# Descent on K3 surfaces: Brauer group computations and challenges 

Tony Várilly-Alvarado


VaNTAGe Seminar
March 23rd, 2021

## Kodaira dimension of a curve

$C / \mathbb{Q}$ : a nice curve (sm; proj; geom int).
The Kodaira dimension of $C$ is

$$
\kappa(C):=\left\{\begin{array}{rl}
-1 & g=0 \\
0 & g=1, \\
1 & g \geq 2
\end{array}\right.
$$

It indicates the Riemannian curvature of $C(\mathbb{C})$.

## Kodaira dimension and Rational Points

$\kappa(C)=-1$ : rational curves, i.e., $C \simeq_{\overline{\mathbb{Q}}} \mathbb{P}^{1}$.
$C(\mathbb{Q}) \neq \varnothing \Longrightarrow C \simeq_{\mathbb{Q}} \mathbb{P}^{1}$.
(stereographic projection)
$\kappa(C)=0: C(\mathbb{Q}) \neq \varnothing \Longrightarrow C$ is an elliptic curve. Euler: $C(\mathbb{Q})$ is a group (abelian).
Mordell (1922): $C(\mathbb{Q})$ is finitely generated.
$\kappa(C)=1$ : Curves of general type.
Faltings (1983): $C(\mathbb{Q})$ is finite.

## Kodaira dimension of a surface

For a nice surface $X / \mathbb{C}$ :

$$
\kappa(X)=\left\{\begin{aligned}
-1 & \text { rational or ruled; } \\
0 & \text { Abelian, K3, Enriques or bi-elliptic; } \\
1 & \text { properly elliptic; } \\
2 & \text { general type. }
\end{aligned}\right.
$$

## K3 surfaces

$X / \mathbb{Q}$ nice surface with $\omega_{X} \simeq \mathcal{O}_{X}$ and $h^{1}\left(\mathcal{O}_{X}\right)=0$.
Examples:

$$
\begin{aligned}
& w^{2}=x^{6}+y^{6}+z^{6} \text { in } \mathbb{P}(1,1,1,3)-\text { degree } 2 \\
& x^{4}+2 y^{4}=z^{4}+4 w^{4} \text { in } \mathbb{P}^{3}-\text { degree } 4 \\
& Q \cap C \text { in } \mathbb{P}^{4}-\text { degree } 6 \\
& Q_{1} \cap Q_{2} \cap Q_{3} \text { in } \mathbb{P}^{5}-\text { degree } 8
\end{aligned}
$$

## Polarizations and coarse moduli

Polarized K3 surface of degree 2d: $(X, L)$ with $X / \mathbb{Q}$ a K3 surface
$L \in \operatorname{Pic}(X)$ primitive in $\operatorname{Pic}\left(X \times_{\mathbb{Q}} \overline{\mathbb{Q}}\right)$ with $L^{2}=2 d$.
$M_{2 d}=$ (coarse) moduli space of polarized K3s of degree $2 d$.
19-dimensional quasi-projective variety $/ \mathbb{Q}$
Theorem (Gritsenko, Hulek, Sankaran '07): $M_{2 d}$ is of general type for $d>61$.

## Picard number 1

Recall that $\operatorname{Pic}\left(X \times_{\mathbb{Q}} \overline{\mathbb{Q}}\right) \simeq \mathbb{Z}^{\rho}$, and $1 \leq \rho \leq 20$.
For a 'very general' $(X, L) \in M_{2 d}(\mathbb{C})$, we have $\rho=1$.
Theorem (Ellenberg '04): Fix $2 d$. There exists a number field $K$ and a polarized K3 surface $(X, L) \in M_{2 d}(K)$ with $\rho=1$.

Question: Fix $2 d$. Does there exist a polarized K3 surface $(X, L) \in M_{2 d}(\mathbb{Q})$ with $\rho=1$ ?

Question: What is the largest $d$ for which we can show there exists $(X, L) \in M_{2 d}(\mathbb{Q})$ with $\rho=1$ ?

## K3 surfaces: hopes and dreams

$X / \mathbb{Q}$ : a K3 surface, given as a system of homogeneous polynomial equations.

Question: Is there an effective procedure to determine whether $X(\mathbb{Q}) \neq \varnothing$ ?

Recall: $\quad X(\mathbb{Q}) \subseteq X(\mathbb{A})^{\mathrm{Br}} \subseteq X(\mathbb{A})=\prod_{p \leq \infty} X\left(\mathbb{Q}_{p}\right)$
Defined using $\operatorname{Br}(X) / \operatorname{Br}_{0}(X)$

$$
\operatorname{im}(\operatorname{Br}(\mathbb{Q}) \rightarrow \operatorname{Br}(X))
$$

## K3 surfaces: hopes and dreams

Conjecture (Skorobogatov '09): For $X / \mathbb{Q}$ a K3 surface we have

$$
X(\mathbb{A})^{\mathrm{Br}} \neq \varnothing \Longrightarrow X(\mathbb{Q}) \neq \varnothing
$$

Theorem (Kresch, Tschinkel '11):
Let $X / \mathbb{Q}$ be a K3 surface, given as a system of homogeneous polynomial equations. Assume we have equations for generators of $\operatorname{Pic}\left(X \times_{\mathbb{Q}} \overline{\mathbb{Q}}\right)$, and a bound for $\# \operatorname{Br}(X) / \operatorname{Br}_{0}(X)$. Then $X(\mathbb{A})^{\mathrm{Br}}$ is effectively computable.

## K3 surfaces: hopes and dreams

Theorem (Charles '14):
Let $X / \mathbb{Q}$ be a K3 surface, given as a system of homogeneous polynomial equations. Then equations for generators of $\operatorname{Pic}\left(X \times_{\mathbb{Q}} \overline{\mathbb{Q}}\right)$ are effectively computable.

Conjecture (V.-A. '15 + Shafarevich '94):
Fix $n \in \mathbb{Z}_{>0}$. There is a constant $C=C(n)$ such that

$$
\# \operatorname{Br}(X) / \operatorname{Br}_{0}(X)<C
$$

for all K 3 surfaces $X / K$ with $[K: \mathbb{Q}]=n$.

## K3 surfaces: hopes and dreams



Kresch—Tschinkel + Charles + V.A. + Shafarevich


Expectation: There an effective procedure to determine whether $X(\mathbb{Q}) \neq \varnothing$.

Effective $\longrightarrow$ Practical?

## Brauer Groups

$X / \mathbb{Q}$ a nice variety. $\quad \operatorname{Br}(X):=\mathrm{H}_{\mathrm{et}}^{2}\left(\mathrm{X}, \mathbb{G}_{\mathrm{m}}\right)_{\text {tors }}$

## $\operatorname{Br}_{0}(X) \subseteq \operatorname{Br}_{1}(X) \subseteq \operatorname{Br}(X)$

$\operatorname{im}(\operatorname{Br}(\mathbb{Q}) \rightarrow \operatorname{Br}(X)) \quad \operatorname{ker}\left(\operatorname{Br}(X) \rightarrow \operatorname{Br}\left(X \times_{\mathbb{Q}} \overline{\mathbb{Q}}\right)\right)$
constant classes

$$
\begin{gathered}
0 \rightarrow \frac{\operatorname{Br}_{1}(X)}{\operatorname{Br}_{0}(X)} \rightarrow \frac{\operatorname{Br}(X)}{\operatorname{Br}_{0}(X)} \rightarrow \frac{\operatorname{Br}(X)}{\operatorname{Br}_{1}(X)} \rightarrow \underset{\substack{\text { Gvirtz } \\
\text { IS }}}{\text { Orr }} \\
\operatorname{Gal(\overline {\mathbb {Q}}/\mathbb {Q}),\operatorname {Pic}(X\times _{\mathbb {Q}}\overline {\mathbb {Q}}))\quad \operatorname {Br}(X\times _{\mathbb {Q}}\overline {\mathbb {Q}})^{\text {Gal(ब)/Q})}\text {Skorobogatov}} \begin{array}{l}
\text { Valloni }
\end{array}
\end{gathered}
$$

## Nontrivial extensions!

Theorem (Gvirtz, Skorobogatov '19):
For $X / \mathbb{Q}: x^{4}+y^{4}=2\left(z^{4}-w^{4}\right)$ we have

$$
\begin{aligned}
0 \rightarrow \frac{\operatorname{Br}_{1}(X)}{\operatorname{Br}_{0}(X)} \rightarrow \frac{\operatorname{Br}(X)}{\operatorname{Br}_{0}(X)} \rightarrow \frac{\operatorname{Br}(X)}{\operatorname{Br}_{1}(X)} \rightarrow 0 \\
\text { IS IS }
\end{aligned} \begin{gathered}
\text { Is } \\
0 \rightarrow \mathbb{Z} / 4 \mathbb{Z} \rightarrow \mathbb{Z} / 8 \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0 .
\end{gathered}
$$

## Algebraic Brauer Groups

## Lemma:

Fix $1 \leq \rho \leq 20$.
$X / \mathbb{Q}$ : a K3 surface with $\operatorname{Pic}\left(X \times_{\mathbb{Q}} \overline{\mathbb{Q}}\right) \simeq \mathbb{Z}^{\rho}$.
There is an $M=M(\rho) \in \mathbb{Z}$, indep. of $X$, such that
$\# \mathrm{Br}_{1}(X) / \mathrm{Br}_{0}(X)<M$.

## Algebraic Brauer Groups

## Idea of the proof:

Pass to a finite Galois extension $K / \mathbb{Q}$ such that $\operatorname{Pic}\left(X_{K}\right) \simeq \operatorname{Pic}\left(X \times_{\mathbb{Q}} \overline{\mathbb{Q}}\right)$. Let $G=\operatorname{Gal}(K / \mathbb{Q})$.

LES in Galois cohomology for

$$
0 \rightarrow \mathbb{Z}^{\rho} \stackrel{|G|}{\longrightarrow} \mathbb{Z}^{\rho} \rightarrow \mathbb{Z}^{\rho} /|G| \rightarrow 0
$$

gives

$$
\mathrm{H}^{1}\left(G, \mathbb{Z}^{\rho}\right) \simeq \frac{\left(\mathbb{Z}^{\rho} /|G|\right)^{G}}{\left(\mathbb{Z}^{\rho}\right)^{G} /|G|}
$$

$\Longrightarrow \# \mathrm{H}^{1}\left(G, \mathbb{Z}^{\rho}\right)$ divides $|G|^{\rho}$, regardless of action

## Algebraic Brauer Groups

## Idea of the proof:

There are finitely many possibilities for $G$ :
$G$ acts on $\mathbb{Z}^{\rho}$ through a finite subgroup of $\mathrm{GL}_{\rho}(\mathbb{Z})$.
Minkowski: for $m \geq 3$ the kernel of

$$
\mathrm{GL}_{\rho}(\mathbb{Z}) \rightarrow \mathrm{GL}_{\rho}(\mathbb{Z} / m \mathbb{Z})
$$

is torsion free.

## Algebraic Brauer Groups

Question:
Can we give sharp bounds for $M(\rho), 1 \leq \rho \leq 20$ ?
$M(1)=1$ (Galois cohomology)
$M(2) \leq 2$ (Wolff, 2019). Expect that $M(2)=1$.

## Transcendental Brauer Groups

X/C a K3 surface.

$$
T(X):=(\operatorname{Pic}(X))^{\perp} \subseteq \mathrm{H}^{2}(X, \mathbb{Z})
$$

Transcendental

$$
U^{\oplus 3} \oplus E_{8}(-1)^{\oplus 2}
$$

Important observation: $\operatorname{Br}(X)[n] \simeq \operatorname{Hom}(T(X), \mathbb{Z} / n \mathbb{Z})$
If $n=p$, a prime, this implies:

$$
\langle\alpha\rangle \longleftrightarrow T_{\langle\alpha\rangle} \subseteq T(X)
$$



## Sample classification theorem

McKinnie, Sawon, Tanimoto, V.-A. '17:
$X / \mathbb{C}$ a K3 surface; assume $\operatorname{Pic}(X) \simeq \mathbb{Z} L$ with $L^{2}=2 d$. $p \nmid 2 d$ prime; $\alpha \in \operatorname{Br}(X)[p]$ nontrivial.
There are three isomorphism classes for $T_{\langle\alpha\rangle}$ :

| $d\left(T_{\langle\alpha\rangle}\right)$ | Distinguishing <br> feature | \# of lattices |
| :---: | :---: | :---: |
| $\mathbb{Z} / 2 d p^{2} \mathbb{Z}=\langle v\rangle$ | $-2 d p^{2} q(v) \equiv \square \bmod p$ | $\frac{1}{2} p^{10}\left(p^{10}+1\right)$ |
| $\mathbb{Z} / 2 d p^{2} \mathbb{Z}=\langle v\rangle$ | $-2 d p^{2} q(v) \not \equiv \square \bmod p$ | $\frac{1}{2} p^{10}\left(p^{10}-1\right)$ |
| $\mathbb{Z} / 2 d p^{2} \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z}$ |  | $\frac{p^{20}-1}{p-1}$ |

## Mental Picture



## $Y_{1}(2 d, p)$ does not exist

$\mathscr{M}_{2 d}:(\mathrm{Sch} / \mathbb{Q})^{\mathrm{op}} \rightarrow$ (Sets)

$$
T \rightarrow\left\{\left(f: X \rightarrow T, L \in \mathrm{H}^{0}\left(T, R^{1} f_{*}\left(\mathbb{G}_{m}\right)\right)\right\} / \simeq\right.
$$

${ }^{\sim} \operatorname{For} \operatorname{Spec}(\Omega) \rightarrow T$, the pair $\left(X_{\Omega}, L_{\Omega}\right)$ is polarized K3 with $L_{\Omega}^{2}=2 d$

Write $\Phi: \mathscr{M}_{2 d} \rightarrow M_{2 d}$ for the coarse moduli map. Ideal moduli functor:
$\mathscr{Y}_{1}(2 d, p):(\mathrm{Sch} / \mathbb{Q})^{\mathrm{op}} \rightarrow($ Sets $)$
$T \rightarrow\left\{\left(f: X \rightarrow T, L \in \mathrm{H}^{0}\left(T, R^{1} f_{*} \mathbb{G}_{m}\right)\right), \alpha \in \mathrm{H}^{0}\left(T, R^{2} f_{*} \mathbb{G}_{m}\right)\right\} / \simeq$

## $Y_{1}(2 d, p)$ does not exist

Brakkee '20:
$\xi: \mathscr{Y}_{1}(2 d, p) \rightarrow Y_{1}(2 d, p)$ putative coarse moduli map

$$
\begin{array}{cc}
\mathscr{Y}_{1}(2 d, p) & \xrightarrow{\xi} Y_{1}(2 d, p) \\
\downarrow & \\
\vdots & \exists \pi \\
\mathscr{M}_{2 d} & \xrightarrow{\Phi} \\
M_{2 d}
\end{array}
$$

$U \subset M_{2 d}$ : open subset where $\operatorname{Aut}(X, L)$ is trivial $(d>1)$. For $y=(X, L, \alpha) \in Y_{1}(2 d, p)$, the fiber above $x=\pi(y)$ is

$$
\left(Y_{1}(2 d, p)\right)_{x} \simeq \operatorname{Br}(X)[p] \simeq(\mathbb{Z} / p \mathbb{Z})^{22-\rho(X)}
$$

## The fix (Brakkee '20)

Correct moduli functor should parametrize triples
( $X, L, \alpha$ ) with $(X, L)$ a polarized K3 of degree $2 d$ and

$$
\alpha \in \operatorname{Hom}\left(\mathrm{H}^{2}(X, \mathbb{Z} / r \mathbb{Z})_{\mathrm{pr}}, \mathbb{Z} / r \mathbb{Z}\right)
$$

Here $\mathrm{H}^{2}(X, \mathbb{Z} / r \mathbb{Z})_{\mathrm{pr}}=L^{\perp} \subset \mathrm{H}^{2}(X, \mathbb{Z} / r \mathbb{Z})$.
When $\rho=1, \mathrm{H}^{2}(X, \mathbb{Z} / r \mathbb{Z})_{\mathrm{pr}}=L^{\perp}=T(X)$.
Relative version: for a family $(f: X \rightarrow T, L)$, set

$$
R_{\mathrm{pr}}^{2} f_{*} \mathbb{Z}:=\left(R^{2} f_{*} \mathbb{Z} \xrightarrow{c_{1}(L)} R^{4} f_{*} \mathbb{Z}\right)
$$

## The fix (Brakkee '20)

Let $\mathscr{F}_{r}=\mathscr{H}$ om $\left(R_{\mathrm{pr}}^{2} f_{*} \mathbb{Z}, \underline{\mathbb{Z} / r \mathbb{Z}}\right)$
Define the moduli functor
$\mathscr{K}_{1}(2 d, r):(S c h / \mathbb{Q})^{\mathrm{op}} \rightarrow($ Sets $)$

$$
T \rightarrow\left\{\left(f: X \rightarrow T, L \in \mathrm{H}^{0}\left(T, R^{1} f_{*} \mathbb{G}_{m}\right)\right), \alpha \in \mathrm{H}^{0}\left(T, \mathscr{F}_{r}\right)\right\} / \simeq
$$

Theorem (Brakkee '20):
There is a course moduli space

$$
\xi: \mathscr{K}_{1}(2 d, r) \rightarrow K_{1}(2 d, r)
$$

with at most $r \cdot \operatorname{gcd}(r, 2 d)$ many components.

## Questions/tasks

Construct a lattice-polarized version of Brakkee's spaces.
Which of these spaces are of general type?
Exact formula for number of components of these spaces?
Geometric interpretation for the $\rho=1$ locus?

