
Isogenies in genus 2 for cryptographic applications

Benjamin Smith
with Wouter Castryck, Craig Costello, Thomas Decru, Enric Florit
October 4, 2022

Inria + Laboratoire d’Informatique de l’École polytechnique (LIX)

1

Isogeny-based cryptosystems

Group-action cryptosystems: based on the action of Cl(O) on an isogeny
(sub)class EllFq(O) of curves E/Fq with End(E) ∼= O (Steven’s talk).

• Couveignes, Rostovtsev–Stolbunov (2006): key exchange on ordinary isogeny
graphs (CRS)

• CSIDH: like CRS but with O = Z[
√
−p] (supersingular over Fp)

• CSI-FiSh signatures, ...

Everything else: crypto based on supersingular isogeny graphs over Fp2 .

• Charles–Goren–Lauter hash function (Kristin’s talk).
• SIDH and SIKE, now broken! (Wouter’s talk, Chloe’s talk)
• SQISign signatures (Luca’s talk), ...

2

Why genus 2?

“It is a truth universally acknowledged that a number theorist
in possession of a good elliptic curve cryptosystem,
must be in want of a generalization to genus 2.”

In this context, “genus 2” means principally polarized abelian surfaces (PPASes).

More generally, principally polarized abelian varieties (PPAVs) in dimension g > 1
(but let’s start with g = 2...)

This is not completely crazy: genus-2 analogues of elliptic discrete-log-based
cryptosystems give nice practical results (see e.g. Renes–S. (Asiacrypt 2017)).

However: DLP-based crypto turns out to be less efficient in g > 2 thanks to index
calculus and isogeny attacks (see e.g. S. (Eurocrypt 2008)).

3

Today’s focus: CGL in genus 2

This talk: we will ignore genus-2 group-action crypto

• Very little has been done!
• The endomorphism rings and their class groups are more complicated
(especially because of real subrings ̸= Z, real units, ...)

• The group action is much more complicated to compute

We will focus exclusively on the simplest example of the everything else class:
the Charles–Goren–Lauter (CGL) hash function.

4

The supersingular elliptic 2-isogeny
graph

Supersingular elliptic isogeny graphs

Fix a prime p, and let

S1(p) := {supersingular elliptic curves /Fp}/ ∼= .

For primes ℓ ̸= p, we let Γ1(ℓ;p) be the ℓ-isogeny graph on S1(p).

The graph Γ1(ℓ;p) is

• connected,
• (ℓ+ 1)-regular, and
• Ramanujan (excellent expansion properties)

Random walks in Γ1(ℓ;p) of length O(log p) give a uniform distribution on S1(p).

5

The supersingular graph is a directd weighted graph

In general, Γ1(ℓ;p) is a directed weighted graph.

• An edge [E1] → [E2] has weight n
if there are n distinct kernels in E1[ℓ] with codomain ∼= E2.

• These distinct kernels form an orbit under the reduced automorphism group

RA(E) := Aut(E)/⟨±1⟩ ,

so we only have multiple edges at j = 0 and 1728 (if they are in S1(p)).
• Dual isogenies: ∃ [E1] → [E2] =⇒ ∃ [E2] → [E1].
• Multiple edges in one direction share a single dual in the other.

6

Neighbourhoods of vertices in Γ1(2;p)

E

E

E E
E0

E

3

E1728

E

2

General j j = 0 j = 1728

7

Supersingular isogeny problems

The general supersingular elliptic isogeny problem for fixed ℓ:

Given E and E ′ in S1(p), find a path from E to E ′ in Γ1(ℓ;p)

classical solution in O(
√
#S1(p)) = O(√p) (random walks)

quantum solution in O(4
√

#S1(p)) = O(4
√p)

This problem is related to the security of the Charles–Goren–Lauter hash function.

8

The Charles–Goren–Lauter function

Cryptographic hash functions

A cryptgraphic hash function H : {0, 1}∗ → {0, 1}n should have

• preimage resistance: given t ∈ {0, 1}n, hard to find m s.t. H(m) = t
ideal: ≈ 2n operations

• collision resistance: hard to find m ̸= m′ s.t. H(m) = H(m′)

ideal: ≈ 2n/2 operations
• 2nd preimage resistance: given m, hard to find m′ ̸= m s.t. H(m′) = H(m)

ideal: ≈ 2n operations

In addition to these security properties, we typically want

• efficiency: should be able to hash long inputs very quickly
• pseudo-randomness: H should act like a random oracle, i.e.
indistinguishable from a random function into {0, 1}n on distinct inputs

9

The Charles–Goren–Lauter hash function (2009)

Charles–Goren–Lauter: a hash function with provable preimage-resistance.

Parameters:

• a large prime p,
• an ordering on Fp2 (hence on S1(p)),
• an edge j−1 → j0 in Γ1(2;p),
• a linear map π : Fp2 → Fp (often ignored).

The hash function H : {0, 1}∗ → Fp is

H(m) := π(CGL(m)) ,

where CGL : {0, 1}∗ → S1(p) ⊂ Fp2 is defined as follows...

10

The CGL function: data drives walks

To compute the image under CGL of an n-bit string m = (m0, . . . ,mn−1),
we compute a non-backtracking walk j0 → · · · → jn in Γ1(2;p): for each 0 ≤ i < n,

1. the 3 edges out of ji are ji → ji−1 and ji → α and ji → β, with α > β

2. if mi = 0, then set ji+1 = α; otherwise, set ji+1 = β.

The output is CGL(m) = jn.

11

CGL hashing: security

Finding preimages for the CGL function

• =⇒ solving the isogeny problem in Γ1(2;p)
• Is hard. Best algorithm: O(p1/2) (classical), O(p1/4) (quantum)

Finding collisions for the CGL function

• =⇒ computing cycles in Γ1(2;p) through j0
• =⇒ computing 2∗-endomorphisms of E0
• Supposed to be hard (in 2006)... But Kohel–Lauter–Petit–Tignol (KLPT) solves
this in polynomial time if End(E0) is known (i.e., for reasonable choices of j0)!

Open problem: efficiently constructing supersingular curves with unknown
endomorphism ring.

12

Computing the CGL function

Traditional approach:

Given a bit mi and an edge ji−1 → ji, we need to compute ji+1.

1. Compute f(X) = Φ2(j1, X)/(X− ji−1) ∈ Fp2 [X]
2. Find the two roots α > β of f(X) in Fp2

3. if mi = 0, set ji+1 = α; otherwise, set ji+1 = β.

13

Computing the CGL function

Alternative approach: work (up to isomorphism) with curves

Ei : y2 = x(x2 + a(i)2 x+ a(i)4) .

To find Ei → Ei+1: compute δ :=
√
(a(i)2)2 − 4a(i)4 in Fp2 , using mi to choose sign(δ);

then ⟨(−(a(i)2 − δ)/2, 0)⟩ ⊂ Ei[2] is the kernel of the edge Ei → Ei+1, with

a(i+1)2 = a(i)2 − 3δ and a(i+1)4 = a(i)2 (a(i)2 + δ)/2− a(i)4 ,

and the kernel of the dual edge Ei+1 → Ei is ⟨(0, 0)⟩ ⊂ Ei+1[2].

Either way: CGL requires one square root in Fp2 per bit of input. (Sloooow)

Limited speedup for suitable p: see Doliskani–Pereira–Barreto (2022)

14

A word on finalization

The CGL hash value is H(m) = π(jn), where π is a linear map Fp2 → Fp.

Why do we use the finalization map π?

• because there are only ≈ p/12 elements of S1(p),
• so the uniform distribution on S1(p) only has ≈ log2 p bits of entropy,
• so we should squash hash values down to log2 p bits.
• A sufficiently general linear function Fp2 → Fp will do the job.

Even if you can solve the isogeny problem, to invert the true CGL hash function
we must find preimages under π|S1(p), and this already seems hard!

Open problem: Given a linear map π : Fp2 → Fp and a random α ∈ Fp,
find (if it exists) a supersingular j ∈ Fp2 such that π(j) = α.

15

g > 1

Higher dimensions: superspecial and supersingular

A g-dimensional PPAV A is

Supersingular if all slopes of the Newton polygon of its Frobenius are 1/2.
Any supersingular A is isogenous to a product of supersingular ECs.

Superspecial if Frobenius acts as 0 on H1(A,OA).
Any superspecial A is isomorphic to a product of supersingular ECs,
though generally only as unpolarized AVs.

• Superspecial =⇒ supersingular.
• Superspeciality is preserved by (ℓ, . . . , ℓ)-isogeny.

Superspecial PPAVs are connected to non-superspecial supersingular PPAVs by
p-isogenies, but these are much more complicated than in genus 1: see Brock–Howe for a
guided tour with (g,p) = (2, 2).

16

The superspecial set

For each g > 0 and prime p, we define

Sg(p) :=
{
superspecial PPAVs over Fp

}
/∼= .

We have
#Sg(p) = O(pg(g+1)/2)

(with much more precise statements for g ≤ 3).

For primes ℓ ̸= p, we let Γg(ℓ;p) be the (ℓ, . . . , ℓ)-isogeny graph on Sg(p).

Recall: (ℓ, . . . , ℓ)-isogeny kernels are maximal ℓ-Weil-isotropic subgroups of the
ℓ-torsion; these isogenies respect the principal polarizations.
Such kernels are necessary isomorphic to (Z/ℓZ)g.

17

The superspecial graph

The graph Γg(ℓ;p) is

1. connected (implicit in Oort; explicit in Jordan–Zaytman 2020)
2. Ng(ℓ)-regular, where

Ng(ℓ) :=
g∑

d=0

[
g
d

]
ℓ

· ℓ(
g−d+1

2)

where
[n
k
]
ℓ
:= the number of k-dimensional subspaces of Fnℓ .

• N1(ℓ) = ℓ+ 1
• N2(ℓ) = ℓ3 + (ℓ+ 1)ℓ+ 1
• Ng(ℓ) is a polynomial in ℓ of degree g(g+ 1)/2

18

The neighbourhood of a general vertex in Γ2(2;p)

A

AA
A

A

A

A

A
A A

A

A

A

A

A
A

19

Expansion hypothesis

When generalizing cryptosystems like the CGL hash to g > 1, we have an obvious

Question: Is Γg(ℓ;p) Ramanujan?

Jordan–Zaytman (2020): in general, no.

This is no problem. For cryptographic applications, we just need Γg(ℓ;p) to have
“good expansion properties”: that is, random walks of length O(log p) in Γg(ℓ;p)
should converge to the uniform distribution on Sg(p).

Florit–S. 2021: empirical support and approximate constants for (g, ℓ) = (2, 2).

20

Generalizing CGL to genus 2: Takashima

Takashima was the first to generalize CGL to PPAVs of dimension g = 2.

• S1(p) becomes S2(p)
• Γ1(2;p) becomes Γ2(2;p): i.e. 2-isogenies become (2, 2)-isogenies,

To compute non-backtracking walks in Γ2(2;p), Takashima uses

• supersingular genus-2 curves to represent vertices,
• Richelot’s formulæ to compute the isogeny steps, and
• Igusa–Clebsch invariants to replace the j-invariant.

Since Γ1(2;p) is 15-regular, the data to be hashed is coded in base 14 (!).

21

Richelot isogenies

Consider a genus-2 curve

C : y2 = G1(x)G2(x)G3(x)

where the Gi are pairwise coprime quadratics in x (one may be linear).

Each of the Gi specifies a point of order 2 in Jac(C), and the subgroup whose
nonzero elements correspond to {G1,G2,G3} is the kernel of a (2, 2)-isogeny.

The codomain of the isogeny is the Jacobian of the genus-2 curve

C′ : ∆y2 = H1(x)H2(x)H3(x) ,

where Hi = G′jGk − GjG′k and ∆ = det(G1,G2,G3).

22

Trivial 4-cycles in the genus-2 graph

Flynn and Ti observe a serious issue with Takashima’s hash function:
It is easy to construct cycles of length 4 starting at any vertex of Γ2(ℓ;p).

If we consider the neighbourhood of a general edge in Γ2(2;p), then
for every (2, 2)-isogeny A1 → A2, there are always twelve ways of composing
three more different (2, 2)-isogenies to get a length-4 cycle (splitting
multiplication by 4 on A1).

Non-backtracking is not a strong enough condition to avoid hash collisions.

23

The neighbourhood of a general edge (and its dual) in Γ2(2;p)

A A

A

A

A

A

A

A

A

A

A

AA

A

A
A

A

A

A

A
A

A A
A
A

A

A

A
A

A

24

The good, the bad, and the dual

Suppose ϕ : A → A′ and ϕ′ : A′ → A′′ are (ℓ, ℓ)-isogenies.

Definition: We say that ϕ′ is an extension of ϕ, and that the extension is

good if ϕ′ ◦ ϕ is an (ℓ2, ℓ2)-isogeny;
bad if ϕ′ ◦ ϕ is an (ℓ2, ℓ, ℓ)-isogeny;
dual if ϕ′ ◦ ϕ is a (ℓ, ℓ, ℓ, ℓ)-isogeny (i.e. ∼= [ℓ]A).

Of the ℓ3 + (ℓ+ 1)ℓ+ 1 extensions of ϕ,

• ℓ3 are good;
• ℓ2 + ℓ are bad;
• 1 is dual.

25

Generalizing CGL to genus 2

Castryck–Decru–S. (Nutmic 2019): an attempt to repair Takashima’s hash.

We use a new rule for isogeny walks to replace non-backtracking:

After each (2, 2)-isogeny ϕi : Ai → Ai+1 in the walk,
we must take ϕi+1 : Ai+1 → Ai+2 to be one of the eight good extensions of ϕi.

The hash walks are thus (ℓn, ℓn)-isogenies; no short cycles are possible.

Implementation: following Takashima, we represent vertices with (Jacobians of)
genus-2 curves, and compute edges using Richelot isogenies.

26

Good extensions of Richelot isogenies

To realise a (2, 2)-isogeny ϕi : Jac(Ci) → Jac(Ci+1), Richelot’s formulæ map

Ci : y2 = G(i)1 (x)G(i)2 (x)G(i)3 (x)
to

Ci+1 : ∆(i)y2 = H(i)
1 (x)H(i)

2 (x)H(i)
3 (x) .

where H(i)
1 = (G(i)2)′G(i)3 − G(i)2 (G(i)3)′, etc.

The next isogeny corresponds to a quadratic splitting
{
G(i+1)1 ,G(i+1)2 ,G(i+1)3

}
:

1x dual extension: {G(i+1)1 ,G(i+1)2 ,G(i+1)3 } = {H(i)
1 ,H

(i)
1 ,H

(i)
1 }

6x bad extensions: #
(
{G(i+1)1 ,G(i+1)2 ,G(i+1)3 } ∩ {H(i)

1 ,H
(i)
1 ,H

(i)
1 }

)
= 1

8x good extensions: #
(
{G(i+1)1 ,G(i+1)2 ,G(i+1)3 } ∩ {H(i)

1 ,H
(i)
1 ,H

(i)
1 }

)
= 0

Computing the good extensions requires three square roots in Fp2 to split the H
(i)
j .

27

An algorithmic inconvenience

Minor inconvenience: there are two types of PPAVs in dimension g = 2:
Jacobians of genus-2 curves, and elliptic products.

• Isomorphism invariants are incompatible
• Richelot’s formulæ break down (∆ = 0) when the codomain is a product

Partition S2(p) into corresponding subsets, S2(p)J and S2(p)E; then

#S2(p)J =
1

2880p
3 +

1
120p

2 and #S2(p)E =
1
288p

2 + O(p) .

Being a proof of concept, CDS takes a simple solution: fail on elliptic products.
Justification: a random A ∈ S2(p) has only a O(1/p) chance of being in S2(p)E.

Bad news: from a cryptanalytic point of view, this is not rare enough.

28

A closer look at Γ2(2;p)

Naive view of the graph: tessellate the generic edge neighbourhood

A A

A

A

A

A

A

A

A

A

A

AA

A

A
A

A

A

A

A
A

A A
A
A

A

A

A
A

A

Naive view: Γ2(2;p) is a tessellation of these generic edge neighbourhoods...

29

Special vertices

Katsura–Takashima (ANTS 2020) studies the interaction of Richelot isogenies and
reduced automorphism groups.

Florit–S. (2020) goes further and builds an “atlas” of Γ2(2;p).

The typical 15-regular structure degenerates near vertices of Γ2(2;p) with
nontrivial reduced automorphism group, as edges pick up nontrivial weights.

Much intuition comes from the ratio principle:

weight([ϕ : A → B]) ·#RA(B) = weight([ϕ̂ : B → A]) ·#RA(A) ,

where RA(X) := Aut(X)/⟨±1⟩.

30

Type-I (RA ∼= C2) and elliptic product neighbourhoods

E×E′

E×E′E×E′

E×E′

E×E′

E×E′ E×E′
E×E′

E×E′

E×E′

I

I

I I

I

I

I

E×E′
I

I

I I

I

I

A

2

A

2

A

2
A

2

These vertices are far from isolated: there are O(p2) of them in the graph.
31

Neighbourhoods of edges from Type-I vertices to product neighbours

I E×E′

E×E′

I

I

I

E×E′

I

I

I

I

E×E′I

I

A
2

A 2

A
2

A

2

I

I

E×E′
E×E′
E×E′
E×E′
E×E′
E×E′

32

Type-III (RA ∼= C22) and elliptic square neighbourhoods

E2

E×E′

2

E×E′
2

E×E′

2

E2

E2 E2

III

III

III

I
2

III

E2

E2

A
4

I
2

I

2

I

2

I
2

These vertices are far from isolated: there are O(p) of them in the graph.

33

Connecting Type-III and elliptic-square vertices

E2

E×E′
2

E×E′

2

E×E′

2E2

E2

E2III

III

III

I

2I

2I
2

I 2

I
2

A

4

I
2

I

2

I

2
I

2
A4

I
2

I2

I
2

I

2

A

4

34

Type-IV (RA ∼= S3) and products Φ of 3-isogenous elliptic curves

IV Φ3

Φ

I

IV

I3

3

3

Φ

I

IV

I

3
3

3

I

ΦIV

I3
3

3

I

I

E×E′
E×E′
E×E′
E×E′
E×E′
E×E′

35

Solving the isogeny problem in g > 1

Results

Theorem (Costello–S., PQCrypto 2020):

1. There exists a classical algorithm which solves isogeny problems in Γg(ℓ;p)
with probability ≥ 1/2g−1 in expected time Õ(pg−1/P) on P processors as
p→ ∞ (with ℓ fixed).

2. There exists a quantum algorithm which solves isogeny problems in Γg(ℓ;p)
in expected time Õ(

√
pg−1) as p→ ∞ (with ℓ fixed).

This talk: the classical algorithm.

36

Attacking the isogeny problem

Recall: if we just view Γg(ℓ;p) as a generic Ng(ℓ)-regular Ramanujan graph, then
solving the path-finding problem would cost O(pg(g+1)/4) (classical) isogeny steps.

Key observation: in g = 2, we have #S2(p)E >
√

#S2(p)J. This pattern continues
in g > 2. We beat square-root algorithms by exploiting this special subset.

Let’s look at the algorithm for g = 2 first. Recursive application will give us g > 2.

37

The algorithm in g = 2: Step 1

Step 1: Compute paths from our target PPASes into elliptic product vertices:

ϕ : A → · · · → E1 × E2 ∈ S2(p)E

ϕ′ : A′ → · · · → E ′
1 × E ′

2 ∈ S2(p)E

Expander hypothesis =⇒ we find ϕ (and ϕ′) after O(p) random walks of length
in O(log p): total cost is Õ(p/P) isogeny steps on P classical processors.

It remains to compute a path E1 × E2 → · · · → E ′
1 × E ′

2 in Γ2(ℓ;p) in Õ(p) steps.

38

The algorithm in g = 2: Step 2

Step 2: to compute a path E1 × E2 → · · · → E ′
1 × E ′

2 in Γ2(ℓ;p),

1. Compute paths ψ1 : E1 → · · · → E ′
1 and ψ2 : E2 → · · · → E ′

2 in Γ1(ℓ;p).
2. If length(ψ1) ̸≡ length(ψ2) (mod 2), then go back to Step 1 (or swap E1 ↔ E2).
3. Trivially stretch the shorter of the ψi to the same length as the other,
by stepping back and forth on the last component isogeny.

4. Compose the products of the i-th components of ψ1 and ψ2 to get a path

ψ× : E1 × E2 → · · · → E ′
1 × E ′

2 in Γ2(ℓ;p) .

Cost: same as solving the isogeny problem in Γ1(ℓ;p), i.e. O(
√p/P).

The composition (ϕ′)† ◦ ψ× ◦ ϕ is a path from A to A′ in Γ2(ℓ;p).

We can thus solve the isogeny problem in Γ2(ℓ;p) in Õ(p) isogeny steps.

39

Attacking higher genus

The same idea works in higher dimension as follows.

Recall: #Sg(p) = O(pg(g+1)/2), so classical square-root algorithms solve the
isogeny problem in Γg(ℓ;p) in O(pg(g+1)/4) isogeny steps.

Let Tg(p) be the image of S1(p)× Sg−1(p) in Sg(p) (product polarization).

We have #S1(p) = O(p) and #Sg−1(p) = O(pg(g−1)/2), so

#Tg(p) = O(p(g2−g+2)/2) ;

so the probability that a random A in Sg(p) is in Tg(p) is in O(1/p(g−1)).

Key observation: g− 1 < g(g+ 1)/4 (and much smaller for large g).

We should be able to efficiently recognise steps into Tg(p) by something
analogous to the breakdown in Richelot’s formulæ in g = 2 (theta relations?).

40

Solving the general isogeny problem

To find a path from A to A′ in Γg(ℓ;p):

1. Compute paths ϕ : A → E ×B ∈ Tg(p) and ϕ′ : A′ → E ′ ×B′ ∈ Tg(p) in Γg(ℓ;p)
Expander hypothesis =⇒ Õ(pg−1/P) isogeny steps. Dominant step

2. Compute a path ψE : E → · · · → E ′ in Γ1(ℓ;p)
Usual elliptic algorithm =⇒ O(√p/P) isogeny steps

3. Recurse to compute a path ψB : B → · · · → B′ in Γg−1(ℓ;p)
Expander hypothesis =⇒ Õ(pg−2/P) isogeny steps

4. Apply the elliptic isogeny-glueing technique to get the final path.
Probability of compatible lengths: 1/2g−1.

Total cost: Õ(pg−1/P), dominated by the cost of walking into Tg(p) in Step 1.
Much faster than O(pg(g+1)/4).

41

Cryptographic implications

Genus-2 isogeny-based hashing is less efficient than the elliptic equivalent.

Say we want to force ≈ 2λ classical effort to compute preimages:

genus 1 ≈ p/12 vertices, square-root preimage finding =⇒ need p ≈ 22λ

• 4λ-bit outputs in Fp2 → 2λ-bit outputs in Fp (2x the ideal)
• Slow! Each input bit =⇒ square root in Fp2 =⇒ 2× 2λ-bit
modular exponentiations

genus 2 ≈ p3/2880 vertices, cube-root preimage finding =⇒ need p ≈ 2λ

• =⇒ 6λ-bit outputs in F3p2 (moduli point)→ 3λ bits (finalization
to shorter hash values is unclear.

• A little faster! Each 3-bit input digit =⇒ 3× square roots in Fp2
=⇒ 3× 2× λ-bit modular exponentiations

No easy fix for the collision-resistance issue (starting vertex) in either case.
42

(Some) references

Selected references 1

• Brock + Howe: Purely inseparable Richelot isogenies
https://arxiv.org/abs/2002.02122

• Castryck, Decru, Smith: Hash functions from superspecial genus-2 curves
using Richelot isogenies https://ia.cr/2019/296

• Charles, Goren, Lauter: Cryptographic hash functions from expander graphs
https://ia.cr/2006/021

• Costello + Smith: The supersingular isogeny problem in genus 2 and beyond
https://ia.cr/2019/1387

• Doliskani, Pereira, Barreto: Faster Cryptographic Hash Function From
Supersingular Isogeny Graphs https://ia.cr/2017/1202

43

https://arxiv.org/abs/2002.02122
https://ia.cr/2019/296
https://ia.cr/2006/021
https://ia.cr/2019/1387
https://ia.cr/2017/1202

Selected references 2

• Florit + Smith: Automorphisms and isogeny graphs of abelian varieties, with
applications to the superspecial Richelot isogeny graph
https://ia.cr/2021/012

• Florit + Smith: An atlas of the Richelot isogeny graph
https://ia.cr/2021/013

• Jordan + Zaytman: Isogeny graphs of superspecial abelian varieties and
Brandt matrices https://arxiv.org/abs/2005.09031

• Renes + Smith: qDSA: Small and Secure Digital Signatures with Curve-based
Diffie-Hellman Key Pairs https://ia.cr/2017/518

• Smith: Isogenies and the discrete logarithm problem on Jacobians of genus 3
hyperelliptic curves https://ia.cr/2007/428

44

https://ia.cr/2021/012
https://ia.cr/2021/013
https://arxiv.org/abs/2005.09031
https://ia.cr/2017/518
https://ia.cr/2007/428

	The supersingular elliptic 2-isogeny graph
	The Charles–Goren–Lauter function
	g > 1
	A closer look at 2(2;p)
	Solving the isogeny problem in g > 1
	(Some) references

