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The Brauer group and  
the Brauer-Manin obstruction  

on K3 surfaces
I acknowledge that I live and work on the traditional territories 

of the Duwamish and Coast Salish people
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What does it mean to study K3 surfaces?

Definition: An algebraic K3 
surface is a smooth proper 
algebraic surface with trivial 
irregularity and .ωX ≅ 𝒪X

Examples: 

• , e.g.,  V(Q4) ⊂ P3 x4 + y4 = z4 + w4

• Kummer surfaces   Ã/ ± 1

• Degree 2 K3s, e.g.,  w2 = x6 + y6 + z6

Where do we go from here?



Two K3 surfaces meet at a party…

Surfaces created by Burt Totaro (L) and Claudio Rocchini (R)

https://commons.wikimedia.org/wiki/User:Rocchini


Two K3 surfaces meet on zoom

Hey! I’m 
Kummer.
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Kummer, I’m Quar5c.
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Two K3 surfaces meet on zoom

Tell me a li8le bit 
about yourself.

Quartic K3 Kummer K3

Where  
should I  
start?

Surfaces created by Burt Totaro (L) and Claudio Rocchini (R)

https://commons.wikimedia.org/wiki/User:Rocchini


Two elliptic curves meet on zoom
Tell me a li8le bit 
about yourself.
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Is there an analog for K3 surfaces?
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• Fundamental attribute of an elliptic curve. 
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E(k)tors = E(k)Gk
tors

Br X

(Br X)Gk

What can we say structurally?
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Over ?k = k

(Q/Z)2

1 ≤ ρ ≤ 22
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,  elliptic curveE(k)tors E ,   K3 surfaceBr X
Br0 X

X

Finite!

Over number fields?

Finite!
[Skorobogatov, Zarhin 2008]



Theorem (Merel, after Mazur, Kamienny) 
Let .  Then there exists a  such that for all 

 with , and all elliptic curves , 

.

d ∈ N C ∈ N
k/Q [k : Q] ≤ d E/k

#E(k)tors ≤ C



Let  be a K3 surface over a number field.  

Is  uniformly bounded?

X/k
#(Br X/Br0 X)
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• Infinite countable union of 19-dimensional varieties. 

• Given a primitive , the moduli of K3s 

with  is irreducible with dimension .

Λ ⊂ U⊕3 ⊕ E8(−1)⊕2

Λ ↪ NS X 20 − rk Λ

Moduli of K3 surfaces

More complicated than the -line!j
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Why might we suspect this is possible?

Theorem (Ieronymou, Skorobogatov 2015):    
Let  be a diagonal quartic.  Then .X/k X(Ak)Brodd ≠ ∅
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Theorem [Corn, Nakahara 2018] 
 with   and .∃ X/Q X(AQ) ≠ ∅ X(Ak)Br[3] = ∅

Theorem [Berg, Várilly-Alvarado 2020]   
 with  , ,  and .∃ X/Q rk NS X = 1 X(AQ) ≠ ∅ X(Ak)Br[3] = ∅

Theorem [Gvirtz, Loughran, Nakahara (preprint)]   
 with   and .∃ X/Q X(AQ)Br = ∅ X(Ak)Br[2∞] ≠ ∅
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