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Kodaira dimension of a curve

C

It indicates the Riemannian curvature of C(ℂ) .

The Kodaira dimension of     is  

κ(C) :=
−1 g = 0,

0 g = 1,
1 g ≥ 2.

 a nice curve (sm; proj; geom int).C/ℚ :



Kodaira dimension and Rational Points

κ(C) = − 1 :

κ(C) = 0 :

κ(C) = 1 :

rational curves, i.e., 
C(ℚ) ≠ ∅ ⟹ C ≃ℚ ℙ1 .

C ≃ℚ ℙ1 .

(stereographic projection)

C(ℚ) ≠ ∅ ⟹ C is an elliptic curve.
Euler:          is a group (abelian).
Mordell (1922):          is finitely generated.

Curves of general type.
Faltings (1983):          is finite.

C(ℚ)
C(ℚ)

C(ℚ)



Kodaira dimension of a surface

For a nice surface 

κ(X) =

−1

0

1

2

rational or ruled; 

Abelian, K3, Enriques or bi-elliptic;

properly elliptic;

general type.

X/ℂ :

Intermediate type



K3 surfaces
 nice surface with  and X/ℚ ωX ≃ 𝒪X h1(𝒪X) = 0.

Examples:

 in  — degree 2w2 = x6 + y6 + z6 ℙ(1,1,1,3)

 in  — degree 4x4 + 2y4 = z4 + 4w4 ℙ3

 in  — degree 8Q1 ∩ Q2 ∩ Q3 ℙ5

 in  — degree 6Q ∩ C ℙ4



Polarizations and coarse moduli
Polarized K3 surface of degree 2d:  with(X, L)

 a K3 surfaceX/ℚ
 primitive in  with .L ∈ Pic(X) Pic(X ×ℚ ℚ) L2 = 2d

(coarse) moduli space of polarized K3s  
            of degree .
M2d =

2d
19-dimensional quasi-projective variety /ℚ

Theorem (Gritsenko, Hulek, Sankaran ’07): 
 is of general type for M2d d > 61.



Picard number 1

For a ‘very general’ , we have (X, L) ∈ M2d(ℂ) ρ = 1.
Recall that , and Pic(X ×ℚ ℚ) ≃ ℤρ 1 ≤ ρ ≤ 20.

Theorem (Ellenberg ’04): Fix  There exists a  
number field  and a polarized K3 surface  

 with 

2d .
K

(X, L) ∈ M2d(K) ρ = 1.
Question: Fix Does there exist a polarized  
K3 surface  with ?

2d .
(X, L) ∈ M2d(ℚ) ρ = 1

Question: What is the largest  for which we can show  
there exists  with ?

d
(X, L) ∈ M2d(ℚ) ρ = 1



K3 surfaces: hopes and dreams
 : a K3 surface, given as a system of homogeneous 

polynomial equations.
X/ℚ

Question: Is there an effective procedure to determine  
whether X(ℚ) ≠ ∅?

Recall:    X(ℚ) ⊆ X(𝔸)Br ⊆ X(𝔸) = ∏
p≤∞

X(ℚp)

Defined using Br(X)/Br0(X)

im (Br(ℚ) → Br(X))



K3 surfaces: hopes and dreams
Conjecture (Skorobogatov ’09): 
For  a K3 surface we haveX/ℚ

X(𝔸)Br ≠ ∅ ⟹ X(ℚ) ≠ ∅ .

Theorem (Kresch, Tschinkel ’11): 
Let  be a K3 surface, given as a system of  
homogeneous polynomial equations. Assume we  
have equations for generators of ,  
and a bound for .  Then   
is effectively computable.

X/ℚ

Pic(X ×ℚ ℚ)
#Br(X)/Br0(X) X(𝔸)Br



K3 surfaces: hopes and dreams
Theorem (Charles ’14): 
Let  be a K3 surface, given as a system of  
homogeneous polynomial equations.  Then  
equations for generators of  are  
effectively computable.

X/ℚ

Pic(X ×ℚ ℚ)

Conjecture (V.-A. ‘15 + Shafarevich ’94): 
Fix  There is a constant  such that 

 
for all K3 surfaces  with 

n ∈ ℤ>0 . C = C(n)

X/K [K : ℚ] = n .

#Br(X)/Br0(X) < C



K3 surfaces: hopes and dreams

Kresch—Tschinkel + Charles + V.A. + Shafarevich

Theorems Conjectures

Expectation: There an effective procedure  
to determine whether X(ℚ) ≠ ∅ .

Effective Practical?



Brauer Groups
 a nice variety.X/ℚ Br(X) := H2

et(X, 𝔾m)tors

Br0(X) ⊆ Br1(X) ⊆ Br(X)

 
constant classes
im (Br(ℚ) → Br(X))  

algebraic classes
ker (Br(X) → Br(X ×ℚ ℚ))

0 →
Br1(X)
Br0(X)

→
Br(X)
Br0(X)

→
Br(X)
Br1(X)

→ 0.

≃
H1(Gal(ℚ/ℚ), Pic(X ×ℚ ℚ))

↪

Br(X ×ℚ ℚ)Gal(ℚ/ℚ)

Gvirtz 
Orr 
Skorobogatov 
Valloni



Nontrivial extensions!

0 →
Br1(X)
Br0(X)

→
Br(X)
Br0(X)

→
Br(X)
Br1(X)

→ 0

≃

Theorem (Gvirtz, Skorobogatov ’19):

≃ ≃
0 → ℤ/4ℤ → ℤ/8ℤ → ℤ/2ℤ → 0.

For   we haveX/ℚ : x4 + y4 = 2(z4 − w4)



Algebraic Brauer Groups
Lemma:

Fix  
: a K3 surface with . 

There is an indep. of , such that 

1 ≤ ρ ≤ 20.
X/ℚ Pic(X ×ℚ ℚ) ≃ ℤρ

M = M(ρ) ∈ ℤ, X
#Br1(X)/Br0(X) < M .



Algebraic Brauer Groups
Idea of the proof:
Pass to a finite Galois extension  such that 

. Let 
K/ℚ

Pic(XK) ≃ Pic(X ×ℚ ℚ) G = Gal(K/ℚ) .

LES in Galois cohomology for 

 
gives

H1(G, ℤρ) ≃ (ℤρ/ |G |)G

(ℤρ)G / |G |

0 → ℤρ ⋅|G| ℤρ → ℤρ/ |G | → 0

 divides  regardless of action ⟹ #H1(G, ℤρ) |G |ρ ,



Algebraic Brauer Groups
Idea of the proof:

There are finitely many possibilities for :G

 acts on   through a finite subgroup of .G ℤρ GLρ(ℤ)

Minkowski: for  the kernel of 
 
 
is torsion free.

m ≥ 3
GLρ(ℤ) → GLρ(ℤ/mℤ)



Algebraic Brauer Groups
Question: 
Can we give sharp bounds for , M(ρ) 1 ≤ ρ ≤ 20?

 (Galois cohomology)M(1) = 1

 (Wolff, 2019).  Expect that M(2) ≤ 2 M(2) = 1.



Transcendental Brauer Groups
 a K3 surface.X/ℂ

T(X) := (Pic(X))⊥ ⊆ H2(X, ℤ)

U⊕3 ⊕ E8(−1)⊕2Transcendental  
lattice

Important observation: Br(X)[n] ≃ Hom(T(X), ℤ/nℤ)
If  a prime, this implies:n = p,

⟨α⟩ ⟷ T⟨α⟩ ⊆ T(X)
Order  elt 
of 

p
Br(X) Sublattice 

of index p



Sample classification theorem
McKinnie, Sawon, Tanimoto, V.-A. ’17:

 a K3 surface; assume  with .X/ℂ Pic(X) ≃ ℤL L2 = 2d
 prime;  nontrivial.p ∤ 2d α ∈ Br(X)[p]

There are three isomorphism classes for :T⟨α⟩

Distinguishing 
feature # of lattices     d(T⟨α⟩)

ℤ/2dp2ℤ = ⟨v⟩

ℤ/2dp2ℤ = ⟨v⟩

−2dp2q(v) ≡ □ mod p

−2dp2q(v) ≢ □ mod p

1
2

p10(p10 + 1)

1
2

p10(p10 − 1)

p20 − 1
p − 1

ℤ/2dp2ℤ ⊕ ℤ/pℤ ⊕ ℤ/pℤ



Mental Picture

X

(X, ⟨α⟩)

1
2

p10(p10 + 1)
1
2

p10(p10 − 1) p20 − 1
p − 1

Degrees:

M2d

“ ”Y0(2d, p)

[HVAV11] 
d = 1, p = 2

[MSTVA17] 
d = 1, p = 2

[HVA13] 
d = 1, p = 2[BVA20] 

d = 1, p = 3



 does not existY1(2d, p)
ℳ2d : (Sch/ℚ)op → (Sets)

T → {( f : X → T, L ∈ H0(T, R1f*𝔾m))}/ ≃

For the pair  
is polarized K3 with 

Spec(Ω) → T, (XΩ, LΩ)
L2

Ω = 2d

Write  for the coarse moduli map.Φ : ℳ2d → M2d

𝒴1(2d, p) : (Sch/ℚ)op → (Sets)
T → {( f : X → T, L ∈ H0(T, R1f*𝔾m)), α ∈ H0(T, R2f*𝔾m)}/ ≃

Ideal moduli functor:



 does not existY1(2d, p)
Brakkee ’20: 

 putative coarse moduli mapξ : 𝒴1(2d, p) → Y1(2d, p)

𝒴1(2d, p) ξ Y1(2d, p)

ℳ2d
Φ M2d

→

⤎ ∃π

 open subset where  is trivial .U ⊂ M2d : Aut(X, L) (d > 1)

(Y1(2d, p))x
≃ Br(X)[p] ≃ (ℤ/pℤ)22−ρ(X)

For , the fiber above  isy = (X, L, α) ∈ Y1(2d, p) x = π(y)



The fix (Brakkee ’20)
Correct moduli functor should parametrize triples

 with  a polarized K3 of degree  and(X, L, α) (X, L) 2d

α ∈ Hom (H2(X, ℤ/rℤ)pr, ℤ/rℤ)
Here .H2(X, ℤ/rℤ)pr = L⊥ ⊂ H2(X, ℤ/rℤ)

When , .ρ = 1 H2(X, ℤ/rℤ)pr = L⊥ = T(X)

Relative version: for a family , set( f : X → T, L)

R2
pr f*ℤ := (R2f*ℤ

⋅c1(L) R4f*ℤ)



The fix (Brakkee ’20)
Let ℱr = ℋom (R2

pr f*ℤ, ℤ/rℤ)
Define the moduli functor

𝒦1(2d, r) : (Sch/ℚ)op → (Sets)
T → {( f : X → T, L ∈ H0(T, R1f*𝔾m)), α ∈ H0(T, ℱr)}/ ≃

Theorem (Brakkee ’20): 
There is a course moduli space  
 
 
with at most  many components.r ⋅ gcd(r,2d)

ξ : 𝒦1(2d, r) → K1(2d, r)



Questions/tasks
Construct a lattice-polarized version of Brakkee’s spaces.

Which of these spaces are of general type?

Exact formula for number of components of these spaces?

Geometric interpretation for the  locus?ρ = 1


