Unikely intersections and the André-Oort conjecture

Jacob Tsimerman

University of Toronto

December 7, 2021

Lang's Conjecture: Polynomial Relations in Roots of Unity

Let $C \subset (\mathbb{C}^{\times})^2$ be an algebraic curve, defined by (irreducible) $F(X, Y) = 0, F(X, Y) \in \mathbb{C}[X, Y, X^{-1}, Y^{-1}].$

Theorem (Lang 1965)

If C contains infinitely many points (ζ, η) with ζ, η roots of unity, then C is of the form

$$x^m y^n = \zeta,$$

with $n, m \in \mathbb{Z}, \zeta$ a root of unity.

. C - coset of a subgroup by a torsion point; we call C a **Torsion Coset**. For $V \subset (\mathbb{C}^{\times})^n$, dim V > 1 it may be that V contains positive dimensional torsion cosets.

Theorem (Laurent, 1983)

For $V \subset (\mathbb{C}^{\times})^n$, then V contains finitely many **Maximal** torsion cosets.

We replace $(\mathbb{C}^{\times})^n$ by an abelian variety $A(\mathbb{C}) = \mathbb{C}^n / \Lambda$.

- $B \subset A$ Abelian subvariety
- $\zeta \in A$ Torsion point
- $\zeta + B$ Torsion coset

Theorem (Manin-Mumford Conjecture; Raynaud, 1983)

For $V \subset (\mathbb{C}^{\times})^n$, then V contains finitely many **Maximal** torsion cosets.

André-Oort: Shimura Varieties

- *H*-Hermitian Symmetric space.
- Γ discrete, arithmetic group acting on \mathcal{H} .
- S Shimura variety. $S(\mathbb{C}) = \Gamma ackslash \mathcal{H}$
- S contains a discrete, dense set of Special (CM) Points
- *S* contains a countable set of **Special Subvarieties** *T*, which are themselves "Shimura Subvarieties"

Conjecture (André)

For $V \subset S$, then V contains finitely many **Maximal** Special Subvarieties.

- André (1998): $S = Y(1)^2$
- Edixhoven, Klingler, Ullmo, Yafaev (2014) : True conditional on GRH.
- Pila, Pila-Zannier Strategy: $S = Y(1)^n$
- T (Pila-T): $S = A_g$
- Pila-Shankar-T: General case

Examples of Shimura Varieties: $Y(1)^2$

- Y(1) (coarse) moduli space of elliptic curves
- $Y(1)(\mathbb{C}) \cong \mathsf{Sl}_2(\mathbb{Z}) \setminus \mathbb{H}, \pi : \mathbb{H} \to Y(1)$

Special Points in Y(1)

- The CM points are classes [E] of complex elliptic curves with $\mathbb{Z} \subsetneq \operatorname{End}(E)$
- $\pi^{-1}(Y(1)_{\mathrm{CM}}) = \{\tau \in \mathbb{H} \mid [\mathbb{Q}(\tau) : \mathbb{Q}] = 2\}$

Special curves in $Y(1)^2$:

- $\{x\} \times Y(1)$, where x is a special point
- $Y(1) \times \{x\}$, where x is a special point
- For N > 0, $T_N = \{([E], [E']), \exists \phi : E \to E', \ker(\phi) \cong \mathbb{Z}/N\mathbb{Z}\}$

Theorem (André, 1998)

A curve $C \in Y(1)^2$ containing infinitely many CM points is special.

Proved effectively by Kühne, Bilu-Masser Zannier, 2012/13.

Examples of Shimura Varieties: \mathcal{A}_g

• A_g - (coarse) moduli space of *g*-dimensional, principally polarized abelian varieties

•
$$\mathbb{H}_g = \{ Z = X + iY, Y > 0, Z \in M_g(\mathbb{C})^{sym} \},\ \mathcal{A}_g(\mathbb{C}) \cong Sp_{2g}(\mathbb{Z}) \setminus \mathbb{H}_g.$$

Special Points in \mathcal{A}_g

The CM points are classes [A] of complex Abelian varieties, containing a commutative R ⊂ End_Q(A), [R : Q] = 2g.

•
$$\pi^{-1}(Y(1)_{\mathrm{CM}}) \subset \{\tau \in \mathbb{H}_g \mid [\mathbb{Q}(\tau) : \mathbb{Q}] \leq 2g\}$$

Special subvarieties in \mathcal{A}_g :

- $\operatorname{sym}^g Y(1) \subset \mathcal{A}_g$
- F- totally real field, $[F:\mathbb{Q}] = g$, $Y_F \cong \text{Sl}_2(\mathcal{O}_F) ackslash \mathbb{H}^g \subset \mathcal{A}_g$.
- Other Endomorphism structures, etc...

Pila-Zannier Strategy: Lang's conjecture for n = 2

Proof.

Assume n = 2.

- $Z \subset (\mathbb{C}^{\times})^2$ algebraic curve, $\forall i \in \mathbb{N}, w_i \in Z$ are torsion points.
- w_i defined over $\overline{\mathbb{Q}} \Rightarrow Z$ defined over $\overline{\mathbb{Q}}$
- $\pi: \mathbb{C}^2 \to (\mathbb{C}^{\times})^2, (a, b) \to (e^{2\pi i a}, e^{2\pi i b}).$

$$\pi^{-1}(\mathbb{C}_{tor}^{\times}) = \mathbb{Q}$$

- Lower Bound: $\pi(\frac{a}{n}, \frac{b}{n}) \in Z \Rightarrow \forall (c, n) = 1, \pi(\frac{ca}{n}, \frac{cb}{n}) \in Z$. Z contains 1 point of order $n \Rightarrow Z \cap [0, 1)$ contain $\phi(n)$ such points.
- Upper bound: Z not torus coset $\Leftrightarrow \pi^{-1}(Z)$ not algebraic. Z contains $O_{\epsilon}(n^{\epsilon})$ points in $(\frac{1}{n}\mathbb{Z}/\mathbb{Z})^2$
- $n^{1-\epsilon} \ll_{\epsilon} \phi(n)$, which is a contradiction.

- Consider $\pi : \mathcal{H} \to X$.
- Suppose $V \subset X$ has a Zariski-dense set of special points.
- $\pi^{-1}(V)$ contains **many** points in $\pi^{1}(X_{sp})$, which are "rational".
- π⁻¹(V) cannot contain many rational points, unless π⁻¹(V)
 contains algebraic subvarieties W.
- Functional transcendence: This only happens if V is a (weakly) special variety (Ax-Lindemann Theorem).

3 fundamental Ingredients

- Rational Points on Transcendental sets : If a nice (definable) real analytic variety contains many rational points, it is algebraic.
- Functional Transcendence: There is no interaction between the algebraic structures on \mathcal{H} and X, except that which is mandated by (weakly) special varieties.
- Large Galois Orbits: If $x \in X$ is a special point, then $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \cdot x$ is big compared to the complexity of x.

Pila-Wilkie: Counting Rational Points

•
$$gcd(a,b) = 1, H(\frac{a}{b}) = Max(|a|,|b|)$$

•
$$H(z_1, ..., z_m) = Max_i H(z_i)$$

• $N(S,X) := \#\{z \in \mathbb{Q}^m \mid H(z) \le X, z \in S\}$

Theorem (Bombieri-Pila, '89)

Let C be an irreducible, compact, real analytic, transcendental curve. Then $N(C, X) = O_{\epsilon}(X^{\epsilon})$

Idea: (Jarnik) Let $C \subset \mathbb{R}^2$ be a circle of radius *L*. Then $\#C(\mathbb{Z}) \ll L^{2/3}$.

Proof: Let P, Q, R be integer points on an arc of length $L\theta$. Then $1/2 \leq \operatorname{Area}(\Delta(PQR)) \ll (L\theta)^2 \sin(\theta) \approx L^2 \theta^3$. If $\theta = L^{\frac{-1}{3}}$ there are at most 2 points per arc.

Pila-Wilkie: Counting Rational Points

- $Y \subset \mathbb{R}^m$
- Y^{alg:} = ∪_{I⊂Y} Y, union over irreducible (semi)-algebraic curves I.

•
$$Y^{tran} := Y \setminus Y^{alg}$$

•
$$N(S,X) := \#\{z \in \mathbb{Q}^m \mid H(z) \le X, z \in S\}$$

Theorem (Pila-Wilkie,'04; Bombieri-Pila)

Asssume Y is compact, real analytic. Then

$$N(Y^{tran}; X) = O_{\epsilon}(X^{\epsilon})$$

Generalizations:

 $\mathbb{Q} \Rightarrow$ Points of bounded degree compact, real analytic \Rightarrow Definable in an o-minimal structure $(\mathbb{R}_{an,exp})$. Theme: e^x is as transcendental as possible, subject to $e^{x+y} = e^x \cdot e^y$.

Conjecture (Schanuel)

Let $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ be \mathbb{Q} -linearly independent. Then

$$Tr.deg_{\mathbb{Q}}\mathbb{Q}(\alpha_1,\ldots,\alpha_n,e^{\alpha_1},\ldots,e^{\alpha_n}) \geq n.$$

- $n = 2, \vec{\alpha} = (1, \pi) \Leftrightarrow e, \pi$ algebraically independent.
- (Lindemann-Weierstrass) true if α_i are all algebraic.
- $\Gamma \subset \mathbb{C}^n \times (\mathbb{C}^{\times})^n$ graph of co-ordinate wise exponential.
- Schanuel conjecture $\Leftrightarrow \forall x \in \Gamma(\mathbb{C}), Tr.deg(x) \ge n$.

Setup: $\pi : \mathcal{H} \to X$ transcendental map between algebraic varieties. $V_X \subset X, V_{\mathcal{H}} \subset \mathcal{H}$ algebraic subvarieties. Γ_{π} -graph of π . $V \subset \mathcal{H}$ is called bi-algebraic if $\pi(V)$ is algebraic. For e^{\times} these are pre-images of torus cosets, affine linear subspaces with \mathbb{Q} -slopes

Conjecture (Ax-Lindmenann)

If $\pi(V_{\mathcal{H}}) \subset V_X$, \exists bi-algebraic S such that $W \subset S$, $\pi(S) \subset V$.

Conjecture (Ax-Schanuel)

Let $V \subset \mathcal{H} \times X$ be a subvariety, $U \subset V \cap \Gamma_{\pi}$ be an analytic component. If

dimU > dimV - dimX

then \exists bi-algebraic S such that $U \subset S$ and $\dim U = \dim W \cap S + \dim V \cap S - \dim S$.

Functional Transcendence: Results

- AS for $X = \mathbb{C}^n$ or $A(\mathbb{C})$, (Ax, 1971)
- AL for $X = Y(1)^n$, (Pila, 2011)
- AL for all Shimura Varieties (Klingler-Ullmo-Yafaev, 2015)
- AL for Mixed Shimura Varieties (Gao, 2017)
- AL for non-arithmetic rank 1 quotients (Mok, 2018)
- AS for $X = Y(1)^n$, (Pila-T, 2016)
- AS for all Shimura varieties, (Mok-Pila-T, 2018)
- AS for Variations of Hodge Structures, (Bakker-T, 2018)
- AS for variations of Mixed Hodge structures (Chiu, Gao-Klingler)

Functional Trancendence: Proof ingredients

- Pila-Wilkie (Again!)
- o-minimality, Definable Chow Theorem (Peterzil-Starchenko)
- Hyperbolic Geometry (Hwang-To)

Largeness of Galois Orbits

• The $(\mathbb{C}^{\times})^n$ case

- $x \in (\mathbb{C}^{\times})_{\mathrm{tor}}^n$
- Need $|\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \cdot x| \gg \operatorname{ord}(x)^{\delta}$
- Reduces to $\phi(n) = n^{1-o(1)}$.

• The Abelian variety case

- A/\mathbb{Q} abelian variety
- $x \in A_{tor}$
- Need $|\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \cdot x| \gg \operatorname{ord}(x)^{\delta}$
- Follows from Masser, Wintenberger

Largeness of Galois Orbits

- $x \in \mathcal{A}_g$ Corresponds to PPAV \mathcal{A}_x
- End $(A_x) = R \subset K, [K : \mathbb{Q}] = 2g$

Theorem (T,2015)

 $\exists \delta_g > 0$ with

$$|Gal(\overline{\mathbb{Q}}/\mathbb{Q})\cdot x|\gg |Disc(\mathcal{R})|^{\delta_{\mathcal{G}}}$$

Corollary

For any $g \ge 1$, there are finitely many CM points in \mathcal{A}_g over \mathbb{Q} .

For g = 1 this follows immediately from Complex Multiplication theory and the Bruaer-Siegel Theorem. In general, the size is the image of one class group in another $CL(K) \rightarrow CL(L)$. The issue is torsion in class groups.

Largeness of Galois Orbits: Proof of \mathcal{A}_g case

• Suppose x is defined over \mathbb{Q} , $R = \mathcal{O}_K$.

•
$$S_{\mathcal{K}} = \{ y \in \mathcal{A}_g, \operatorname{End}(\mathcal{A}_y) = \mathcal{O}_{\mathcal{K}} \}.$$

- $|S_K| \gg |D_K|^{1/4}$, all points in S_K Isogenous, same Faltings height, field of definition.
- Faltings height of A_x is small (|D_K|^{o(1)}), by Average
 Colmez conjecture
 (Andreatta-Goren-Howard-Madapusi-Pera,Yuan-Zhang).
- Masser-Wustholz \Rightarrow there exist low degree isogenies between points of $S_{\mathcal{K}}$.
- Not enough low degree isogenies exist.

General Shimura Varieties: Reduction to Height bound

- In general, no moduli interpertation, so no Masser-Wustholz. But recently Binyamini-Schmidt-Yafaev found another reduction.
- On the transcendental graph Γ ⊂ H × S, the CM points give many algebraic points.
- Using breakthrough results of Binyamini, greatly improving Pila-Wilkie estimates for special transcendental varieties (defined by foliations over number fields), one can conclude. Improvements include:
 - Poly-log bounds instead of sub-exponential bounds in the height. i.e. N(X^{tran}, T) ≪ log(T)^{O(1)}.
 - Polynomial bounds in the *degree* of the algebraic points, allowing one to count not just rational but algebraic points of varying degree.

Abelian Type vs. Non-Abelian Type

- Special subvarieties of \mathcal{A}_g are *abelian-type*
- These have a universal family of Abelian Varieties $f : A \rightarrow S$.
- This gives models of S over \mathbb{Z} , not just \mathbb{Q} .
- Local systems $R^1 f_* \mathbb{Z}_{\ell}$, coherent sheaves $R^1 f_* \mathcal{O}$, all on $S_{\mathbb{Z}}$,

Abelian Type vs. Non-Abelian Type II

- Non-abelian type subvarieties: $G = E_6, E_7$ and some Orthogonal groups.
- No universal family, but on the other hand they all satisfy Margulis super-rigidity.
- Can still build Local systems $R^1 f_* \mathbb{Z}_{\ell}$, coherent sheaves $R^1 f_* \mathcal{O}$, but now only on $S_{\mathbb{Q}}$ (and with more work and less reward)
- Conjecturally, S still admits a universal family of Motives M→S, but this is not known in a single case.
- CM points x ∈ S fixed by a maximal torus T ⊂ G. Can understand Galois action on these explicitly by embedding Abelian type subvarieties.

- \mathcal{L} Automorphic line bundle on $S = S_{\mathcal{K}}(G, X)$.
- Define a canonical height $h_{\mathcal{L}}$ on $S(\overline{\mathbb{Q}})$ with good functoriality properties (generalization of Faltings height).
- For a CM point $(T, X_T) \subset (G, X)$, bound $h_{\mathcal{L}}(T, X_T)$ by relating it to the Faltings height bounds coming from \mathcal{A}_g .
- It is crucial that the height function we choose is canonical beyond the usual O(1) error term, since we are using different comparisons for different CM points.

Height functions: Shimura Varieties

- For abelian type Shimura varieties, we can use the Faltings Height, coming from the Neron model of Abelian varieties. Note this is still subtle, h(j(di)) is extremely hard to get a grip on as j is transcendental!
- For exceptional type Shimura Varieties, work of Diao-Lan-Liu-Zhu (Scholze) and Esnault-Groechenig establishes a *p*-adic Riemann-Hilbert correspondence, allows one to get out *p*-adic coherent sheaves from the *p*-adic local systems, and carry along an integral structure.
- This gives us a canonical height on arbitrary Shimura varieties!

- K-CM field
- $\Phi \subset \operatorname{Hom}(K, \overline{\mathbb{Q}}), \Phi \cap \overline{\Phi} = \emptyset$ partial CM type

Using this data, get a CM point an an automorphic line bundle:

•
$$T - \operatorname{Res}_{K/\mathbb{Q}}\mathbb{G}_m, h_{\Phi} : \mathbb{S} \to T_{\mathbb{R}}$$

- ρ_{Φ} : $T_{\mathbb{C}} \to \mathbb{G}_m$ gives an automorphic line bundle \mathcal{L}_{Φ} .
- Need to bound $h_{\mathcal{L}_{\Phi}}$.
- \mathcal{A}_g the case of Φ a full CM type, $\Phi \cup \overline{\Phi} = \operatorname{Hom}(K, \overline{\mathbb{Q}})$.

- *F* tot. real field, K_1, K_2, \ldots, K_N CM extensions of *F*.
- Φ_i partial CM types on K_i such that $\Phi_i |_F$ partition $\operatorname{Hom}(F, \overline{\mathbb{Q}})$.
- $K_{tot} := K_1 K_2 \cdots K_n, \Phi_{tot} := \bigcup_i \pi_i^{-1} \Phi_i$ Full CM type.
- $\sum_{i=1}^{"} h_{\mathcal{L}_{\phi_i}} = h_{\mathcal{L}_{\Phi_{tot}}}.$
- For given F, there are many CM extensions e.g. F(√−p). Combining in all possible ways leads to individual bounds.

Construction of Canonical Height: Relative *p*-adic Hodge Theory

- Let S = S_K(G, X), L an automorphic line bundle. Starts life over C, descends to E(G, X) by Milne+.
- To define a canonical height on \mathcal{L} we need a metric on \mathcal{L}_v for every place v. At Archimedean places use Hodge metric.
- At finite places p need a height on \mathcal{L}_{v} . We begin by finding \mathcal{L} as a hodge piece of a rational representation V of G. Riemann-Hilbert gives a vector bundle $_{dR}V$, which comes with a hodge filtration $F_{dR}^{p}V$, and we identify $\mathcal{L} \cong Gr_{FdR}^{k}V$.
- Work of Diao-Lan-Liu-Zhu (Scholze) defines a *p*-adic Riemann-Hilbert correspondence, giving a vector bundle $_{p-dR}V$ on $S_{\mathbb{Q}_p}$ starting from the *p*-adic local system $V \otimes \mathbb{Q}_p$.

Under the hood: Intrinsic height

- K local field
- L Hodge-Tate representation of G_K over \mathbb{Z}_p .
- L_n := (L ⊗ C_p(−n))^{G_K}) ⊗ C_p(n) ⊂ L ⊗ C_p has a natural norm on it.
- The *intrinsic norm* on L_n is induced from the quotient norm $\frac{L\otimes\mathbb{C}_p}{L<_n\otimes\mathbb{C}_p}$.
- The Liu-Zhu construction interpolates the intrinsic norm and shows that it is an admissible height at *p*.But hard to glue across primes!
- Question: Is the Intrinsic norm the same as the 'naive' norm if *L* is Crystalline and weights are in [0, p 2]?

Crystalline representations: The work of Esnault-Groechenig

- For almost all primes p, S has a good integral model at p.
- Duality: If S is exceptional, then everything is rigid!
- Esnault-Groechenig conclude that V is globally crystalline (Faltings-Fontaine-Lafaille) giving a good integral model, compatible with Liu-Zhu

Thank You!