )
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1. Maps of k-fields preserve the filtration. (Is filtration
characteristic?)



H13 as Galois theory

Resolvent filtration K & KV o Kl o .. & K4 =K

: : _ 1 d _
Resolvent filtration 'y > I'jz 2T B> --- 17 = 1.

Properties
1. Maps of k-tields preserve the filtration.

2. rd,>1 e IKst. Ty # 1.
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H13 as Galois theory

Resolvent filtration T > Tz > Th B>« > T% = 1.
X - k-scheme, dim, X = d, 7 = X geometric point.
Same idea ~
Resolvent filtration:
(X, i) & ' (Xp, i) & 2 (X, ) & - 22X, i) = 1.
Forf: (X,n) — (Y,n) overk,
fem{'(X, 7)) C =" (Y, 77)".
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Theorem (Farb-Kisin-W)
et N > 3, and let Ag,N be the (fine) moduli space of PPAVSs.
Leti] > A, y be a geometric point. Letp + N be a prime.

g+1

Then 7{"(A, /e 77)< ’ >_1 * 1.
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H13 as Galois theory
Theorem (Farb-Kisin-W)
g+1Y\
Let N > 3,and p + N. Then #{"(A, y/c» 77)( ’ ) L1

Proof: 1) Reduce to showing that for any étale E — A, y,c
such that 7{'(E, 1) — n{'(A, njc» 1) = Spa,(F,) is surjective,
then 4 f: E — Z, 7 — 7 étale. andf*Z ~ Ag,pN\E it

dimZ < A, v

2) Congruence Subgroup Property = 37 withp + £ s.t.
Agenie = £ = Ag nic: i

3) FKW2021 = A f: A, syic = Z, Z — Z étale, and

[*Z~ A, tdimZ <A, . B

Ag,fN/C



H13 as Galois theory
Theorem (Farb-Kisin-W)
Let N > 3,and p + N. Then nft(Ag,N, ﬁ)<g; )_1 * 1.

. Core challenge is birationall!
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Disallow these but allow birational trans.

Definition (Buhler-Reichstein)
Let Y — X be a finite map of k-schemes. The essential

dimension ed,(Y/X) is the least d for which there exists:
1. arational mapf: X --» Zwithdim, Z <d.,

2. afinite map Z = Z, and

3. a birational isomorphism f*Z ~ Y over X.

" Foreveryn, Y - X with ed (Y/X) > n.



H13 as Galois theory

. Challenge is interaction of birationality and accessory
irrationalities.



H13 as Galois theory

. Challenge is interaction of birationality and accessory
irrationalities.

Problem Does there exist a local ring A such that
rf'(Spec(A))! # 17
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Definition
Let k be a field. Define the resolvent degree of a finite
group G by

rd,(G) = sup rd,(L/K)
L/K Galois G—ext.

Properties

1. HC G > rd,(H) £ rd(G)

2. rd(G) < max{rd (G, | G; simple factor of G}
3. rd(G) Lmin{dim, V| 3 p: G = GL(V)}.
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What's known:

rdi(C,) = rd(As) = rd(PSLy(F,)) = 1.

rd (Ag), rd, (PSL,(F;))) < 2.

rd,(A-), rd (W(E.)™) < 3.

rd,(Ag), rdi(Ag), rd(W(E;)T) < 4. rd (W(E)™) < 5.
Upper bounds for sporadic groups.

lim(n — rd,(A,)) = .

ok =

Conjectures (Hilbert)

1. rde(Ag) = 2. (Sextic conj.)

2. rde(A7) = 3.(H13)

3. rdp(Ag) = rde(Ag) = 4. (Octic and Nonic conj.)



H13 as Group Theory

What's known:

rdi(C,) = rd(As) = rd(PSLy(F,)) = 1.

rd (Ag), rd, (PSL,(F;))) < 2.

rd,(A-), rd (W(E.)™) < 3.

rd,(Ag), rdi(Ag), rd(W(E;)T) < 4. rd (W(E)™) < 5.
Upper bounds for sporadic groups.

lim(n — rd,(A,)) = .

ok =

Problem Find any finite group G with rd,(G) > 1.



H13 as Group Theory
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H13 as Group Theory

Definition
Let F': Fields, — Set be a functor. Leta € F(K).

1.

The essential dimension of a, edi(a), is the least d such
that AL with tr.deg (L) < d and a € Im(F(L) — F(K)).

. The resolvent degree of a is

rd,(a) := m/in{max{m’k(L/K ),ed (x|, )}}.
L/K

. The essential dimension of Fis ed (F) := sup ed/(a).

aclF(K)

The resolvent degree of Fis rd (F) := sup rd(a).
acF(K)
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rd(a) = rd,(A/K) when A is a field.

2. G algebraic group. rd,(G) := rdk(Hl( —;()). (agrees
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H13 as Group Theory

Examples

1. Fin(K) ={a: K< A | afin.s.s.comm.}/ 2.

rd(a) = rd,(A/K) when A is a field.
2. G algebraic group. rd,(G) = rdk(Hl( — ().
3. I' arithmetic group. rd,(I') := m’k(Hl( — ;f)).

hen
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H13 as Group Theory

Theorem (Reichstein)
Let G be a connected algebraic group. Then rd (G) < 5,
and rd(G) = 1 it G has no simple factors of type Ej.

Conjecture (Tits)
Let G be a connected algebraic group. Then every G
-torsor over a solvably closed field splits.

Conjecture = rd (G) = 1 for G connected.
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H13 as Group Theory

Theorem (Reichstein)
Let G be a connected algebraic group. Then rd (G) < 5,
and rd(G) = 1 it G has no simple factors of type Ej.

Theorem (Farb-Kisin-W)

Let G be a reductive group over Q with hermitian
symmetric domain X. LetI' C G(R) be a cocompact
arithmetic group. Then rd(I') > dim X.

Question [s a finite group more like a connected
algebraic group or an arithmetic lattice?



H13 via Hodge Theory?

"Perhaps there is some kind of a
mixed Hodge structure whose

weight filtration provides the
information .. ."
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H13 via Hodge Theory?

Theorem (Farb-Kisin-W)
Let X be a smooth complex variety. Let H, — X be an
integral VHS with period map 7: X - I'\D. Let E — X be

any quasifinite map. Then rdc(Hz | ) > dim¢ 7(X) .

Idea use p-adic Hodge theory to adapt this argument to

. N
finite covers, e.g. A, , = A,.

Problem Heuristic is too strong (

Proposition
Let G be a finite group, and X — X a connected G-cover.

here exists E — X gen. finite, such thatX\E — E'is
connected, and rdC(f(\E/E) = 1.
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Theorem (Farb-Kisin-W)

Let X be a smooth complex variety. Let H, — X be an
integral VHS with period map 7: X - I'\D. Let E — X be
any quasifinite map. Then rdc(Hz | ) > dim¢ 7(X) .

Idea use p-adic Hodge theory to adapt this argument to

. N
finite covers, e.g. A, , = A,.

Theorem (Farb-Kisin-W)
Let N >3 andp t N. Let E — A, y be quasifinite of

degree prime to p. Then edc(A, y|z/E) = dim¢c A, .

Question |s there a different Hodge theoretic approach?
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There are some interesting connections between the theory of algebraic func-
tions and Artin’s theory of braids. For instance, the space G of polynomials of

LI | . . o1 v -\ r - ni{ o\ .
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Arnold’s Dictionary

Algebraic Function Vector bundle
B, GL,
Conf,(C) BGL,
Fox-Neuwirth cells Schubert cells
Characteristic classes Characteristic classes
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Can characteristic classes detectrd > 17
No :(

Norm-Residue Isomorphism (Bloch-Kato)
= rdi(H*( —;F,) = 1.
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Can characteristic classes detectrd > 17?
No :(

Norm-Residue Isom. = every mod p Galois
cohomology class dies after after pulling back

pP
along a \/_—cover.
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any p, there exists a p-power branched cover
E — X such that Im(H*(X; F,) - H*(E;F,)) = 0.
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Can characteristic classes detectrd > 17
No :(

Work-in-progress Let X be a complex variety. For

any p, there exists a p-power branched cover
E — X such that Im(H*(X; F,) - H*(E;F,)) = 0.

. Characteristic classes can't obstruct (enough) accessory

irrationalities.
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“TWe must] fathom the nature
and significance of the necessary
accessory irrationalities.”
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Definition

A saturated class of accessory irrationalities

& : Fields, — Set is a sub-functor & C Fin such that

1. VK, K € &(K).

2. ELEE'e &(K) > EQy L'e &(K).

3. VKS Lfin,EeFinll)st. (K LS E)e &K), then
EFe &QL).

4, VK< Ltin, Ee€ Fin(ll)st. (K LS E) e &K), then
Le &K).



H13 via "Special” Points

Given & and K € Fields,



H13 via "Special” Points

Given & and K € Fields, ~ K¢ C K - &-closure



H13 via "Special” Points

Given & and K € Fields, ~ K¢ C K - &-closure

Examples
1. Ab, K & K4% _ usual abelian closure.



H13 via "Special” Points

Given & and K € Fields, ~ K¢ C K - &-closure

Examples
1. Ab K & K4 _usual abelian closure.
2. Sol K< K%' _ ysual solvable closure.



H13 via "Special” Points

Given & and K € Fields, ~ K¢ C K - &-closure

Examples

1. Ab, K & K4~ usual abelian closure.

2. Sol K < K°°' - usual solvable closure.

3. rd*%K):={K < A | rd(A/K) < d}/ =,
K o K%' = K4 (resolvent filtration).
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Let G be a smooth alg. group /k.
& : Fields, — Set saturated class of accessory irrationalities

Definition

A taithful G-variety X is &-versal if tor all G-torsors
T — Spec(K), X(K?%) c "X is dense.

Theorem (Gdmez-Gonzales-Sutherland-W.)

rdi(G) = min{max{d, dim; X} | X rd>* — versal G var.}
d>0
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Valentiner action A¢ () CP%. Let A O X be a faithful
action on a smooth, irreducible curve. Then
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Conjecture (Hilbert's Sextic)

Let T — Spec(C(x,y)) be the As-torsor associated to the
Valentiner action A O CP~. Let A¢ O X be a faithful
action on a smooth, irreducible curve. Then

X(Cx, ') = @.

Question Can we show 'X(C(x, y)*°) = @&?

Problem How do we obstruct solvable points?
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