Unikely intersections and the André-Oort conjecture

Jacob Tsimerman
University of Toronto

December 7, 2021

Lang's Conjecture: Polynomial Relations in Roots of Unity

Let $C \subset\left(\mathbb{C}^{\times}\right)^{2}$ be an algebraic curve, defined by (irreducible) $F(X, Y)=0, F(X, Y) \in \mathbb{C}\left[X, Y, X^{-1}, Y^{-1}\right]$.

Theorem (Lang 1965)

If C contains infinitely many points (ζ, η) with ζ, η roots of unity, then C is of the form

$$
x^{m} y^{n}=\zeta
$$

with $n, m \in \mathbb{Z}, \zeta$ a root of unity.
\therefore. - coset of a subgroup by a torsion point; we call C a Torsion Coset. For $V \subset\left(\mathbb{C}^{\times}\right)^{n}, \operatorname{dim} V>1$ it may be that V contains positive dimensional torsion cosets.

Theorem (Laurent, 1983)

For $V \subset\left(\mathbb{C}^{\times}\right)^{n}$, then V contains finitely many Maximal torsion cosets.

Manin-Mumford: Abelian Varieties

We replace $\left(\mathbb{C}^{\times}\right)^{n}$ by an abelian variety $A(\mathbb{C})=\mathbb{C}^{n} / \Lambda$.

- $B \subset A$ - Abelian subvariety
- $\zeta \in A$ - Torsion point
- $\zeta+B$ - Torsion coset

Theorem (Manin-Mumford Conjecture; Raynaud, 1983)

For $V \subset\left(\mathbb{C}^{\times}\right)^{n}$, then V contains finitely many Maximal torsion cosets.

André-Oort: Shimura Varieties

- \mathcal{H}-Hermitian Symmetric space.
- Г- discrete, arithmetic group acting on \mathcal{H}.
- S - Shimura variety. $S(\mathbb{C})=\Gamma \backslash \mathcal{H}$
- S contains a discrete, dense set of Special (CM) Points
- S contains a countable set of Special Subvarieties T, which are themselves "Shimura Subvarieties"

Conjecture (André)

For $V \subset S$, then V contains finitely many Maximal Special Subvarieties.

- André (1998): $S=Y(1)^{2}$
- Edixhoven, Klingler, Ullmo, Yafaev (2014) : True conditional on GRH.
- Pila, Pila-Zannier Strategy: $S=Y(1)^{n}$
- T (Pila-T): $S=\mathcal{A}_{g}$
- Pila-Shankar-T: General case

Examples of Shimura Varieties: $Y(1)^{2}$

- $Y(1)$ - (coarse) moduli space of elliptic curves
- $Y(1)(\mathbb{C}) \cong \mathrm{SI}_{2}(\mathbb{Z}) \backslash \mathbb{H}, \pi: \mathbb{H} \rightarrow Y(1)$

Special Points in $Y(1)$

- The CM points are classes [E] of complex elliptic curves with $\mathbb{Z} \subsetneq \operatorname{End}(E)$
- $\pi^{-1}\left(Y(1)_{\mathrm{CM}}\right)=\{\tau \in \mathbb{H} \mid[\mathbb{Q}(\tau): \mathbb{Q}]=2\}$

Special curves in $Y(1)^{2}$:

- $\{x\} \times Y(1)$, where x is a special point
- $Y(1) \times\{x\}$, where x is a special point
- For $N>0, T_{N}=\left\{\left([E],\left[E^{\prime}\right]\right), \exists \phi: E \rightarrow E^{\prime}, \operatorname{ker}(\phi) \cong \mathbb{Z} / N \mathbb{Z}\right\}$

Theorem (André, 1998)

A curve $C \in Y(1)^{2}$ containing infinitely many CM points is special.
Proved effectively by Kühne, Bilu-Masser Zannier, 2012/13.

Examples of Shimura Varieties: \mathcal{A}_{g}

- \mathcal{A}_{g} - (coarse) moduli space of g-dimensional, principally polarized abelian varieties
- $\mathbb{H}_{g}=\left\{Z=X+i Y, Y>0, Z \in \mathrm{M}_{g}(\mathbb{C})^{\text {sym }}\right\}$, $\mathcal{A}_{g}(\mathbb{C}) \cong \operatorname{Sp}_{2 g}(\mathbb{Z}) \backslash \mathbb{H}_{g}$.
Special Points in \mathcal{A}_{g}
- The CM points are classes $[A]$ of complex Abelian varieties, containing a commutative $R \subset \operatorname{End}_{\mathbb{Q}}(A),[R: \mathbb{Q}]=2 g$.
- $\pi^{-1}\left(Y(1)_{\mathrm{CM}}\right) \subset\left\{\tau \in \mathbb{H}_{g} \mid[\mathbb{Q}(\tau): \mathbb{Q}] \leq 2 g\right\}$

Special subvarieties in \mathcal{A}_{g} :

- $\operatorname{sym}^{g} Y(1) \subset \mathcal{A}_{g}$
- F - totally real field, $[F: \mathbb{Q}]=g, Y_{F} \cong \mathrm{SI}_{2}\left(\mathcal{O}_{F}\right) \backslash \mathbb{H}^{g} \subset \mathcal{A}_{g}$.
- Other Endomorphism structures, etc...

Pila-Zannier Strategy: Lang's conjecture for $n=2$

Proof.

Assume $n=2$.

- $Z \subset\left(\mathbb{C}^{\times}\right)^{2}$ - algebraic curve, $\forall i \in \mathbb{N}, w_{i} \in Z$ are torsion points.
- w_{i} defined over $\overline{\mathbb{Q}} \Rightarrow Z$ defined over $\overline{\mathbb{Q}}$
- $\pi: \mathbb{C}^{2} \rightarrow\left(\mathbb{C}^{\times}\right)^{2},(a, b) \rightarrow\left(e^{2 \pi i a}, e^{2 \pi i b}\right)$.

$$
\pi^{-1}\left(\mathbb{C}_{\text {tor }}^{\times}\right)=\mathbb{Q}
$$

- Lower Bound: $\pi\left(\frac{a}{n}, \frac{b}{n}\right) \in Z \Rightarrow \forall(c, n)=1, \pi\left(\frac{c a}{n}, \frac{c b}{n}\right) \in Z$. Z contains 1 point of order $n \Rightarrow Z \cap[0,1)$ contain $\phi(n)$ such points.
- Upper bound: Z not torus coset $\Leftrightarrow \pi^{-1}(Z)$ not algebraic . Z contains $O_{\epsilon}\left(n^{\epsilon}\right)$ points in $\left(\frac{1}{n} \mathbb{Z} / \mathbb{Z}\right)^{2}$
- $n^{1-\epsilon}<_{\epsilon} \phi(n)$, which is a contradiction.

Pila-Zannier Strategy:General case

- Consider $\pi: \mathcal{H} \rightarrow X$.
- Suppose $V \subset X$ has a Zariski-dense set of special points.
- $\pi^{-1}(V)$ contains many points in $\pi^{1}\left(X_{\text {sp }}\right)$, which are "rational".
- $\pi^{-1}(V)$ cannot contain many rational points, unless $\pi^{-1}(V)$ contains algebraic subvarieties W.
- Functional transcendence: This only happens if V is a (weakly) special variety (Ax-Lindemann Theorem).

Pila-Zannier Strategy

3 fundamental Ingredients

- Rational Points on Transcendental sets: If a nice (definable) real analytic variety contains many rational points, it is algebraic.
- Functional Transcendence: There is no interaction between the algebraic structures on \mathcal{H} and X, except that which is mandated by (weakly) special varieties.
- Large Galois Orbits: If $x \in X$ is a special point, then $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \cdot x$ is big compared to the complexity of x.

Pila-Wilkie: Counting Rational Points

- $\operatorname{gcd}(a, b)=1, H\left(\frac{a}{b}\right)=\operatorname{Max}(|a|,|b|)$
- $H\left(z_{1}, . ., z_{m}\right)=\operatorname{Max}_{i} H\left(z_{i}\right)$
- $N(S, X):=\#\left\{z \in \mathbb{Q}^{m} \mid H(z) \leq X, z \in S\right\}$

Theorem (Bombieri-Pila, '89)

Let C be an irreducible, compact, real analytic, transcendental curve. Then $N(C, X)=O_{\epsilon}\left(X^{\epsilon}\right)$

Idea: (Jarnik) Let $C \subset \mathbb{R}^{2}$ be a circle of radius L. Then $\# C(\mathbb{Z}) \ll L^{2 / 3}$.

Proof: Let P, Q, R be integer points on an arc of length $L \theta$. Then

$$
1 / 2 \leq \operatorname{Area}(\Delta(P Q R)) \ll(L \theta)^{2} \sin (\theta) \approx L^{2} \theta^{3} .
$$

If $\theta=L^{\frac{-1}{3}}$ there are at most 2 points per arc.

Pila-Wilkie: Counting Rational Points

- $Y \subset \mathbb{R}^{m}$
- $Y^{\text {alg: }}=\bigcup_{I \subset Y} Y$, union over irreducible (semi)-algebraic curves I.
- $Y^{\text {tran }}:=Y \backslash Y^{\text {alg }}$
- $N(S, X):=\#\left\{z \in \mathbb{Q}^{m} \mid H(z) \leq X, z \in S\right\}$

Theorem (Pila-Wilkie,'04; Bombieri-Pila)

Asssume Y is compact, real analytic. Then

$$
N\left(Y^{\text {tran }} ; X\right)=O_{\epsilon}\left(X^{\epsilon}\right)
$$

Generalizations:
$\mathbb{Q} \Rightarrow$ Points of bounded degree
compact, real analytic \Rightarrow Definable in an o-minimal structure $\left(\mathbb{R}_{a n, \exp }\right)$.

Classical Transcendence: exponential

Theme: e^{x} is as transcendental as possible, subject to $e^{x+y}=e^{x} \cdot e^{y}$.

Conjecture (Schanuel)
Let $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$ be \mathbb{Q}-linearly independent. Then

$$
\operatorname{Tr} \cdot \operatorname{deg}_{\mathbb{Q}} \mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}, e^{\alpha_{1}}, \ldots, e^{\alpha_{n}}\right) \geq n .
$$

- $n=2, \vec{\alpha}=(1, \pi) \Leftrightarrow e, \pi$ algebraically independent.
- (Lindemann-Weierstrass) true if α_{i} are all algebraic.
- $\Gamma \subset \mathbb{C}^{n} \times\left(\mathbb{C}^{\times}\right)^{n}$ - graph of co-ordinate wise exponential.
- Schanuel conjecture $\Leftrightarrow \forall x \in \Gamma(\mathbb{C}), \operatorname{Tr} \cdot \operatorname{deg}(x) \geq n$.

Functional Transcendence: Conjectures

Setup: $\pi: \mathcal{H} \rightarrow X$ transcendental map between algebraic varieties. $V_{X} \subset X, V_{\mathcal{H}} \subset \mathcal{H}$ algebraic subvarieties. Γ_{π}-graph of π. $V \subset \mathcal{H}$ is called bi-algebraic if $\pi(V)$ is algebraic. For e^{x} these are pre-images of torus cosets, affine linear subspaces with \mathbb{Q}-slopes

Conjecture (Ax-Lindmenann)
If $\pi\left(V_{\mathcal{H}}\right) \subset V_{X}, \exists$ bi-algebraic S such that $W \subset S, \pi(S) \subset V$.

Conjecture (Ax-Schanuel)

Let $V \subset \mathcal{H} \times X$ be a subvariety, $U \subset V \cap \Gamma_{\pi}$ be an analytic component. If

$$
\operatorname{dim} U>\operatorname{dim} V-\operatorname{dim} X
$$

then \exists bi-algebraic S such that $U \subset S$ and $\operatorname{dim} U=\operatorname{dim} W \cap S+\operatorname{dim} V \cap S-\operatorname{dim} S$.

Functional Transcendence: Results

- AS for $X=\mathbb{C}^{n}$ or $A(\mathbb{C})$, $(\mathrm{Ax}, 1971)$
- AL for $X=Y(1)^{n}$, (Pila, 2011)
- AL for all Shimura Varieties (Klingler-Ullmo-Yafaev, 2015)
- AL for Mixed Shimura Varieties (Gao, 2017)
- AL for non-arithmetic rank 1 quotients (Mok, 2018)
- AS for $X=Y(1)^{n}$, (Pila-T, 2016)
- AS for all Shimura varieties, (Mok-Pila-T, 2018)
- AS for Variations of Hodge Structures, (Bakker-T, 2018)
- AS for variations of Mixed Hodge structures (Chiu, Gao-Klingler)

Functional Trancendence: Proof ingredients

- Pila-Wilkie (Again!)
- o-minimality, Definable Chow Theorem (Peterzil-Starchenko)
- Hyperbolic Geometry (Hwang-To)

Largeness of Galois Orbits

- The $\left(\mathbb{C}^{\times}\right)^{n}$ case
- $x \in\left(\mathbb{C}^{\times}\right)_{\text {tor }}^{n}$
- Need $|\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \cdot x| \gg \operatorname{ord}(x)^{\delta}$
- Reduces to $\phi(n)=n^{1-o(1)}$.
- The Abelian variety case
- A / \mathbb{Q} - abelian variety
- $x \in A_{\text {tor }}$
- Need $|\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \cdot x| \gg \operatorname{ord}(x)^{\delta}$
- Follows from Masser, Wintenberger

Largeness of Galois Orbits

- $x \in \mathcal{A}_{g}$ Corresponds to PPAV A_{x}
- $\operatorname{End}\left(A_{x}\right)=R \subset K,[K: \mathbb{Q}]=2 g$

Theorem (T,2015)

$\exists \delta_{g}>0$ with

$$
|G a l(\overline{\mathbb{Q}} / \mathbb{Q}) \cdot x| \gg|\operatorname{Disc}(R)|^{\delta_{g}}
$$

Corollary

For any $g \geq 1$, there are finitely many CM points in \mathcal{A}_{g} over \mathbb{Q}.
For $g=1$ this follows immediately from Complex Multiplicaiton theory and the Bruaer-Siegel Theorem. In general, the size is the image of one class group in another $\mathrm{CL}(K) \rightarrow \mathrm{CL}(L)$. The issue is torsion in class groups.

Largeness of Galois Orbits: Proof of \mathcal{A}_{g} case

- Suppose x is defined over $\mathbb{Q}, R=\mathcal{O}_{K}$.
- $S_{K}=\left\{y \in \mathcal{A}_{g}, \operatorname{End}\left(A_{y}\right)=\mathcal{O}_{K}\right\}$.
- $\left|S_{K}\right| \gg\left|D_{K}\right|^{1 / 4}$, all points in S_{K} Isogenous, same Faltings height, field of definition.
- Faltings height of A_{x} is small $\left(\left|D_{K}\right|^{o(1)}\right)$, by Average Colmez conjecture
(Andreatta-Goren-Howard-Madapusi-Pera,Yuan-Zhang).
- Masser-Wustholz \Rightarrow there exist low degree isogenies between points of S_{K}.
- Not enough low degree isogenies exist.

General Shimura Varieties: Reduction to Height bound

- In general, no moduli interpertation, so no Masser-Wustholz. But recently Binyamini-Schmidt-Yafaev found another reduction.
- On the transcendental graph $\Gamma \subset \mathcal{H} \times S$, the CM points give many algebraic points.
- Using breakthrough results of Binyamini, greatly improving Pila-Wilkie estimates for special transcendental varieties (defined by foliations over number fields), one can conclude. Improvements include:
- Poly-log bounds instead of sub-exponential bounds in the height. i.e. $N\left(X^{\text {tran }}, T\right) \ll \log (T)^{O(1)}$.
- Polynomial bounds in the degree of the algebraic points, allowing one to count not just rational but algebraic points of varying degree.

Abelian Type vs. Non-Abelian Type

- Special subvarieties of \mathcal{A}_{g} are abelian-type
- These have a universal family of Abelian Varieties $f: A \rightarrow S$.
- This gives models of S over \mathbb{Z}, not just \mathbb{Q}.
- Local systems $R^{1} f_{*} \mathbb{Z}_{\ell}$, coherent sheaves $R^{1} f_{*} \mathcal{O}$, all on $S_{\mathbb{Z}}$,

Abelian Type vs. Non-Abelian Type II

- Non-abelian type subvarieties: $G=E_{6}, E_{7}$ and some Orthogonal groups.
- No universal family, but on the other hand they all satisfy Margulis super-rigidity.
- Can still build Local systems $R^{1} f_{*} \mathbb{Z}_{\ell}$, coherent sheaves $R^{1} f_{*} \mathcal{O}$, but now only on $S_{\mathbb{Q}}$ (and with more work and less reward)
- Conjecturally, S still admits a universal family of Motives $M \rightarrow S$, but this is not known in a single case.
- CM points $-x \in S$ fixed by a maximal torus $T \subset G$. Can understand Galois action on these explicitly by embedding Abelian type subvarieties.

Idea: Canonical heights

- \mathcal{L} - Automorphic line bundle on $S=S_{K}(G, X)$.
- Define a canonical height $h_{\mathcal{L}}$ on $S(\overline{\mathbb{Q}})$ with good functoriality properties (generalization of Faltings height).
- For a CM point $\left(T, X_{T}\right) \subset(G, X)$, bound $h_{\mathcal{L}}\left(T, X_{T}\right)$ by relating it to the Faltings height bounds coming from \mathcal{A}_{g}.
- It is crucial that the height function we choose is canonical beyond the usual $O(1)$ error term, since we are using different comparisons for different CM points.

Height functions: Shimura Varieties

- For abelian type Shimura varieties, we can use the Faltings Height, coming from the Neron model of Abelian varieties. Note this is still subtle, $h(j(d i))$ is extremely hard to get a grip on as j is transcendental!
- For exceptional type Shimura Varieties, work of Diao-Lan-Liu-Zhu (Scholze) and Esnault-Groechenig establishes a p-adic Riemann-Hilbert correspondence, allows one to get out p-adic coherent sheaves from the p-adic local systems, and carry along an integral structure.
- This gives us a canonical height on arbitrary Shimura varieties!

CM points: partial CM types

- K-CM field
- $\Phi \subset \operatorname{Hom}(K, \overline{\mathbb{Q}}), \Phi \cap \bar{\Phi}=\emptyset$ - partial CM type

Using this data, get a CM point an an automorphic line bundle:

- $T-\operatorname{Res}_{K / \mathbb{Q}} \mathbb{G}_{m}, h_{\Phi}: \mathbb{S} \rightarrow T_{\mathbb{R}}$
- $\rho_{\Phi}: T_{\mathbb{C}} \rightarrow \mathbb{G}_{m}$ gives an automorphic line bundle \mathcal{L}_{Φ}.
- Need to bound $h_{\mathcal{L}_{\Phi}}$.
- \mathcal{A}_{g} - the case of Φ a full CM type, $\Phi \cup \bar{\Phi}=\operatorname{Hom}(K, \overline{\mathbb{Q}})$.

CM points: Delignes Construction

- F - tot. real field, $K_{1}, K_{2}, \ldots, K_{N}-C M$ extensions of F.
- Φ_{i} - partial CM types on K_{i} such that $\left.\Phi_{i}\right|_{F}$ partition $\operatorname{Hom}(F, \overline{\mathbb{Q}})$.
- $K_{\text {tot }}:=K_{1} K_{2} \cdots K_{n}, \Phi_{t o t}:=\bigcup_{i} \pi_{i}^{-1} \Phi_{i}$ - Full CM type.
- $\sum_{i=1}^{n} h_{\mathcal{L}_{\phi_{i}}}=h_{\mathcal{L}_{\text {toto }}}$.
- For given F, there are many $C M$ extensions e.g. $F(\sqrt{-p})$. Combining in all possible ways leads to individual bounds.

Construction of Canonical Height: Relative p-adic Hodge Theory

- Let $S=S_{K}(G, X), \mathcal{L}$ - an automorphic line bundle. Starts life over \mathbb{C}, descends to $E(G, X)$ by Milne+.
- To define a canonical height on \mathcal{L} we need a metric on \mathcal{L}_{v} for every place v. At Archimedean places use Hodge metric.
- At finite places p need a height on \mathcal{L}_{V}. We begin by finding \mathcal{L} as a hodge piece of a rational representation V of G. Riemann-Hilbert gives a vector bundle ${ }_{\mathrm{dR}} V$, which comes with a hodge filtration $F_{\mathrm{dR}}^{p} V$, and we identify $\mathcal{L} \cong G r_{\text {FdR }}^{k} V$.
- Work of Diao-Lan-Liu-Zhu (Scholze) defines a p-adic Riemann-Hilbert correspondence, giving a vector bundle ${ }_{p-\mathrm{dR}} V$ on $S_{\mathbb{Q}_{p}}$ starting from the p-adic local system $V \otimes \mathbb{Q}_{p}$.
- For Shimura varieties, they show compatibility: ${ }_{d R} V$, when base changed to $\overline{\mathbb{Q}}_{p}$, becomes naturally isomorphic to ${ }_{p-\mathrm{dR}} V$.

Under the hood: Intrinsic height

- K - local field
- L-Hodge-Tate representation of G_{K} over \mathbb{Z}_{p}.
- $\left.L_{n}:=\left(L \otimes \mathbb{C}_{p}(-n)\right)^{G_{K}}\right) \otimes \mathbb{C}_{p}(n) \subset L \otimes \mathbb{C}_{p}$ has a natural norm on it.
- The intrinsic norm on L_{n} is induced from the quotient norm $\frac{L \otimes \mathbb{C}_{p}}{L_{<n} \otimes \mathbb{C}_{p}}$.
- The Liu-Zhu construction interpolates the intrinsic norm and shows that it is an admissible height at p.But hard to glue across primes!
- Question: Is the Intrinsic norm the same as the 'naive' norm if L is Crystalline and weights are in [$0, p-2$]?

Crystalline representations: The work of Esnault-Groechenig

- For almost all primes p, S has a good integral model at p.
- Duality: If S is exceptional, then everything is rigid!
- Esnault-Groechenig conclude that V is globally crystalline (Faltings-Fontaine-Lafaille) giving a good integral model, compatible with Liu-Zhu

Thank You!

