Computing exceptional primes associated to Galois representations of abelian surfaces

Barinder Singh Banwait, Armand Brumer, Hyun Jong Kim, Zev Klagsbrun, Jacob Mayle, Padmavathi Srinivasan, Isabel Vogt

> VANTAGE December 8th, 2020

1 Galois actions & Serre's open image theorem

2 Two step approach to computing exceptional primes for abelian surfaces

Preliminary results and further questions

Galois actions: Why study them?

Source	$\mathcal{G}_{\mathbb{Q}}:=Gal(\overline{\mathbb{Q}}/\mathbb{Q}) ext{-set}$	Some geometric information in $G_{\mathbb{Q}}$ -action
$f(x) \in \mathbb{Q}[x]$	Roots of f in $\overline{\mathbb{Q}}$	
A/\mathbb{Q} abelian variety	ℓ -torsion of $A(\overline{\mathbb{Q}})$	
X/\mathbb{Q} nice variety	$\pi_1^{\acute{e}t}(X_{\overline{\mathbb{Q}}}),H^1_{\acute{e}t}(X_{\overline{\mathbb{Q}}},\mathbb{Q}_\ell)$	

Galois actions: Why study them?

Source	$\mathit{G}_{\mathbb{Q}}:=Gal(\overline{\mathbb{Q}}/\mathbb{Q}) ext{-set}$	$\mathbb{Q} := Gal(\overline{\mathbb{Q}}/\mathbb{Q})\text{-set} \qquad \begin{array}{c} Some geometric \\ information in \mathcal{G}_{\mathbb{Q}}\text{-action} \end{array}$	
$f(x) \in \mathbb{Q}[x]$	Roots of f in $\overline{\mathbb{Q}}$		
A/\mathbb{Q} abelian variety	ℓ -torsion of $A(\overline{\mathbb{Q}})$	Knows about reduction type of $A \mod \ell$	
X/\mathbb{Q} nice variety	$\left \begin{array}{c} \pi_1^{\acute{e}t}(X_{\overline{\mathbb{Q}}}), H^1_{\acute{e}t}(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_\ell) \end{array} \right.$	Controls location of rational/torsion points on X	

Common Belief:

 $\mathsf{Im}(\mathit{G}_\mathbb{Q})$ should be as large as possible,

Common Belief:

 $Im(G_{\mathbb{Q}})$ should be as large as possible, unless there is a good reason not to be.

Restriction:

Common Belief:

```
Im(G_{\mathbb{Q}}) should be as large as possible,
unless there is a good reason not to be.
```

Restriction:

A finite index subgroup of $G_{\mathbb{Q}}$ commutes with $\operatorname{End}_{\overline{\mathbb{Q}}}(A)$ -action.

Common Belief:

 $Im(G_{\mathbb{Q}})$ should be as large as possible, unless there is a good reason not to be.

Restriction:

A finite index subgroup of $G_{\mathbb{Q}}$ commutes with $\operatorname{End}_{\overline{\mathbb{Q}}}(A)$ -action. Larger $\operatorname{End}_{\overline{\mathbb{Q}}}(A) \Longrightarrow smaller \operatorname{Im}(G_{\mathbb{Q}}).$

Common Belief:

 $Im(G_{\mathbb{Q}})$ should be as large as possible, unless there is a good reason not to be.

Restriction:

A finite index subgroup of $G_{\mathbb{Q}}$ commutes with $\operatorname{End}_{\overline{\mathbb{Q}}}(A)$ -action. Larger $\operatorname{End}_{\overline{\mathbb{Q}}}(A) \Longrightarrow smaller \operatorname{Im}(G_{\mathbb{Q}}).$

Question:

If
$$\operatorname{End}_{\overline{\mathbb{Q}}}(A)=\mathbb{Z}$$
, is $\operatorname{Im}(G_{\mathbb{Q}})$ large?

Open image theorems for abelian varieties

Theorem (Serre, 1972, dim A = 1) If E/\mathbb{Q} is an elliptic curve, $\operatorname{End}_{\overline{\mathbb{Q}}}(E) = \mathbb{Z}$, then

$$\rho_E \colon G_{\mathbb{Q}} \to \operatorname{Aut}(\varprojlim E[m]) = \operatorname{GL}_2(\hat{\mathbb{Z}})$$

has open image.

Remarks:

- Also true when dim A is 2, 6 or odd. (Serre, 1986 letter)
- False when dim A = 4. Mumford gave a counterexample. ($G_{\mathbb{Q}}$ -action has to preserve additional symmetries for some A.)
- Also holds for abelian varieties over number fields.

Open image theorems for abelian varieties

Theorem (Serre, 1972, dim A = 1) If E/\mathbb{Q} is an elliptic curve, $\operatorname{End}_{\overline{\mathbb{Q}}}(E) = \mathbb{Z}$, then

$$\rho_E \colon G_{\mathbb{Q}} \to \operatorname{Aut}(\varprojlim E[m]) = \operatorname{GL}_2(\hat{\mathbb{Z}})$$

has open image. In particular, $\rho_{E,\ell}$ is surjective for almost all ℓ .

Remarks:

- Also true when dim A is 2, 6 or odd. (Serre, 1986 letter)
- False when dim A = 4. Mumford gave a counterexample. ($G_{\mathbb{Q}}$ -action has to preserve additional symmetries for some A.)
- Also holds for abelian varieties over number fields.

Some follow up questions

 Given *E*, can you effectively compute all the *exceptional ℓ* where ρ_{E,ℓ} is nonsurjective?

Some follow up questions

Given E, can you effectively compute all the exceptional *ℓ* where ρ_{E,ℓ} is nonsurjective? Yes!

Previous topic Galos representations attached to elliptic curves field	ois representations for elliptic curves over number ds	1
Next topic This f Isogeny class of elliptic curves over number fields This f This Page non_su Show Source EXAN	file contains the code to compute for which primes the Galois representation attached to an elliptic curve an arbitrary number field) is surjective. The functions in this file are called by the is_surjective and wjective methods of an elliptic curve over a number field. MPLES:	
Quick search	<pre>i = tuberefiaid(***2 - 25, **1); = + E.gen() i = tuberefiaid(**2 - 25, **1); = + E.gen() if = f = 1111ptictore(15, = (5, + 1)/*2, 0, 0) if = f = 2111ptictore(15) = f < clisical content not surjective. ino.is_unytetive(3) = f < clisical content not surjective. ino.is_unytetive() = f < clisical content not surjective. ino.is_unytetive() = f < clisical content not surjective. i = clisical content not surjective.</pre>	

In 2015, Sutherland computes $\rho_{E,\ell}(G_{\mathbb{Q}})!$

Some related open problems for elliptic curves

2 Serre's uniformity question

Is there an upper bound N on the largest nonsurjective prime for all E with $\operatorname{End}_{\overline{\mathbb{O}}}(E) = \mathbb{Z}$? Conjectured N = 37.

Mazur's Program B

For each subgroup *H* of $GL_2(\hat{\mathbb{Z}})$, can you find all the E/\mathbb{Q} such that Im ρ_E is contained in *H*?

Our goal

INPUT

 C/\mathbb{Q} is a genus 2 curve with affine equation $y^2 = f(x)$, $A = \operatorname{Jac}(C)$ with $\operatorname{End}_{\overline{\mathbb{Q}}}(A) = \mathbb{Z}$.

$$\rho_{\mathbf{A},\ell}: G_{\mathbb{Q}} \to \mathsf{Aut}(\mathbf{A}[\ell], \langle \cdot, \cdot \rangle) = \mathsf{GSp}_{\mathbf{4}}(\mathbb{F}_{\ell})$$

Serre: $\rho_{A,\ell}$ is surjective for all but finitely many primes ℓ .

OUTPUT

The complete list of primes ℓ for which $\rho_{A,\ell}$ is nonsurjective.

Available now on LMFDB's Olive Branch

We would welcome your feedback and suggestions!

Galois representations

The mod ℓ Galois representation has maximal image $GSp(4, \mathbb{F}_{\ell})$ for all primes ℓ except those listed.

prime	Image type	Witnesses	Is Torsion prime?
2	?	[-1]	no
13	nss.2p2	[0, 3]	no
ee it li	ve at The	Olive B	ranch olive.l

https://olive.lmfdb.xyz/Genus2Curve/Q/8450/a/8450/1

Galois actions & Serre's open image theorem

2 Two step approach to computing exceptional primes for abelian surfaces

Preliminary results and further questions

- **(**) Generate ℓ : Produce a finite list that contains all primes ℓ for which $\rho_{A,\ell}$ is nonsurjective.
- **2** Weed out ℓ : Given a prime ℓ , determine if $\rho_{A,\ell}$ is nonsurjective.

- **(** Generate ℓ : Produce a finite list that contains all primes ℓ for which $\rho_{A,\ell}$ is nonsurjective.
- **2** Weed out ℓ : Given a prime ℓ , determine if $\rho_{A,\ell}$ is nonsurjective.

Ingredients:

- Mitchell's 1914 classification of maximal subgroups of $\mathsf{GSp}_4(\mathbb{F}_\ell).$
- Dieulefait's 2002 criteria for $\rho_{A,\ell}(G_{\mathbb{Q}})$ to be contained in each of these subgroups.
- Characteristic polynomials of Frobenius at various auxiliary primes.

Classification of maximal subgroups of $\mathsf{GSp}_4(\mathbb{F}_\ell)$

- ① Stabilizers of linear subspaces.
- 2 Stabilizer of a hyperbolic or elliptic congruence.
- **3** Stabilizer of a quadric.
- Stabilizer of a twisted cubic.
- S Exceptional maximal subgroups.

Key Fact:

 $\rho_{A,\ell}$ is nonsurjective $\Leftrightarrow {\rm Im}(\rho_{A,\ell})$ is contained in one of these subgroups.

Notation

- N: conductor of A
- p: prime of good reduction for A
- Frob_p : a Frobenius element at p
- $L_{p,A}(T)$: integral characteristic polynomial for Frob_p
- $S_2(\Gamma_0(d))$: space of weight 2 cusp forms of level d
 - $a_p(f)$: p^{th} Fourier coefficient of a cusp form f

Step 1: Producing a finite list of primes

Borel Example The 2 + 2 self-dual summands case, i.e.

- ℓ is a prime of good reduction for A,
- $\overline{\rho}_{A,\ell} \cong \pi_1 \oplus \pi_2$, with,
- $\dim(\pi_1) = \dim(\pi_2) = 2$ and $\det(\pi_1) = \det(\pi_2) = cyc_{\ell}$.

Step 1: Producing a finite list of primes

Borel Example The 2 + 2 self-dual summands case, i.e.

- ℓ is a prime of good reduction for A,
- $\overline{\rho}_{A,\ell} \cong \pi_1 \oplus \pi_2$, with,
- $\dim(\pi_1) = \dim(\pi_2) = 2$ and $\det(\pi_1) = \det(\pi_2) = cyc_{\ell}$.

Serre's conjecture (Khare–Wintenberger theorem): Modularity of $GL_2(\overline{\mathbb{F}}_{\ell})$ -Galois representations \Longrightarrow

 \exists weight 2 cusp forms f_1, f_2 such that $\pi_i \cong \rho_{f_i,\ell}$.

Furthermore, we can control the levels of f_1 and f_2 . More precisely,

the product of the levels of f_1 and f_2 divides the conductor N of A.

Test for ℓ in the 2 + 2 self dual summands case

Khare-Wintenberger theorem $\Rightarrow \overline{\rho}_{A,\ell} \cong \rho_{f_1,\ell} \oplus \rho_{f_2,\ell}.$

Observation:

Test for finding ℓ :

 ℓ divides

Test for ℓ in the 2 + 2 self dual summands case

Khare-Wintenberger theorem $\Rightarrow \overline{\rho}_{A,\ell} \cong \rho_{f_1,\ell} \oplus \rho_{f_2,\ell}.$

Observation: If p is a prime of good reduction for A, then

$$L_{p,A}(T) = (T^2 - a_p(f_1)T + p)(T^2 - a_p(f_2)T + p) \mod \ell.$$

Test for finding ℓ :

 ℓ divides

Test for ℓ in the 2 + 2 self dual summands case

Khare-Wintenberger theorem $\Rightarrow \overline{\rho}_{A,\ell} \cong \rho_{f_1,\ell} \oplus \rho_{f_2,\ell}.$

Observation: If p is a prime of good reduction for A, then

$$L_{p,A}(T) = (T^2 - a_p(f_1)T + p)(T^2 - a_p(f_2)T + p) \mod \ell.$$

Test for finding ℓ :

By control of level, there is some *d* dividing $N, d \leq \sqrt{N}$, and some $f \in S_2(\Gamma_0(d))$, such that

$$\ell$$
 divides Res $(L_{p,A}(T), T^2 - a_p(f)T + p)$.

Step 2: Eliminating surjective primes by sampling Frob_p

For $\ell > 7$, we employ the following purely group theoretical proposition, which is a consequence of Mitchell's classification.

Proposition

For a non-exceptional subgroup $G \subseteq GSp_4(\mathbb{F}_{\ell})$ with surjective similitude character, we have that $G = GSp_4(\mathbb{F}_{\ell})$ if and only if there exists matrices $M, N \in G$ with

- charpoly(*M*) is irreducible, and
- trace N ≠ 0 and charpoly(N) has a linear factor with multiplicity 1.

For primes $\ell \leq 7$, we also take into account exceptional subgroups.

1 Galois actions & Serre's open image theorem

3 Preliminary results and further questions

Nonsurjectivity at $\ell = 2$

$$C: y^2 = f(x), \quad \deg(f) = 6.$$

Observe:

$$\rho_{A,2}: G_{\mathbb{Q}} \to \mathsf{GSp}_4(\mathbb{F}_2) \cong S_6$$
 is exactly $G_{\mathbb{Q}} \subset \mathsf{Roots}$ of $f(x)$.

Results:

- 63,107 curves in LMFDB with $End_{\overline{\mathbb{O}}}(Jac(C)) = \mathbb{Z}$.
- 42,230 curves were nonsurjective at 2.

Which odd primes ℓ were nonsurjective?

Sample space = 63,107 curves in LMFDB with $End_{\overline{\mathbb{O}}}(Jac(C)) = \mathbb{Z}$.

Possible reasons for nonsurjectivity

Possible reasons for nonsurjectivity

- Jac(C) has rational ℓ -torsion.
- Jac(C) is isogenous to the Jacobian of a curve with rational ℓ -torsion.
- ??

Nonsurjectivity explained by torsion

Sample space = 63,107 curves in LMFDB with $End_{\overline{\mathbb{O}}}(Jac(C)) = \mathbb{Z}$.

An interesting example not explained by torsion

• We ran our code on 8450.a.8450.1 from LMFDB.

$$y^{2} + (x + 1)y = x^{5} + x^{4} - 9x^{3} - 5x^{2} + 21x.$$

• The list of possibly nonsurjective primes generated by Step 1 is

• Running Step 2 by testing ${\rm Frob}_p$ for all p<10,000, we narrowed this list to

2,13.

• Interesting because the Jacobian has no rational torsion!

- Are there effective upper bounds on how Frobenius elements to sample before we hit every conjugacy class in $\rho_{A,\ell}(G_{\mathbb{Q}})$?
- Can we compute $\rho_{A,\ell}(G_{\mathbb{Q}})$ when ℓ is not surjective?
- dim(A) > 2?
- Other number fields?