Minimal weights of mod *p* Galois representations

Hanneke Wiersema, University of Cambridge April 12, 2022

April 12, 2022

VaNTAGe Seminar

The weight in Serre's conjecture

Invent. math. 109, 563-594 (1992) Inventiones mathematicae C Springer-Verlag 1992 The weight in Serre's conjectures on modular forms Bas Edixhoven* Mathematisch Institut Budapestlaan, Postbus 80.010, NL 3508 TA Utrecht, The Netherlands Oblatum 29-IV-1991 & 23-III-1992 Contents 1 Introduction Let p be a prime number and let f be a modular form of level N with $p \not\mid N$, weight k and character ε , with coefficients in $\overline{\mathbb{F}}_p$. Suppose that f is an eigenform for all Hecke operators T_i^* , l prime, say with eigenvalues $a_i \in \overline{\mathbb{F}}_p$. Then there exists

a unique 2-dimensional semi-simple continuous representation ρ_{f} ; $G_{q} = Gal(Q^{-}/Q) \rightarrow GL_{2}(\overline{F}_{p})$, which is unramified outside pN and has the property that trace $(\rho_{f}(\operatorname{Frob}_{p})) = a_{i}$ and $\det(\rho_{f}(\operatorname{Frob}_{p})) = a_{i}(1)p^{i-1}$ for all $L_{f}pN$. For a historical account of this result see [24, §6], see also [3]. It follows from the identities $\det(\rho_{f}(\operatorname{Frob}_{p})) = a(1)p^{i-1}$ that ρ_{f} is da_{i} , a_{i} , $de_{i}(\rho_{f}(\operatorname{Frob}_{p})) = 1$ for $e \in G_{q}$ a complex conjugation. Serve continuous semi-simple odd representations of the identities of

Serve conjectured in 1973 that every continuous semi-simple odd representation $\rho: G_{\Theta} \rightarrow GL_2(\overline{\mathbb{F}})$, and S_{Θ} . In his article [26] he stated a more precise version of this conjecture for irreducible ρ ; ρ should arise from a form of level $N(\rho)$, variable M, and obspreater $\alpha(\rho)$, where $M(\rho) > \rho$ and $\alpha(\rho)$ or described in terms of ρ . weight k_{ρ} and character $\varepsilon(\rho)$, where $N(\rho)$, k_{ρ} and $\varepsilon(\rho)$ are described in terms of ρ ; $N(\rho)$ and k_{ρ} are meant to be as small as possible. The aim of this paper is to show that if ρ comes from a modular form at all, say of some type (N, k, ε) , then ρ also comes from a modular form of type $(N, k_{\rho}, \varepsilon)$ and k_{ρ} is (almost) minimal.

Serre's conjecture (Khare-Wintenberger, building on work of many)

Let p be a prime, and let $\overline{\mathbb{F}}_p$ be an algebraic closure of \mathbb{F}_p . Suppose

 $\rho: G_{\mathbb{Q}} \to \mathsf{GL}_2(\overline{\mathbb{F}}_p)$

is a continuous irreducible representation and that $det(\rho(c)) = -1$, where c is a complex conjugation.

Theorem (Serre's conjecture)

There are positive integers k and N such that ρ arises from an eigenform in $S_k(\Gamma_1(N))$ (weak form). In fact, ρ arises from an eigenform in $S_{k(\rho)}(\Gamma_1(N(\rho)))$ where $k(\rho) \ge 2$ and $N(\rho)$ is relatively prime to p (strong form).

Serve predicted these are *minimal* for ρ , as follows: if ρ is isomorphic to some $\rho_{f'}$ with prime-to-p level N' and weight $k' \ge 2$, then $N(\rho) \mid N'$ and $k(\rho) \le k'$.Carayol has shown that $N(\rho) \mid N'$. Note we have $k \ge 2!$

Theorem (Fontaine)

Let f be a cuspidal Hecke eigenform of type (N, k, ε) with $2 \le k \le p + 1$ with eigenvalues a_l . Suppose that $a_p = 0$ (supersingular case). Then $\rho_{f,p}$ is irreducible and

$$o_f|_{I_p} = \begin{pmatrix} \omega_2^{k-1} & 0\\ 0 & \omega_2'^{k-1} \end{pmatrix}$$

with $\omega_2, \omega'_2 : I_{p,t} \to \overline{\mathbb{F}}_p^{\times}$ the two level two fundamental characters.

In this case we have

$$\rho_{I_p} \cong \begin{pmatrix} \omega_2^{a+bp} & 0\\ 0 & \omega_2^{\prime a+bp} \end{pmatrix}$$

with $0 \le a < b \le p - 1$. We set $k(\rho) = 1 + pa + b$.

Write ω for the mod *p* cyclotomic character.

Theorem (Deligne)

Let f be a cuspidal Hecke eigenform of type (N, k, ε) with $2 \le k \le p + 1$ with eigenvalues a_l . Suppose that $a_p \ne 0$ (the ordinary case). Then $\rho_{f,p}$ is reducible and

$$\rho_{f,p} = \begin{pmatrix} \omega^{k-1} \lambda(\varepsilon(p)/a_p) & * \\ 0 & \lambda(a_p) \end{pmatrix}$$

with $\lambda(a) : G_{\mathbb{Q}_p} \to \overline{\mathbb{F}}_p^{\times}$ the unramified character sending Frob_p to $a \in \overline{\mathbb{F}}_p^{\times}$.

The weight recipe - the reducible case

1. Suppose first $\rho_{I_{p,w}}$ is trivial, then

$$o_{I_p} \cong \begin{pmatrix} \omega^a & 0 \\ 0 & \omega^b \end{pmatrix}$$

with $0 \le a \le b \le p - 2$. We set $k(\rho) = 1 + pa + b$, unless (a, b) = (0, 0), then we set $k(\rho) = p$.

2. Suppose next $\rho_{I_{p,w}}$ is non-trivial, then

$$\rho_{I_p} \cong \begin{pmatrix} \omega^\beta & * \\ 0 & \omega^\alpha \end{pmatrix}$$

for unique α and β with $0 \le \alpha \le p-2$ and $1 \le \beta \le p-1$. Let $a = \min(\alpha, \beta), b = \max(\alpha, \beta)$. If $\omega^{\beta-\alpha} = \omega$ and $\rho_{G_p} \otimes \omega^{-\alpha}$ is not finite at p, then $k(\rho) = 1 + pa + b + p - 1$, otherwise $k(\rho) = 1 + pa + b$.

In the case where ρ_{I_p} is trivial, Serre sets $k(\rho) = p$. Serre originally avoids weight 1 modular forms as he considers mod p modular forms as reductions of forms in characteristic 0 (and these cannot necessarily be lifted).

However, using Katz' geometric definition of mod p modular forms one can allow the weight 1 modular forms.

As such, one can refine Serre's weight prediction. In the case where $\rho_{l_{\rho}}$ is trivial, Edixhoven sets $k(\rho) = 1$.

Next write k_{ρ} for Serre's original weight recipe. We almost always have $k(\rho) = k_{\rho}$, and we always have $k(\rho) \le k_{\rho}$.

It differs only in the reducible case:

1. If
$$\rho_{I_{p,w}}$$
 is trivial, $a = 0 = b$, then $k(\rho) = 1$ and $k_{\rho} = p$.

2. If p = 2, if $\rho_{I_{p,w}}$ is non-trivial, $\alpha = 0, \beta = 1$ and ρ_{G_p} is not finite at p, then $k(\rho) = 3$ and $k_{\rho} = 4$.

Theorem (Edixhoven)

Let $\rho : G_{\mathbb{Q}} \to GL_2(\overline{\mathbb{F}}_p)$ be continuous, irreducible and odd. Suppose we have a cuspidal eigenform g of type (N, k, ε) such that $\rho \cong \rho_g$. Then

- 1. (existence): there exists a cuspidal eigenform f of type $(N, k_{\rho}, \varepsilon)$ (Serre's recipe) with the same eigenvalues for all $l \neq p$ such that $\rho \cong \rho_{f}$
- (refinement): there exists an eigenform f of type (N, k(ρ), ε) (Edixhoven's adjusted weight) with the same eigenvalues for all I ≠ p such that ρ ≅ ρ_f.
- (minimality): there is no eigenform of level prime to p and of weight less than k(ρ) whose associated Galois representation is isomorphic to ρ.

Any form of some weight k 'comes from' a form of a lower weight:

Theorem

Let f be an eigenform of some type (N, k, ε) , then there exist integers i and k' with $0 \le i \le p - 1$, $k' \le p + 1$ and an eigenform g of type (N, k', ε) such that f and θ^i g have the same eigenvalues for all Hecke operators $T_l(l \ne p)$.

If $a_p(g) \neq 0$, g might have a companion form: a form g' of weight p + 1 - k' such that $l^{p+1-k'}a_l(g) = la_l(g')$. This happens if and only if $\rho_{g,p}$ is tamely ramified (Gross, Coleman-Voloch). Recall the θ operator:

$$\theta:\sum a_nq^n
ightarrow \sum na_nq^n$$

with $a_n \in \overline{\mathbb{F}}_p$.

If f is an eigenform of type (N, k, ε) with eigenvalues a_l , then θf is an eigenform of type $(N, k + p + 1, \varepsilon)$ with eigenvalues la_l .

We can use this to translate twists of a modular form by the θ operator to twists of its representation by the cyclotomic character:

$$\rho_{\theta f} = \rho_f \otimes \omega.$$

We need to study more carefully what the θ operator does to the weight of a mod p modular form.

Let f be a mod p modular form of level N and weight k.

Definition (Filtration)

Then we define the filtration w(f) of f to be the smallest integer k' for which there exists a form of level N and weight k' which (at some cusp) has the same q-expansion.

Equivalently, it is the smallest integer k - i(p-1) such that f is divisible by the *i*-th power of the Hasse invariant.

Theorem (Serre)

Let f, f' be two mod p modular forms of level N and weight k and k' respectively. If they have the same q-expansion, then $k \equiv k' \mod p - 1$.

Theta cycles

Recall

Theorem

Let f be an eigenform of some type (N, k, ε) , then there exist integers i and k' with $0 \le i \le p - 1, k' \le p + 1$ and an eigenform g of type (N, k', ε) such that f and θ^i g have the same eigenvalues for all Hecke operators $T_l(l \ne p)$.

Suppose $\theta(f) \neq 0$. Then the θ cycle are the *p* integers

 $(w(f), w(\theta f), \ldots, w(\theta^{p-1}f))$

Lemma (Serre) If f has filtration k and $p \nmid k$, then θf has filtration k + p + 1. If $p \mid k$, then $w(\theta f) < w(f) + p + 1$.

Theta cycles – a picture I

The cycles are classified by Edixhoven for weight $\leq p + 1$.

Example

Let f be a cuspidal eigenform of type (N, k, ε) with $3 \le k \le p - 1$ with eigenvalues a_l and w(f) = k. Suppose $a_p = 0$, then the θ -cycle of f is

$$(k, k + p + 1, ..., k + (p - k)(p + 1), k_1, ..., k_1 + (k - 3)(p + 1), k)$$

where $k_1 = p + 3 - k$.

Figure 1: Schematic view of θ -cycles for f as above (where $k_1 < k$)

Figure 2: Schematic view of θ -cycles for ordinary f with $2 \le w(f) \le p - 1$ on the left and w(f) = 1, p, p + 1 on the right

Suppose ρ is modular of weight k and level N, we want to show it also arises from a form of weight $k(\rho)$ and level N.

- There exists a form f₁ of weight k₁ ≤ p + 1, and 0 ≤ i ≤ p − 1 such that ρ ⊗ ω⁻ⁱ ≅ ρ_{f1}.
- We know a lot about \(\rho_{f_1,p}\) since f_1 is of low weight.
- Find k_1 and i in terms of ρ_p .
- Untwist f_1 : set $f = \theta^i f_1$ and compute the theta cycle of f_1 .
- Show $w(f) = k(\rho)$.

This k_1 is not necessarily unique: we need the work of Gross and Coleman-Voloch concerning companion forms.

For deciding between 2 and p + 1 we use work of Mazur about finiteness at p.

Other characterisations of weights of Galois representations

We write $\operatorname{Sym}^{k-2} \overline{\mathbb{F}}_p^2$ for the (k-2)-th symmetric power of the standard representation of $\operatorname{GL}_2(\mathbb{F}_p)$ on $\overline{\mathbb{F}}_p^2$.

Proposition (Ash and Stevens) Let $k \ge 2$. Then ρ is modular of level N and weight k if and only if the corresponding system of Hecke eigenvalues appears in $H^1(\Gamma_1(N), \operatorname{Sym}^{k-2} \overline{\mathbb{F}}_p^{-2})$.

Remark

In fact, this is equivalent to ρ appearing in $H^1(\Gamma_1(N), V)$, with V a Jordan-Hölder constituent of $\operatorname{Sym}^{k-2} \overline{\mathbb{F}}_p^{-2}$.

These weights are easy to list!

Definition (Serre weights)

The V are irreducible representations of $GL_2(\mathbb{F}_p)$ over $\overline{\mathbb{F}}_p$,

$$V_{t,s} = \mathsf{det}^s \otimes \mathsf{Sym}^{t-1} \,\overline{\mathbb{F}}_p^2, \quad 0 \leq s < p-1, 1 \leq t \leq p$$

We call these Serre weights.

Buzzard, Diamond and Jarvis defined *algebraic modularity*. Given ρ , for what $V_{t,s}$ is ρ algebraically modular?

Buzzard, Diamond and Jarvis define a set of Serre weights $W(\rho)$.

Theorem (The BDJ conjecture in the classical case) If $\rho: G_{\mathbb{Q}} \to GL_2(\overline{\mathbb{F}}_p)$ is modular of some weight, then

 $W(\rho) = \{V | \rho \text{ is modular of weight } V\}.$

The weight set $W(\rho)$ - examples

Remark

The recipe for $W(\rho)$ depends purely on the local representation.

Example

Let

$$\rho_{I_p} \sim \begin{pmatrix} \omega^a & 0 \\ 0 & 1 \end{pmatrix}$$

with $2 \leq a \leq p - 3$, then

$$W(\rho) = \{V_{a,0}, V_{p-1-a,a}\}.$$

Example Let

$$\rho_{I_p} \sim \begin{pmatrix} \omega_2^b & 0\\ 0 & \omega_2^{pb} \end{pmatrix}$$

with $1 \le b \le p - 1$ then

$$W(\rho) = \{V_{b,0}, V_{p+1-b,b-1}\}.$$
 19

Question: How to compare this with $k(\rho)$?

Definition (Minimal weight)

$$k_{\min}(V_{t,s}) = \min_{k} \{k \ge 2 \mid V_{t,s} \in \mathsf{JH}(\mathsf{Sym}^{k-2}\,\overline{\mathbb{F}}_p^2)\}$$

e.g. for $V_{t,0} = \operatorname{Sym}^{t-1} \overline{\mathbb{F}}_p^2$, we see $k_{\min}(V_{t,0}) = t + 1$.

Definition (Minimal weight)

$$k_{\min}(V_{t,s}) = \min_{k} \{ k \ge 2 \mid V_{t,s} \in \mathsf{JH}(\mathsf{Sym}^{k-2}\,\overline{\mathbb{F}}_p^2) \}$$

Proposition (W.) Let $0 \le s and let <math>V_{t,s}$ be a Serre weight. Then

$$k_{\min}(V_{t,s}) = egin{cases} s(p+1)+t+1, & s+t < p, \ (s+1)(p+1)+tp-p^2, & s+t \geq p. \end{cases}$$

This reflects the behaviour of θ -cycles!

We saw earlier that $\rho_{\theta f} \cong \rho_f \otimes \omega$. If ρ is modular of some weight $V_{t,s}$, $\omega \otimes \rho$ will be modular of weight $V_{t,s+1}$.

Let p = 5. Consider the Serre weight $V_{3,0}$. We have $k_{\min}(V_{3,0}) = 4$. We consider a 'theta' cycle by twisting by the determinant: $k_{\min}(V_{3,0}), k_{\min}(V_{3,1}), k_{\min}(V_{3,2}), \dots$

Figure 3: Algebraic theta cycle: (4,10,8,14,4)

By Edixhoven's classification, if $a_p = 0$, this is exactly the theta cycle of a mod p modular form with filtration 4.

Definition: We set $k_{\min}(W(\rho)) = \min_k \{k_{\min}(V_{t,s}) \mid V_{t,s} \in W(\rho)\}$.

Theorem (Equality of two weight invariants)

$$k(\rho) = k_{\min}(W(\rho))$$

Example

Let p = 5 and suppose

$$D_{I_5} \sim \begin{pmatrix} \omega_2^3 & 0 \\ 0 & \omega_2^{\prime 3} \end{pmatrix}$$

here $k(\rho) = 4$, we have $W(\rho) = \{V_{3,0}, V_{3,2}\}$. We find $k_{\min}(V_{3,0}) = 4$ and $k_{\min}(V_{3,2}) = 8$, so

$$k(\rho) = 4 = k_{\min}(W(\rho))$$

Example

Let ρ be as in the previous example. Recall the Serre weights were $V_{3,0}$ and $V_{3,2}$. We find cycles:

Figure 4: Algebraic theta cycles (4, 10, 8, 14, 4) and (8, 14, 4, 10, 8)

Algebraic θ cycles

What about the cycle

 $k_{\min}(W(\rho)), k_{\min}(W(\omega \otimes \rho)), \ldots, k_{\min}(W(\omega^{p-1} \otimes \rho))?$

So obtain

Figure 5: Algebraic theta cycles for ρ

There has been a lot of interest of generalising Serre's conjecture due to its close relations with the Langlands program.

We focus on $\rho: G_F \to GL_2(\overline{\mathbb{F}}_p)$, where F is a totally real field.

Conjecture

Let $\rho : G_F \to GL_2(\overline{\mathbb{F}}_p)$ be continuous, irreducible and totally odd. Then there exists a Hilbert modular form f such that $\rho \cong \overline{\rho}_f$.

What are the weights of Hilbert modular forms that ρ shows up with? Is there a notion of a minimal weight?

First breakthrough on this is due to Buzzard, Diamond and Jarvis.

Recall earlier Serre weights were irreducible $\overline{\mathbb{F}}_p$ -representations of $GL_2(\mathbb{F}_p)$. Now we get $\overline{\mathbb{F}}_p$ -representations of

$$\operatorname{GL}_2(\mathcal{O}_F/p) = \prod_{\mathfrak{p}|p} \operatorname{GL}_2(\mathcal{O}_F/\mathfrak{p})$$

Definition (More general Serre weights) Let $p \mid p$, we have

$$V_{\vec{t},\vec{s}} = \bigotimes_{\tau \in \Sigma} \left(\det^{s_{\tau}} \otimes_{k_{\mathfrak{p}}} \operatorname{Sym}^{t_{\tau}-1} k_{\mathfrak{p}}^2 \right) \otimes_{k_{\mathfrak{p}},\tau} \overline{\mathbb{F}}_{\rho}.$$

with $\Sigma = \{\tau : k_{\mathfrak{p}} \to \overline{\mathbb{F}}_{p}\}$ and $t_{\tau} \leq p$ for all $\tau \in \Sigma$. Then a Serre weight is $V = \bigotimes_{\mathfrak{p}|p} V_{\mathfrak{p}}$. **Theorem (The BDJ conjecture)** If $\rho: G_F \to GL_2(\overline{\mathbb{F}}_p)$ is modular, then

 $W(\rho) = \{V|\rho \text{ is modular of weight } V\}$

Question

How do we define analogues of $k_{\min}(V_{t,s})$ and $k_{\min}(W(\rho))$?

What do we mean by minimal?

For simplicity suppose p is inert in F.

We need a partial ordering for $F \neq \mathbb{Q}$. We write e_{τ} for the basis element of \mathbb{Z}^{Σ} associated to τ . We set

$$\Xi_{\mathsf{Ha}}^{\mathbb{Z}} = \Big\{ \sum_{\tau \in \Sigma} y_{\tau} h_{\tau} \in \mathbb{Z}^{\Sigma} \mid y_{\tau} \ge 0 \text{ for all } \tau \in \Sigma \Big\},$$

where $h_{\tau} = p e_{Fr^{-1} \circ \tau} - e_{\tau}$ is the weight of a partial Hasse invariant, e.g. $(0, \ldots, 0, -1, p, 0, \ldots, 0)$.

 $\begin{array}{l} \textbf{Definition (Partial ordering)} \\ \text{We say } \vec{k} \leq_{\text{Ha}} \vec{k'} \iff \vec{k'} - \vec{k} \in \Xi_{\text{Ha}}^{\mathbb{Z}}. \end{array}$

Motivation: If $\vec{k} \leq_{\text{Ha}} \vec{k}'$, then if ρ is modular of weight \vec{k} , it is also modular of weight \vec{k}' .

Some small cases

For $F = \mathbb{Q}$, the Hasse cone is $\Xi_{Ha}^{\mathbb{Z}} = \{y_{\tau}(p-1) \in \mathbb{Z} \mid y_{\tau} \ge 0\}$ where p-1 is the weight of the Hasse invariant.

For F quadratic, we obtain the following picture:

Figure 6: The Hasse cone in the quadratic case

Now we can define analogues $k_{\min}(V_{t,s})$ and $k_{\min}(W(\rho))$.

We would like to define

$$k_{\min}(V_{\vec{t},\vec{s}}) = \min_{\geq Ha} \left\{ \vec{k} \in \mathbb{Z}_{\geq 2}^{\Sigma} \cap \Xi_{\min}^{\mathbb{Q}} \mid V_{\vec{t},\vec{s}} \in \mathsf{JH}\left(\bigotimes_{\tau \in \Sigma} \mathsf{Sym}^{\vec{k}_{\tau}-2} \, k_{\mathfrak{p}}^{2} \otimes_{\tau} \overline{\mathbb{F}}_{\rho}\right) \right\},\$$

where

$$\Xi^{\mathbb{Q}}_{\min} = \Big\{ \sum_{\tau} x_{\tau} e_{\tau} \in \mathbb{Q}^{\Sigma} \mid p x_{\tau} \ge x_{\mathsf{Fr}^{-1} \circ \tau} \text{ for all } \tau \in \Sigma \Big\}.$$

For $V_{(t_0,t_1),(0,0)} = \operatorname{Sym}^{t_0-1} k_p^2 \otimes \operatorname{Sym}^{t_1-1} k_p^2$, we see $k_{\min}(V_{(t_0,t_1),(0,0)}) = (t_0+1,t_1+1)$.

Let

$$k(ec{t},ec{s}) = \sum_{ au \in \Sigma} (s_{ au}(e_{ au} +
ho e_{\mathsf{Fr}^{-1} \circ au}) + (t_{ au} + 1)e_{ au}) - \sum_{\substack{ au \in \Sigma \mid \ s_{ au} + t_{ au} \geq
ho}} (
ho - t_{ au})(
ho e_{\mathsf{Fr}^{-1} \circ au} - e_{ au}).$$

Conjecture

Let p be odd and $k_{\min}(V_{\vec{t},\vec{s}})$ be as above, then we have

$$k_{\min}(V_{\vec{t},\vec{s}}) = k(\vec{t},\vec{s})$$

Again we get behaviour reflecting Θ cycles - for mod p Hilbert modular forms. Here we have partial Θ operators Θ_{τ} , which add $e_{\tau} + pe_{Fr^{-1}\circ\tau}$ to the weight.

Let p = 3. Consider the Serre weight $V_{(2,3),(0,0)}$. We can again look at an 'algebraic' theta cycle: We obtain

 $(\mathbf{3},\mathbf{4}) \rightarrow (\mathbf{5},\mathbf{4}) \rightarrow (\mathbf{6},\mathbf{7}) \rightarrow (\mathbf{6},\mathbf{5}) \rightarrow (\mathbf{8},\mathbf{5}) \rightarrow (\mathbf{9},\mathbf{8}) \rightarrow (\mathbf{9},\mathbf{6}) \rightarrow (\mathbf{11},\mathbf{6}) \rightarrow (\mathbf{3},\mathbf{4})$

We analogously would like to define

$$k_{\min}(W(\rho)) = \min_{\geq Ha} \{ k(\vec{t}, \vec{s}) \mid V_{\vec{t}, \vec{s}} \in W(\rho) \}$$

Proposition (W.) Suppose F is real quadratic and p is inert in F. Then $k_{\min}(W(\rho))$ is well-defined.

- Can we show $k_{\min}(W(\rho))$ always exists?
- What are the algebraic theta cycles for $k_{\min}(V_{\vec{t},\vec{s}})$?
- Can we describe

 $(k_{\min}(W(\rho)), k_{\min}(W(\psi \otimes \rho)), k_{\min}(W(\psi^2 \otimes \rho)), \dots, k_{\min}(W(\psi^{p^d-1}\rho)))$

where ψ is a fundamental character of level d?

 How does this relate to theta cycles of mod p Hilbert modular forms?

Questions?

Minimal weight cones

We set

$$\Xi_{\min}^{\mathbb{Q}} = \Big\{ \sum_{\tau} x_{\tau} e_{\tau} \in \mathbb{Q}^{\Sigma} \mid p x_{\tau} \ge x_{\mathsf{Fr}^{-1} \circ \tau} \text{ for all } \tau \in \Sigma \Big\}.$$

Figure 7: The minimal cone in the quadratic case

Define $\Xi_{\min}^+ = \Xi_{\min} \cap \mathbb{Z}_{\geq 1}^{\Sigma}$.