
Computing exceptional primes associated to Galois
representations of abelian surfaces

Barinder Singh Banwait, Armand Brumer, Hyun Jong Kim, Zev
Klagsbrun, Jacob Mayle, Padmavathi Srinivasan, Isabel Vogt

VANTAGE
December 8th, 2020



Outline

1 Galois actions & Serre’s open image theorem

2 Two step approach to computing exceptional primes for abelian
surfaces

3 Preliminary results and further questions



Galois actions: Why study them?

Source GQ :“ GalpQ{Qq-set Some geometric
information in GQ-action

f pxq P Qrxs Roots of f in Q
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Knows about reduction type
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X {Q nice variety πét1 pXQq,H
1
étpXQ,Q`q

Controls location of
rational/torsion points on X
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Galois actions: Size?

Common Belief:

ImpGQq should be as large as possible,

unless there is a good reason not to be.

Restriction:

A finite index subgroup of GQ commutes with EndQpAq-action.
Larger EndQpAq ùñ smaller ImpGQq.

Question:

If EndQpAq “ Z, is ImpGQq large?
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Open image theorems for abelian varieties

Theorem (Serre, 1972, dimA “ 1)
If E{Q is an elliptic curve, EndQpE q “ Z, then

ρE : GQ Ñ Autplim
ÐÝ

E rmsq “ GL2pẐq

has open image.

In particular, ρE ,` is surjective for almost all `.

Remarks:
Also true when dimA is 2, 6 or odd. (Serre, 1986 letter)
False when dimA “ 4. Mumford gave a counterexample.
(GQ-action has to preserve additional symmetries for some A.)
Also holds for abelian varieties over number fields.
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Some follow up questions

1 Given E , can you effectively compute all the exceptional
` where ρE ,` is nonsurjective?

Yes!

In 2015, Sutherland computes ρE ,`pGQq!
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Some related open problems for elliptic curves

2 Serre’s uniformity question
Is there an upper bound N on the largest nonsurjective prime
for all E with EndQpE q “ Z? Conjectured N “ 37.

3 Mazur’s Program B
For each subgroup H of GL2pẐq, can you find all the E{Q
such that Im ρE is contained in H?



Our goal

INPUT
C{Q is a genus 2 curve with affine equation y2 “ f pxq,
A “ JacpC q with EndQpAq “ Z.

ρA,` : GQ Ñ AutpAr`s, x¨, ¨yq “ GSp4pF`q

Serre: ρA,` is surjective for all but finitely many primes `.

OUTPUT
The complete list of primes ` for which ρA,` is nonsurjective.



Available now on LMFDB’s Olive Branch

We would welcome your feedback and suggestions!

https://olive.lmfdb.xyz/Genus2Curve/Q/8450/a/8450/1

https://olive.lmfdb.xyz/Genus2Curve/Q/8450/a/8450/1
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Method

1 Generate `: Produce a finite list that contains all primes ` for
which ρA,` is nonsurjective.

2 Weed out `: Given a prime `, determine if ρA,` is nonsurjective.

Ingredients:

• Mitchell’s 1914 classification of maximal subgroups of
GSp4pF`q.

• Dieulefait’s 2002 criteria for ρA,`pGQq to be contained in each
of these subgroups.

• Characteristic polynomials of Frobenius at various auxiliary
primes.
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Classification of maximal subgroups of GSp4pF`q

1 Stabilizers of linear subspaces.

2 Stabilizer of a hyperbolic or elliptic congruence.

3 Stabilizer of a quadric.

4 Stabilizer of a twisted cubic.

5 Exceptional maximal subgroups.

Key Fact:
ρA,` is nonsurjective ô ImpρA,`q is contained in one of these
subgroups.



Notation

N : conductor of A
p : prime of good reduction for A

Frobp : a Frobenius element at p
Lp,ApT q : integral characteristic polynomial for Frobp

S2pΓ0pdqq : space of weight 2 cusp forms of level d

appf q : pth Fourier coefficient of a cusp form f



Step 1: Producing a finite list of primes

Borel Example The 2` 2 self-dual summands case, i.e.

` is a prime of good reduction for A,
ρA,` – π1 ‘ π2, with,
dimpπ1q “ dimpπ2q “ 2 and detpπ1q “ detpπ2q “ cyc`.

Serre’s conjecture (Khare–Wintenberger theorem):
Modularity of GL2pF`q-Galois representations ùñ

D weight 2 cusp forms f1, f2 such that πi – ρfi ,`.

Furthermore, we can control the levels of f1 and f2. More precisely,

the product of the levels of f1 and f2 divides the conductor N of A.
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Test for ` in the 2` 2 self dual summands case

Khare-Wintenberger theorem ñ ρA,` – ρf1,` ‘ ρf2,`.

Observation:

If p is a prime of good reduction for A, then

Lp,ApT q “ pT
2 ´ appf1qT ` pqpT 2 ´ appf2qT ` pq mod `.

Test for finding `:

By control of level, there is some d dividing N, d ď
?
N, and some

f P S2pΓ0pdqq, such that

` divides

Res
`

Lp,ApT q,T
2 ´ appf qT ` p

˘

.
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Step 2: Eliminating surjective primes by sampling Frobp

For ` ą 7, we employ the following purely group theoretical
proposition, which is a consequence of Mitchell’s classification.

Proposition
For a non-exceptional subgroup G Ď GSp4pF`q with surjective
similitude character, we have that G “ GSp4pF`q if and only if
there exists matrices M,N P G with

• charpolypMq is irreducible, and
• traceN ‰ 0 and charpolypNq has a linear factor with

multiplicity 1.

For primes ` ď 7, we also take into account exceptional subgroups.
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Nonsurjectivity at ` “ 2

C : y2 “ f pxq, degpf q “ 6.

Observe:

ρA,2 : GQ Ñ GSp4pF2q – S6 is exactly GQ ýRoots of f pxq.

Results:

63, 107 curves in LMFDB with EndQpJacpC qq “ Z.
42, 230 curves were nonsurjective at 2.



Which odd primes ` were nonsurjective?

Sample space = 63,107 curves in LMFDB with EndQpJacpC qq “ Z.



Possible reasons for nonsurjectivity

JacpC q has rational `-torsion.

JacpC q is isogenous to the Jacobian of a curve with rational
`-torsion.

??
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Nonsurjectivity explained by torsion

Sample space = 63,107 curves in LMFDB with EndQpJacpC qq “ Z.



An interesting example not explained by torsion

We ran our code on 8450.a.8450.1 from LMFDB.

y2 ` px ` 1qy “ x5 ` x4 ´ 9x3 ´ 5x2 ` 21x .

The list of possibly nonsurjective primes generated by Step 1 is

2, 3, 5, 7, 13.

Running Step 2 by testing Frobp for all p ă 10, 000, we
narrowed this list to

2, 13.

Interesting because the Jacobian has no rational torsion!



Further questions

Are there effective upper bounds on how Frobenius elements
to sample before we hit every conjugacy class in ρA,`pGQq?

Can we compute ρA,`pGQq when ` is not surjective?

dimpAq ą 2?

Other number fields?
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