Computing exceptional primes associated to Galois

 representations of abelian surfacesBarinder Singh Banwait, Armand Brumer, Hyun Jong Kim, Zev Klagsbrun, Jacob Mayle, Padmavathi Srinivasan, Isabel Vogt

VANTAGE
December 8th, 2020

Outline

(1) Galois actions \& Serre's open image theorem

(2) Two step approach to computing exceptional primes for abelian surfaces

3 Preliminary results and further questions

Galois actions: Why study them?

Source	$G_{\mathbb{Q}}:=G a(\overline{\mathbb{Q}} / \mathbb{Q})$-set	Some geometric information in $G_{\mathbb{Q}}$-action
$f(x) \in \mathbb{Q}[x]$	Roots of f in $\overline{\mathbb{Q}}$	
A / \mathbb{Q} abelian variety	ℓ-torsion of $A(\overline{\mathbb{Q}})$	
X / \mathbb{Q} nice variety	$\pi_{1}^{\epsilon t}\left(X_{\bar{Q}}\right), \mathrm{H}_{e t t}^{1}\left(X_{\left.\overline{\mathbb{Q}}, \mathbb{Q}_{\ell}\right)}\right.$	

Galois actions: Why study them?

Source	$G_{\mathbb{Q}}:=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-set	Some geometric information in $G_{\mathbb{Q}}$-action
$f(x) \in \mathbb{Q}[x]$	Roots of f in $\overline{\mathbb{Q}}$	
A / \mathbb{Q} abelian variety	ℓ-torsion of $A(\overline{\mathbb{Q}})$	Knows about reduction type of A mod ℓ
X / \mathbb{Q} nice variety	$\pi_{1}^{\text {ét }}\left(X_{\overline{\mathbb{Q}}}\right), \mathrm{H}_{e ́ t}^{1}\left(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}\right)$	Controls location of rational/torsion points on X

Galois actions: Size?

Common Belief:
$\operatorname{Im}\left(G_{\mathbb{Q}}\right)$ should be as large as possible,

Galois actions: Size?

Common Belief:
$\operatorname{Im}\left(G_{\mathbb{Q}}\right)$ should be as large as possible, unless there is a good reason not to be.

Restriction:

Galois actions: Size?

Common Belief:
$\operatorname{Im}\left(G_{\mathbb{Q}}\right)$ should be as large as possible,
unless there is a good reason not to be.

Restriction:
A finite index subgroup of $G_{\mathbb{Q}}$ commutes with End $\overline{\mathbb{Q}}(A)$-action.

Galois actions: Size?

Common Belief:
$\operatorname{Im}\left(G_{\mathbb{Q}}\right)$ should be as large as possible,
unless there is a good reason not to be.

Restriction:
A finite index subgroup of $G_{\mathbb{Q}}$ commutes with $E{ }_{\overline{\mathbb{Q}}}(A)$-action.
Larger $\operatorname{End}_{\overline{\mathbb{Q}}}(A) \Longrightarrow$ smaller $\operatorname{Im}\left(G_{\mathbb{Q}}\right)$.

Galois actions: Size?

Common Belief:
$\operatorname{Im}\left(G_{\mathbb{Q}}\right)$ should be as large as possible,
unless there is a good reason not to be.

Restriction:
A finite index subgroup of $G_{\mathbb{Q}}$ commutes with End $\overline{\mathbb{Q}}(A)$-action.

$$
\text { Larger } \operatorname{End}_{\overline{\mathbb{Q}}}(A) \Longrightarrow \text { smaller } \operatorname{Im}\left(G_{\mathbb{Q}}\right) .
$$

Question:

$$
\text { If } \operatorname{End}_{\overline{\mathbb{Q}}}(A)=\mathbb{Z} \text {, is } \operatorname{Im}\left(G_{\mathbb{Q}}\right) \text { large? }
$$

Open image theorems for abelian varieties

Theorem (Serre, 1972, $\operatorname{dim} A=1$)
If E / \mathbb{Q} is an elliptic curve, End $\overline{\mathbb{Q}}(E)=\mathbb{Z}$, then

$$
\rho_{E}: G_{\mathbb{Q}} \rightarrow \operatorname{Aut}(\lim E[m])=\mathrm{GL}_{2}(\hat{\mathbb{Z}})
$$

has open image.

Remarks:

- Also true when $\operatorname{dim} A$ is 2,6 or odd. (Serre, 1986 letter)
- False when $\operatorname{dim} A=4$. Mumford gave a counterexample. ($G_{\mathbb{Q}}$-action has to preserve additional symmetries for some A.)
- Also holds for abelian varieties over number fields.

Open image theorems for abelian varieties

Theorem (Serre, 1972, $\operatorname{dim} A=1$)
If E / \mathbb{Q} is an elliptic curve, End $\overline{\mathbb{Q}}(E)=\mathbb{Z}$, then

$$
\rho_{E}: G_{\mathbb{Q}} \rightarrow \operatorname{Aut}(\lim E[m])=\mathrm{GL}_{2}(\hat{\mathbb{Z}})
$$

has open image. In particular, $\rho_{E, \ell}$ is surjective for almost all ℓ.

Remarks:

- Also true when $\operatorname{dim} A$ is 2,6 or odd. (Serre, 1986 letter)
- False when $\operatorname{dim} A=4$. Mumford gave a counterexample. ($G_{\mathbb{Q}}$-action has to preserve additional symmetries for some A.)
- Also holds for abelian varieties over number fields.

Some follow up questions

(1) Given E, can you effectively compute all the exceptional ℓ where $\rho_{E, \ell}$ is nonsurjective?

Some follow up questions

(1) Given E, can you effectively compute all the exceptional ℓ where $\rho_{E, \ell}$ is nonsurjective? Yes!

In 2015, Sutherland computes $\rho_{E, \ell}\left(G_{\mathbb{Q}}\right)$!

Some related open problems for elliptic curves

(2) Serre's uniformity question

Is there an upper bound N on the largest nonsurjective prime for all E with $\operatorname{End}_{\overline{\mathbb{Q}}}(E)=\mathbb{Z}$? Conjectured $N=37$.
(3) Mazur's Program B

For each subgroup H of $\mathrm{GL}_{2}(\hat{\mathbb{Z}})$, can you find all the E / \mathbb{Q} such that $\operatorname{Im} \rho_{E}$ is contained in H ?

Our goal

INPUT

C / \mathbb{Q} is a genus 2 curve with affine equation $y^{2}=f(x)$, $A=\operatorname{Jac}(C)$ with $\operatorname{End}_{\overline{\mathbb{Q}}}(A)=\mathbb{Z}$.

$$
\rho_{A, \ell}: G_{\mathbb{Q}} \rightarrow \operatorname{Aut}(A[\ell],\langle\cdot, \cdot\rangle)=\operatorname{GSp}_{4}\left(\mathbb{F}_{\ell}\right)
$$

Serre: $\rho_{A, \ell}$ is surjective for all but finitely many primes ℓ.

OUTPUT

The complete list of primes ℓ for which $\rho_{A, \ell}$ is nonsurjective.

Available now on LMFDB's Olive Branch

We would welcome your feedback and suggestions!

Galois representations

The $\bmod \ell$ Galois representation has maximal image $\operatorname{GSp}\left(4, \mathbb{F}_{\ell}\right)$ for all primes ℓ except those listed.

prime	Image type	Witnesses	Is Torsion prime?
2	$?$	$[-1]$	no
13	nss.2p2	$[0,3]$	no

see it live at The Olive Branch olive.lmfdb.xyz
https://olive.lmfdb.xyz/Genus2Curve/Q/8450/a/8450/1

Outline

(1) Galois actions \& Serre's open image theorem

(2) Two step approach to computing exceptional primes for abelian surfaces

3 Preliminary results and further questions

Method

(1) Generate ℓ : Produce a finite list that contains all primes ℓ for which $\rho_{A, \ell}$ is nonsurjective.
(2) Weed out ℓ : Given a prime ℓ, determine if $\rho_{A, \ell}$ is nonsurjective.

Method

(1) Generate ℓ : Produce a finite list that contains all primes ℓ for which $\rho_{A, \ell}$ is nonsurjective.
(2) Weed out ℓ : Given a prime ℓ, determine if $\rho_{A, \ell}$ is nonsurjective.

Ingredients:

- Mitchell's 1914 classification of maximal subgroups of $\mathrm{GSp}_{4}\left(\mathbb{F}_{\ell}\right)$.
- Dieulefait's 2002 criteria for $\rho_{A, \ell}\left(G_{\mathbb{Q}}\right)$ to be contained in each of these subgroups.
- Characteristic polynomials of Frobenius at various auxiliary primes.

Classification of maximal subgroups of $\mathrm{GSp}_{4}\left(\mathbb{F}_{\ell}\right)$

(1) Stabilizers of linear subspaces.
(2) Stabilizer of a hyperbolic or elliptic congruence.
(3) Stabilizer of a quadric.
(4) Stabilizer of a twisted cubic.
(5) Exceptional maximal subgroups.

Key Fact:
$\rho_{A, \ell}$ is nonsurjective $\Leftrightarrow \operatorname{Im}\left(\rho_{A, \ell}\right)$ is contained in one of these subgroups.

Notation

N : conductor of A
p : prime of good reduction for A
Frob_{p} : a Frobenius element at p
$L_{p, A}(T)$: integral characteristic polynomial for Frob $_{p}$
$S_{2}\left(\Gamma_{0}(d)\right)$: space of weight 2 cusp forms of level d
$a_{p}(f): \quad p^{\text {th }}$ Fourier coefficient of a cusp form f

Step 1: Producing a finite list of primes

Borel Example The $2+2$ self-dual summands case, i.e.

- ℓ is a prime of good reduction for A,
- $\bar{\rho}_{A, \ell} \cong \pi_{1} \oplus \pi_{2}$, with,
- $\operatorname{dim}\left(\pi_{1}\right)=\operatorname{dim}\left(\pi_{2}\right)=2$ and $\operatorname{det}\left(\pi_{1}\right)=\operatorname{det}\left(\pi_{2}\right)=\operatorname{cyc}_{\ell}$.

Step 1: Producing a finite list of primes

Borel Example The $2+2$ self-dual summands case, i.e.

- ℓ is a prime of good reduction for A,
- $\bar{\rho}_{A, \ell} \cong \pi_{1} \oplus \pi_{2}$, with,
- $\operatorname{dim}\left(\pi_{1}\right)=\operatorname{dim}\left(\pi_{2}\right)=2$ and $\operatorname{det}\left(\pi_{1}\right)=\operatorname{det}\left(\pi_{2}\right)=\operatorname{cyc}_{\ell}$.

Serre's conjecture (Khare-Wintenberger theorem): Modularity of $\mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{\ell}\right)$-Galois representations \Longrightarrow
\exists weight 2 cusp forms f_{1}, f_{2} such that $\pi_{i} \cong \rho_{f_{i}, \ell}$.
Furthermore, we can control the levels of f_{1} and f_{2}. More precisely,
the product of the levels of f_{1} and f_{2} divides the conductor N of A.

Test for ℓ in the $2+2$ self dual summands case

Khare-Wintenberger theorem $\Rightarrow \bar{\rho}_{A, \ell} \cong \rho_{f_{1}, \ell} \oplus \rho_{f_{2}, \ell}$.
Observation:

Test for finding ℓ :
ℓ divides

Test for ℓ in the $2+2$ self dual summands case

Khare-Wintenberger theorem $\Rightarrow \bar{\rho}_{A, \ell} \cong \rho_{f_{1}, \ell} \oplus \rho_{f_{2}, \ell}$.
Observation: If p is a prime of good reduction for A, then

$$
L_{p, A}(T)=\left(T^{2}-a_{p}\left(f_{1}\right) T+p\right)\left(T^{2}-a_{p}\left(f_{2}\right) T+p\right) \quad \bmod \ell
$$

Test for finding ℓ :
ℓ divides

Test for ℓ in the $2+2$ self dual summands case

Khare-Wintenberger theorem $\Rightarrow \bar{\rho}_{A, \ell} \cong \rho_{f_{1}, \ell} \oplus \rho_{f_{2}, \ell}$.
Observation: If p is a prime of good reduction for A, then

$$
L_{p, A}(T)=\left(T^{2}-a_{p}\left(f_{1}\right) T+p\right)\left(T^{2}-a_{p}\left(f_{2}\right) T+p\right) \quad \bmod \ell
$$

Test for finding ℓ :
By control of level, there is some d dividing $N, d \leqslant \sqrt{N}$, and some $f \in S_{2}\left(\Gamma_{0}(d)\right)$, such that
ℓ divides $\operatorname{Res}\left(L_{p, A}(T), T^{2}-a_{p}(f) T+p\right)$.

Step 2: Eliminating surjective primes by sampling Frob ${ }_{p}$

For $\ell>7$, we employ the following purely group theoretical proposition, which is a consequence of Mitchell's classification.

Proposition

For a non-exceptional subgroup $G \subseteq \operatorname{GSp}_{4}\left(\mathbb{F}_{\ell}\right)$ with surjective similitude character, we have that $G=G \mathrm{Fp}_{4}\left(\mathbb{F}_{\ell}\right)$ if and only if there exists matrices $M, N \in G$ with

- charpoly (M) is irreducible, and
- trace $N \neq 0$ and charpoly (N) has a linear factor with multiplicity 1.

For primes $\ell \leqslant 7$, we also take into account exceptional subgroups.

Outline

(1) Galois actions \& Serre's open image theorem
(2) Two step approach to computing exceptional primes for abelian surfaces
(3) Preliminary results and further questions

Nonsurjectivity at $\ell=2$

$$
C: y^{2}=f(x), \quad \operatorname{deg}(f)=6
$$

Observe:

$$
\rho_{A, 2}: G_{\mathbb{Q}} \rightarrow \mathrm{GSp}_{4}\left(\mathbb{F}_{2}\right) \cong S_{6} \text { is exactly } G_{\mathbb{Q}} \subset \text { Roots of } f(x)
$$

Results:

- 63, 107 curves in LMFDB with $\operatorname{End}_{\overline{\mathbb{Q}}}(\operatorname{Jac}(C))=\mathbb{Z}$.
- 42, 230 curves were nonsurjective at 2 .

Which odd primes ℓ were nonsurjective?
Sample space $=63,107$ curves in LMFDB with $\operatorname{End}_{\overline{\mathbb{Q}}}(\operatorname{Jac}(C))=\mathbb{Z}$.

How many curves were nonmaximal at each prime?

Possible reasons for nonsurjectivity

Possible reasons for nonsurjectivity

- Jac (C) has rational ℓ-torsion.
- $\operatorname{Jac}(C)$ is isogenous to the Jacobian of a curve with rational ℓ-torsion.
- ??

Nonsurjectivity explained by torsion

Sample space $=63,107$ curves in LMFDB with $\operatorname{End}_{\overline{\mathbb{Q}}}(\operatorname{Jac}(C))=\mathbb{Z}$.

An interesting example not explained by torsion

- We ran our code on 8450.a.8450.1 from LMFDB.

$$
y^{2}+(x+1) y=x^{5}+x^{4}-9 x^{3}-5 x^{2}+21 x
$$

- The list of possibly nonsurjective primes generated by Step 1 is

$$
2,3,5,7,13
$$

- Running Step 2 by testing Frob $_{p}$ for all $p<10,000$, we narrowed this list to

$$
\text { 2, } 13 .
$$

- Interesting because the Jacobian has no rational torsion!

Further questions

- Are there effective upper bounds on how Frobenius elements to sample before we hit every conjugacy class in $\rho_{A, \ell}\left(G_{\mathbb{Q}}\right)$?
- Can we compute $\rho_{A, \ell}\left(G_{\mathbb{Q}}\right)$ when ℓ is not surjective?
- $\operatorname{dim}(A)>2$?
- Other number fields?

