The Brauer group and the Brauer-Manin obstruction on K3 surfaces

I acknowledge that I live and work on the traditional territories of the Duwamish and Coast Salish people
http://native-land.ca/

https://mathematicallygiftedandblack.com/

Black History Month
February 232021

Honoree of the Day

Nicole Michelle Joseph
Assistant Professor of Mathematics Education Department of Teaching and Learning Vanderbilt University

What does it mean to study K3 surfaces?

What does it mean to study K3 surfaces?

Definition: An algebraic K3
surface is a smooth proper
algebraic surface with trivial
irregularity and $\omega_{X} \cong \mathcal{O}_{X}$.

What does it mean to study K3 surfaces?

Definition: An algebraic K3
surface is a smooth proper
algebraic surface with trivial
irregularity and $\omega_{X} \cong \mathcal{O}_{X}$.

Examples:

What does it mean to study K3 surfaces?

Definition: An algebraic K3
surface is a smooth proper algebraic surface with trivial irregularity and $\omega_{X} \cong \mathcal{O}_{X}$.

Examples:

- $V\left(Q_{4}\right) \subset \mathbf{P}^{3}$, e.g., $x^{4}+y^{4}=z^{4}+w^{4}$

What does it mean to study K3 surfaces?

Definition: An algebraic K3
surface is a smooth proper algebraic surface with trivial irregularity and $\omega_{X} \cong \mathcal{O}_{X}$.

Examples:

- $V\left(Q_{4}\right) \subset \mathbf{P}^{3}$, e.g., $x^{4}+y^{4}=z^{4}+w^{4}$
- Kummer surfaces $\widetilde{A / \pm 1}$

What does it mean to study K3 surfaces?

Definition: An algebraic K3 surface is a smooth proper algebraic surface with trivial irregularity and $\omega_{X} \cong \mathcal{O}_{X}$.

Examples:

- $V\left(Q_{4}\right) \subset \mathbf{P}^{3}$, e.g., $x^{4}+y^{4}=z^{4}+w^{4}$
- Kummer surfaces $\widetilde{A / \pm 1}$
- Degree 2 K3s, e.g., $w^{2}=x^{6}+y^{6}+z^{6}$

What does it mean to study K3 surfaces?

Definition: An algebraic K3 surface is a smooth proper algebraic surface with trivial irregularity and $\omega_{X} \cong \mathcal{O}_{X}$.

Examples:

- $V\left(Q_{4}\right) \subset \mathbf{P}^{3}$, e.g., $x^{4}+y^{4}=z^{4}+w^{4}$
- Kummer surfaces $\widetilde{A / \pm 1}$
- Degree 2 K3s, e.g., $w^{2}=x^{6}+y^{6}+z^{6}$

Where do we go from here?

Two K3 surfaces meet at a party...

Two K3 surfaces meet on zoom

Two K3 surfaces meet on zoom

Tell me a little bit about yourself.

Two K3 surfaces meet on zoom

Two elliptic curves meet on zoom

Elliptic Curve Facebook ${ }^{\text {TM }}$

Elliptic Curve Facebook ${ }^{\text {TM }}$

LMFDB	$\Delta \rightarrow$ Elliptic curves $\rightarrow 4.4 .10273 .1 \rightarrow 162.1 \rightarrow d \rightarrow 5$ Elliptic curve 162.1-d5 over number field 4.4.10273.1
Introduction	Show commands for: Magma / Pari/GP / SageMath
Overview Random Universe Knowledge	Base field 4.4.10273.1
L-functions	Generator a, with minimal polynomial $x^{4}-2 x^{3}-5 x^{2}+x+2$; class number 1 .
Rational All	Weierstrass equation
Modular forms	$y^{2}+\left(a^{3}-3 a^{2}-a+3\right) x y+\left(2 a^{3}-5 a^{2}-6 a+4\right) y=x^{3}+\left(-2 a^{3}+5 a^{2}+6 a-4\right) x^{2}+$ $\left(-223 a^{3}+597 a^{2}+699 a-671\right) x-2029 a^{3}+5367 a^{2}+6672 a-6309$
$\begin{array}{ll}\text { Classical } & \text { Maass } \\ \text { Hilbert } & \text { Bianchi }\end{array}$	$\left(-223 a^{3}+597 a^{2}+699 a-671\right) x-2029 a^{3}+5367 a^{2}+6672 a-6309$ This is a global minimal model.
Varieties	
Elliptic curves over ©	Invariants
Elliptic curves over $\mathbb{Q}(\alpha)$	Conductor: (3a) $\quad\left(\begin{array}{l}\text { a }\end{array}\right) \cdot\left(-a^{2}+1\right) \cdot\left(-a^{3}+4 a^{2}-7\right)$
Genus 2 curves over \mathbb{Q}	Conductor norm: $162=2 \cdot 3 \cdot 27$
Higher genus families	Discriminant: $\quad\left(-351 a^{3}+756 a^{2}+1134 a+1998\right)=(a) \cdot\left(-a^{2}+1\right)^{3} \cdot\left(-a^{3}+4 a^{2}-7\right)^{8}$
Abelian varieties over \mathbb{F}_{q}	Discriminant norm: $\quad-15251194969974 \quad=2 \cdot 3^{3} \cdot 27^{8}$
Fields	j-invariant: $\quad \frac{19091225}{13122} a^{3}-\frac{266653125}{6561} a^{2}-\frac{5783881025}{13122} a+\frac{71473061}{13122}$
Number fields	Geometric endomorphism ring: \mathbb{Z} (no potential complex multiplication)
p-adic fields	Sato-Tate group: \quad SU(2)
Representations	Mordell-Weil group
Dirichlet characters Artin representations	Rank: 1
Groups	Generator $\quad\left(\frac{35}{4} a^{3}-23 a^{2}-\frac{119}{4} a+\frac{109}{4}:-\frac{119}{8} a^{3}+38 a^{2}+\frac{435}{8} a-\frac{385}{8}: 1\right)$
	Height 1.31652931384029 行
Galois groups	Torsion structure: $\mathbb{Z} / 2 \mathbb{Z}$
Sato-Tate groups	Torsion generator: $\quad\left(-\frac{15}{4} a^{3}+\frac{39}{4} a^{2}+\frac{25}{2} a-\frac{49}{4}: \frac{7}{2} a^{3}-\frac{75}{8} a^{2}-\frac{43}{4} a+\frac{93}{8}: 1\right)$
	BSD invariants
	Analytic rank: 1
	Mordell-Weil rank:
	Regulator: $\quad 1.31652931384029$
	Period: $\quad 61.7430800534858$
	Tamagawa product: $2=1 \cdot 1 \cdot 2$
	Torsion order: 2
	Leading coefficient: $\quad \mathbf{6 . 4 1 5 9 3 8 1 2 4 5 6 0 1 3}$

$E(k)_{\text {tors }}$

$E(k)_{\text {tors }}$

- Fundamental attribute of an elliptic curve.

$E(k)_{\text {tors }}$

- Fundamental attribute of an elliptic curve.
- Rigidifies the moduli problem.

$E(k)_{\text {tors }}$

- Fundamental attribute of an elliptic curve.
- Rigidifies the moduli problem.
- Helpful or even necessary for computing other properties/attributes.

$E(k)_{\text {tors }}$

- Fundamental attribute of an elliptic curve.
- Rigidifies the moduli problem.
- Helpful or even necessary for computing other properties/attributes.

Is there an analog for K3 surfaces?

Let's get creative!

$E(k)_{\text {tors }}$

Let's get creative!

$E(k)_{\text {tors }}=\operatorname{Pic}(E)_{\text {tors }}$

Let's get creative!

$$
E(k)_{\text {tors }}=\operatorname{Pic}(E)_{\text {tors }}=\mathrm{H}_{\mathrm{Zar}}^{1}\left(E, \mathcal{O}_{E}^{\times}\right)_{\text {tors }}
$$

Let's get creative!

$$
\begin{aligned}
E(k)_{\text {tors }}=\operatorname{Pic}(E)_{\text {tors }} & =\mathrm{H}_{\mathrm{Zar}}^{1}\left(E, \mathscr{O}_{E}^{\times}\right)_{\text {tors }} \\
& =\mathrm{H}_{\mathrm{et}}^{1}\left(E, \mathbf{G}_{m}\right)_{\text {tors }}
\end{aligned}
$$

Let's get creative!

$$
\begin{aligned}
E(k)_{\mathrm{tors}}=\operatorname{Pic}(E)_{\mathrm{tors}} & =\mathrm{H}_{\mathrm{Zar}}^{1}\left(E, \mathcal{O}_{E}^{\times}\right)_{\text {tors }} \\
& =\mathrm{H}_{\mathrm{et}}^{1}\left(E, \mathbf{G}_{m}\right)_{\mathrm{tors}} \\
& =\mathrm{H}_{\mathrm{et}}^{\mathrm{dim} E}\left(E, \mathbf{G}_{m}\right)_{\mathrm{tors}}
\end{aligned}
$$

E elliptic curve

$$
E(k)_{\mathrm{tors}}
$$

E elliptic curve
E elliptic curve

X K3 surface

E elliptic curve

$$
\begin{aligned}
& E(k)_{\text {tors }} \\
& \operatorname{Br} X
\end{aligned}
$$

The Brauer group

The Brauer group

$$
\operatorname{Br} F=\frac{\left\{Y: Y_{\bar{F}} \simeq \mathbf{P}_{F}^{n}\right\}}{\simeq}, \quad(F \text { field })
$$

The Brauer group

$$
\begin{aligned}
\operatorname{Br} F & =\frac{\left\{Y: Y_{\bar{F}} \simeq \mathbf{P}_{\bar{F}}^{n}\right\}}{\simeq}, \quad(F \text { field }) \\
\operatorname{Br} \mathbf{k}(X) & =\frac{\left\{Y: Y_{\overline{\mathbf{k}(X)}} \simeq \mathbf{P}_{\overline{\mathbf{k}(X)}}^{n}\right\}}{\simeq}, \quad(X \text { smooth variety })
\end{aligned}
$$

The Brauer group

$$
\operatorname{Br} F=\frac{\left\{Y: Y_{\bar{F}} \simeq \mathbf{P}_{\bar{F}}^{n}\right\}}{\simeq}, \quad(F \text { field })
$$

$\operatorname{Br} X \subset \operatorname{Br} \mathbf{k}(X)=\frac{\left\{Y: Y_{\overline{\mathbf{k}(X)}} \simeq \mathbf{P}_{\mathbf{k}(X)}^{n}\right\}}{\simeq}, \quad(X$ smooth variety $)$
Subgroup of everywhere unramified elements

$$
\operatorname{Br} X \subset \operatorname{Br} \mathbf{k}(X)=\frac{\left\{Y: Y_{\overline{\mathbf{k}(X)}} \simeq \mathbf{P}_{\overline{\mathbf{k}(X)}}^{n}\right\}}{\simeq}, \quad(X \text { smooth variety })
$$

E elliptic curve

$$
\begin{aligned}
& E(k)_{\text {tors }} \\
& \operatorname{Br} X
\end{aligned}
$$

One caveat

E elliptic curve

$$
\begin{aligned}
& E(k)_{\text {orrs }} \\
& \operatorname{Br} X
\end{aligned}
$$

X K3 surface

One caveat

E elliptic curve

$$
\begin{aligned}
& E(k)_{\text {tors }} \\
& \|(1) \\
& E(\bar{k})_{\text {otrs }}
\end{aligned}
$$

X K3 surface
$\operatorname{Br} X$

One caveat

E elliptic curve
$E(k)_{\text {tors }}$

X K3 surface
$\operatorname{Br} X$

One caveat

E elliptic curve

$$
\begin{array}{ll}
E(k)_{\text {tors }} & \sim \Omega \sim \sim \\
\| \sim_{\text {tor }} & \operatorname{Br} X \\
E(\bar{k})_{\text {tors }}^{G_{k}} & \sim \Omega \Omega \Omega \sim
\end{array}
$$

$X K 3$ surface

One caveat

E elliptic curve

$$
\begin{aligned}
& E(k)_{\text {tors }} \\
& \text { II } \\
& E(\bar{k})_{\text {tors }}^{G_{k}} \\
& \operatorname{Br} X \\
& H \\
& (\mathrm{Br} \bar{X})^{G_{k}}
\end{aligned}
$$

Which one is important?

E elliptic curve
$E(k)_{\mathrm{tors}}$

$\operatorname{Br} X$
H
$E(\bar{k})_{\text {tors }}^{G_{k}}$

$(\mathrm{Br} \bar{X})^{G_{k}}$
$X K 3$ surface
E elliptic curve

$E(k)_{\text {tors }}$ II
 $E(\bar{k})_{\text {tors }}^{G_{k}}$

$X K 3$ surface $\operatorname{Br} X$ H
$(\operatorname{Br} \bar{X})^{G_{k}}$

How reasonable is this analogy?

$\operatorname{Br} X$
$E(k)_{\text {tors }}=E(\bar{k})_{\text {tors }}^{G_{k}}$
$(\operatorname{Br} \bar{X})^{G_{k}}$

$E(k)_{\text {tors }}$

- Fundamental attribute of an elliptic curve.
- Rigidifies the moduli problem.
- Helpful or even necessary for computing other properties/attributes.

What can we say structurally?

$\operatorname{Br} X$
$E(k)_{\text {tors }}=E\left(\bar{k}_{\text {tors }}^{G_{k}}\right.$
$(\operatorname{Br} \bar{X})^{G_{k}}$

Over $k=\bar{k}$?

Over $k=\bar{k}$?

$(\mathbf{Q} / \mathbf{Z})^{2}$

$E(k)_{\text {tors }}, E$ elliptic curve

Over $k=\bar{k}$?

$(\mathbf{Q} / \mathbf{Z})^{2}$

Over $k=\bar{k}$?

$(\mathbf{Q} / \mathbf{Z})^{2}$

$(\mathbf{Q} / \mathbf{Z})^{22-\rho}$
 $1 \leq \rho \leq 22$

$E(k)_{\text {tors }}$, E elliptic curve

$\operatorname{Br} X, X K 3$ surface

Over finite fields?

Over finite fields?

Finite!

$E(k)_{\text {tors }}$, E elliptic curve

Over finite fields?

Finite!

Over finite fields?

Finite!

Finite!

Over number fields?

Over number fields?

Finite!

$E(k)_{\text {tors }}, E$ elliptic curve

Over number fields?

Finite!

Over number fields?

Finite!

Finite!

$E(k)_{\text {tors }}, E$ elliptic curve

$\operatorname{Br} X, X K 3$ surface

Over number fields?

Finite!

Finite!*

$E(k)_{\text {tors }}, E$ elliptic curve

$\operatorname{Br} X, X K 3$ surface

$\operatorname{Br} X$ vs. $(\operatorname{Br} \bar{X})^{G_{k}}$

Over number fields?

Finite!

[Skorobogatov, Zarhin 2008]
$E(k)_{\text {tors }}, E$ elliptic curve

$\frac{\mathrm{Br} X}{\mathrm{Br}_{0} X}, X \mathrm{~K} 3$ surface

Theorem (Merel, after Mazur, Kamienny)

Let $d \in \mathbf{N}$. Then there exists a $C \in \mathbf{N}$ such that for all k / \mathbf{Q} with $[k: \mathbf{Q}] \leq d$, and all elliptic curves E / k,

$$
\# E(k)_{\text {tors }} \leq C .
$$

Let X / k be a K3 surface over a number field.

$$
\text { Is \# }\left(\operatorname{Br} X / \operatorname{Br}_{0} X\right) \text { uniformly bounded? }
$$

Conjecture (Várilly-Alvarado 2015)

Let $d \in \mathbf{N}$ and let $\Lambda \subset U^{\oplus 3} \oplus E_{8}(-1)^{\oplus 2}$ be primitive. Then there exists a $C \in \mathbf{N}$ such that for all k / \mathbf{Q} with $[k: \mathbf{Q}] \leq d$, and all K 3 surfaces X / k with $\Lambda \simeq \operatorname{NS} \bar{X}$,

$$
\#\left(\operatorname{Br} X / \operatorname{Br}_{0} X\right) \leq C .
$$

Moduli of K3 surfaces

Moduli of K3 surfaces

- Infinite countable union of 19 -dimensional varieties.

Moduli of K3 surfaces

- Infinite countable union of 19 -dimensional varieties.
- Given a primitive $\Lambda \subset U^{\oplus 3} \oplus E_{8}(-1)^{\oplus 2}$, the moduli of $K 3 \mathrm{~s}$ with $\Lambda \hookrightarrow$ NS \bar{X} is irreducible with dimension $20-\mathrm{rk} \Lambda$.

Moduli of K3 surfaces

- Infinite countable union of 19 -dimensional varieties.
- Given a primitive $\Lambda \subset U^{\oplus 3} \oplus E_{8}(-1)^{\oplus 2}$, the moduli of K 3 s with $\Lambda \hookrightarrow$ NS \bar{X} is irreducible with dimension $20-\mathrm{rk} \Lambda$.

More complicated than the j-line!

Conjecture (Várilly-Alvarado 2015)

Let $d \in \mathbf{N}$ and let $\Lambda \subset U^{\oplus 3} \oplus E_{8}(-1)^{\oplus 2}$ be primitive. Then there exists a $C \in \mathbf{N}$ such that for all k / \mathbf{Q} with $[k: \mathbf{Q}] \leq d$, and all K 3 surfaces X / k with $\Lambda \simeq \operatorname{NS} \bar{X}$,

$$
\#\left(\operatorname{Br} X / \operatorname{Br}_{0} X\right) \leq C .
$$

1234567 10011002100310041005

\# $\left(\operatorname{Br} X / \operatorname{Br}_{0} X\right)\left[\ell^{\infty}\right]$ is uniformly bounded when...

\# $\left(\operatorname{Br} X / \operatorname{Br}_{0} X\right)\left[\ell^{\infty}\right]$ is uniformly bounded when...

- $\bar{X} \simeq \operatorname{Kum}(E \times E / C), E$ non-CM (depending on $[k: \mathbf{Q}]$ and $\# C$) [Várilly-Alvarado, Viray 2017]

\# $\left(\operatorname{Br} X / \operatorname{Br}_{0} X\right)\left[\ell^{\infty}\right]$ is uniformly bounded when...

- $\bar{X} \simeq \operatorname{Kum}(E \times E / C), E$ non-CM (depending on $[k: \mathbf{Q}]$ and $\# C$) [Várilly-Alvarado, Viray 2017]
- X varies along a curve (depending on $[k: \mathbf{Q}]$ and \mathscr{X}) [Cadoret, Charles 2020]

\# $\left(\operatorname{Br} X / \operatorname{Br}_{0} X\right)\left[\ell^{\infty}\right]$ is uniformly bounded when...

- $\bar{X} \simeq \operatorname{Kum}(E \times E / C), E$ non-CM (depending on $[k: \mathbf{Q}]$ and $\# C$) [Várilly-Alvarado, Viray 2017]
- X varies along a curve (depending on $[k: \mathbf{Q}]$ and \mathscr{X}) [Cadoret, Charles 2020]
- X is a K3 surface of CM type (depending on [$k: \mathbf{Q}]$) [Orr, Skorobogatov 2018]

Is the Brauer group uniformly bounded in geometric 2-dimensional families of K3 surfaces?

Further arithmetic applications

Let X be a K3 surface over a number field k.

Conjecture (Skorobogatov 2009): $X(k)=\overline{X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}}}$.

Let X be a K3 surface over a number field k.

Conjecture (Skorobogatov 2009): $X(k)=\overline{X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}}}$.

Theorem (Kresch, Tschinkel 2011): $X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}}$ is effectively
computable, given a bound on $\frac{\mathrm{Br} X}{\mathrm{Br}_{0} X}$.

\# $\left(\operatorname{Br} X / \operatorname{Br}_{0} X\right)\left[\ell^{\infty}\right]$ is uniformly bounded when...

- $\bar{X} \simeq \operatorname{Kum}(E \times E / C), E$ non-CM (depending on $[k: \mathbf{Q}]$ and $\# C$) [Várilly-Alvarado, Viray 2017]
- X varies along a curve (depending on $[k: \mathbf{Q}]$ and \mathscr{X}) [Cadoret, Charles 2020]
- X is a K3 surface of CM type (depending on [$k: \mathbf{Q}]$) [Orr, Skorobogatov 2018]

\# $\left(\mathrm{Br} X / \mathrm{Br}_{0} X\right)$ is effectively uniformly bounded when...

- $\bar{X} \simeq \operatorname{Kum}(E \times E / C), E$ non-CM (depending on $[k: \mathbf{Q}]$ and $\# C)$ [Várilly-Alvarado, Viray 2017] (Conditional on conjs on $\rho_{E}\left(G_{k}\right)$)
- Xvaries aleng acurve (depending on $[k: Q]$ and $\mathscr{X})$
- XisaK3strface ofCMtype (dependingon[k:Q])

$\#\left(\operatorname{Br} X / \mathrm{Br}_{0} X\right)$ is effectively uniformly bounded when...

\# $\left(\mathrm{Br} X / \mathrm{Br}_{0} X\right)$ is effectively uniformly bounded when...

- $\bar{X} \simeq \operatorname{Kum}(E \times E / C), E$ non-CM (depending on $[k: \mathbf{Q}]$ and $\# C)$ [Várilly-Alvarado, Viray 2017] (Conditional on conjs on $\rho_{E}\left(G_{k}\right)$)

\# $\left(\operatorname{Br} X / \mathrm{Br}_{0} X\right)$ is effectively uniformly bounded when...

- $\bar{X} \simeq \operatorname{Kum}(E \times E / C), E$ non-CM (depending on $[k: \mathbf{Q}]$ and $\# C)$ [Várilly-Alvarado, Viray 2017] (Conditional on conjs on $\rho_{E}\left(G_{k}\right)$)
- $\bar{X} \simeq \operatorname{Kum}(E \times E / C), E \operatorname{CM}$ (depending on $[k: \mathbf{Q}], \# C, \operatorname{End}(E))$ [Balestrieri, Johnson, Newton (preprint)]

Let X be a K3 surface over a number field k.

Conjecture (Skorobogatov 2009): $X(k)=\overline{X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}}}$.

Let X be a K3 surface over a number field k.

Conjecture (Skorobogatov 2009): $X(k)=\overline{X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}}}$.

Theorem (Kresch, Tschinkel 2011): $X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}}$ is effectively
computable, given a bound on $\frac{\mathrm{Br} X}{\mathrm{Br}_{0} X}$.

Let X be a K3 surface over a number field k.

Conjecture (Skorobogatov 2009): $X(k)=\overline{X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}}}$.

Let X be a K3 surface over a number field k.

Conjecture (Skorobogatov 2009): $X(k)=\overline{X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}}}$.

Q: Can we determine in advance which elements of $\mathrm{Br} X$ are relevant for computing $X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}}$?

Q: Can we determine in advance which elements of $\operatorname{Br} X$ are relevant for computing $X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}}$?

Q: Can we determine in advance which elements of $\operatorname{Br} X$ are relevant for computing $X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}}$?

Why might we suspect this is possible?

Q: Can we determine in advance which elements of $\mathrm{Br} X$ are relevant for computing $X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}}$?

Why might we suspect this is possible?

Theorem (leronymou, Skorobogatov 2015):
Let X / k be a diagonal quartic. Then $X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}_{\text {odd }}} \neq \varnothing$.

Is there a $d \in \mathbf{N}$ such that

$$
X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}}=\varnothing \Leftrightarrow X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}\left[d^{\infty}\right]}=\varnothing ?
$$

Is there a $d \in \mathbf{N}$ such that

$$
X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}}=\varnothing \Leftrightarrow X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}\left[d^{\infty}\right]}=\varnothing ?
$$

Is there a $d \in \mathbf{N}$ such that for all $B \subset \operatorname{BrX}$,

$$
X\left(\mathbf{A}_{k}\right)^{B}=\varnothing \Leftrightarrow X\left(\mathbf{A}_{k}\right)^{B\left[d^{\infty}\right]}=\varnothing ?
$$

For Kummer K3's - YES!

For Kummer K3's - YES!

Theorem (Creutz, Viray 2018)

$$
X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}}=\varnothing \Leftrightarrow X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}\left[2^{\alpha \infty}\right]}=\varnothing .
$$

For Kummer K3's - YES!

Theorem (Creutz, Viray 2018)

$$
X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}}=\varnothing \Leftrightarrow X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}\left[2^{\infty}\right]}=\varnothing .
$$

Theorem (Skorobogatov, Zarhin 2017)

$$
X\left(\mathbf{A}_{k}\right)=\varnothing \Leftrightarrow X\left(\mathbf{A}_{k}\right)^{\operatorname{Br}\left[2^{\perp}\right]}=\varnothing .
$$

For Kummer K3's - YES!

Theorem (Creutz, Viray 2018)

$$
X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}}=\varnothing \Leftrightarrow X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}\left[2^{\infty}\right]}=\varnothing .
$$

Theorem (Skorobogatov, Zarhin 2017)

$$
X\left(\mathbf{A}_{k}\right)=\varnothing \Leftrightarrow X\left(\mathbf{A}_{k}\right)^{\operatorname{Br}\left[2^{\perp}\right]}=\varnothing .
$$

(Skorobogatov 2018): $X\left(\mathbf{A}_{k}\right)^{B}=\varnothing \Leftrightarrow X\left(\mathbf{A}_{k}\right)^{B\left[2^{\perp}\right]}=\varnothing$.

For K3's in general?

Is there a $d \in \mathbf{N}$ such that

$$
X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}}=\varnothing \Leftrightarrow X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}\left[d^{\infty}\right]}=\varnothing ?
$$

Is there a $d \in \mathbf{N}$ such that for all $B \subset \operatorname{BrX}$,

$$
X\left(\mathbf{A}_{k}\right)^{B}=\varnothing \Leftrightarrow X\left(\mathbf{A}_{k}\right)^{B\left[d^{\infty}\right]}=\varnothing ?
$$

For K3's in general - Maybe NO?

Is there a $d \in \mathbf{N}$ such that

$$
X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}}=\varnothing \Leftrightarrow X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}\left[d^{\infty}\right]}=\varnothing ?
$$

Is there a $d \in \mathbf{N}$ such that for all $B \subset \operatorname{BrX}$,

$$
X\left(\mathbf{A}_{k}\right)^{B}=\varnothing \Leftrightarrow X\left(\mathbf{A}_{k}\right)^{B\left[d^{\infty}\right]}=\varnothing ?
$$

For K3's in general - Maybe NO?

$$
d=2
$$

Is there a $d \in \mathbf{N}$ such that
False in general.

$$
X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}}=\varnothing \Leftrightarrow X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}\left[d^{\infty}\right]}=\varnothing ?
$$

Is there a $d \in \mathbf{N}$ such that for all $B \subset \operatorname{BrX}$,

$$
X\left(\mathbf{(}_{k}\right)^{B}=\varnothing \Leftrightarrow X\left(\mathbf{A}_{k}\right)^{B\left[d^{\infty}\right]}=\varnothing ?
$$

For K3's in general - Maybe NO?

$$
d=2
$$

False in general.

For K3's in general - Maybe NO?

$$
d=2
$$

Theorem [Corn, Nakahara 2018]
False in general.
$\exists X / \mathbf{Q}$ with $X\left(\mathbf{A}_{\mathbf{Q}}\right) \neq \varnothing$ and $X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}[3]}=\varnothing$.

For K3's in general - Maybe NO?

$$
d=2
$$

Theorem [Corn, Nakahara 2018]
False in general.
$\exists X / \mathbf{Q}$ with $X\left(\mathbf{A}_{\mathbf{Q}}\right) \neq \varnothing$ and $X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}[3]}=\varnothing$.
Theorem [Berg, Várilly-Alvarado 2020]
$\exists X / \mathbf{Q}$ with $\operatorname{rk} \operatorname{NS} \bar{X}=1, X\left(\mathbf{A}_{\mathbf{Q}}\right) \neq \varnothing$, and $X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}[3]}=\varnothing$.

For K3's in general - Maybe NO?

$$
d=2
$$

Theorem [Corn, Nakahara 2018]
False in general.
$\exists X / \mathbf{Q}$ with $X\left(\mathbf{A}_{\mathbf{Q}}\right) \neq \varnothing$ and $X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}[3]}=\varnothing$.
Theorem [Berg, Várilly-Alvarado 2020]
$\exists X / \mathbf{Q}$ with $\operatorname{rk} \operatorname{NS} \bar{X}=1, X\left(\mathbf{A}_{\mathbf{Q}}\right) \neq \varnothing$, and $X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}[3]}=\varnothing$.
Theorem [Gvirtz, Loughran, Nakahara (preprint)]
$\exists X / \mathbf{Q}$ with $X\left(\mathbf{A}_{\mathbf{Q}}\right)^{\mathrm{Br}}=\varnothing$ and $X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}\left[2^{\infty}\right]} \neq \varnothing$.

Fix $n \in \mathbf{N}$. Is there a K 3 surface X such that order n Brauer classes are necessary to detect a Brauer-Manin obstruction?

$$
\text { (Skorobogatov 2009): Is } X(k)=\overline{X\left(\mathbf{A}_{k}\right)^{\mathrm{Br}} ?}
$$

Fix $n \in \mathbf{N}$. Is there a K 3 surface X such that order n Brauer classes are necessary to detect a Brauer-Manin obstruction?

Is the Brauer group uniformly bounded in geometric 2-dimensional families of K 3 surfaces?

