Moments of Zeta and the Vertical Distribution of its Zeros

Caroline Turnage-Butterbaugh

Carleton College

VANTAGe Seminar February 18,2020

Intro:

Let S= σ+it, σ, t ∈ R. The Riemann zeta function;

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p} \left(1 - \frac{1}{p^s}\right)^{-1}$$

Properties of S(S)

· Meromorphic continuation to C with a simple pole at S=1 with residue 1; i.e.

$$5(s) - \frac{1}{s-1}$$
 is entire

$$\chi(s) = 2(2\pi)^{s-1} \Gamma(1-s) \sin\left(\frac{\pi s}{2}\right)$$

• Trivial zeros at s=-2n, n=1,2,3,...

$$\zeta(-2n) = \underbrace{2(2\pi)}^{-2n-1} \underbrace{\Gamma(2n+1)}_{(2n)} \underbrace{\sin(-\pi n)}_{(2n+1)} \underbrace{\xi(2n+1)}_{(2n)}$$

• The zeros are symmetric about the real axis, because $S(S) = \overline{S(\overline{S})}$.

· Counting zeros:

$$N(T) := \# \left\{ Zeros \ \rho = \beta + i \vartheta : O \in \beta \leq 1, O \leq \vartheta \leq T \right\}$$

Argument Principle yields

$$N(T) = \frac{T}{2\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi} + \frac{7}{8} + S(T) + O(T^{-1})$$

where
$$S(T) = \pi^{-1} arg S(1/2+iT) << log T$$

Consider the ordinates of zeros in the upper half plane:

Then
$$\frac{y_{n+1}-y_n}{2\pi/\log y_n}$$
 is 1 on averge.

Question: What can we say about
$$\mu := \underset{n\to\infty}{\lim\inf} \frac{\forall_{n+1} - \forall n}{2\pi/\log \forall n} \quad \text{and} \quad \lambda := \underset{n\to\infty}{\lim\sup} \frac{\forall_{n+1} - \forall n}{2\pi/\log \forall n} \quad ?$$

- · By definition, we trivially have µ ≤ 1 ≤ >
- · Selberg (1940s)/Fujii (1970s) : observed $\mu < 1 < \lambda$

Keath-Brown's notes in Titchmarsh

Conjecture: $\mu = 0$ and $\lambda = \infty$ (there are only many pairs of zeros of 3(s) that are arbitrarily close (or far apart) relative to the average spacing.)

Q: Where does this conjecture come from?

Montgomery's Pair Correlation Conjecture (1972)

For any fixed
$$C>0$$
,

 $(\frac{1}{2}\log 1)^2 \int_{-1}^{2} du$

Note:
$$\bigcirc \langle \int_{0}^{c} \left(\left| - \left(\frac{\sin \pi u}{\pi u} \right)^{2} \right) du \right| < c$$

Thus we can make C very small, and still get N(T;C) > 0.

What about large gaps?

Montgomery's Pair Correlation Conjecture (1972)

For any fixed
$$c > 0$$
,

$$N(T,c) := \left(\frac{T}{\pi \pi} \log T\right)^{-1} \left[\begin{array}{c} 1 \\ 0 < \pi/8' \le T \\ 0 < \pi - 8' \le \frac{2\pi C}{\log T} \end{array}\right] du$$

$$\left(\frac{\sin \pi u}{\pi u}\right)^2$$
 "Pau Correlation Function" of zeros of $S(s)$.

- · Dyson noted eigenvalues of random Hermitian matrices have the same pau correlation function.
 - -This connection has been supported by extensive numerical estimates by Odlyzko.
- · Further observations in this realm $\Rightarrow \lambda = \infty$

Questions so far?

Small Gaps-Progress:	Conjecture: M=0	μ< Ι	
Author(s), year		upper bound	on μ (under RH)
Montgomery / Goldston '7	2	0.6072	7
Carneiro, Chandee, Littmann, Milinovich 'I'		0.606894	positive proportium
Chirre, Goncalves, DeLatte		0.6039) uf zeros
Montgomery - Odlyzko 18	31	0.5179)
Conrey-Ghosh-Gonek "	84	0.5172	ooly many
Bui-Milinovich-Ng (10	0.5155	Zenos
Feng-Wu	12	0.515398	
Preobrazinskii "	16	0.515396	•

The Class number problem & Exceptional Zeros

Let d<0 be a fundamental discriminant.

$$K = \mathbb{Q}(\sqrt{|d|})$$
The ideal class group of K:
$$\mathbb{Q}(K) := \left(\frac{\text{group of fractional}}{\text{ideals of K}}\right) \left(\frac{\text{subgroup of principal}}{\text{ideals of K}}\right)$$
The class number of K:
$$h(K) := |Cl(K)|.$$

Gauss: Conjectured $h(K) \rightarrow \infty$ as druns through negative discriminants.

- · Proved by Heilbronn in 1934.
- ·This implies that there are only finitely many imaginary quadratic fields K with M(K)=n, where n 7/1 is fixed.

Class Number Problem for Imaginary Quadratic Fields:

Give a complete list of fundamental discriminants

so that h(K) = n, n fixed.

n=1: Solved by Stark/Heegner/Baker

How about n>2?

Class Number Formula: (assuming $d \leftarrow 4$) $h(K) = \pi^{-1} \sqrt{|d|} L(1/\chi_d)$

•
$$L(I_1X_1) = \sum_{n=1}^{\infty} \frac{\chi_1(n)}{n^s}$$
, where $\chi_1(n) = \left(\frac{d}{n}\right)$

Want: Lower bound on h(K).

Under RH:

$$L(1,\chi_d)>7 \frac{1}{\log\log|d|} \Rightarrow h(K)>7 \frac{\sqrt{|d|}}{\log\log|d|}$$

Question: Can we get a stronger, unconditional lower bound on $L(1,\chi_d)$?

Difficulty: L(S,Xd) could have an exceptional zero: a real,

simple zero Blying very close to I, making it difficult to

produce a lower bound on L(I,Xd) and hence on h(k).

Two goals: Obtain...

- · an unconditional lower bound on h(K) to solve the class number problem.
- · a strong enough unconditional lower bound on $L(I_1 X_d)$ to eliminate the possibility of the exceptional zero.

Siegel (1935): For every $\varepsilon > 0$, $h(K) \gg d^{\frac{1}{2}-\varepsilon}$, but the implied constant is not computable.

·With this lowerbound, Watkins has computed complete lists of fundamental discriminants with h(K) = 2,3,4,...,100.

Conrey-Iwaniec (2002): If for all large T there are $T(\log T)$ nontrivial Zeros of S(s) such that $O(8 \le T)$ and $T(\log T)$ then $\frac{S_{n+1} - S_n}{2\pi / \log S_n} \stackrel{!}{=} \frac{1}{2} \left(\left[-\frac{1}{\sqrt{\log S}} \right] \right)$ and the implied constant is computable.

Small Gaps - Progress:

Conjecture: M=0

Authoris), year	upper bound on μ (under RH)
Montgomery / Goldston '72	0.6072
Carneiro, Chandee, Littmann, Milinovich '17	0.606894
Chirre, Goncalves, DeLatte '19	0.6039
Montgomery-Odlyzko '81	0.5179
Conrey-Ghosh-Gonek '84	0.5172
Bui-Milinovich-Ng 10	0.5155
Feng-Wu 12	0.515398
Preobrazinskii 16	0.515396

State of the art approach to small gaps (under RH)

- · Developed by Julia Mueller (1982) in the context of large gaps.
- ·Determined to also apply to small gaps by Conrey-Ghosh-Gonek (1984).
- · Equivalent to a method due to Montgomery Odlyzko around the same time.

Set up.

$$A(t) = \sum_{k \leq X} \frac{\alpha_k}{k!t}$$
, $X = T^{1-\delta}$, $S = S = 1$

Define

$$M_1 := \int_{T/2}^{2T} |A(t)|^2 dt$$
 "global"
average

and

$$M_2(c) = \int_{-\pi c/\log T} \frac{\pi c/\log T}{\sum_{z \in X \leq 2T}} |A(X+d)|^2 dx$$
 near zerosuf $S(s)$

Remarks:

 \bigcirc $M_2(C)$ is monotonically increasing:

$$M_2(c) = \int_{-\pi c/\log T}^{\pi c/\log T} \left| A(\gamma+\lambda) \right|^2 d\lambda$$

2 Claim: $M_2(\mu) \leq M_1 \leq M_2(\lambda)$: $\chi: large gaps$

Recall, by Selberg/Fujii u<1<>.

For Zeros V, V' ∈ [T/2, 2T], the average spacing is 2T/logT.

$$M_1 := \int_{-T/2}^{2T} |A(t)|^2 dt$$

In the range of integration, if c<1:

$$T/2 \xrightarrow{\frac{2\pi C}{[0g]}} T/2 \xrightarrow{\frac{2\pi C}{[0g]}} T/2$$

$$\int_{-\pi c/\log T} \sum_{\frac{1}{2} \le r \le 2T} |A(r+\alpha)|^2 d\alpha \leq \int_{-\pi c/\log T}^{2T} |A(t)|^2 dt$$

On the other hand, if (>1, then

$$\begin{bmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \\ T/2 & \delta_{n-1} & \delta_n & \delta_n & \delta_{n+1} \end{bmatrix}$$

$$\int_{-\pi c/\log T} \int_{\frac{\pi}{2} \le x \le 2T} |A(x+\alpha)|^2 d\alpha = \int_{-\pi c/\log T} \int_{\frac{\pi}{2} \le x \le 2T}^{2T} |A(t)|^2 dt$$

: M2(X) > M1.

Point: Since M2(µ) = M, & M2(x),

·If M2(c) < M, then 2>c.

· If M2(c)>M,, then µ < C.

Thus for small gaps, we must choose A(t) and c such that $\frac{M_2(c)}{M_1} > 1$

and for large gaps, we must choose A(+) FC such that

$$\frac{W^{2}(c)}{M^{2}} < 1.$$

· If we multiple out the numerator and denominator, we can show

$$\frac{M_{2}(c)}{M_{1}} = c - \frac{Re\left(\sum_{n \neq \pm X} a_{k} \overline{a_{n \neq k}} g_{c}(n) \Lambda(n) N^{-1/2}\right)}{\sum_{n \neq \pm X} |a_{n \neq k}|^{2}} + o(1)$$

where
$$g_c(n) = \frac{2 \sin \left(\pi c \frac{\log n}{\log x}\right)}{\pi \log n}$$
 and $\Lambda(n) = \begin{cases} \log p & n = p^{\frac{1}{2}} \\ 0 & \text{else} \end{cases}$

·For small gaps, we want $M_2(c)/M_1 > 1$. This suggests we pick A(t) to be big around zeros of S(s).

Note:
$$\frac{5(2S)}{5(S)} = \sum_{k=1}^{\infty} \frac{7(k)}{k^{S}}$$

$$7(k) = -1$$
Total # of PRIME Divisors of k

is large around zeros of 3(s), so we could take

$$A(t) = \begin{bmatrix} \frac{\lambda(t)}{2} \\ \frac{\lambda(t)}{2} \end{bmatrix}$$

$$a_k = \frac{\lambda(t)}{2}$$

This choice of A(+) gives:

$$\frac{M_{2}(c)}{M_{1}} = c + \frac{2}{\pi} \int_{0}^{1} \frac{\sin(\pi c v (1-8))}{v} (1-v) dv.$$

Using Mathematica, we can find the smallest C > 0 for which

$$c + \frac{2}{\pi} \int_{0}^{1} \frac{\sin(\pi cv)}{v} (1-v) dv > 1$$

· Conrey- Ghosh- Gonek choose:

$$a_{k} = \frac{\lambda(k)}{k^{1/2}} d_{r}(k)$$

 $d_r(k)$ is a multiplicative function with $d_r(p^k) = \frac{\Gamma(k+r)}{\Gamma(r) + k!}$

produces <u>460.5172</u>, r=1.1 (under RH)

Subsequent Refinements:

$$a(t) = \frac{\lambda(t)}{t^{1/2}} d_r(t) f\left(\frac{\log x/t}{\log x}\right)$$

Limitation: Conrey-Ghosh-Gonek show that this method

Cannot attain $\mu < \frac{1}{2}$ for any choice of a_{\pm} .

Questions?

Large gaps and moments of zeta

Method: due to R.R. Hall (1999), unconditional

Consider the ordinates of nontrivial zeros on the critical line:

and let

$$RH \Rightarrow \lambda = \Lambda$$
. Unconditionally, $\Lambda > \lambda > 1$.

Conjecture $V = \infty$

Results on Λ :

Author/Year	Lower bound on Λ
Hall ('99)	2.26
Hall ('02')	2.34520
Hall ('05)	2.630637
Bredberg (11) Bui-Milinovich (17)	2.76
Bui-Milinovich (17)	3.18

Best results on a using Mueller method:

2>2.9 (under RH) by Bui 2011

>3.072 (under GRH for Dirtchlet L-functions), Feng & Wu 2013

Hall's Method

Wirtinger's Inequality: Suppose that f(+) is a real, continuously differentiable function which satisfies $f(0) = f(\pi) = 0$. Then $\int_{0}^{\pi} f(t)^{2} dt \leq \int_{0}^{\pi} f'(t)^{2} dt$

Extend to f complex-valued a continuously differentiable, if f(a) = f(b) = 0:

$$\int_{a}^{b} |f(t)|^{2} dt \leq \frac{(b-a)^{2}}{a} \int_{a}^{b} |f'(t)|^{2} dt$$

$\frac{1}{a} \frac{1}{a} \frac{\pi^2}{a}$

Toy example of Hall's Method:

- · based on a comment in Hall's 1999 article
- · We will show that $\Lambda \gg \sqrt{3}$.
- · Thus, under RH, Ans.

Choice of function: Take f(t) to be the Mardy Z-function:

$$Z(t) := e^{i\Theta(t)} \zeta(\frac{1}{2} + it) = \underbrace{\left\{ \pi^{-it} \frac{\Gamma(\frac{1}{4} + \frac{1}{2}it)}{\Gamma(\frac{1}{4} - \frac{1}{2}it)} \right\}^{1/2}}_{:= (\chi(\frac{1}{2} + it))^{-1/2}} \zeta(\frac{1}{2} + it).$$

Proof. Suppose, towards contradiction, that $\Lambda \leq \kappa$, for κ

some real number. Denote all of the zeros of Z(t) in the interval [Ti2T] by

By our assumption we have

By Wirtinger's inequality

$$\int_{tn}^{tn+1} Z^{2}(t) dt \leq \left(\frac{tn+1-tn}{\pi}\right) \int_{tn}^{2} Z'(t)^{2} dt.$$

Summing for all zeros in the range [T, 2T], we have

$$\int_{t_1}^{t_N} Z^2(t) dt \leq \frac{(1+o(1))4\chi^2}{\log^2 T} \int_{t_1}^{t_N} Z'(t)^2 dt$$

Since $|Z(t)| = |S(1/2+it)| \ll t^{1/6+\epsilon}$ (Weyl's bound) and our assumption, we have

$$\int_{T}^{2T} Z^{2}(t)dt = (1+o(1)) \frac{4\kappa^{2}}{\log^{2}T} \int_{T}^{2T} Z'(t)^{2}dt.$$

Therefore, if

$$\limsup_{T\to\infty} \frac{\log^2 T}{4x^2} \frac{\int_{\tau}^{2T} Z^2(t) dt}{\int_{\tau}^{2T} Z'(t)^2 dt} > 1$$

we will have contradicted our assumption and may conclude $\Lambda > \kappa$.

Want:
$$\limsup_{T\to\infty} \frac{\log^2 T}{4\pi^2} \frac{\int_{\tau}^{2T} Z^2(t) dt}{\int_{\tau}^{2T} Z'(t)^2 dt}$$
 >1.

Moments:

$$\int_{T}^{2T} Z^{2}(t)dt = \int_{T}^{2T} |3(1/2+it)|^{2} dt \sim T \log T$$

.
$$\int_{T}^{2T} Z'(t)^{2} dt \sim \frac{T}{12} (\log T)^{3}$$

Thus
$$\limsup_{T\to\infty} \frac{\log^2 T}{4\kappa^2} \frac{\int_{\tau}^{2T} Z^2(t) dt}{\int_{\tau}^{2T} Z^1(t)^2 dt} > 1$$
 for $\kappa = \sqrt{3}$

so we have contradicted 1553. Thus 1253.

Other choices of f(t):

$$\int_{a}^{b} \left| f(t) \right|^{2} dt \leq \frac{(b-\alpha)^{2}}{\pi^{2}} \int_{a}^{b} \left| f'(t) \right|^{2} dt.$$

Uses:
$$\int_{T}^{2T} Z^{4}(t) dt \sim \frac{T}{2\pi} \log^{4}T$$
 (Ingham)

Modifications:

• Mall (2005) : Modification with shifts :
$$f(t) = Z(t)Z(t+a)$$

where $a < \frac{1}{\log t}$.

Reasoning: Consider [T, T+b] (length b)

If $a \le b$ and $f(t) \ne 0$ for $t \in (T, T+b)$, then you get that $Z(t) \ne 0$ in an interval of length a+b.

This idea yields $\bigwedge > 2.630637...$

· Current Record: Bui & Milinovich 173.18

Their f(x) incorporates shifts and an idea of Bredberg:

$$f(t) = e^{ivt \log \frac{T}{2\Pi}} \underbrace{S(\frac{1}{2}+it) S(\frac{1}{2}+it+i\frac{K\Pi}{\log \Pi/2\Pi})}_{\text{minic}} \underbrace{M(\frac{1}{2}+it)}_{\text{mow mean-}} \underbrace{M(\frac{1}{2}+it)}_{\text{polynomial}}$$

$$\underbrace{Feal valued}_{\text{function}} \underbrace{Value}_{\text{polynomial}}$$

Choice of M:

• Note: Bredberg chose M(s) = \(\sum_{n=10} \) / ns , &< 1/11 by Young

Limitations of Method

- ① The method relies on being able to compute $\int_{T}^{2T} |f(t)|^2 dt \quad \text{and} \quad \int_{T}^{2T} |f'(t)|^2 dt.$
 - · For J(s), we only have this information for the second & fourth moment.
 - -This is why using amplifiers is being explored:

 The longer the length, the better we do.

Conjecture: As
$$T \to \infty$$
,
$$\int_{0}^{T} |\zeta(\frac{1}{2}+it)|^{2} dt \sim C_{k} T(\log T)^{\frac{1}{k^{2}}}, \quad k>0$$

* =1: Proved by Mardy & Little wood (1918)

k=2: Proved by Ingham (1926)

Values of Ck:

k=3: Conjectured by Conrey-Ghosh (1998)

1/2 =4: Conjectured by Conrey - Gonek (2001)

Re(k) 7-2: Conjectured by Keating-Snaith (2000)

KEN: - Conjectured by Diaconu, Goldfeld, Noffstein (2003)

- Conjectured by Conrey, Farmer, Keating, Rubinstein, Snaith
(2005)

Suppose you knew all the moments ... How much will Hall's method give you?

Hughes: Predictions from RMT:

$$\int_{0}^{T} Z(t)^{2k-2h} Z'(t)^{2h} dt \sim \alpha(k) b(h_{1}k) T(logT)$$

Product $\in \mathbb{Q}$

over primes

Conrey, Farmer, Keating, Rubinstein, & Snaith (2005)

"Recipe" for moments of L-functions (with shifts).

One might:

- · See what the recipe of CFKRS yields (w/shifts)
- ·Try to win, somehow harnessing knowledge of 2nd & 4th moment together.

Thank You for your attention!