Moments of Zeta and the Vertical Distribution of its Zeros

Caroline Turnage-Butterbaugh Carleton College

VANTAGe Seminar
February 18,2020

Intro:

Let $s=\sigma+i t, \sigma_{1} t \in \mathbb{R}$. The Riemann zeta function:

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}, \quad \sigma>1
$$

Properties of $\zeta(s)$

- Meromorphic continuation to \mathbb{C} with a simple pole at $S=1$ with residue 1 ; i.e.

$$
\zeta(s)-\frac{1}{s-1} \text { is entire }
$$

- Functional equation: $\zeta(s)=X(s) \zeta(1-s)$, where

$$
x(s)=2(2 \pi)^{s-1} \Gamma(1-s) \sin \left(\frac{\pi s}{2}\right)
$$

- Trivial zeros at $s=-2 n, n=1,2,3, \ldots$

$$
\zeta(-2 n)=\underbrace{2(2 \pi)^{-2 n-1}}_{\neq 0} \underbrace{\Gamma(2 n+1)}_{(2 n)!} \underbrace{\sin (-\pi n)}_{0} \zeta \underbrace{\zeta(2 n+1)}_{\neq 0}
$$

-The zeros are symmetric about the real axis, because $\zeta(S)=\overline{\zeta(\bar{S})}$.

- Counting zeros:

$$
N(T):=\#\{\text { zeros } p=\beta+i \gamma: 0 \leq \beta \leq 1,0<\gamma \leqslant T\}
$$

Argument Principle yields

$$
N(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}+\frac{7}{8}+S(T)+O\left(T^{-1}\right)
$$

where $S(T)=\pi^{-1} \arg \zeta(1 / 2+i T) \ll \log T$

The Average Gap Between γ_{n} and γ_{n+1}

$$
\sim \frac{2 \pi}{\log \left(\gamma_{n}\right)}
$$

Consider the ordinates of zeros in the upper half plane:

$$
0<\gamma_{1} \leqslant \gamma_{2} \leqslant \cdots \leqslant \gamma_{n} \leqslant \gamma_{n+1} \leqslant \cdots
$$

Then $\frac{\gamma_{n+1}-\gamma_{n}}{2 \pi / \log \gamma_{n}}$ is 1 on averge.

Question: What can we say about

$$
\mu:=\liminf _{n \rightarrow \infty} \frac{\gamma_{n+1}-\gamma_{n}}{2 \pi / \log \gamma_{n}} \text { and } \lambda:=\limsup _{n \rightarrow \infty} \frac{\gamma_{n+1}-\gamma_{n}}{2 \pi / \log \gamma_{n}} ?
$$

- By definition, we trivially have $\mu \leq 1 \leq \lambda$
- Selberg (1940s)/Fujii (1970s) : observed $\mu<1<\lambda$

Heath-Brown's notes in Titchmarsh

Conjecture: $\mu=0$ and $\lambda=\infty$
(there are coly many pairs of zeros of $\zeta(s)$ that are arbitrarily close (or far apart) relative to the average spacing.)

Q: Where does this conjecture come from?

Montgomery's Pair Correlation Conjecture (1972)
For any fixed $c>0$,

$$
\text { NIT }):(\underline{I} \operatorname{lon} T)^{-1} \Gamma \quad \sim C^{c}\left(1-(\underline{\sin \pi u})^{2}\right) d .
$$

Note:

$$
0<\int_{0}^{c}\left(1-\left(\frac{\sin \pi u}{\pi u}\right)^{2}\right) d u<c
$$

Thus we can make C very small, and still get $N(T ; C)>0$.

$$
P C C \Rightarrow \mu=0
$$

What about large gaps?
Montgomery's Pair Correlation Conjecture (1972)
For any fixed $c>0$,

$$
N(T, C)=\left(\frac{T}{2 \pi} \log T\right)^{-1} \sum_{\substack{0<\gamma, \prime^{\prime} \leqslant T \\ 0<\gamma-\gamma^{\prime} \leqslant \frac{2 \pi c}{\log T}}} 1 \sim \int_{0}^{c}\left(1-\left(\frac{\sin \pi u}{\pi u}\right)^{2}\right) d u
$$

$$
1-\left(\frac{\sin \pi u}{\pi u}\right)^{2} \quad \text { "Pair Correlation Function" }
$$

- Dyson noted eigenvalues of random Hermitian matrices have the same pau correlation function.
- This connection has been supported by extensive numerical estimates by Odlyzko.
- Further observations in this realm $\Rightarrow \lambda=\infty$

Questions
so far?

| Small Gaps-Progress: | Conjecture:
 $\mu=0$ |
| :--- | :--- | | $\mu<1$ |
| :---: |
| upper bound on μ (under RH) |

$\left.\begin{array}{lcl}\text { Montgomery-Odlyzko '81 } & 0.5179 \\ \text { Conrey-Ghosh-Gonek } & \prime 84 & 0.5172 \\ \text { Bui-Milinovich-Ng } & 10 & 0.5155 \\ \text { Feng-Wu } & 12 & 0.515398 \\ \text { Preobrazinskii } & 16 & 0.515396\end{array}\right\}$ wily many

The Class number problem $\dot{\xi}$ Exceptional Zeros

Let $d<0$ be a fundamental discriminant.
$K=\mathbb{Q}(\sqrt{|d|}) \quad$ The ideal class group of K :

$$
Q(k):=\binom{\text { group of fractional }}{\text { ideals of } k} /\binom{\text { subgroup of principal }}{\text { ideals of } k}
$$

Q
The class number of k :

$$
h(k):=|c l(k)| .
$$

$h(k)=1 \Leftrightarrow \operatorname{Ce}(k)=\{i d\} \Leftrightarrow \theta_{k}$ is a PID $\Leftrightarrow \theta_{k}$ is a UFD.

Gauss: Conjectured $h(K) \rightarrow \infty$ as d runs through negative discriminants.

- Proved by Heilbronn in 1934.
- This implies that there are only finitely many. imaginary quadratic fields k with $h(k)=n$, where $n \geqslant 1$ is fixed.

Class Number Problem for Imaginary Quadratic Fields: Give a complete list of fundamental discriminants so that $h(k)=n, n$ fixed.
$n=1$: Solved by Stark/Heegner/Baker

$$
d=-3,-4,-7,-8,-11,-19,-43,-67,-163
$$

How about $n>2$?

Class Number Formula: (assuming $d<-4$)

$$
h(K)=\pi^{-1} \sqrt{|d|} L\left(1, \chi_{d}\right)
$$

- $L\left(1, X_{d}\right)=\sum_{n=1}^{\infty} \frac{X_{d}(n)}{n^{s}}$, where $X_{d}(n)=\left(\frac{d}{n}\right)$

Want: Lower bound on $h(k)$.

$$
h(k) \geqslant 1 \quad\left(\text { so } \quad L\left(1, x_{d}\right) \geqslant \frac{1}{\sqrt{|d|}}\right)
$$

Under RH:

$$
L\left(1, x_{d}\right) \gg \frac{1}{\log \log |d|} \quad \Longrightarrow \quad h(k) \gg \frac{\sqrt{|d|}}{\log \log |d|}
$$

Question: Can we get a stronger, unconditional lower bound on $L\left(1, x_{d}\right)$?

Difficulty: $L\left(S, X_{d}\right)$ could have an exceptional zero: a real, simple zero β lying very close to 1, making it difficult to produce a lower bound on $L\left(1, x_{d}\right)$ and hence on $h(k)$.

Two goals: Obtain...

- an unconditional lower bound on $h(k)$ to solve the class number problem.
- a strong enough unconditional lower bound on $L\left(1, x_{d}\right)$ to eliminate the possibility of the exceptional zero.

Siegel (1935): For every $\varepsilon>0, h(k) \gg d^{\frac{1}{2}-\varepsilon}$, but the implied constant is not computable.
-Goldfeld-Gross-Zagier: For every $\varepsilon>0, \quad h(k) \gg(\log |d|)^{1-\varepsilon}$.

- With this lowerbound, Watkins has computed complete lists of fundamental discriminants with $h(K)=2,3,4, \ldots, 100$.

Conrey-Iwaniec (2002): If for all large T there are $\gg T(\log T)^{4 / 5}$ nontrivial zeros of $\zeta(s)$ such that $0<\gamma \leq T$ and

$$
\frac{\gamma_{n+1}-\gamma_{n}}{2 \pi / \log \gamma_{n}} \leq \frac{1}{2}\left(1-\frac{1}{\sqrt{\log \gamma}}\right)
$$

then

$$
L\left(1, x_{d}\right) \gg \frac{1}{(\log |d|)^{90}}
$$

and the implied constant is computable.

Small Gaps-Progress:
Author(s), year
Montgomery/Goldston '72
Carneiro, Chandee,
Littmann, Milinovich ' 17
Chirre, Goncalves, DeLatte '19

Montgomery-Odlyzko	'81	0.5179
Conrey-Ghosh-Gonek	$\prime 84$	0.5172
Bui-Milinovich- Ng	$\prime 10$	0.5155
Feng-Wu	$\prime 12$	0.515398
Preobrazinskii	16	0.515396

State of the art approach to small gaps (under RH)

- Developed by Julia Mueller (1982) in the context of large gaps.
- Determined to also apply to small gaps by Conrey-GhoshGonek (1984).
- Equivalent to a method due to Montgomery - Odlyzko around the same time.

Setup.

$$
A(t)=\sum_{k \leq X} \frac{a_{k}}{k^{i t}}, X=T^{1-\delta}, \delta \text { small }
$$

Define

$$
M_{1}:=\int_{T / 2}^{2 T}|A(t)|^{2} d t \quad \begin{gathered}
\text { "global" } \\
\text { average }
\end{gathered}
$$

and

$$
M_{2}(c)=\int_{-\pi c / \log T}^{\pi c / \log T} \sum_{\frac{T}{2} \leq \gamma \leqslant 2 T}|A(\gamma+\alpha)|^{2} d \alpha \quad \text { "local average" }
$$

Remarks:
(1) $M_{2}(c)$ is monotonically increasing:

$$
M_{2}(c)=\int_{-\pi c / \log T}^{\pi c / \log T} \sum_{\frac{T}{2} \leq \gamma \leqslant 2 T}|A(\gamma+\alpha)|^{2} d \alpha
$$

(2)

$$
\text { Claim: } M_{2}(\mu) \leq M_{1} \leq M_{2}(\lambda): \quad \mu \text { : small gaps } \quad \lambda \text { : large gaps }
$$

Recall, by Selberg/Fujii $\mu<1<\lambda$.
For zeros $\gamma, \gamma^{\prime} \in[T / 2,2 T]$, the average spacing is $2 \pi / \log T$.

$$
M_{1}:=\int_{T / 2}^{2 T}|A(t)|^{2} d t
$$

In the range of integration, if $c<1$:

$$
\begin{aligned}
& {[\frac{[12}{(\underbrace{1}_{\frac{2 \pi c}{\log T}})}\left(\gamma_{\gamma_{n}}^{1}\right),\left({ }_{\gamma_{n+1}}^{1}\right)]} \\
& \int_{-\pi c / \log T}^{\pi c / \log T} \sum_{\frac{T}{2} \leq \gamma \leq 2 T}|A(\gamma+\alpha)|^{2} d \alpha \leq \int_{T / 2}^{2 T}|A(t)|^{2} d t \\
& \therefore M_{2}(\mu) \leqslant M_{1} \text {. }
\end{aligned}
$$

On the other hand, if $c>1$, then

$$
\int_{-\pi c / \log T}^{\pi c / \log T} \sum_{\frac{T}{2} \leq \gamma \leq 2 T}|A(\gamma+\alpha)|^{2} d \alpha \geqslant \int_{T / 2}^{2 T}|A(t)|^{2} d t
$$

$$
\therefore M_{2}(\lambda) \geqslant M_{1} .
$$

Point: since $M_{2}(\mu) \leqslant M_{1} \leqslant M_{2}(\lambda)$,
-If $M_{2}(c)<M_{1}$, then $\lambda>c$.

$$
\text { - If } M_{2}(c)>M_{1} \text {, then } \mu<c \text {. }
$$

Thus for small gaps, we must choose $A(t)$ and c such that

$$
\frac{M_{2}(c)}{M_{1}}>1
$$

and for large gaps, we must choose $A(t) \dot{\varepsilon} \cdot \mathrm{C}$ such that

$$
\frac{M_{2}(c)}{M_{1}}<1 \text {. }
$$

- If we multiple out the numerator and denominator, we can show

$$
\frac{M_{2}(c)}{M_{1}}=c-\frac{\operatorname{Re}\left(\sum_{n k \leq x} a_{k} \overline{a_{n k}} g_{c}(n) \Lambda(n) n^{-1 / 2}\right)}{\sum_{k \leq x}\left|a_{k}\right|^{2}}+o(1)
$$

$$
\text { where } g_{c}(n)=\frac{2 \sin \left(\pi c \frac{\log n}{\log x}\right)}{\pi \log n} \text { and } \Lambda(n)=\left\{\begin{array}{ll}
\log p & n=p^{t} \\
0 & \text { else }
\end{array} .\right.
$$

- For small gaps, we want $M_{2}(c) / M_{1}>1$. This suggests we pick $A(t)$ to be big around zeros of $\zeta(s)$.

is large around zeros of $\zeta(s)$, so we could take

$$
A(t)=\sum_{k \leq x} \frac{\lambda(k)}{k^{1 / 2+i t}}, \quad a_{k}=\frac{\lambda(k)}{k^{1 / 2}}
$$

This choice of $A(t)$ gives:

$$
\frac{M_{2}(c)}{M_{1}}=c+\frac{2}{\pi} \int_{0}^{1} \frac{\sin (\pi c v(1-\delta))}{v}(1-v) d v .
$$

Using Mathematica, we can find the smallest $c>0$ for which

$$
c+\frac{2}{\pi} \int_{0}^{1} \frac{\sin (\pi c v)}{v}(1-v) d v>1 .
$$

$$
c=0.5181 \text { works! } \quad \therefore \mu \leq 0.5181
$$

- Conrey-Ghosh-Gonek choose:

$$
a_{k}=\frac{\lambda(k)}{k^{1 / 2}} d_{r}(k)
$$

$d_{r}(k)$ is a multiplicative function with

$$
d r\left(p^{k}\right)=\frac{\Gamma(k+r)}{\Gamma(r)-k!}
$$

Produces $\mu \leq 0.5172, r=1.1 \quad$ (under $R H$)

Subsequent Refinements:

$$
a(k)=\frac{\lambda(k)}{k^{1 / 2}} d_{r}(k) f\left(\frac{\log x / k}{\log x}\right)
$$

Limitation: Conrey-Ghosh-Gonek show that this method cannot attain $\mu<\frac{1}{2}$ for any choice of a_{k}.

Questions?

Large gaps and moments of zeta

Method: due to R.R. Hall (1999), unconditional
Consider the ordinates of nontrivial zeros on the critical line:

$$
0<t_{1} \leqslant t_{2} \leqslant t_{3} \leqslant \ldots
$$

and let

$$
\Lambda:=\limsup _{n \rightarrow \infty} \frac{t_{n+1}-t_{n}}{2 \pi / \log t_{n}}
$$

$R H \Rightarrow \lambda=\Lambda$. Unconditionally, $\Lambda \geqslant \lambda>1$.

Results on \wedge :

$$
\Lambda:=\limsup _{n \rightarrow \infty} \frac{t_{n+1}-t_{n}}{2 \pi / \log t_{n}}
$$

Conjecture $\Lambda=\infty$

Author/Year	Lower bound on A
Hall ('99)	2.26
Hall ('02)	2.34520
Hall ('05)	2.630637
Bredberg ('11)	2.76
Bui-Milinovich ('17)	3.18

Best results on λ using Mueller method:
$\lambda>2.9$ (under RH) by Bui 2011
$\lambda>3.072$ (under GRH for Dirichlet L-functions), Fend \& Wu 2013

Hall's Method

Wirtinger's Inequality : Suppose that $f(t)$ is a real, continuously differentiable function which satisfies $f(0)=f(\pi)=0$. Then

$$
\int_{0}^{\pi} f(t)^{2} d t \leq \int_{0}^{\pi} f^{\prime}(t)^{2} d t
$$

Extend to f complex-valued a continuously differentiable, if $f(a)=f(b)=0:$

$$
\int^{b}|f(t)|^{2} d_{t} \leqslant \frac{(b-a)^{2}}{-} \int^{b}\left|f^{\prime}(t)\right|^{2} d t
$$

Toy example of Hall's Method

- based on a comment in Halls 1999 article
- We will show that $\Lambda \geqslant \sqrt{3}$.
- Thus, under RH, $\lambda \geqslant \sqrt{3}$.

Choice of function: Take $f(t)$ to be the Hardy z-function:

$$
Z(t):=e^{i \theta(t)} \zeta\left(\frac{1}{2}+i t\right)=\underbrace{\left\{\pi^{-i t} \frac{\Gamma\left(\frac{1}{4}+\frac{1}{2} i t\right)}{\Gamma\left(\frac{1}{4}-\frac{1}{2} i t\right)}\right\}^{1 / 2}}_{:=\left(x\left(\frac{1}{2}+i t\right)\right)^{-1 / 2}} \zeta(1 / 2+i t)
$$

Proof. Suppose, towards contradiction, that $\Lambda \leqslant x$, for x
some real number. Denote all of the zeros of $z(t)$ in the interval [T,2T] by

$$
t_{1} \leq t_{2} \leq \ldots \leq t_{n} \leq t_{n+1} \leq t_{N}
$$

By our assumption we have

$$
t_{n+1}-t_{n} \leq(1+o(1)) \frac{2 \pi K}{\log T} \text { as } T \rightarrow \infty
$$

By Wirtinger's inequality

$$
\int_{t_{n}}^{t_{n+1}} Z^{2}(t) d t \leq\left(\frac{t_{n+1}-t_{n}}{\pi}\right)^{2} \int_{t_{n}}^{t_{n+1}} Z^{\prime}(t)^{2} d t
$$

Summing for all zeros in the range $[T, 2 T]$, we have

$$
\int_{t_{1}}^{t N} Z^{2}(t) d t \leq \frac{(1+o(1)) 4 k^{2}}{\log ^{2} T} \int_{t_{1}}^{t N} Z^{\prime}(t)^{2} d t
$$

Since $|Z(t)|=|\zeta(1 / 2+i t)| \ll t^{1 / 6+\varepsilon}$ (Weyl's bound) andour assumption, we have

$$
\int_{T}^{2 T} Z^{2}(t) d t \leq(1+o(1)) \frac{4 K^{2}}{\log ^{2} T} \int_{T}^{2 T} Z^{\prime}(t)^{2} d t
$$

Therefore, if

$$
\limsup _{T \rightarrow \infty} \frac{\log ^{2} T}{4{K^{2}}^{2 T}} \frac{\int_{T}^{2 T} Z^{2}(t) d t}{\int_{T}^{2 T} Z^{\prime}(t)^{2} d t}>1
$$

we will have contradicted our assumption and may conclude

$$
\Lambda>k .
$$

Want:

$$
\limsup _{T \rightarrow \infty} \frac{\log ^{2} T}{4 k^{2}} \frac{\int_{T}^{2 T} z^{2}(t) d t}{\int_{T}^{2 T} z^{\prime}(t)^{2} d t}>1 .
$$

Moments:
Handy Li Litlewood

$$
\begin{aligned}
& \cdot \int_{T}^{2 T} Z^{2}(t) d t=\int_{T}^{2 T}|\zeta(1 / 2+i t)|^{2} d \\
& \cdot \int_{T}^{2 T} Z^{\prime}(t)^{2} d t \stackrel{\tau}{\sim} \frac{T}{12}(\log T)^{3}
\end{aligned}
$$

Thus $\limsup _{T \rightarrow \infty} \frac{\log ^{2} T}{4 k^{2}} \frac{\int_{T}^{2 T} z^{2}(t) d t}{\int_{T}^{2 T} z^{\prime}(t)^{2} d t}>1$ for $k=\sqrt{3}$
so we have contradicted $\Lambda \leqslant \sqrt{3}$. Thus $\Lambda>\sqrt{3}$.

Other choices of $f(t)$:

$$
\int_{a}^{b}|f(t)|^{2} d t \leq \frac{(b-a)^{2}}{\pi^{2}} \int_{a}^{b}\left|f^{\prime}(t)\right|^{2} d t
$$

- Hall (1999) : $f(t)=z^{2}(t) \quad \Rightarrow \quad \Lambda>2.263509$.
uses: $\quad \int_{T}^{2 T} Z^{4}(t) d t \sim \frac{T}{2 \pi} \log ^{4} T \quad$ (Ingham)

$$
\int_{T}^{2 T} Z^{\prime}(t)^{4} d t \sim \frac{T}{1120 \pi^{2}} \log ^{8} T \quad \text { (Hall) }
$$

Modifications:

- Hall (2005) : Modification with shifts: $f(t)=Z(t) Z(t+a)$ where $a \ll \frac{1}{\log t}$.

Reasoning: Consider $[T, T+b] \quad$ (length b)

If $a \leq b$ and $f(t) \neq 0$ for $t \in(T, T+b)$, then you get that $Z(t) \neq 0$ in an interval of length $a+b$. This idea yields $\Lambda>2.630637 \ldots$

- Current Record: Bui \&̀ Milinovich $\Lambda>3.18$

Their $f(t)$ incorporates shifts and an idea of Bredberg:

$$
f(t)=\underbrace{e^{i v t \log \frac{T}{2 \pi}}}_{\begin{array}{c}
\text { mimic } \\
\text { real valued } \\
\text { function }
\end{array}} \underbrace{\zeta\left(\frac{1}{2}+i t\right) \zeta\left(\frac{1}{2}+i t+i \frac{k \pi}{\log T / 2 \pi}\right.}_{\begin{array}{c}
\text { know mean- } \\
\text { value } \\
\text { theorem }
\end{array}}) \quad \underbrace{M\left(\frac{1}{2}+i t\right)}_{\begin{array}{c}
\text { Dirichlet } \\
\text { polynomial }
\end{array}}
$$

Choice of M :

$$
\sum_{n \leq T^{\theta}} \frac{d_{r}(n)}{n^{s}}(\text { polynomial }), \theta<1 / 4 \text { by Bettin, Bul, Li, Radziwilt. }
$$

- Note: Bredberg chose $M(s)=\sum_{n \leq T^{\theta}} \frac{1}{n^{s}}, \theta<1 / 11$ by Young

Limitations of Method
(1) The method relies on being able to compute

$$
\int_{T}^{2 T}|f(t)|^{2} d t \quad \text { and } \quad \int_{T}^{2 T}\left|f^{\prime}(t)\right|^{2} d t
$$

- For $\zeta(S)$, we only have this information for the second $\dot{\text { E }}$ fourth moment.
-This is why using amplifiers is being explored: The longer the length, the better we do.

Conjecture: As $T \rightarrow \infty$,

$$
\begin{aligned}
& \text { ruse: As } T \rightarrow \infty \text {, } \\
& \int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \sim C_{k} T(\log T)^{k^{2}}, \quad k>0
\end{aligned}
$$

$k=1$: Proved by Hardy Little wood (1918)
$k=2$: Proved by Ingham (1926)
Values of C_{k} :
$k=3$: Conjectured by Convey - Ghosh (1998)
$k=4$: conjectured by Convey - Gonek (2001)
$\operatorname{Re}(k) \geqslant-\frac{1}{2}$: Conjectured by Keating-Snaith (2000)
$k \in \mathbb{N}$: - Conjectured by Diaconu, Goldfeld, Hoffstein (2003)

- Conjectured by Conrey, Farmer, Keating, Rubinstein, Snaith (2005)

Suppose you knew all the moments... How much will Hall's method give you?

Hughes: Predictions from RMT:

$$
\int_{0}^{T} Z(t)^{2 k-2 h} Z^{\prime}(t)^{2 h} d t \underbrace{a(k)}_{\substack{\text { product } \\ \text { over } \\ \text { primes }}} \underbrace{b\left(h_{1} k\right)}_{\in \mathbb{Q}} T(\log T)^{k^{2}+2 h}
$$

rall has shown:
2002

$$
\begin{aligned}
& \text { 6 th moment } \Rightarrow 2.8914 \\
& 8+h \text { moment } \Rightarrow 3.392 \\
& 10+h \text { moment } \Rightarrow 3.858 \\
& 12+h \text { moment } \Rightarrow 4.298
\end{aligned}
$$

Convey, Farmer, Keating, Rubinstein, غ. Snaith (2005)
"Recipe" for moments of L-functions (with shifts).

One might:

- See what the recipe of CFKRS yields ($w /$ shifts)
- Try to win, somehow harnessing knowledge of Ind d 4th moment together.

Thank You for your attention!

