Odd degree isolated points on $X_{1}(N)$ with rational j-invariant

Lori Watson
Wake Forest
Joint with Abbey Bourdon, David R. Gill, and Jeremy Rouse

WAKE FOREST

U N I V E R S I T Y

VaNTAGe Seminar
June 08, 2021

The question "When can a curve have infinitely many rational points?" was answered in Faltings's celebrated theorem.

Theorem (Faltings)

Let K be a number field. If C is a curve over K of genus $g \geq 2$, then there are only finitely many K-rational points.

Given a curve C over \mathbb{Q}, we know that $C(\mathbb{Q})$ can be infinite only if the genus g of C is 0 or 1 (this is unchanged if we consider $C(K)$ for any number field K).

By the degree of a closed point $z \in C(\bar{K})$, we mean $[K(z): K]$, the degree of the residue field of z over K.

Example: Let C be the curve defined by $y^{2}=x^{5}+x^{2}+1$. Then the closed point $\{(1, \sqrt{3}),(1,-\sqrt{3})\}$ is a degree 2 point over \mathbb{Q}.

Faltings's Theorem tells us that for any curve C of genus $g>1$ and any number field K, the set of degree 1 points is finite.

The story can change drastically when we consider points of degree $d \geq 2$.

Example 1: Consider again the curve C defined by $y^{2}=x^{5}+x^{2}+1$. This is a curve of genus 2 , so there are only finitely many degree 1 points. If we fix $a \in \mathbb{Q}$, however, then $\left\{\left(a, \pm \sqrt{a^{5}+a^{2}+1}\right)\right\}$ is a closed point over the field $K_{a}=\mathbb{Q}\left(\sqrt{a^{5}+a^{2}+1}\right)$.

For most $a \in \mathbb{Q}, a^{5}+a^{2}+1$ is not a square, so $\left[K_{a}: \mathbb{Q}\right]=2$. Letting a run through the rationals, we obtain infinitely many degree 2 closed points of C.

At work is the existence of a degree 2 morphism $\pi: C \rightarrow \mathbb{P}^{1}$ defined over \mathbb{Q}. (The morphism in this case is defined by $\pi(x, y)=x$.) We have infinitely-many degree 2 points $\pi^{-1}(a)$ coming from the infinitely many degree 1 points $a \in \mathbb{P}^{1}$.

This works for $d>2$ as well: if we have a degree d morphism $f: C \rightarrow \mathbb{P}^{1}$, then there will be infinitely many degree 1 points $a \in \mathbb{P}^{1}$ such that $f^{-1}(a)$ is a degree d point of C.

There is another way in which we can obtain infinitely many degree d points.

Example 2: Let C be the curve defined by $y^{2}=x^{9}+x^{3}+1$. As before, C admits a degree 2 morphism to \mathbb{P}^{1}, and so we expect infinitely many degree 2 points. But C also admits a degree 3 map to the elliptic curve $E: y^{2}=x^{3}+x+1, f: C \rightarrow E$, $f(x, y)=\left(x^{3}, y\right)$. We can therefore expect cubic points $f^{-1}(a, b)$ of C. As $E(\mathbb{Q})$ has rank 1 , there will be infinitely many such points.

So far, our examples have involved infinitely many degree d points parameterized by either \mathbb{P}^{1}, or a positive rank elliptic curve.

Debarre and Fahlaoui provided examples of curves C that admitted infinitely many degree d points, yet had no maps of degree $\leq d$ to \mathbb{P}^{1} or an elliptic curve. Instead, their construction involves the d th symmetric product $C^{(d)}$.

Let C / K be a curve (and assume $C(K) \neq \emptyset$). A closed point $x \in C$ of degree d gives a K-rational point of $C^{(d)}$, and there is a natural $\operatorname{map} \phi: C^{(d)} \rightarrow J(C)$.

If this natural map is not injective then there is a dominant morphism $f: C \rightarrow \mathbb{P}^{1}$ of degree d.

Otherwise, Faltings's Theorem implies that there are finitely many K-rational abelian subvarieties $A_{i} \subset J(C)$ and K-rational points $x_{i} \in \operatorname{im} \phi$ such that

$$
(\operatorname{im} \phi)(K)=\bigcup_{i=1}^{n}\left[x_{i}+A_{i}(K)\right] .
$$

Consequently, one of the A_{i} must have positive rank.

In order for C to admit infinitely many degree d closed points over K, one of two things must occur:
(i) C admits a dominant morphism of degree d to \mathbb{P}^{1}, or
(ii) The degree d points of C inject into the set of K-rational points of a translate of a positive rank abelian subvariety of the Jacobian $J(C)$.

This does not, however, tell the whole story of degree d points.

Example 3: Let C be the curve $C: y^{2}=x^{8}+8 x^{6}-2 x^{4}+8 x^{2}+1=F(x)$. Since C is hyperelliptic, we expect C to have infinitely many quadratic points. Most of these are of the form $(a, \pm \sqrt{F(a)})$ with $a \in \mathbb{Q}$, but there is a point that does not arise in this fashion.

The point $(i, \pm 4 i)$ is a quadratic point of C, but as the x-coordinate is not rational, this point does not come from the dominant degree 2 morphism $C \rightarrow \mathbb{P}^{1}$.

Nor is it part of an infinite family of quadratic points of a abelian subvariety of $J(C)$ - the rank of its Jacobian is 0 .

The point $(i, \pm 4 i)$ is an example of an isolated point.

Definition

Let C be a curve defined over a number field K and let $x \in C$ be a closed point of degree d. We say x is isolated if it does not belong to an infinite family of degree d points parametrized by \mathbb{P}^{1} or a translate of a positive rank abelian subvariety of the curve's Jacobian.

The term isolated points was first defined in a paper of Bourdon, Ejder, Liu, Odumodu, and Viray, where the focus was on modular curves (though the construction had been studied earlier).

Theorem (Bourdon, Ejder, Liu, Odumodu, and Viray)

Let C be a curve over a number field.
There are infinitely many degree d points on C if and only if there is a degree d point on C that is not isolated.

Sporadic Points on Modular Curves

There is a type of point that is guaranteed to be isolated.

Definition

Let C be a curve defined over a number field K and let $x \in C$ be a closed point of degree $\operatorname{deg}(x)$. We say that x is sporadic if there are only finitely many closed points y with $\operatorname{deg}(y) \leq \operatorname{deg}(x)$.

Some of the isolated points on modular curves first observed were sporadic points.

Modular Curves

For fixed $N \in \mathbb{Z}^{+}$, the modular curve $X_{1}(N)$ is an algebraic curve which can be defined over \mathbb{Q}. Each noncuspidal K-rational point on the curve corresponds up to isomorphism to a pair $[E, P]$, where E is an elliptic curve and P is a distinguished point of order N defined over K.

The noncuspidal K-rational points on the modular curve $X_{0}(N)$ correspond up to isomorphism to a pair $[E,\langle P\rangle]$, where E is an elliptic curve and $\langle P\rangle$ is a cyclic subgroup of order N.

Examples

- CM points on $X_{1}(\ell)$ for all sufficiently large primes ℓ (Clark, Cook, and Stankewicz).
- A point of degree 6 on $X_{1}(37)$ (van Hoeij)
- A point of degree 3 on $X_{1}(21)$ (Najman)

Example (Najman): The curve $X_{1}(21)$ has an isolated point of degree 3 . The degree 3 point corresponds to an elliptic curve E with j-invariant $-3^{2} \cdot 5^{5} / 2^{3}$ which has a point of order 21 over the field $\mathbb{Q}\left(\zeta_{g}^{+}\right)$.

For a fixed curve C, there are only finitely many isolated points of degree d, and when $d \geq g+1$, no point of degree d is isolated. Thus, for a fixed integer N, there are only finitely many isolated points on $X_{1}(N)$.

On the other hand, the Clark, Cook, Stankewicz result shows the set of isolated points on all $X_{1}(N)$ for all $N \in \mathbb{Z}^{+}$is infinite (and there are CM elliptic curves with rational j-invariant that give rise to isolated points of arbitrarily large degree).

It is expected that only finitely many rational j-invariants correspond to isolated points on $X_{1}(N)$.

Isolated Points on Modular Curves

Theorem (Bourdon, Ejder, Liu, Odumodu, Viray (2019))

Let \mathcal{I} denote the set of all isolated points on all modular curves $X_{1}(N)$ for $N \in \mathbb{Z}^{+}$. Assume Serre's Uniformity Conjecture. Then $j(\mathcal{I}) \cap \mathbb{Q}$ is finite.

Conjecture (Uniformity Conjecture)

There exists a constant M such that for all non-CM elliptic curves E / \mathbb{Q} and for all primes $p>M$, the mod p Galois representation

$$
\rho_{E, p}: G a /(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \operatorname{Aut}(E[p]) \cong G L_{2}(\mathbb{Z} / p \mathbb{Z})
$$

is surjective.

By adding an assumption on the degree of an isolated point, we obtain the following unconditional result:

Main Result

Theorem (Bourdon, Gill, Rouse, W.)

Let $\mathcal{I}_{\text {odd }}$ denote the set of all isolated points of odd degree on all modular curves $X_{1}(N)$ for $N \in \mathbb{Z}^{+}$. Then $j\left(\mathcal{I}_{\text {odd }}\right) \cap \mathbb{Q}$ contains at most the j-invariants in the following list:

non-CM j-invariants	$C M$ j-invariants
$-3^{2} \cdot 5^{6} / 2^{3}$	$-2^{18} \cdot 3^{3} \cdot 5^{3}$
$3^{3} \cdot 13 / 2^{2}$	$-2^{15} \cdot 3^{3} \cdot 5^{3} \cdot 11^{3}$
	$-2^{18} \cdot 3^{3} \cdot 5^{3} \cdot 23^{3} \cdot 29^{3}$

Conversely, $j\left(\mathcal{I}_{\text {odd }}\right) \cap \mathbb{Q}$ contains $-3^{2} \cdot 5^{6} / 2^{3}$ and $3^{3} \cdot 13 / 2^{2}$.

Connection with rational cyclic isogenies

The key advantage in adding the hypothesis that $\operatorname{deg}(x)$ is odd for $x \in X_{1}(N)$ is that it allows us to establish a connection with rational cyclic isogenies.

In particular, we show that if x is a point of odd degree on $X_{1}(N)$ with $p \mid N$ an odd prime and $3^{3} \cdot 5 \cdot 7^{5} / 2^{7} \neq j(x) \in \mathbb{Q}$, then there is some $y \in X_{0}(p)(\mathbb{Q})$ with $j(x)=j(y)$.

In addition, $p \in\{3,5,7,11,13,19,43,67,163\}$ and $N=2^{a} p^{b} q^{c}$ (with bounds on a).

We treat CM and non-CM points (mostly) separately in the paper.

One key result, which we use throughout the paper, is again due to Bourdon, Ejder, Liu, Odumodu, and Viray.

Theorem

Let $f: C \rightarrow D$ be a finite map of curves and let $x \in C$ be an isolated point. If $\operatorname{deg}(x)=\operatorname{deg}(f(x)) \cdot \operatorname{deg}(f)$, then $f(x)$ is an isolated point of D.

This theorem gives one approach for identifying isolated points on $X_{1}(N)$: use the natural map $f: X_{1}(N) \rightarrow X_{1}(m)$ for some $m \mid N$.

To this end, we use results of Greenberg and Greenberg, Rubin, Silverberg, and Stoll on the images of p-adic Galois representations for primes $p \geq 5$ with cyclic p-isogenies to determine values of m for which the degree condition on residue fields holds.

Example: To show that there are no non-CM isolated points of odd degree on $X_{1}\left(2 \cdot 7^{b}\right)$ with rational j-invariant for any $b \geq 1$, we show that an such odd degree isolated point on $X_{1}\left(2 \cdot 7^{b}\right)$ would map to a non-cuspidal isolated point on $X_{1}(14)$. By Mazur, there are no non-cuspidal \mathbb{Q}-rational points on $X_{1}(14)$, so a non-cuspidal odd degree point must have degree ≥ 3, and hence cannot be isolated.

Though the techniques for addressing specific N vary, the approach (broadly speaking) is to push isolated points on $X_{1}(N)$ down to isolated points on other curves which are either known to have no isolated points, or which are amenable to computations.

Example: Let $x \in X_{1}\left(2^{a} 3^{b}\right)$ be an isolated point of odd degree corresponding to a non-CM elliptic curve with $j(x) \in \mathbb{Q}$. Then x maps to an isolated point on either $X_{1}(54)$ or $X_{1}(162)$. We show that these curves have no non-CM isolated points of odd degree using the 3 -adic classification due to Rouse, Sutherland, and Zureick-Brown, as well as a characterization of certain elliptic curves E / \mathbb{Q} with "entanglement" of torsion point fields.

If E / \mathbb{Q} has $C M$ by an order \mathcal{O}, then the discriminant Δ of \mathcal{O} is one of only 13 integers.

We show that there is no isolated point $x \in X_{1}(N)$ of odd degree corresponding to an elliptic curve with CM by the order of discriminant

$$
\Delta \in\{-3,-4,-7,-8,-11,-12,-16,-19,-27,-28\} .
$$

The remaining three discriminants are $-43,-67,-163$, and it is the j-invariants corresponding to these discriminants that appear in the main theorem.

To complete the classification of odd degree isolated points, it remains to determine whether these points are isolated. These j-invariants are in $j\left(\mathcal{I}_{\text {odd }}\right) \cap \mathbb{Q}$ if and only if they correspond to isolated points of degree 21,33 , and 81 on $X_{1}(43), X_{1}(67)$ and $X_{1}(163)$, respectively... unfortunately the Jacobians of each of these curves has positive rank.

Remaining Problems/Questions

- Unconditional results for isolated points of even degree on $X_{1}(N)$.
- Are there non-CM j-invariants giving rise to infinitely many isolated points?
- What is the proportion of non-CM to CM isolated j-invariants?

Thank you!

References

- Bourdon, Ejder, Liu, Odumodu, Viray. On the level of modular curves that give rise to isolated j-invariants.
- Bourdon, Gill, Rouse, Watson. Odd degree isolated points on $X_{1}(N)$ with rational j-invariant.

