Isogenies in genus 2 for cryptographic applications

Benjamin Smith

with Wouter Castryck, Craig Costello, Thomas Decru, Enric Florit October 4, 2022

Inria + Laboratoire d'Informatique de l'École polytechnique (LIX)

Isogeny-based cryptosystems

Group-action cryptosystems: based on the action of $Cl(\mathcal{O})$ on an isogeny (sub)class $Ell_{\mathbb{F}_q}(\mathcal{O})$ of curves \mathcal{E}/\mathbb{F}_q with $End(\mathcal{E}) \cong \mathcal{O}$ (Steven's talk).

- **Couveignes, Rostovtsev–Stolbunov** (2006): key exchange on **ordinary** isogeny graphs (CRS)
- **CSIDH**: like CRS but with $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$ (supersingular over \mathbb{F}_p)
- CSI-FiSh signatures, ...

Everything else: crypto based on supersingular isogeny graphs over \mathbb{F}_{p^2} .

- Charles-Goren-Lauter hash function (Kristin's talk).
- SIDH and SIKE, now broken! (Wouter's talk, Chloe's talk)
- SQISign signatures (Luca's talk), ...

Why genus 2?

"It is a truth universally acknowledged that a number theorist in possession of a good elliptic curve cryptosystem, must be in want of a generalization to genus 2."

In this context, "genus 2" means principally polarized abelian surfaces (PPASes).

More generally, principally polarized abelian varieties (PPAVs) in dimension g > 1 (but let's start with g = 2...)

This is **not completely crazy**: genus-2 analogues of elliptic discrete-log-based cryptosystems give nice practical results (see e.g. Renes–S. (Asiacrypt 2017)).

However: DLP-based crypto turns out to be *less efficient* in g > 2 thanks to index calculus and isogeny attacks (see e.g. S. (Eurocrypt 2008)).

This talk: we will ignore genus-2 group-action crypto

- Very little has been done!
- The endomorphism rings and their class groups are more complicated (especially because of real subrings $\neq \mathbb{Z}$, real units, ...)
- The group action is much more complicated to compute

We will focus exclusively on the simplest example of the **everything else** class: the **Charles–Goren–Lauter (CGL) hash function**.

The supersingular elliptic 2-isogeny graph

Fix a prime p, and let

```
S_1(p) := \{ \text{supersingular elliptic curves } / \overline{\mathbb{F}}_p \} / \cong .
```

For primes $\ell \neq p$, we let $\Gamma_1(\ell; p)$ be the ℓ -isogeny graph on $S_1(p)$.

The graph $\Gamma_1(\ell; p)$ is

- · connected,
- (ℓ + 1)-regular, and
- Ramanujan (excellent expansion properties)

Random walks in $\Gamma_1(\ell; p)$ of length $O(\log p)$ give a uniform distribution on $S_1(p)$.

In general, $\Gamma_1(\ell; p)$ is a **directed weighted graph**.

- An edge $[\mathcal{E}_1] \rightarrow [\mathcal{E}_2]$ has weight n if there are n distinct kernels in $\mathcal{E}_1[\ell]$ with codomain $\cong \mathcal{E}_2$.
- These distinct kernels form an orbit under the reduced automorphism group

$$\mathsf{RA}(\mathcal{E}) := \mathsf{Aut}(\mathcal{E})/\langle \pm 1 \rangle$$
,

so we only have multiple edges at j = 0 and 1728 (if they are in $S_1(p)$).

- Dual isogenies: $\exists [\mathcal{E}_1] \rightarrow [\mathcal{E}_2] \implies \exists [\mathcal{E}_2] \rightarrow [\mathcal{E}_1].$
- Multiple edges in one direction share a **single dual** in the other.

Neighbourhoods of vertices in $\Gamma_1(2; p)$

The general supersingular elliptic **isogeny problem** for fixed ℓ : Given \mathcal{E} and \mathcal{E}' in $S_1(p)$, find a path from \mathcal{E} to \mathcal{E}' in $\Gamma_1(\ell; p)$

classical solution in $O(\sqrt{\#S_1(p)}) = O(\sqrt{p})$ (random walks) **quantum** solution in $O(\sqrt[4]{\#S_1(p)}) = O(\sqrt[4]{p})$

This problem is related to the security of the Charles–Goren–Lauter hash function.

The Charles-Goren-Lauter function

Cryptographic hash functions

A cryptgraphic hash function $H : \{0,1\}^* \to \{0,1\}^n$ should have

- preimage resistance: given $t \in \{0,1\}^n$, hard to find m s.t. H(m) = tideal: $\approx 2^n$ operations
- collision resistance: hard to find $m \neq m'$ s.t. H(m) = H(m')ideal: $\approx 2^{n/2}$ operations
- 2nd preimage resistance: given *m*, hard to find $m' \neq m$ s.t. H(m') = H(m)*ideal:* $\approx 2^n$ operations

In addition to these security properties, we typically want

- efficiency: should be able to hash long inputs very quickly
- pseudo-randomness: H should act like a random oracle, i.e.
 indistinguishable from a random function into {0,1}ⁿ on distinct inputs

The Charles-Goren-Lauter hash function (2009)

Charles–Goren–Lauter: a hash function with provable preimage-resistance.

Parameters:

- a large prime p,
- an ordering on \mathbb{F}_{p^2} (hence on $S_1(p)$),
- an edge $j_{-1} \rightarrow j_0$ in $\Gamma_1(2; p)$,
- a linear map $\pi : \mathbb{F}_{p^2} \to \mathbb{F}_p$ (often ignored).

The hash function $H: \{0,1\}^* \to \mathbb{F}_p$ is

 $H(m):=\pi(\mathrm{CGL}(m))\,,$

where $CGL : \{0,1\}^* \to S_1(p) \subset \mathbb{F}_{p^2}$ is defined as follows...

The CGL function: data drives walks

To compute the image under CGL of an *n*-bit string $m = (m_0, ..., m_{n-1})$, we compute a non-backtracking walk $j_0 \rightarrow \cdots \rightarrow j_n$ in $\Gamma_1(2; p)$: for each $0 \le i < n$,

1. the 3 edges out of j_i are $j_i \rightarrow j_{i-1}$ and $j_i \rightarrow \alpha$ and $j_i \rightarrow \beta$, with $\alpha > \beta$

2. if $m_i = 0$, then set $j_{i+1} = \alpha$; otherwise, set $j_{i+1} = \beta$.

The **output** is $CGL(m) = j_n$.

Finding preimages for the CGL function

- $\cdot \implies$ solving the **isogeny problem** in $\Gamma_1(2; p)$
- Is hard. Best algorithm: $O(p^{1/2})$ (classical), $O(p^{1/4})$ (quantum)

Finding **collisions** for the CGL function

- $\cdot \implies$ computing **cycles** in $\Gamma_1(2; p)$ through j_0
- $\cdot \implies \mathsf{computing} \ 2^*\mathsf{-endomorphisms} \ \mathsf{of} \ \mathcal{E}_0$
- Supposed to be hard (in 2006)... But Kohel-Lauter-Petit-Tignol (KLPT) solves this in **polynomial time** if $End(\mathcal{E}_0)$ is known (i.e., for reasonable choices of j_0)!

Open problem: efficiently constructing supersingular curves with *unknown* endomorphism ring.

Traditional approach:

Given a bit m_i and an edge $j_{i-1} \rightarrow j_i$, we need to compute j_{i+1} .

- 1. Compute $f(X) = \Phi_2(j_1, X)/(X j_{i-1}) \in \mathbb{F}_{p^2}[X]$
- 2. Find the two roots $\alpha > \beta$ of f(X) in \mathbb{F}_{p^2}
- 3. if $m_i = 0$, set $j_{i+1} = \alpha$; otherwise, set $j_{i+1} = \beta$.

Computing the CGL function

Alternative approach: work (up to isomorphism) with curves

$$\mathcal{E}_i: y^2 = x(x^2 + a_2^{(i)}x + a_4^{(i)}).$$

To find $\mathcal{E}_i \to \mathcal{E}_{i+1}$: compute $\delta := \sqrt{(a_2^{(i)})^2 - 4a_4^{(i)}}$ in \mathbb{F}_{p^2} , using m_i to choose sign (δ) ; then $\langle (-(a_2^{(i)} - \delta)/2, 0) \rangle \subset \mathcal{E}_i[2]$ is the kernel of the edge $\mathcal{E}_i \to \mathcal{E}_{i+1}$, with

$$a_2^{(i+1)} = a_2^{(i)} - 3\delta$$
 and $a_4^{(i+1)} = a_2^{(i)}(a_2^{(i)} + \delta)/2 - a_4^{(i)}$

and the kernel of the dual edge $\mathcal{E}_{i+1} \to \mathcal{E}_i$ is $\langle (0,0) \rangle \subset \mathcal{E}_{i+1}[2]$.

Either way: CGL requires **one square root in** \mathbb{F}_{p^2} **per bit of input**. (Sloooow) Limited speedup for suitable p: see Doliskani–Pereira–Barreto (2022)

A word on finalization

The CGL hash value is $H(m) = \pi(j_n)$, where π is a linear map $\mathbb{F}_{p^2} \to \mathbb{F}_p$.

Why do we use the finalization map π ?

- because there are only $\approx p/12$ elements of $S_1(p)$,
- so the uniform distribution on $S_1(p)$ only has $\approx \log_2 p$ bits of entropy,
- so we should squash hash values down to $\log_2 p$ bits.
- A sufficiently general linear function $\mathbb{F}_{p^2} \to \mathbb{F}_p$ will do the job.

Even if you can solve the isogeny problem, to invert the true CGL hash function we must find preimages under $\pi|_{S_1(p)}$, and this already seems hard!

Open problem: Given a linear map $\pi : \mathbb{F}_{p^2} \to \mathbb{F}_p$ and a random $\alpha \in \mathbb{F}_p$, find (if it exists) a supersingular $j \in \mathbb{F}_{p^2}$ such that $\pi(j) = \alpha$.

g > 1

A g-dimensional PPAV ${\mathcal A}$ is

Supersingular if all slopes of the Newton polygon of its Frobenius are 1/2.
 Any supersingular A is isogenous to a product of supersingular ECs.
 Superspecial if Frobenius acts as 0 on H¹(A, O_A).

Any superspecial \mathcal{A} is **isomorphic** to a product of supersingular ECs, though generally only as unpolarized AVs.

- \cdot Superspecial \implies supersingular.
- Superspeciality is preserved by (ℓ, \ldots, ℓ) -isogeny.

Superspecial PPAVs are connected to non-superspecial supersingular PPAVs by p-isogenies, but these are much more complicated than in genus 1: see Brock–Howe for a guided tour with (g,p) = (2,2).

For each g > 0 and prime p, we define

$$S_g(p):=\left\{ ext{superspecial PPAVs over }\overline{\mathbb{F}}_p
ight\}/\cong$$
 .

We have

$$\#S_g(p) = O(p^{g(g+1)/2})$$

(with much more precise statements for $g \leq 3$).

For primes $\ell \neq p$, we let $\Gamma_g(\ell; p)$ be the (ℓ, \dots, ℓ) -isogeny graph on $S_g(p)$.

Recall: (ℓ, \ldots, ℓ) -isogeny kernels are maximal ℓ -Weil-isotropic subgroups of the ℓ -torsion; these isogenies respect the principal polarizations. Such kernels are necessary isomorphic to $(\mathbb{Z}/\ell\mathbb{Z})^g$. The graph $\Gamma_g(\ell; p)$ is

- 1. connected (implicit in Oort; explicit in Jordan–Zaytman 2020)
- 2. $N_g(\ell)$ -regular, where

$$N_g(\ell) := \sum_{d=0}^g \begin{bmatrix} g \\ d \end{bmatrix}_{\ell} \cdot \ell^{\binom{g-d+1}{2}}$$

where $\begin{bmatrix}n\\k\end{bmatrix}_{\ell} :=$ the number of k-dimensional subspaces of \mathbb{F}_{ℓ}^n .

- $N_1(\ell) = \ell + 1$
- $N_2(\ell) = \ell^3 + (\ell + 1)\ell + 1$
- $N_g(\ell)$ is a polynomial in ℓ of degree g(g+1)/2

The neighbourhood of a general vertex in $\Gamma_2(2; p)$

When generalizing cryptosystems like the CGL hash to g> 1, we have an obvious

Question: Is $\Gamma_q(\ell; p)$ Ramanujan?

Jordan-Zaytman (2020): in general, no.

This is no problem. For cryptographic applications, we just need $\Gamma_g(\ell; p)$ to have "good expansion properties": that is, random walks of length $O(\log p)$ in $\Gamma_g(\ell; p)$ should converge to the uniform distribution on $S_g(p)$.

Florit–S. 2021: empirical support and approximate constants for $(g, \ell) = (2, 2)$.

Takashima was the first to generalize CGL to PPAVs of dimension g = 2.

- $S_1(p)$ becomes $S_2(p)$
- $\Gamma_1(2; p)$ becomes $\Gamma_2(2; p)$: i.e. 2-isogenies become (2, 2)-isogenies,

To compute non-backtracking walks in $\Gamma_2(2; p)$, Takashima uses

- supersingular genus-2 curves to represent vertices,
- Richelot's formulæ to compute the isogeny steps, and
- Igusa–Clebsch invariants to replace the *j*-invariant.

Since $\Gamma_1(2; p)$ is 15-regular, the data to be hashed is coded in base 14 (!).

Consider a genus-2 curve

$$\mathcal{C}: y^2 = G_1(x)G_2(x)G_3(x)$$

where the G_i are pairwise coprime quadratics in x (one may be linear).

Each of the G_i specifies a point of order 2 in Jac(C), and the subgroup whose nonzero elements correspond to $\{G_1, G_2, G_3\}$ is the kernel of a (2,2)-isogeny.

The codomain of the isogeny is the Jacobian of the genus-2 curve

$$\mathcal{C}': \Delta y^2 = H_1(x)H_2(x)H_3(x),$$

where $H_i = G'_j G_k - G_j G'_k$ and $\Delta = \det(G_1, G_2, G_3)$.

Flynn and Ti observe a serious issue with Takashima's hash function: It is easy to construct **cycles of length 4** starting at any vertex of $\Gamma_2(\ell; p)$.

If we consider the neighbourhood of a general edge in $\Gamma_2(2; p)$, then for every (2, 2)-isogeny $\mathcal{A}_1 \to \mathcal{A}_2$, there are always **twelve** ways of composing three more different (2, 2)-isogenies to get a length-4 cycle (splitting multiplication by 4 on \mathcal{A}_1).

Non-backtracking is not a strong enough condition to avoid hash collisions.

The neighbourhood of a general edge (and its dual) in $\Gamma_2(2; p)$

Suppose $\phi : \mathcal{A} \to \mathcal{A}'$ and $\phi' : \mathcal{A}' \to \mathcal{A}''$ are (ℓ, ℓ) -isogenies.

Definition: We say that ϕ' is an **extension** of ϕ , and that the extension is

good if $\phi' \circ \phi$ is an (ℓ^2, ℓ^2) -isogeny; **bad** if $\phi' \circ \phi$ is an (ℓ^2, ℓ, ℓ) -isogeny; **dual** if $\phi' \circ \phi$ is a (ℓ, ℓ, ℓ, ℓ) -isogeny (i.e. $\cong [\ell]_{\mathcal{A}}$).

Of the $\ell^3 + (\ell + 1)\ell + 1$ extensions of ϕ ,

- $\cdot \ \ell^3$ are good;
- $\ell^2 + \ell$ are bad;
- 1 is dual.

Castryck–Decru–S. (Nutmic 2019): an attempt to repair Takashima's hash.

We use a **new rule for isogeny walks** to replace non-backtracking:

After each (2,2)-isogeny $\phi_i : \mathcal{A}_i \to \mathcal{A}_{i+1}$ in the walk, we must take $\phi_{i+1} : \mathcal{A}_{i+1} \to \mathcal{A}_{i+2}$ to be one of the **eight good extensions** of ϕ_i .

The hash walks are thus (ℓ^n, ℓ^n) -isogenies; no short cycles are possible.

Implementation: following Takashima, we represent vertices with (Jacobians of) genus-2 curves, and compute edges using Richelot isogenies.

Good extensions of Richelot isogenies

To realise a (2,2)-isogeny $\phi_i : \operatorname{Jac}(\mathcal{C}_i) \to \operatorname{Jac}(\mathcal{C}_{i+1})$, Richelot's formulæ map $\mathcal{C}_i : y^2 = G_1^{(i)}(x)G_2^{(i)}(x)G_3^{(i)}(x)$

to

$$C_{i+1}: \Delta^{(i)}y^2 = H_1^{(i)}(x)H_2^{(i)}(x)H_3^{(i)}(x).$$

where $H_1^{(i)} = (G_2^{(i)})'G_3^{(i)} - G_2^{(i)}(G_3^{(i)})'$, etc.

The next isogeny corresponds to a quadratic splitting $\{G_1^{(i+1)}, G_2^{(i+1)}, G_3^{(i+1)}\}$:

1x dual extension: $\{G_1^{(i+1)}, G_2^{(i+1)}, G_3^{(i+1)}\} = \{H_1^{(i)}, H_1^{(i)}, H_1^{(i)}\}\$ **6x bad** extensions: $\#(\{G_1^{(i+1)}, G_2^{(i+1)}, G_3^{(i+1)}\}) \cap \{H_1^{(i)}, H_1^{(i)}, H_1^{(i)}\}) = 1$ **8x good** extensions: $\#(\{G_1^{(i+1)}, G_2^{(i+1)}, G_3^{(i+1)}\}) \cap \{H_1^{(i)}, H_1^{(i)}, H_1^{(i)}\}) = 0$

Computing the good extensions requires three square roots in \mathbb{F}_{p^2} to split the $H_i^{(l)}$.

An algorithmic inconvenience

Minor inconvenience: there are *two types* of PPAVs in dimension g = 2: Jacobians of genus-2 curves, and elliptic products.

- Isomorphism invariants are incompatible
- $\cdot\,$ Richelot's formulæ break down ($\Delta=$ 0) when the codomain is a product

Partition $S_2(p)$ into corresponding subsets, $S_2(p)^J$ and $S_2(p)^E$; then

$$\#S_2(p)^J = \frac{1}{2880}p^3 + \frac{1}{120}p^2$$
 and $\#S_2(p)^E = \frac{1}{288}p^2 + O(p)$.

Being a proof of concept, CDS takes a simple solution: fail on elliptic products. Justification: a random $\mathcal{A} \in S_2(p)$ has only a O(1/p) chance of being in $S_2(p)^E$.

Bad news: from a cryptanalytic point of view, this is not rare enough.

A closer look at $\Gamma_2(2; p)$

Naive view of the graph: tessellate the generic edge neighbourhood

Katsura–Takashima (ANTS 2020) studies the interaction of Richelot isogenies and reduced automorphism groups.

Florit–S. (2020) goes further and builds an "atlas" of $\Gamma_2(2; p)$.

The typical 15-regular structure degenerates near vertices of $\Gamma_2(2; p)$ with nontrivial reduced automorphism group, as edges pick up nontrivial weights.

Much intuition comes from the **ratio principle**:

 $\mathsf{weight}([\phi:\mathcal{A}\to\mathcal{B}])\cdot\#\mathsf{RA}(\mathcal{B})=\mathsf{weight}([\widehat{\phi}:\mathcal{B}\to\mathcal{A}])\cdot\#\mathsf{RA}(\mathcal{A})\,,$

where $RA(\mathcal{X}) := Aut(\mathcal{X})/\langle \pm 1 \rangle$.

Type-I (RA \cong C₂) and elliptic product neighbourhoods

These vertices are far from isolated: there are $O(p^2)$ of them in the graph.

Neighbourhoods of edges from Type-I vertices to product neighbours

Type-III (RA $\cong C_2^2$) and elliptic square neighbourhoods

These vertices are far from isolated: there are O(p) of them in the graph.

Connecting Type-III and elliptic-square vertices

34

Type-IV (RA \cong S₃) and products Φ of 3-isogenous elliptic curves

Solving the isogeny problem in g > 1

Theorem (Costello-S., PQCrypto 2020):

- 1. There exists a **classical algorithm** which solves isogeny problems in $\Gamma_g(\ell; p)$ with probability $\geq 1/2^{g-1}$ in expected time $\widetilde{O}(p^{g-1}/P)$ on P processors as $p \to \infty$ (with ℓ fixed).
- 2. There exists a **quantum algorithm** which solves isogeny problems in $\Gamma_g(\ell; p)$ in expected time $\widetilde{O}(\sqrt{p^{g-1}})$ as $p \to \infty$ (with ℓ fixed).

This talk: the classical algorithm.

Recall: if we just view $\Gamma_g(\ell; p)$ as a generic $N_g(\ell)$ -regular Ramanujan graph, then solving the path-finding problem would cost $O(p^{g(g+1)/4})$ (classical) isogeny steps.

Key observation: in g = 2, we have $\#S_2(p)^E > \sqrt{\#S_2(p)^J}$. This pattern continues in g > 2. We beat square-root algorithms by exploiting this special subset.

Let's look at the algorithm for g = 2 first. Recursive application will give us g > 2.

Step 1: Compute paths from our target PPASes into elliptic product vertices:

$$\phi: \mathcal{A} \to \cdots \to \mathcal{E}_1 \times \mathcal{E}_2 \in S_2(p)^E$$

$$\phi': \mathcal{A}' \to \cdots \to \mathcal{E}'_1 \times \mathcal{E}'_2 \in S_2(p)^E$$

Expander hypothesis \implies we find ϕ (and ϕ') after O(p) random walks of length in $O(\log p)$: total cost is $\widetilde{O}(p/P)$ isogeny steps on P classical processors.

It remains to compute a path $\mathcal{E}_1 \times \mathcal{E}_2 \to \cdots \to \mathcal{E}'_1 \times \mathcal{E}'_2$ in $\Gamma_2(\ell; p)$ in $\widetilde{O}(p)$ steps.

The algorithm in g = 2: Step 2

Step 2: to compute a path $\mathcal{E}_1 \times \mathcal{E}_2 \to \cdots \to \mathcal{E}'_1 \times \mathcal{E}'_2$ in $\Gamma_2(\ell; p)$,

- 1. Compute paths $\psi_1 : \mathcal{E}_1 \to \cdots \to \mathcal{E}'_1$ and $\psi_2 : \mathcal{E}_2 \to \cdots \to \mathcal{E}'_2$ in $\Gamma_1(\ell; p)$.
- 2. If length(ψ_1) \neq length(ψ_2) (mod 2), then go back to Step 1 (or swap $\mathcal{E}_1 \leftrightarrow \mathcal{E}_2$).
- 3. Trivially **stretch** the shorter of the ψ_i to the same length as the other, by stepping back and forth on the last component isogeny.
- 4. Compose the products of the *i*-th components of ψ_1 and ψ_2 to get a path

$$\psi^{\times}: \mathcal{E}_1 \times \mathcal{E}_2 \to \cdots \to \mathcal{E}'_1 \times \mathcal{E}'_2 \quad \text{in } \Gamma_2(\ell; p).$$

Cost: same as solving the isogeny problem in $\Gamma_1(\ell; p)$, i.e. $O(\sqrt{p}/P)$. The composition $(\phi')^{\dagger} \circ \psi^{\times} \circ \phi$ is a path from \mathcal{A} to \mathcal{A}' in $\Gamma_2(\ell; p)$.

We can thus solve the isogeny problem in $\Gamma_2(\ell; p)$ in $\widetilde{O}(p)$ isogeny steps.

The same idea works in higher dimension as follows.

Recall: $\#S_g(p) = O(p^{g(g+1)/2})$, so classical square-root algorithms solve the isogeny problem in $\Gamma_g(\ell; p)$ in $O(p^{g(g+1)/4})$ isogeny steps.

Let $T_g(p)$ be the image of $S_1(p) \times S_{g-1}(p)$ in $S_g(p)$ (product polarization).

We have $\#S_1(p) = O(p)$ and $\#S_{g-1}(p) = O(p^{g(g-1)/2})$, so $\#T_g(p) = O(p^{(g^2-g+2)/2})$;

so the probability that a random \mathcal{A} in $S_g(p)$ is in $T_g(p)$ is in $O(1/p^{(g-1)})$.

Key observation: g - 1 < g(g + 1)/4 (and much smaller for large g).

We should be able to efficiently recognise steps into $T_g(p)$ by something analogous to the breakdown in Richelot's formulæ in g = 2 (theta relations?).

Solving the general isogeny problem

To find a path from \mathcal{A} to \mathcal{A}' in $\Gamma_g(\ell; p)$:

- 1. Compute paths $\phi : \mathcal{A} \to \mathcal{E} \times \mathcal{B} \in T_g(p)$ and $\phi' : \mathcal{A}' \to \mathcal{E}' \times \mathcal{B}' \in T_g(p)$ in $\Gamma_g(\ell; p)$ Expander hypothesis $\implies \widetilde{O}(p^{g-1}/P)$ isogeny steps. Dominant step
- 2. Compute a path $\psi_E : \mathcal{E} \to \cdots \to \mathcal{E}'$ in $\Gamma_1(\ell; p)$ Usual elliptic algorithm $\implies O(\sqrt{p}/P)$ isogeny steps
- 3. Recurse to compute a path $\psi_B : \mathcal{B} \to \cdots \to \mathcal{B}'$ in $\Gamma_{g-1}(\ell; p)$ Expander hypothesis $\implies \widetilde{O}(p^{g-2}/P)$ isogeny steps
- Apply the elliptic isogeny-glueing technique to get the final path. Probability of compatible lengths: 1/2^{g-1}.

Total cost: $\widetilde{O}(p^{g-1}/P)$, dominated by the cost of walking into $T_g(p)$ in Step 1. **Much faster** than $O(p^{g(g+1)/4})$. **Genus-2 isogeny-based hashing** is **less efficient** than the elliptic equivalent. Say we want to force $\approx 2^{\lambda}$ classical effort to compute preimages:

genus 1 $\approx p/12$ vertices, square-root preimage finding \implies need $p \approx 2^{2\lambda}$

- 4λ -bit outputs in $\mathbb{F}_{p^2} \to 2\lambda$ -bit outputs in \mathbb{F}_p (2x the ideal)
- Slow! Each input bit \implies square root in $\mathbb{F}_{p^2} \implies 2 \times 2\lambda$ -bit modular exponentiations

genus 2 $\approx p^3/2880$ vertices, **cube-root** preimage finding \implies need $p \approx 2^{\lambda}$

- $\implies 6\lambda$ -bit outputs in $\mathbb{F}_{p^2}^3$ (moduli point) $\rightarrow 3\lambda$ bits (finalization to shorter hash values is unclear.
- A little faster! Each 3-bit input digit \implies 3× square roots in \mathbb{F}_{p^2}

 \implies 3 × 2 × λ -bit modular exponentiations

No easy fix for the collision-resistance issue (starting vertex) in either case.

(Some) references

- Brock + Howe: Purely inseparable Richelot isogenies https://arxiv.org/abs/2002.02122
- Castryck, Decru, Smith: Hash functions from superspecial genus-2 curves using Richelot isogenies https://ia.cr/2019/296
- Charles, Goren, Lauter: Cryptographic hash functions from expander graphs https://ia.cr/2006/021
- Costello + Smith: The supersingular isogeny problem in genus 2 and beyond https://ia.cr/2019/1387
- Doliskani, Pereira, Barreto: Faster Cryptographic Hash Function From Supersingular Isogeny Graphs https://ia.cr/2017/1202

Selected references 2

- Florit + Smith: Automorphisms and isogeny graphs of abelian varieties, with applications to the superspecial Richelot isogeny graph https://ia.cr/2021/012
- Florit + Smith: An atlas of the Richelot isogeny graph https://ia.cr/2021/013
- Jordan + Zaytman: Isogeny graphs of superspecial abelian varieties and Brandt matrices https://arxiv.org/abs/2005.09031
- Renes + Smith: qDSA: Small and Secure Digital Signatures with Curve-based Diffie-Hellman Key Pairs https://ia.cr/2017/518
- Smith: Isogenies and the discrete logarithm problem on Jacobians of genus 3 hyperelliptic curves https://ia.cr/2007/428