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The question “When can a curve have infinitely many rational
points?” was answered in Faltings’s celebrated theorem.
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Theorem (Faltings)

Let K be a number field. If C is a curve over K of genus g ≥ 2,
then there are only finitely many K-rational points.
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Given a curve C over Q, we know that C (Q) can be infinite only if
the genus g of C is 0 or 1 (this is unchanged if we consider C (K )
for any number field K ).
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By the degree of a closed point z ∈ C (K̄ ), we mean [K (z) : K ],
the degree of the residue field of z over K .

Example: Let C be the curve defined by y2 = x5 + x2 + 1. Then
the closed point {(1,

√
3), (1,−

√
3)} is a degree 2 point over Q.
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Faltings’s Theorem tells us that for any curve C of genus g > 1
and any number field K , the set of degree 1 points is finite.
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The story can change drastically when we consider points of degree
d ≥ 2.

Example 1: Consider again the curve C defined by
y2 = x5 + x2 + 1. This is a curve of genus 2, so there are only
finitely many degree 1 points. If we fix a ∈ Q, however, then
{(a,±

√
a5 + a2 + 1)} is a closed point over the field

Ka = Q(
√
a5 + a2 + 1).

For most a ∈ Q, a5 + a2 + 1 is not a square, so [Ka : Q] = 2.
Letting a run through the rationals, we obtain infinitely many
degree 2 closed points of C .
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At work is the existence of a degree 2 morphism π : C → P1

defined over Q. (The morphism in this case is defined by
π(x , y) = x .) We have infinitely-many degree 2 points π−1(a)
coming from the infinitely many degree 1 points a ∈ P1.

This works for d > 2 as well: if we have a degree d morphism
f : C → P1, then there will be infinitely many degree 1 points
a ∈ P1 such that f −1(a) is a degree d point of C .
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There is another way in which we can obtain infinitely many degree
d points.

Example 2: Let C be the curve defined by y2 = x9 + x3 + 1. As
before, C admits a degree 2 morphism to P1, and so we expect
infinitely many degree 2 points. But C also admits a degree 3 map
to the elliptic curve E : y2 = x3 + x + 1, f : C → E ,
f (x , y) = (x3, y). We can therefore expect cubic points f −1(a, b)
of C . As E (Q) has rank 1, there will be infinitely many such
points.
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So far, our examples have involved infinitely many degree d points
parameterized by either P1, or a positive rank elliptic curve.

Debarre and Fahlaoui provided examples of curves C that admitted
infinitely many degree d points, yet had no maps of degree ≤ d to
P1 or an elliptic curve. Instead, their construction involves the dth
symmetric product C (d).
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Let C/K be a curve (and assume C (K ) 6= ∅). A closed point
x ∈ C of degree d gives a K -rational point of C (d), and there is a
natural map φ : C (d) → J(C ).

If this natural map is not injective then there is a dominant
morphism f : C → P1 of degree d .

Otherwise, Faltings’s Theorem implies that there are finitely many
K -rational abelian subvarieties Ai ⊂ J(C ) and K -rational points
xi ∈ imφ such that

(imφ)(K ) =
⋃n

i=1 [xi + Ai (K )].

Consequently, one of the Ai must have positive rank.
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In order for C to admit infinitely many degree d closed points over
K , one of two things must occur:

(i) C admits a dominant morphism of degree d to P1, or

(ii) The degree d points of C inject into the set of K -rational
points of a translate of a positive rank abelian subvariety of the
Jacobian J(C ).
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This does not, however, tell the whole story of degree d points.

Example 3: Let C be the curve
C : y2 = x8 + 8x6 − 2x4 + 8x2 + 1 = F (x). Since C is
hyperelliptic, we expect C to have infinitely many quadratic points.
Most of these are of the form (a,±

√
F (a)) with a ∈ Q, but there

is a point that does not arise in this fashion.

The point (i ,±4i) is a quadratic point of C , but as the
x-coordinate is not rational, this point does not come from the
dominant degree 2 morphism C → P1.

Nor is it part of an infinite family of quadratic points of a abelian
subvariety of J(C ) – the rank of its Jacobian is 0.
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The point (i ,±4i) is an example of an isolated point.

Definition

Let C be a curve defined over a number field K and let x ∈ C be a
closed point of degree d. We say x is isolated if it does not
belong to an infinite family of degree d points parametrized by P1

or a translate of a positive rank abelian subvariety of the curve’s
Jacobian.

Odd degree 14/36



Introduction
Results and Prior Work

Ideas in the Proof

The term isolated points was first defined in a paper of Bourdon,
Ejder, Liu, Odumodu, and Viray, where the focus was on modular
curves (though the construction had been studied earlier).

Theorem (Bourdon, Ejder, Liu, Odumodu, and Viray)

Let C be a curve over a number field.
There are infinitely many degree d points on C if and only if there
is a degree d point on C that is not isolated.
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Sporadic Points on Modular Curves

There is a type of point that is guaranteed to be isolated.

Definition

Let C be a curve defined over a number field K and let x ∈ C be a
closed point of degree deg(x). We say that x is sporadic if there
are only finitely many closed points y with deg(y) ≤ deg(x).

Some of the isolated points on modular curves first observed were
sporadic points.
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Modular Curves

For fixed N ∈ Z+, the modular curve X1(N) is an algebraic curve
which can be defined over Q. Each noncuspidal K -rational point
on the curve corresponds up to isomorphism to a pair [E ,P], where
E is an elliptic curve and P is a distinguished point of order N
defined over K .

The noncuspidal K -rational points on the modular curve X0(N)
correspond up to isomorphism to a pair [E , 〈P〉], where E is an
elliptic curve and 〈P〉 is a cyclic subgroup of order N.
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Examples

CM points on X1(`) for all sufficiently large primes ` (Clark,
Cook, and Stankewicz).

A point of degree 6 on X1(37) (van Hoeij)

A point of degree 3 on X1(21) (Najman)
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Example (Najman): The curve X1(21) has an isolated point of
degree 3. The degree 3 point corresponds to an elliptic curve E
with j-invariant −32 · 55/23 which has a point of order 21 over the
field Q(ζ+9 ).
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For a fixed curve C , there are only finitely many isolated points of
degree d , and when d ≥ g + 1, no point of degree d is isolated.
Thus, for a fixed integer N, there are only finitely many isolated
points on X1(N).
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On the other hand, the Clark, Cook, Stankewicz result shows the
set of isolated points on all X1(N) for all N ∈ Z+ is infinite (and
there are CM elliptic curves with rational j-invariant that give rise
to isolated points of arbitrarily large degree).

It is expected that only finitely many rational j-invariants
correspond to isolated points on X1(N).
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Isolated Points on Modular Curves

Theorem (Bourdon, Ejder, Liu, Odumodu, Viray (2019))

Let I denote the set of all isolated points on all modular curves
X1(N) for N ∈ Z+. Assume Serre’s Uniformity Conjecture. Then
j(I) ∩Q is finite.

Odd degree 22/36



Introduction
Results and Prior Work

Ideas in the Proof

Conjecture (Uniformity Conjecture)

There exists a constant M such that for all non-CM elliptic curves
E/Q and for all primes p > M, the mod p Galois representation

ρE ,p : Gal(Q̄/Q)→ Aut(E [p]) ∼= GL2(Z/pZ)

is surjective.
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By adding an assumption on the degree of an isolated point, we
obtain the following unconditional result:
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Main Result

Theorem (Bourdon, Gill, Rouse, W.)

Let Iodd denote the set of all isolated points of odd degree on all
modular curves X1(N) for N ∈ Z+. Then j(Iodd) ∩Q contains at
most the j-invariants in the following list:

non-CM j-invariants CM j-invariants

−32 · 56/23 −218 · 33 · 53
33 · 13/22 −215 · 33 · 53 · 113

−218 · 33 · 53 · 233 · 293

Conversely, j(Iodd) ∩Q contains −32 · 56/23 and 33 · 13/22.
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Connection with rational cyclic isogenies

The key advantage in adding the hypothesis that deg(x) is odd for
x ∈ X1(N) is that it allows us to establish a connection with
rational cyclic isogenies.

In particular, we show that if x is a point of odd degree on X1(N)
with p|N an odd prime and 33 · 5 · 75/27 6= j(x) ∈ Q, then there is
some y ∈ X0(p)(Q) with j(x) = j(y).

In addition, p ∈ {3, 5, 7, 11, 13, 19, 43, 67, 163} and N = 2apbqc

(with bounds on a).
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We treat CM and non-CM points (mostly) separately in the paper.

One key result, which we use throughout the paper, is again due to
Bourdon, Ejder, Liu, Odumodu, and Viray.

Theorem

Let f : C → D be a finite map of curves and let x ∈ C be an
isolated point. If deg(x) = deg(f (x)) · deg(f ), then f (x) is an
isolated point of D.
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This theorem gives one approach for identifying isolated points on
X1(N): use the natural map f : X1(N)→ X1(m) for some m|N.

To this end, we use results of Greenberg and Greenberg, Rubin,
Silverberg, and Stoll on the images of p-adic Galois representations
for primes p ≥ 5 with cyclic p-isogenies to determine values of m
for which the degree condition on residue fields holds.
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Example: To show that there are no non-CM isolated points of
odd degree on X1(2 · 7b) with rational j-invariant for any b ≥ 1, we
show that an such odd degree isolated point on X1(2 · 7b) would
map to a non-cuspidal isolated point on X1(14). By Mazur, there
are no non-cuspidal Q-rational points on X1(14), so a non-cuspidal
odd degree point must have degree ≥ 3, and hence cannot be
isolated.
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Though the techniques for addressing specific N vary, the approach
(broadly speaking) is to push isolated points on X1(N) down to
isolated points on other curves which are either known to have no
isolated points, or which are amenable to computations.
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Example: Let x ∈ X1(2a3b) be an isolated point of odd degree
corresponding to a non-CM elliptic curve with j(x) ∈ Q. Then x
maps to an isolated point on either X1(54) or X1(162). We show
that these curves have no non-CM isolated points of odd degree
using the 3-adic classification due to Rouse, Sutherland, and
Zureick-Brown, as well as a characterization of certain elliptic
curves E/Q with “entanglement” of torsion point fields.
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If E/Q has CM by an order O, then the discriminant ∆ of O is
one of only 13 integers.

We show that there is no isolated point x ∈ X1(N) of odd degree
corresponding to an elliptic curve with CM by the order of
discriminant

∆ ∈ {−3,−4,−7,−8,−11,−12,−16,−19,−27,−28}.

The remaining three discriminants are −43,−67,−163, and it is
the j-invariants corresponding to these discriminants that appear in
the main theorem.

Odd degree 32/36



Introduction
Results and Prior Work

Ideas in the Proof

To complete the classification of odd degree isolated points, it
remains to determine whether these points are isolated. These
j-invariants are in j(Iodd) ∩Q if and only if they correspond to
isolated points of degree 21, 33, and 81 on X1(43), X1(67) and
X1(163), respectively... unfortunately the Jacobians of each of
these curves has positive rank.
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Remaining Problems/Questions

Unconditional results for isolated points of even degree on
X1(N).

Are there non-CM j-invariants giving rise to infinitely many
isolated points?

What is the proportion of non-CM to CM isolated
j-invariants?
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Thank you!

Odd degree 35/36



Introduction
Results and Prior Work

Ideas in the Proof

References

Bourdon, Ejder, Liu, Odumodu, Viray. On the level of
modular curves that give rise to isolated j-invariants.

Bourdon, Gill, Rouse, Watson. Odd degree isolated points on
X1(N) with rational j-invariant.

Odd degree 36/36


	Introduction
	Results and Prior Work
	Ideas in the Proof

