Inverse Galois Problem: Does every finite group appear as some Galois group of some number field K ? (over Q)

$$
\begin{aligned}
& \text { (quite) } \\
& K \cong Q[x] / f(x) \quad \operatorname{Gal}(K / Q)=\text { galois group } \\
& \cong \mathbb{Q}[x] / g(x) \\
& \text { acting on cheroots }
\end{aligned}
$$

Q: How many number fields w/ Galois group G are there?
Hope: infinitely many (if there is one)
Let $d \geqslant 2$ be an integer (degree of numberfield)
Let $G \longleftrightarrow S_{d}$ be a transitive subgroup

$$
\begin{aligned}
& f_{d, G}=\{K \text { - number field } \omega / \operatorname{deg} d \mid \operatorname{Gal}(\tilde{k} / G)=G\} \\
& N_{d, G}(X)=\#\left\{K \in F_{d, G}| | \operatorname{Disc}(K) \mid \leqslant x\right\}
\end{aligned}
$$

Precise Q : How does $N_{d, G}(x)$ grow $\cos x \rightarrow \infty$? simplest case: $d=2 \quad G=S_{2}=\pi / 2 e=C_{2}$

Quadratic held. $Q(\sqrt{d})$ - d s quarefree integer

$$
\left\{\left.\begin{array}{c}
11 \\
\{a+b \sqrt{d}
\end{array} \right\rvert\, a, b \in \mathbb{Q}\right\}
$$

$N_{2, s_{2}}(x) \longleftrightarrow$ How many sf. integers are there? unto X (as $X \rightarrow \infty$)

$$
\lim _{x \rightarrow \infty} N_{2, s_{2}}(x)=\frac{6}{\pi^{2}} x+O(\sqrt{x})
$$

Ideain geneal: $\lim _{x \rightarrow \infty} N_{d, G}(x) \sim c_{d, G} X^{a_{d, h}}(\log X)^{d_{d, n}}$
Q: Are there general formulas for $a_{d, u}, b_{d, n}$ and

$$
\begin{aligned}
& C_{2, s_{2}}=\frac{6}{\pi^{2}} \quad b_{2, s_{2}}=0 \quad a_{2, s_{2}}=1 \\
& \text { (if } a_{d_{1} a}=1 \text {, then } b_{d_{1} a}=0 \text {) expectations of } \\
& \text { the asymptotic. } \\
& \operatorname{Cohn}(1954): c_{3, c_{3}} \quad b_{3, c_{3}}=0 a_{3, c_{3}}=\frac{1}{2} \\
& \frac{11 \sqrt{3}}{36 \pi} \prod_{p \equiv 1 \bmod 6}(p+2)(p-1)
\end{aligned}
$$

geometry-of-numbers

$$
\begin{aligned}
& b_{3,} s_{3}=0 \\
& a_{3,}, s_{3}=1
\end{aligned}
$$

Wright, Maki: G abelian, they prove:

$$
a_{d, G}=\frac{1}{d}\left(1-\frac{1}{p}\right) \quad b_{d, G}=\frac{n_{p}}{p-1}-1
$$

$p=$ smallest prime dividing $|G|$
$n_{p}=\#$ of elements of l of order p.
Malle, Tuirkelli: G non-abelian, they predict: a_{d}, a and $b_{d,} s$.
What about $C_{d, G}$?
Bhargava: $G=S_{d}$, wrote really beautiful formulas.

$$
G \neq S_{d} \quad\left(d=4, G=D_{4}\right.
$$

\rightarrow constants $C_{4, D_{4}}$ does not satisfy the analogous prediction).

