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Isogeny-based cryptosystems

Group-action cryptosystems: based on the action of CI(O) on an isogeny
(sub)class Elly, (O) of curves £/Fq with End(£) = O (Steven'’s talk).

- Couveignes, Rostovtsev-Stolbunov (2006): key exchange on ordinary isogeny
graphs (CRS)

- CSIDH: like CRS but with O = Z[/=p] (supersingular over Fp)

- CSI-FiSh signatures, ...

Everything else: crypto based on supersingular isogeny graphs over Fp..

- Charles-Goren-Lauter hash function (Kristin’s talk).
- SIDH and SIKE, now broken! (Wouter’s talk, Chloe’s talk)
- SQISign signatures (Luca’s talk), ...



Why genus 2?

“It Is a truth universally acknowledged that a number theorist
In possession of a good elliptic curve cryptosystem,
must be in want of a generalization to genus 2.”

In this context, “genus 2" means principally polarized abelian surfaces (PPASes).

More generally, principally polarized abelian varieties (PPAVs) in dimension g > 1
(but let’s start with g = 2...)

This is not completely crazy: genus-2 analogues of elliptic discrete-log-based
cryptosystems give nice practical results (see e.g. Renes-S. (Asiacrypt 2017)).

However: DLP-based crypto turns out to be less efficient in g > 2 thanks to index
calculus and isogeny attacks (see e.g. S. (Eurocrypt 2008)).



Today’s focus: CGL in genus 2

This talk: we will ignore genus-2 group-action crypto

- Very little has been done!

- The endomorphism rings and their class groups are more complicated
(especially because of real subrings # Z, real units, ...)

- The group action is much more complicated to compute

We will focus exclusively on the simplest example of the everything else class:
the Charles-Goren-Lauter (CGL) hash function.



The supersingular elliptic 2-isogeny
graph



Supersingular elliptic isogeny graphs

Fix a prime p, and let

S1(p) := {supersingular elliptic curves /F,}/ = .

For primes ¢ # p, we let ['1(¢; p) be the ¢-isogeny graph on Sq(p).
The graph I'1(¢; p) is
- connected,

- (¢ +1)-regular, and
- Ramanujan (excellent expansion properties)

Random walks in I'1(¢; p) of length O(log p) give a uniform distribution on Sq(p).



The supersingular graph is a directd weighted graph

In general, [1(¢; p) is a directed weighted graph.

- An edge [&1] — [€] has weight n
if there are n distinct kernels in &[¢] with codomain = &,.

- These distinct kernels form an orbit under the reduced automorphism group
RA(E) := Aut(E) /(1)

so we only have multiple edges at j = 0 and 1728 (if they are in S1(p)).
- Dualisogenies: 3[&] — [&] = F[&] — [&1]
- Multiple edges in one direction share a single dual in the other.



Neighbourhoods of vertices in I'4(2; p)

General j j=0 j=1728



Supersingular isogeny problems

The general supersingular elliptic isogeny problem for fixed

Given € and &’ in $q(p), find a path from £ to & in T1(¢; p)

classical solution in O(\/#51(p)) = O(,/p) (random walks)

O(v/p)

This problem is related to the security of the Charles-Goren-Lauter hash function.
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quantum solution in O(y/#5S1(p))



The Charles—Goren-Lauter function



Cryptographic hash functions

A cryptgraphic hash function H : {0,1}* — {0,1}" should have

- preimage resistance: given t € {0,1}", hard to find m st. H(m) =t
ideal: ~ 2" operations

- collision resistance: hard to find m # m’ st. H(m) = H(m’)
ideal: ~ 2"/? operations

- 2nd preimage resistance: given m, hard to find m’ # m st. H(m’) = H(m)
ideal: =~ 2" operations

In addition to these security properties, we typically want

- efficiency: should be able to hash long inputs very quickly
- pseudo-randomness: H should act like a random oracle, i.e.
indistinguishable from a random function into {0,1}" on distinct inputs



The Charles-Goren-Lauter hash function (2009)

Charles-Goren-Lauter: a hash function with provable preimage-resistance.

Parameters:

- alarge prime p,

- an ordering on Fp; (hence on S:(p)),

- anedgej_1 — jo in [1(2;p),

- a linear map = : F. — F, (often ignored).

The hash function H: {0,1}* — Fp is
H(m) := = (CGL(m)),
where CGL : {0,1}* — Si(p) C Fpz is defined as follows...
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The CGL function: data drives walks

To compute the image under CGL of an n-bit string m = (mo, ..., My_1),

we compute a non-backtracking walk jo — -+ — j, in [1(2; p): foreach 0 < i < n,
1. the 3 edges out of j; are j; — ji_; and j; - a«and j; — B, witha >
2. if m; =0, then set jj,; = o; otherwise, set ji, = 5.

The output is CGL(m) = j,.
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CGL hashing: security

Finding preimages for the CGL function

- = solving the isogeny problem in I'1(2; p)
- Is hard. Best algorithm: O(p"/?) (classical), O(p"/*) (quantum)

Finding collisions for the CGL function
- = computing cycles in I'1(2; p) through jo
- = computing 2*-endomorphisms of &

- Supposed to be hard (in 2006)... But Kohel-Lauter-Petit-Tignol (KLPT) solves
this in polynomial time if End(&) is known (i.e.,, for reasonable choices of jy)!

Open problem: efficiently constructing supersingular curves with unknown
endomorphism ring.
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Computing the CGL function

Traditional approach:

Given a bit m; and an edge j;_; — j;, we need to compute ji .
1. Compute f(X) = ®,(j1, X)/ (X — ji—1) € Fpa[X]
2. Find the two roots o > 3 of f(X) in .

3. if m; =0, set jj,; = «; otherwise, set ji; = S.
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Computing the CGL function

Alternative approach: work (up to isomorphism) with curves
& 2 =x(% + al’x + a).
To find & — &iq: compute § := (ag))2 - Aag’) in 2, using m; to choose sign(d);
then ((—(al? — 8)/2,0))  &[2] is the kernel of the edge & — &4, with
™ =ad-35 and @l =al (@ +6)2 - ",

and the kernel of the dual edge &1 — & is ((0,0)) C &i11[2].
Either way: CGL requires one square root in IF» per bit of input. (Sloooow)

Limited speedup for suitable p: see Doliskani-Pereira-Barreto (2022)



A word on finalization

The CGL hash value is H(m) = n(jn), where 7 is a linear map Fp. — Fp.

Why do we use the finalization map #?

- because there are only = p/12 elements of S;(p),

- so the uniform distribution on Sq(p) only has = log, p bits of entropy,
- so we should squash hash values down to log, p bits.

* A sufficiently general linear function Fj. — Fp will do the job.

Even if you can solve the isogeny problem, to invert the true CGL hash function
we must find preimages under =|s, ), and this already seems hard!

Open problem: Given a linear map 7 : F,, — Fp and a random a € Fp,
find (if it exists) a supersingular j € Fp, such that = (j) = a.
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g>1




Higher dimensions: superspecial and supersingular

A g-dimensional PPAV A is

Supersingular if all slopes of the Newton polygon of its Frobenius are 1/2.
Any supersingular A is isogenous to a product of supersingular ECs.
Superspecial if Frobenius acts as 0 on H'(A, O4).
Any superspecial A is isomorphic to a product of supersingular ECs,
though generally only as unpolarized AVs.

- Superspecial = supersingular.
- Superspeciality is preserved by (4, ..., ¢)-isogeny.

Superspecial PPAVs are connected to non-superspecial supersingular PPAVs by
p-isogenies, but these are much more complicated than in genus 1: see Brock-Howe for a
guided tour with (g, p) = (2, 2).



The superspecial set

For each g > 0 and prime p, we define
Sq(p) := {superspecial PPAVs over Fp} /=2.
We have
#59(p) = O(p7/%)
(with much more precise statements for g < 3).
For primes ¢ # p, we let [4(¢; p) be the (¢,. .., ¢)-isogeny graph on Sg(p).

Recall: (¢,...,¢)-isogeny kernels are maximal ¢-Weil-isotropic subgroups of the
(-torsion; these isogenies respect the principal polarizations.
Such kernels are necessary isomorphic to (Z/¢Z)9.



The superspecial graph

The graph I'4(¢4; p) is

1. connected (implicit in Oort; explicit in Jordan-Zaytman 2020)
2. Ng(¢)-regular, where

“Ny(O) =B+ (L + 1) +1
- Ng(¢) is a polynomial in ¢ of degree g(g + 1)/2



The neighbourhood of a general vertex in I';(2; p)




Expansion hypothesis

When generalizing cryptosystems like the CGL hash to g > 1, we have an obvious
Question: Is ['4(¢; p) Ramanujan?
Jordan-Zaytman (2020): in general, no.

This is no problem. For cryptographic applications, we just need I'4(¢; p) to have
“good expansion properties”: that is, random walks of length O(log p) in T 4(¢; p)
should converge to the uniform distribution on Sq(p).

Florit-S. 2021: empirical support and approximate constants for (g, ¢) = (2,2).
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Generalizing CGL to genus 2: Takashima

Takashima was the first to generalize CGL to PPAVs of dimension g = 2.

- S1(p) becomes Sy(p)
- I1(2; p) becomes IN,(2; p): i.e. 2-isogenies become (2,2)-isogenies,

To compute non-backtracking walks in ;(2; p), Takashima uses

- supersingular genus-2 curves to represent vertices,
- Richelot's formulae to compute the isogeny steps, and
- Igusa—Clebsch invariants to replace the j-invariant.

Since T'1(2; p) is 15-regular, the data to be hashed is coded in base 14 (1),
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Richelot isogenies

Consider a genus-2 curve
C 1y’ = Gi(X)Ga(X)G3(x)

where the G; are pairwise coprime quadratics in x (one may be linear).

Each of the G; specifies a point of order 2 in Jac(C), and the subgroup whose
nonzero elements correspond to {Gy, G2, G3} Is the kernel of a (2,2)-isogeny.

The codomain of the isogeny is the Jacobian of the genus-2 curve
C': Ay? = Hi(x)Ha(X)H3(x),
where H; = Gj’-G,? — GjG, and A = det(Gy, Gy, Gs3).
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Trivial 4-cycles in the genus-2 graph

Flynn and Ti observe a serious issue with Takashima's hash function:
It is easy to construct cycles of length 4 starting at any vertex of [,(¢; p).

If we consider the neighbourhood of a general edge in I';(2; p), then

for every (2,2)-isogeny Ay — A, there are always twelve ways of composing
three more different (2,2)-isogenies to get a length-4 cycle (splitting
multiplication by 4 on A4).

Non-backtracking is not a strong enough condition to avoid hash collisions.
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The good, the bad, and the dual

Suppose ¢ : A — A" and ¢’ : A" — A" are (¢, ¢)-isogenies.
Definition: We say that ¢’ is an extension of ¢, and that the extension is
good if ¢’ o ¢ is an (¢2, ¢?)-isogeny;
bad if ¢/ o ¢ is an (EZ,K,E)—isogeny;
dual if ¢’ o g isa (¢, 4, ¢, ¢)-isogeny (i.e. =[] 4).
Of the £3 + (¢ + 1)¢ + 1 extensions of ¢,

- £3 are good;
- 2 + ¢ are bad;
- 1is dual.
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Generalizing CGL to genus 2

Castryck-Decru-S. (Nutmic 2019): an attempt to repair Takashima’s hash.
We use a new rule for isogeny walks to replace non-backtracking:

After each (2,2)-isogeny ¢; : A; — Ajq Iin the walk,
we must take ¢, : Aj; 1 — Aj, to be one of the eight good extensions of ¢;.

The hash walks are thus (¢", ¢")-isogenies; no short cycles are possible.

Implementation: following Takashima, we represent vertices with (Jacobians of)
genus-2 curves, and compute edges using Richelot isogenies.
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Good extensions of Richelot isogenies

To realise a (2,2)-isogeny ¢; : Jac(C;) — Jac(Ci 1), Richelot's formulae map
Gi+y* = 6767 ()6P ()
to
Civr : A0y = HP (R (M3 ().
where Hgi) = (Ggi))/ng) (')(G( )) etc.
The next isogeny corresponds to a quadratic splitting {G$[+1), Gg“), Gé’*”}:
1x dual extension: {G{"*", Gg“ ”1 N = (HO 1D Oy

6x bad extensions: #({G(”r1 G(’+1 Gy {HY HD DY) =
8x good extensions: #({G{™, G(’“), 3’+1)}m{H1’),H(’) HOY) =

Computing the good extensions requires three square roots in F to split the Hj(i).

27



An algorithmic inconvenience

Minor inconvenience: there are two types of PPAVs in dimension g = 2:
Jacobians of genus-2 curves, and elliptic products.

- Isomorphism invariants are incompatible
- Richelot’s formulae break down (A = 0) when the codomain is a product

Partition S,(p) into corresponding subsets, S,(p) and S,(p)~; then

1 1 1
#S9(p) = =P’ + —==p> and  #S(p)f =

2
2880 120 a 288p +0(p).

Being a proof of concept, CDS takes a simple solution: fail on elliptic products.
Justification: a random A € S,(p) has only a O(1/p) chance of being in Sy(p)E.

Bad news: from a cryptanalytic point of view, this is not rare enough.
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A closer look at I';(2; p)
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Special vertices

Katsura-Takashima (ANTS 2020) studies the interaction of Richelot isogenies and
reduced automorphism groups.

Florit-S. (2020) goes further and builds an “atlas” of [(2; p).

The typical 15-regular structure degenerates near vertices of I',(2; p) with
nontrivial reduced automorphism group, as edges pick up nontrivial weights.

Much intuition comes from the ratio principle:
weight([¢ : A — B]) - #RA(B) = weight([¢ : B — A]) - # RA(A),

where RA(X) := Aut(X)/(£1).
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Type-I (RA = C,) and elliptic product neighbourhoods

These vertices are far from isolated: there are O(p?) of them in the graph.
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Neighbourhoods of edges from Type-I vertices to product neighbours




Type-Ill (RA = (2) and elliptic square neighbourhoods

These vertices are far from isolated: there are O(p) of them in the graph.
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Connecting Type-Ill and elliptic-square vertices

34




S3) and products ¢ of 3-isogenous elliptic curves

2l

Type-1V (RA
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Solving the isogeny problem in g > 1




Theorem (Costello-S., PQCrypto 2020):

1. There exists a classical algorithm which solves isogeny problems in ['4(¢; p)
with probability > 1/29=" in expected time O(p9~"/P) on P processors as
p — oo (with ¢ fixed).

2. There exists a quantum algorithm which solves isogeny problems in [y (¢; p)
in expected time O(y/p9="1) as p — oo (with ¢ fixed).

This talk: the classical algorithm.
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Attacking the isogeny problem

Recall: if we just view ['4(¢; p) as a generic Ng(¢)-regular Ramanujan graph, then
solving the path-finding problem would cost O(p9(9+1/4) (classical) isogeny steps.

Key observation: in g = 2, we have #S,(p)t > /#S,(p). This pattern continues
in g > 2. We beat square-root algorithms by exploiting this special subset.

Let’s look at the algorithm for g = 2 first. Recursive application will give us g > 2.
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The algorithm in g = 2: Step 1

Step 1: Compute paths from our target PPASes into elliptic product vertices:

¢:A_>..._>€1X52€SZ(D)E

Expander hypothesis = we find ¢ (and ¢’) after O(p) random walks of length
in O(log p): total cost is O(p/P) isogeny steps on P classical processors.

It remains to compute a path & x & — --- — & x & in [2(4; p) in 5([3) steps.

38



The algorithm in g = 2: Step 2

Step 2: to compute a path & x & — -+ — & x &5 in T1(4; p),

1. Compute paths ¢ : & — --- = & and ¢y : & — -+ — & in [41(¢; p).
2. If length(z1) # length(z;) (mod 2), then go back to Step 1 (or swap & « &).
3. Trivially stretch the shorter of the ¢ to the same length as the other,
by stepping back and forth on the last component isogeny.
4. Compose the products of the j-th components of ¥ and ), to get a path

P xE = E X E in (¢ p).
Cost: same as solving the isogeny problem in I'1(¢; p), i.e. O(/p/P).
The composition (¢')T o 9> o ¢ is a path from A to A in (¢; p).
We can thus solve the isogeny problem in I';(¢; p) in 5(/3) isogeny steps.
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Attacking higher genus

The same idea works in higher dimension as follows.

Recall: #S4(p) = O(p919+1/2), so classical square-root algorithms solve the
isogeny problem in Iq(¢; p) in O(p9(9+1/4) isogeny steps.

Let Ty(p) be the image of S1(p) x Sg—1(p) in Sq¢(p) (product polarization).
We have #51(p) = O(p) and #54_1(p) = O(p99="/2), so

#Tg(p) = O(p19"~9+2)7%);
so the probability that a random A in Sq(p) is in T4(p) is in O(1/p@=").
Key observation: g — 1 < g(g + 1)/4 (and much smaller for large g).

We should be able to efficiently recognise steps into T4(p) by something
analogous to the breakdown in Richelot’s formulae in g = 2 (theta relations?).
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Solving the general isogeny problem

To find a path from A to A" in [4(¢; p):

1. Compute paths ¢ : A — &€ xBe Tg(p) and ¢’ : A — &' x B € T4(p) in T4(¢; p)
Expander hypothesis = O(p9~"/P) isogeny steps. Dominant step
2. Compute a path g : & — -+ = & in[1(4; p)
Usual elliptic algorithm = O(y/p/P) isogeny steps
3. Recurse to compute a path ¢g: B — --- — B'in [g_1(¢; p)
Expander hypothesis — 5(p9—2/P) isogeny steps
4. Apply the elliptic isogeny-glueing technique to get the final path.
Probability of compatible lengths: 1/297".

Total cost: 5(p9—1/P), dominated by the cost of walking into Ty¢(p) in Step 1.
Much faster than O(p9(9+1)/4),
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Cryptographic implications

Genus-2 isogeny-based hashing is less efficient than the elliptic equivalent.
Say we want to force ~ 2* classical effort to compute preimages:

genus 1 ~ p/12 vertices, square-root preimage finding = need p ~ 2%
- 4\-bit outputs in Fj,. — 2A-bit outputs in F, (2x the ideal)
+ Slow! Each input bit = square root in F. = 2 x 2)-bit
modular exponentiations
genus 2 ~ p3/2880 vertices, cube-root preimage finding = need p ~ 2*
= 6A-bit outputs in IF?DZ (moduli point) — 3 bits ( finalization
to shorter hash values is unclear.
* A little faster! Each 3-bit input digit == 3x square roots in Fp
= 3 x 2 x A\-bit modular exponentiations

No easy fix for the collision-resistance issue (starting vertex) in either case. "
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