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Isogeny-based cryptosystems

Group-action cryptosystems: based on the action of Cl(O) on an isogeny
(sub)class EllFq(O) of curves E/Fq with End(E) ∼= O (Steven’s talk).

• Couveignes, Rostovtsev–Stolbunov (2006): key exchange on ordinary isogeny
graphs (CRS)

• CSIDH: like CRS but with O = Z[
√
−p] (supersingular over Fp)

• CSI-FiSh signatures, ...

Everything else: crypto based on supersingular isogeny graphs over Fp2 .

• Charles–Goren–Lauter hash function (Kristin’s talk).
• SIDH and SIKE, now broken! (Wouter’s talk, Chloe’s talk)
• SQISign signatures (Luca’s talk), ...
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Why genus 2?

“It is a truth universally acknowledged that a number theorist
in possession of a good elliptic curve cryptosystem,
must be in want of a generalization to genus 2.”

In this context, “genus 2” means principally polarized abelian surfaces (PPASes).

More generally, principally polarized abelian varieties (PPAVs) in dimension g > 1
(but let’s start with g = 2...)

This is not completely crazy: genus-2 analogues of elliptic discrete-log-based
cryptosystems give nice practical results (see e.g. Renes–S. (Asiacrypt 2017)).

However: DLP-based crypto turns out to be less efficient in g > 2 thanks to index
calculus and isogeny attacks (see e.g. S. (Eurocrypt 2008)).
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Today’s focus: CGL in genus 2

This talk: we will ignore genus-2 group-action crypto

• Very little has been done!
• The endomorphism rings and their class groups are more complicated
(especially because of real subrings ̸= Z, real units, ...)

• The group action is much more complicated to compute

We will focus exclusively on the simplest example of the everything else class:
the Charles–Goren–Lauter (CGL) hash function.
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The supersingular elliptic 2-isogeny
graph



Supersingular elliptic isogeny graphs

Fix a prime p, and let

S1(p) := {supersingular elliptic curves /Fp}/ ∼= .

For primes ℓ ̸= p, we let Γ1(ℓ;p) be the ℓ-isogeny graph on S1(p).

The graph Γ1(ℓ;p) is

• connected,
• (ℓ+ 1)-regular, and
• Ramanujan (excellent expansion properties)

Random walks in Γ1(ℓ;p) of length O(log p) give a uniform distribution on S1(p).
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The supersingular graph is a directd weighted graph

In general, Γ1(ℓ;p) is a directed weighted graph.

• An edge [E1] → [E2] has weight n
if there are n distinct kernels in E1[ℓ] with codomain ∼= E2.

• These distinct kernels form an orbit under the reduced automorphism group

RA(E) := Aut(E)/⟨±1⟩ ,

so we only have multiple edges at j = 0 and 1728 (if they are in S1(p)).
• Dual isogenies: ∃ [E1] → [E2] =⇒ ∃ [E2] → [E1].
• Multiple edges in one direction share a single dual in the other.
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Neighbourhoods of vertices in Γ1(2;p)
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Supersingular isogeny problems

The general supersingular elliptic isogeny problem for fixed ℓ:

Given E and E ′ in S1(p), find a path from E to E ′ in Γ1(ℓ;p)

classical solution in O(
√
#S1(p)) = O(√p) (random walks)

quantum solution in O( 4
√

#S1(p)) = O( 4
√p)

This problem is related to the security of the Charles–Goren–Lauter hash function.
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The Charles–Goren–Lauter function



Cryptographic hash functions

A cryptgraphic hash function H : {0, 1}∗ → {0, 1}n should have

• preimage resistance: given t ∈ {0, 1}n, hard to find m s.t. H(m) = t
ideal: ≈ 2n operations

• collision resistance: hard to find m ̸= m′ s.t. H(m) = H(m′)

ideal: ≈ 2n/2 operations
• 2nd preimage resistance: given m, hard to find m′ ̸= m s.t. H(m′) = H(m)

ideal: ≈ 2n operations

In addition to these security properties, we typically want

• efficiency: should be able to hash long inputs very quickly
• pseudo-randomness: H should act like a random oracle, i.e.
indistinguishable from a random function into {0, 1}n on distinct inputs
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The Charles–Goren–Lauter hash function (2009)

Charles–Goren–Lauter: a hash function with provable preimage-resistance.

Parameters:

• a large prime p,
• an ordering on Fp2 (hence on S1(p)),
• an edge j−1 → j0 in Γ1(2;p),
• a linear map π : Fp2 → Fp (often ignored).

The hash function H : {0, 1}∗ → Fp is

H(m) := π(CGL(m)) ,

where CGL : {0, 1}∗ → S1(p) ⊂ Fp2 is defined as follows...
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The CGL function: data drives walks

To compute the image under CGL of an n-bit string m = (m0, . . . ,mn−1),
we compute a non-backtracking walk j0 → · · · → jn in Γ1(2;p): for each 0 ≤ i < n,

1. the 3 edges out of ji are ji → ji−1 and ji → α and ji → β, with α > β

2. if mi = 0, then set ji+1 = α; otherwise, set ji+1 = β.

The output is CGL(m) = jn.
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CGL hashing: security

Finding preimages for the CGL function

• =⇒ solving the isogeny problem in Γ1(2;p)
• Is hard. Best algorithm: O(p1/2) (classical), O(p1/4) (quantum)

Finding collisions for the CGL function

• =⇒ computing cycles in Γ1(2;p) through j0
• =⇒ computing 2∗-endomorphisms of E0
• Supposed to be hard (in 2006)... But Kohel–Lauter–Petit–Tignol (KLPT) solves
this in polynomial time if End(E0) is known (i.e., for reasonable choices of j0)!

Open problem: efficiently constructing supersingular curves with unknown
endomorphism ring.
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Computing the CGL function

Traditional approach:

Given a bit mi and an edge ji−1 → ji, we need to compute ji+1.

1. Compute f(X) = Φ2(j1, X)/(X− ji−1) ∈ Fp2 [X]
2. Find the two roots α > β of f(X) in Fp2

3. if mi = 0, set ji+1 = α; otherwise, set ji+1 = β.
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Computing the CGL function

Alternative approach: work (up to isomorphism) with curves

Ei : y2 = x(x2 + a(i)2 x+ a(i)4 ) .

To find Ei → Ei+1: compute δ :=
√
(a(i)2 )2 − 4a(i)4 in Fp2 , using mi to choose sign(δ);

then ⟨(−(a(i)2 − δ)/2, 0)⟩ ⊂ Ei[2] is the kernel of the edge Ei → Ei+1, with

a(i+1)2 = a(i)2 − 3δ and a(i+1)4 = a(i)2 (a(i)2 + δ)/2− a(i)4 ,

and the kernel of the dual edge Ei+1 → Ei is ⟨(0, 0)⟩ ⊂ Ei+1[2].

Either way: CGL requires one square root in Fp2 per bit of input. (Sloooow)

Limited speedup for suitable p: see Doliskani–Pereira–Barreto (2022)
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A word on finalization

The CGL hash value is H(m) = π(jn), where π is a linear map Fp2 → Fp.

Why do we use the finalization map π?

• because there are only ≈ p/12 elements of S1(p),
• so the uniform distribution on S1(p) only has ≈ log2 p bits of entropy,
• so we should squash hash values down to log2 p bits.
• A sufficiently general linear function Fp2 → Fp will do the job.

Even if you can solve the isogeny problem, to invert the true CGL hash function
we must find preimages under π|S1(p), and this already seems hard!

Open problem: Given a linear map π : Fp2 → Fp and a random α ∈ Fp,
find (if it exists) a supersingular j ∈ Fp2 such that π(j) = α.
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g > 1



Higher dimensions: superspecial and supersingular

A g-dimensional PPAV A is

Supersingular if all slopes of the Newton polygon of its Frobenius are 1/2.
Any supersingular A is isogenous to a product of supersingular ECs.

Superspecial if Frobenius acts as 0 on H1(A,OA).
Any superspecial A is isomorphic to a product of supersingular ECs,
though generally only as unpolarized AVs.

• Superspecial =⇒ supersingular.
• Superspeciality is preserved by (ℓ, . . . , ℓ)-isogeny.

Superspecial PPAVs are connected to non-superspecial supersingular PPAVs by
p-isogenies, but these are much more complicated than in genus 1: see Brock–Howe for a
guided tour with (g,p) = (2, 2).
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The superspecial set

For each g > 0 and prime p, we define

Sg(p) :=
{
superspecial PPAVs over Fp

}
/∼= .

We have
#Sg(p) = O(pg(g+1)/2)

(with much more precise statements for g ≤ 3).

For primes ℓ ̸= p, we let Γg(ℓ;p) be the (ℓ, . . . , ℓ)-isogeny graph on Sg(p).

Recall: (ℓ, . . . , ℓ)-isogeny kernels are maximal ℓ-Weil-isotropic subgroups of the
ℓ-torsion; these isogenies respect the principal polarizations.
Such kernels are necessary isomorphic to (Z/ℓZ)g.
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The superspecial graph

The graph Γg(ℓ;p) is

1. connected (implicit in Oort; explicit in Jordan–Zaytman 2020)
2. Ng(ℓ)-regular, where

Ng(ℓ) :=
g∑

d=0

[
g
d

]
ℓ

· ℓ(
g−d+1

2 )

where
[n
k
]
ℓ
:= the number of k-dimensional subspaces of Fnℓ .

• N1(ℓ) = ℓ+ 1
• N2(ℓ) = ℓ3 + (ℓ+ 1)ℓ+ 1
• Ng(ℓ) is a polynomial in ℓ of degree g(g+ 1)/2
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The neighbourhood of a general vertex in Γ2(2;p)
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Expansion hypothesis

When generalizing cryptosystems like the CGL hash to g > 1, we have an obvious

Question: Is Γg(ℓ;p) Ramanujan?

Jordan–Zaytman (2020): in general, no.

This is no problem. For cryptographic applications, we just need Γg(ℓ;p) to have
“good expansion properties”: that is, random walks of length O(log p) in Γg(ℓ;p)
should converge to the uniform distribution on Sg(p).

Florit–S. 2021: empirical support and approximate constants for (g, ℓ) = (2, 2).
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Generalizing CGL to genus 2: Takashima

Takashima was the first to generalize CGL to PPAVs of dimension g = 2.

• S1(p) becomes S2(p)
• Γ1(2;p) becomes Γ2(2;p): i.e. 2-isogenies become (2, 2)-isogenies,

To compute non-backtracking walks in Γ2(2;p), Takashima uses

• supersingular genus-2 curves to represent vertices,
• Richelot’s formulæ to compute the isogeny steps, and
• Igusa–Clebsch invariants to replace the j-invariant.

Since Γ1(2;p) is 15-regular, the data to be hashed is coded in base 14 (!).
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Richelot isogenies

Consider a genus-2 curve

C : y2 = G1(x)G2(x)G3(x)

where the Gi are pairwise coprime quadratics in x (one may be linear).

Each of the Gi specifies a point of order 2 in Jac(C), and the subgroup whose
nonzero elements correspond to {G1,G2,G3} is the kernel of a (2, 2)-isogeny.

The codomain of the isogeny is the Jacobian of the genus-2 curve

C′ : ∆y2 = H1(x)H2(x)H3(x) ,

where Hi = G′jGk − GjG′k and ∆ = det(G1,G2,G3).

22



Trivial 4-cycles in the genus-2 graph

Flynn and Ti observe a serious issue with Takashima’s hash function:
It is easy to construct cycles of length 4 starting at any vertex of Γ2(ℓ;p).

If we consider the neighbourhood of a general edge in Γ2(2;p), then
for every (2, 2)-isogeny A1 → A2, there are always twelve ways of composing
three more different (2, 2)-isogenies to get a length-4 cycle (splitting
multiplication by 4 on A1).

Non-backtracking is not a strong enough condition to avoid hash collisions.
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The neighbourhood of a general edge (and its dual) in Γ2(2;p)
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The good, the bad, and the dual

Suppose ϕ : A → A′ and ϕ′ : A′ → A′′ are (ℓ, ℓ)-isogenies.

Definition: We say that ϕ′ is an extension of ϕ, and that the extension is

good if ϕ′ ◦ ϕ is an (ℓ2, ℓ2)-isogeny;
bad if ϕ′ ◦ ϕ is an (ℓ2, ℓ, ℓ)-isogeny;
dual if ϕ′ ◦ ϕ is a (ℓ, ℓ, ℓ, ℓ)-isogeny (i.e. ∼= [ℓ]A).

Of the ℓ3 + (ℓ+ 1)ℓ+ 1 extensions of ϕ,

• ℓ3 are good;
• ℓ2 + ℓ are bad;
• 1 is dual.
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Generalizing CGL to genus 2

Castryck–Decru–S. (Nutmic 2019): an attempt to repair Takashima’s hash.

We use a new rule for isogeny walks to replace non-backtracking:

After each (2, 2)-isogeny ϕi : Ai → Ai+1 in the walk,
we must take ϕi+1 : Ai+1 → Ai+2 to be one of the eight good extensions of ϕi.

The hash walks are thus (ℓn, ℓn)-isogenies; no short cycles are possible.

Implementation: following Takashima, we represent vertices with (Jacobians of)
genus-2 curves, and compute edges using Richelot isogenies.
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Good extensions of Richelot isogenies

To realise a (2, 2)-isogeny ϕi : Jac(Ci) → Jac(Ci+1), Richelot’s formulæ map

Ci : y2 = G(i)1 (x)G(i)2 (x)G(i)3 (x)
to

Ci+1 : ∆(i)y2 = H(i)
1 (x)H(i)

2 (x)H(i)
3 (x) .

where H(i)
1 = (G(i)2 )′G(i)3 − G(i)2 (G(i)3 )′, etc.

The next isogeny corresponds to a quadratic splitting
{
G(i+1)1 ,G(i+1)2 ,G(i+1)3

}
:

1x dual extension: {G(i+1)1 ,G(i+1)2 ,G(i+1)3 } = {H(i)
1 ,H

(i)
1 ,H

(i)
1 }

6x bad extensions: #
(
{G(i+1)1 ,G(i+1)2 ,G(i+1)3 } ∩ {H(i)

1 ,H
(i)
1 ,H

(i)
1 }

)
= 1

8x good extensions: #
(
{G(i+1)1 ,G(i+1)2 ,G(i+1)3 } ∩ {H(i)

1 ,H
(i)
1 ,H

(i)
1 }

)
= 0

Computing the good extensions requires three square roots in Fp2 to split the H
(i)
j .
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An algorithmic inconvenience

Minor inconvenience: there are two types of PPAVs in dimension g = 2:
Jacobians of genus-2 curves, and elliptic products.

• Isomorphism invariants are incompatible
• Richelot’s formulæ break down (∆ = 0) when the codomain is a product

Partition S2(p) into corresponding subsets, S2(p)J and S2(p)E; then

#S2(p)J =
1

2880p
3 +

1
120p

2 and #S2(p)E =
1
288p

2 + O(p) .

Being a proof of concept, CDS takes a simple solution: fail on elliptic products.
Justification: a random A ∈ S2(p) has only a O(1/p) chance of being in S2(p)E.

Bad news: from a cryptanalytic point of view, this is not rare enough.
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A closer look at Γ2(2;p)



Naive view of the graph: tessellate the generic edge neighbourhood
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Naive view: Γ2(2;p) is a tessellation of these generic edge neighbourhoods...
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Special vertices

Katsura–Takashima (ANTS 2020) studies the interaction of Richelot isogenies and
reduced automorphism groups.

Florit–S. (2020) goes further and builds an “atlas” of Γ2(2;p).

The typical 15-regular structure degenerates near vertices of Γ2(2;p) with
nontrivial reduced automorphism group, as edges pick up nontrivial weights.

Much intuition comes from the ratio principle:

weight([ϕ : A → B]) ·#RA(B) = weight([ϕ̂ : B → A]) ·#RA(A) ,

where RA(X ) := Aut(X )/⟨±1⟩.
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Type-I (RA ∼= C2) and elliptic product neighbourhoods
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These vertices are far from isolated: there are O(p2) of them in the graph.
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Neighbourhoods of edges from Type-I vertices to product neighbours
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Type-III (RA ∼= C22) and elliptic square neighbourhoods
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These vertices are far from isolated: there are O(p) of them in the graph.
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Connecting Type-III and elliptic-square vertices
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Type-IV (RA ∼= S3) and products Φ of 3-isogenous elliptic curves
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Solving the isogeny problem in g > 1



Results

Theorem (Costello–S., PQCrypto 2020):

1. There exists a classical algorithm which solves isogeny problems in Γg(ℓ;p)
with probability ≥ 1/2g−1 in expected time Õ(pg−1/P) on P processors as
p→ ∞ (with ℓ fixed).

2. There exists a quantum algorithm which solves isogeny problems in Γg(ℓ;p)
in expected time Õ(

√
pg−1) as p→ ∞ (with ℓ fixed).

This talk: the classical algorithm.
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Attacking the isogeny problem

Recall: if we just view Γg(ℓ;p) as a generic Ng(ℓ)-regular Ramanujan graph, then
solving the path-finding problem would cost O(pg(g+1)/4) (classical) isogeny steps.

Key observation: in g = 2, we have #S2(p)E >
√

#S2(p)J. This pattern continues
in g > 2. We beat square-root algorithms by exploiting this special subset.

Let’s look at the algorithm for g = 2 first. Recursive application will give us g > 2.
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The algorithm in g = 2: Step 1

Step 1: Compute paths from our target PPASes into elliptic product vertices:

ϕ : A → · · · → E1 × E2 ∈ S2(p)E

ϕ′ : A′ → · · · → E ′
1 × E ′

2 ∈ S2(p)E

Expander hypothesis =⇒ we find ϕ (and ϕ′) after O(p) random walks of length
in O(log p): total cost is Õ(p/P) isogeny steps on P classical processors.

It remains to compute a path E1 × E2 → · · · → E ′
1 × E ′

2 in Γ2(ℓ;p) in Õ(p) steps.
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The algorithm in g = 2: Step 2

Step 2: to compute a path E1 × E2 → · · · → E ′
1 × E ′

2 in Γ2(ℓ;p),

1. Compute paths ψ1 : E1 → · · · → E ′
1 and ψ2 : E2 → · · · → E ′

2 in Γ1(ℓ;p).
2. If length(ψ1) ̸≡ length(ψ2) (mod 2), then go back to Step 1 (or swap E1 ↔ E2).
3. Trivially stretch the shorter of the ψi to the same length as the other,
by stepping back and forth on the last component isogeny.

4. Compose the products of the i-th components of ψ1 and ψ2 to get a path

ψ× : E1 × E2 → · · · → E ′
1 × E ′

2 in Γ2(ℓ;p) .

Cost: same as solving the isogeny problem in Γ1(ℓ;p), i.e. O(
√p/P).

The composition (ϕ′)† ◦ ψ× ◦ ϕ is a path from A to A′ in Γ2(ℓ;p).

We can thus solve the isogeny problem in Γ2(ℓ;p) in Õ(p) isogeny steps.
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Attacking higher genus

The same idea works in higher dimension as follows.

Recall: #Sg(p) = O(pg(g+1)/2), so classical square-root algorithms solve the
isogeny problem in Γg(ℓ;p) in O(pg(g+1)/4) isogeny steps.

Let Tg(p) be the image of S1(p)× Sg−1(p) in Sg(p) (product polarization).

We have #S1(p) = O(p) and #Sg−1(p) = O(pg(g−1)/2), so

#Tg(p) = O(p(g2−g+2)/2) ;

so the probability that a random A in Sg(p) is in Tg(p) is in O(1/p(g−1)).

Key observation: g− 1 < g(g+ 1)/4 (and much smaller for large g).

We should be able to efficiently recognise steps into Tg(p) by something
analogous to the breakdown in Richelot’s formulæ in g = 2 (theta relations?).
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Solving the general isogeny problem

To find a path from A to A′ in Γg(ℓ;p):

1. Compute paths ϕ : A → E ×B ∈ Tg(p) and ϕ′ : A′ → E ′ ×B′ ∈ Tg(p) in Γg(ℓ;p)
Expander hypothesis =⇒ Õ(pg−1/P) isogeny steps. Dominant step

2. Compute a path ψE : E → · · · → E ′ in Γ1(ℓ;p)
Usual elliptic algorithm =⇒ O(√p/P) isogeny steps

3. Recurse to compute a path ψB : B → · · · → B′ in Γg−1(ℓ;p)
Expander hypothesis =⇒ Õ(pg−2/P) isogeny steps

4. Apply the elliptic isogeny-glueing technique to get the final path.
Probability of compatible lengths: 1/2g−1.

Total cost: Õ(pg−1/P), dominated by the cost of walking into Tg(p) in Step 1.
Much faster than O(pg(g+1)/4).
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Cryptographic implications

Genus-2 isogeny-based hashing is less efficient than the elliptic equivalent.

Say we want to force ≈ 2λ classical effort to compute preimages:

genus 1 ≈ p/12 vertices, square-root preimage finding =⇒ need p ≈ 22λ

• 4λ-bit outputs in Fp2 → 2λ-bit outputs in Fp (2x the ideal)
• Slow! Each input bit =⇒ square root in Fp2 =⇒ 2× 2λ-bit
modular exponentiations

genus 2 ≈ p3/2880 vertices, cube-root preimage finding =⇒ need p ≈ 2λ

• =⇒ 6λ-bit outputs in F3p2 (moduli point)→ 3λ bits ( finalization
to shorter hash values is unclear.

• A little faster! Each 3-bit input digit =⇒ 3× square roots in Fp2
=⇒ 3× 2× λ-bit modular exponentiations

No easy fix for the collision-resistance issue (starting vertex) in either case.
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