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Introduction: Branched covers of the projective line

Recall the Riemann–Hurwitz formula.

Let X be a nice curve over C with genus g , and let ϕ : X → P1 be
a map of degree d . Then

2g − 2 = −2d + e(ϕ)

where e(ϕ) :=
∑

P(eP − 1) is the ramification degree.

Suppose ϕ is ramified at r ≥ 0 points.

I If r ≤ 1, then in fact r = 0 and d = 1: ϕ an isomorphism.

I If r = 2, then g = 0 and ϕ(x) = xd .

I If r = 3, suddenly we see all of math!

https://webspace.science.uu.nl/~oort0109/EigArt-RHurwitz-2016.pdf


Belyi maps

Let X be a nice curve over C. A Belyi map (on X ) is a
nonconstant morphism

ϕ : X → P1

that is unramified away from {0, 1,∞}.

An isomorphism of Belyi maps is a commutative diagram

X
∼ //

ϕ   

X ′

ϕ′~~
P1

.

G.V. Belyi (1951–2001)

https://en.wikipedia.org/wiki/G._V._Belyi


Example

Consider the map ϕ : P1 → P1 defined by:

ϕ(x) = 2x3 + 3x2 = x2(2x + 3)

ϕ(x)− 1 = 2x3 + 3x2 − 1 = (2x − 1)(x + 1)2.

Since ϕ′(x) = 6x2 + 6x = 6x(x + 1), ϕ is a Belyi map of degree 3.
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Belyi map examples

I An icosahedral map:

ϕ : P1 → P1/A5 ' P1

φ(x) =
(x20 + 228x15 + 494x10 − 228x5 + 1)3

2633x5(x10 − 11x5 − 1)5

I The Fermat curve has a Belyi map of degree n2:

ϕ : (X : xn + yn = zn)→ P1

(x : y : z) 7→ (xn : zn)



Belyi’s theorem

Theorem (Belyi)

A nice curve X over C admits a Belyi map if and only if X can be
defined over a number field K ⊂ C.

The implication (⇒) is a consequence of Weil descent.

The implication (⇐) can be proven by:

1. Map X → P1 using any nonconstant function;

2. Post-compose with a function to obtain ramification set in
P1(Q); then

3. Make careful use of the map

x 7→ (m + n)m+n

mmnn
xm(1− x)n

which maps {0, 1,m/(m + n),∞} 7→ {0, 1,∞} for
m, n ∈ Z≥1.

https://iopscience.iop.org/article/10.1070/IM1980v014n02ABEH001096


Grothendieck

Grothendieck, in his Esquisse d’un Programme, says:

Every finite oriented map gives rise to a projective non-singular
algebraic curve defined over Qal, and one immediately asks the
question: which are the algebraic curves over Qal obtained in this
way—do we obtain them all, who knows? In more erudite terms,
could it be true that every projective non-singular algebraic curve
defined over a number field occurs as a possible “modular curve”
parametrising elliptic curves equipped with a suitable rigidification?
Such a supposition seemed so crazy that I was almost embarrassed
to submit it to the competent people in the domain. Deligne when
I consulted him found it crazy indeed, but didn’t have any
counterexample up his sleeve. Less than a year later, at the
International Congress in Helsinki, the Soviet mathematician Belyi
announced exactly that result, with a proof of disconcerting
simplicity which fit into two little pages of a letter of
Deligne—never, without a doubt, was such a deep and
disconcerting result proved in so few lines!

https://webusers.imj-prg.fr/~leila.schneps/grothendieckcircle/EsquisseEng.pdf


Dessins

Given a Belyi map ϕ : X → P1, the preimage ϕ−1([0, 1]) is a
dessin: a connected bicolored graph such that two vertices of an
edge are colored differently and such that edges around each vertex
are given a cyclic ordering. Conversely, a dessin determines a Belyi
map, providing an equivalence of categories.

For example, the Belyi map ϕ : P1 → P1 of degree 4 defined by

ϕ(x) = −(x − 1)3(x − 9)

64x
= 1− (x2 − 6x − 3)2

64x

has dessin:

3− 2
√

3

1

3 + 2
√

3

9



Galois acting on dessins
In general, Belyi maps are defined over number fields, e.g.

ϕ(x) =
(

2
√

2x3 − 2(2
√

2 + 1)x2 + (−4 + 7
√

2)x + 1
)2

·
(

14x2 + 6(
√

2 + 4)x − 8
√

2 + 31
)
.

So Gal(Qal |Q) acts faithfully on the set of dessins.

The idea that one can study the action of Gal(Qal |Q) using
topology (staring at drawings) is striking!

However, this Galois action on dessins is mysterious and highly
unpredictable, and nontrivial invariants are difficult to find.

(Frits Beukers)



Combinatorial description of Belyi maps
The combinatorial description of Belyi maps is particularly simple:
there is a bijection between

Belyi maps ϕ : X → P1 of degree d

up to isomorphism over Qal and transitive permutation triples

σ = (σ0, σ1, σ∞) ∈ S3
d that satisfy σ∞σ1σ0 = 1

and generate a transitive subgroup 〈σ〉 ≤ Sd

up to simultaneous conjugation in Sd .

In particular, there are only finitely many Qal-isomorphism classes
of curves X with a Belyi map of given degree d .

For the previous examples, we had

σ0 = (1 2), σ1 = (2 3), σ∞ = (1 3 2)
σ0 = (1 2 3), σ1 = (1 2)(3 4), σ∞ = (2 3 4).



Monodromy

If σ ∈ S3
d corresponds to ϕ : X → P1, we say ϕ has monodromy

σ. If G = 〈σ〉 ≤ Sd is the subgroup generated by σ, then we say
that the corresponding Belyi map has monodromy group G . The
cover ϕ : X o → P1 \ {0, 1,∞} corresponds to a subgroup

Γ ≤ π1(P1 \ {0, 1,∞}) ' F2

of index d in the free group on 2 generators γ0, γ1.

In particular, the cycles of the permutation correspond to the
points of X above 0, 1,∞ and the length of the cycle corresponds
to to its multiplicity.



Passports

We organize basic Galois invariants of a Belyi map as follows.

A passport is the data (g ,G , λ) consisting of a nonnegative
integer g ∈ Z≥0, a transitive permutation group G ≤ Sd , and three
partitions λ = (λ0, λ1, λ∞) of d .

The passport of a Belyi map is given by its genus, its monodromy
group, and the ramification degrees of the points above 0, 1,∞.

The passport of the first example is (0,S3, (2 + 1, 2 + 1, 3)).



So far

I A Belyi map is a map of curves ϕ : X → P1 unramified away
from {0, 1,∞}.

I Belyi proved that curve over C admits a Belyi map if and only
if it can be defined over Qal.

I There are bijections between equivalence classes of:
I Belyi maps,
I dessins (bicolored graphs equipped with a cyclic orientation),
I transitive permutation triples, and
I Permutation representations of F2 as a fundamental group.

And Gal(Qal |Q) acts on all of these sets!



Modular curves and Belyi maps

Let X (Γ) := Γ\H∗ be the modular curve attached to a finite index
subgroup Γ ≤ SL2(Z). Then we obtain a Belyi map

J : X (Γ)→ P1

from J(z) := j(z)/1728 = (q−1 + 744 + . . . )/1728.

The “deep and disconcerting” corollary: Every curve over a
number field is a modular curve.

For example, taking Γ = Γ0(2) ≤ SL2(Z) of index 3, we obtain the
map in our first example.

But this also applies to noncongruence subgroups (those not
containing Γ(N) for some N): Will Chen has given a moduli
interpretation for noncongruence modular curves.

This approach also works to compute equations for certain
Shimura curves (e.g. work of Elkies) and certain elliptic K3
surfaces (Beukers–Montanus).

https://arxiv.org/abs/1510.05687
https://arxiv.org/abs/1510.05687
https://arxiv.org/abs/math/0005160
https://doi.org/10.1017/CBO9780511721274.005


Inverse Galois theory

Inverse Galois problem: does every transitive group G ≤ Sd occur
as a Galois group over Q?

A Belyi map ϕ : X → P1 defined over K and with monodromy
group G can be thought of as a family of number fields with
geometric generic Galois group G . (See e.g. Malle–Matzat and
Jensen–Ledet–Yui.)

The method of rational rigidity (Thompson, ...) can be used to
ensure that K = Q, showing that the monster group arises as the
(full) Galois group of a Belyi map over Q!

By Hilbert irreducibility, for all t ∈ K outside of a thin set, the
specialized Galois group is equal to the generic Galois group.
Carefully choosing a specialization, one obtains number fields with
large Galois group but constrained ramification (e.g. Malle,
Roberts, ...).

https://www.springer.com/gp/book/9783540628903
http://library.msri.org/books/Book45/contents.html
https://core.ac.uk/download/pdf/82556712.pdf
https://www.jstor.org/stable/2008777
https://digitalcommons.morris.umn.edu/cgi/viewcontent.cgi?article=1024&context=mathematics


Inverse Galois theory: example
The polynomial

ft(x) = 26a(x)5b(x)− 510tc(x)7 ∈ Q(t)[x ]

of degree 50, where

a(x) = (x4 + 11x3 − 29x2 + 11x + 1)(64x5 − 100x4 + 150x3 − 25x2 + 5x + 1)

b(x) = 196x5 − 430x4 + 485x3 − 235x2 + 30x + 4

c(x) = x(x + 1)(2x2 − 3x + 2)(8x3 − 32x2 + 10x + 1)

has discriminant

disc(ft(x)) =
556071092

21918
t36(t − 1)20;

the Galois group of f (x) over Q(
√
−7)(t) is

PSU3(F5) = {g ∈ SL3(F25) : gσ(g)t = 1}/scalars

where σ is the entry-wise (5th power) Frobenius. We have
# PSU3(F5) = 126000 = 2432537. Specializing at t = 2 yields a
number field L ramified only at 2, 5, 7 with
Gal(L |Q) ' PSU3(F5) :2. See e.g. Monien and Barth–Wenz for
more!

https://arxiv.org/abs/1802.06923
https://arxiv.org/abs/1703.02848


Galois Belyi maps

When a Belyi map ϕ : X → P1 corresponds to a Galois extension
of function fields over C, the Riemann surface X is sometimes
called quasiplatonic, and its dessin is said to be regular.

Quasiplatonic surfaces are equivalently the curves X where the
map [X ] 7→ # Aut(X ) achieves a local maximum on Mg .

Hurwitz proved that in general # Aut(X ) ≤ 84(g − 1). If equality
holds, then ϕ : X → X/Aut(X ) ' P1 is a Belyi map. So the Klein
quartic has a Belyi map of degree 168.

Jones–Wolfart:

http://library.msri.org/books/Book35/files/elkies.pdf
http://library.msri.org/books/Book35/files/elkies.pdf
https://www.springer.com/us/book/9783319247090


abc conjecture
Specializing Belyi maps can give good abc triples: taking
x = t = 1 in the degree 50 example above gives

52 · 195 + 618 · 1032 = 137.

Indeed, Elkies proved using Belyi maps that the abc conjecture
implies Mordell’s conjecture.

Recall also the abc theorem for polynomials (the Mason–Stothers
theorem): if f (x) + g(x) = h(x) ∈ C[x ] are relatively prime then

deg h ≤ deg rad(fgh)− 1.

Equality holds exactly when ϕ(x) = f (x)/g(x) is a (rescaled) Belyi
map.

This includes Hall polynomials (also called Davenport–Stothers
triples), coprime solutions to

x(t)3 − y(t)2 = z(t)

with deg x(t) = 2m, deg(y(t)) = 3m, and deg(z(t)) = m + 1.

https://academic.oup.com/imrn/article-pdf/1991/7/99/6767879/1991-7-99.pdf


Belyi degree

Let X be a curve over Qal. The Belyi degree of X , denoted
Beldeg(X ), is the minimal degree of a Belyi map X → P1.

The Belyi degree behaves “like a height” (Liţcanu). It arises
naturally in Arakelov theory, for example one can bound the
Faltings height of a curve polynomially in terms of the Belyi degree
(Javanpeykar).

Theorem (Javanpeykar–V)

The Belyi degree of a curve is computable.

For example, the Fermat curve x4 + y4 = z4 has Belyi degree 8.

http://dx.doi.org/10.1007/s00605-003-0142-2
https://msp.org/ant/2014/8-1/ant-v8-n1-p04-s.pdf
http://www.ams.org/books/conm/722/14533/conm722-14533.pdf


A computational Esquisse

Jeroen Sijsling and I wrote a survey on computing Belyi maps
(though this misses developments in the past 7 years!).

Grothendieck asks:
Exactly which are the conjugates of a given oriented map?
I considered some concrete cases (for coverings of low de-
gree) by various methods... I doubt that there is a uniform
method for solving the problem by computer.

Open question: Is there an algorithm that takes as

input: a permutation triple σ ∈ S3
d

and produces

output: a model for the associated Belyi map ϕ : X → P1 over Qal

that runs in time doubly exponential in d?

https://arxiv.org/abs/1311.2529


Conclusion

The study of Belyi maps has links to
a wide range of areas of mathematics,
and greater understanding may have
profound implications in number the-
ory and arithmetic geometry.
We just skimmed the surface, missing
numerous applications.

But please join us for the talks to come:
Edray Goins, Ozlem Ejder, Sam Schiavone, Irene Bouw!


