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All the lonely objects, Where do they all come from?

There are lots of types of interesting mathematical ob-
jects that people like to study. For example:

• Elliptic curves | higher dimensional abelian varieties.
• Curves of genus g | K3 surfaces | other varieties.
• Subvarieties of Pn.
• k-tuples of points in Pn.
• Maps f : X → Y between given (varieties) X and Y .
• Maps f : X → X from a given (variety) X to itself.
• . . . and the list goes on and on . . .

Spoiler: The primary topic of this talk will be the last
sort of example, and more specifically maps

f : Pn −→ Pn.
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All the lonely objects, Where do they all belong?

There’s a lot of great mathematics that has the form:

Here’s my favorite object X of type T . I’m
going to prove some cool facts about X .

There’s also lots of great mathematics that has the form:

Objects of type T are fascinating, so I’m
going to prove that every object of type T
has these cool properties.

The second type of theorem involves looking at all of the
objects of type T , so it makes sense to look at the set(?)
of those objects. For example:
• The set of all abelian varieties.
• The set of all morphisms Pn→ Pn.

But these “sets” are large and unwieldy. We can look at
better behaved subsets by adding restrictions.
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All the lonely objects, Where do they all belong?

What sorts of restrictions? For example:
• There are “too many” abelian varieties, so look at

principally polarized abelian
varieties of a fixed dimension.

• There are “too many” subvarieties of Pn, so look at

subvarieties of a fixed dimension and degree.

• The are “too many” maps Pn→ Pn, so look at

finite maps Pn→ Pn of a fixed degree.

It’s often helpful to add some structure. For example:
• The set of pairs (E,P ) consisting of an elliptic curve
E and a point P ∈ E of order N .
• The set of pairs (f, P ) consists of a map f : Pn→ Pn

and a fixed point f (P ) = P .



Moduli Problems and Moduli Spaces 4

Ah, look at all the lonely objects

One learns early in one’s mathematical career that

Isomorphic objects are “the same”

So when studying the set of objects of type T , we should
treat X and Y as being equivalent if

X ∼= Y.

Goal: Classify the objects of type T up to equivalence

For example, we could classify . . .
• abelian varieties up to isomorphism; or up to isogeny;
• varieties up to isomorphism; or up to birational iso-

morphism;
• maps f : X → P1 up to change of coordinates on P1,

i.e.,

f ∼= g if f = α ◦ g for some α ∈ Aut(P1) = PGL2.

• maps Pn→ Pn up to dynamical equivalence.
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Dynamical Systems

An abstract dynamical system is a pair (X, f ) con-
sisting of an object X and a self-map

f : X −→ X.

Dynamics is the study of the iterates of f ,

fn = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
nth iterate

.

TypicallyX is a set, the map f is a function, and we want
to classify the points x ∈ X according to the behavior
of their orbits

Of (x) =
{
x, f (x), f2(x), f3(x), . . .

}
.
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Equivalence of Dynamical Systems

The dynamics doesn’t change if we “change coordinates
on X ,” but we need to change coordinates to be com-
patible with iteration.

Definition: The dynamical systems f : X → X and
g : X → X are dynamically equivalent if

g = φ−1 ◦ f ◦ φ︸ ︷︷ ︸
denote this fφ

for some φ ∈ Aut(X).

This is the “right” notion of equivalence for dynamics:

X
fφ−−→ X

φ

y yφ
X

f−→ X

(fφ)n = (fn)φ

Ofφ
(
φ−1(x)

)
= φ−1 (Of (x)

)
Undergrad Example: Classify linear operators
L : V → V up to change of coordinates, i.e., classify
matrices A up to conjugation A ∼ B−1AB.
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All the lonely objects, Where do they all belong?

Our mission is now clear:

Describe the objects of type T up to isomor-
phism, i.e., describe the equivalence classes

• That’s fine, we get a set of equivalence classes.
• But it would be nice if the set of equivalence classes

itself had some nice structure.
For example:
• The set of isomorphism classes of elliptic curves is

naturally identified with A1 via the j-invariant.
• The set of isomorphism classes of principaly polarized

abelian varieties of dimension g is naturally identified
with an algebraic variety Ag of dimension 1

2g(g + 1).
• The set of isomorphism classes of degree d dynamical

systems f : Pn→ Pn is naturally identified with . . .

And thus our tale begins. . .
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Rational Maps of P1

We look at rational functions

f : P1 −→ P1 of degree d ≥ 2.

Thus f has the form

f (z) =
a0z

d + · · · + ad
b0zd + · · · + bd

∈ C(z).

First Observation: We get the same f if we multiply
the numerator and the denominator by a non-zero con-
stant, so f is determined by a point in projective space

fa,b ←→ [a0, . . . , ad, b0, . . . , bd] ∈ P2d+1.

Second Observation: f has exact degree d if and
only if its numerator and denominator have no common
roots, i.e.,

deg(f ) = d⇐⇒ Res(a0z
d + · · · + ad, b0z

d + · · · + bd) 6= 0.
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Dynamical Equivalence for Maps of P1

Third Observation: The underlying dynamics re-
mains the same if we simultaneously change change co-
ordintaes on P1.
Thus if we take a linear fractional transformation

φ(z) =
αz + β

γz + δ
∈ PGL2,

then

f (z) and its conjugate fφ(z) := φ−1 ◦ f ◦ φ(z)

have equivalent dynamics.

• The linear map φ acts on the coefficients of f , so we
may view it as acting on the points of P2d+1.
• It easy to see that the action on P2d+1 is linear, and

indeed we get a homomorphism

ρφ : PGL2 −→ PGL2d+2 satisfying f
φ
a,b = ρφ

(
[a, b]

)
.



Dynamics in Dimension 1 10

An Example: Dynamical Equivalence for Degree 2 Maps of P1

Example: For deg(f ) = 2, the linear transformation

φ =
αz + β

γz + δ

acts on the space of degree 2 maps via a homomorphism

ρφ : PGL2 −→ PGL6 .

ρφ =



α2δ αγδ γ2δ −α2β −αβγ −βγ2
2αβδ αδ2 + βγδ 2γδ2 −2αβ2 −αβδ − β2γ −2βγδ

β2δ βδ2 δ3 −β3 −β2δ −βδ2
−α2γ −αγ2 −γ3 α3 α2γ αγ2

−2αβγ −αγδ − βγ2 −2γ2δ 2α2β α2δ + αβγ 2αγδ

−γβ2 −βγδ −γδ2 αβ2 αβδ αδ2


.

What a mess!! And that’s the simplest non-trivial case!!
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The Moduli Space of Dynamical Systems on P1

The space that classifies degree d maps P1 → P1 up to
dynamical equivalence is the quotient space{

maps P1 deg d−−−→ P1
}

action of PGL2
=

P2d+2 r {Res = 0}
action of PGL2 via ρφ

.

Definition:

M1
d =

P2d+2 r {Res = 0}
action of PGL2 via ρφ

Theorem. [Levy, Milnor, JS]
(a)M1

d has a natural structure as an algebraic variety.

(b)M1
2
∼= A2.

(c) For all d ≥ 2, the varietyM1
d is a rational variety.

∗M1
d exists as a geometric quotient over Z, in the sense of geometric invariant

theory.

*
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Adding Level Structure: A Classical Example

Problem: Classify isomorphism classes of pairs

(E,P ) such that

{
E is an elliptic curve,
P is a point of exact order n.

This set of (E,P ) is classified by the points of the

elliptic modular curve Y1(n).

It is hard to overstate the importance of elliptic modular
curves. They play a fundamental role in theorems rang-
ing from Mazur’s uniform boundedness result to Wiles’
proof of Fermat’s last theorem.

More generally, Ag(n1, . . . , nr) classifies p.p. abelian va-
rieties A with points P1, . . . , Pr of order n1, . . . , nr.

The geometry of moduli spaces is very important:

Theorem. (a) genusY1(n)→∞ as n→∞.

(b) (Tai 1982) Ag is of general type for g ≥ 9.
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Periodic and Preperiodic Points

Let f : X → X be a dynamical system and let P ∈ X .

P is preperiodic if its orbit Of (P ) is finite.

P is periodic if fn(P ) = P for some n ≥ 1.

Periodic and preperiodic points are dynamcal
analogues of torsion points.
Easy Exercise:

P ∈ Etors iff P is preperiodic for E
2−→ E.

Fundamental Problem: Classify isomorphism classes
of pairs (f, P ) such that:
• f : P1→ P1 is a rational map of degree d;
• P is a point of period n for f ; or more generally,
• P is a point of tail length m and period n.

P
−→ −→ −→ −→ −→

tail length m = 5︷ ︸︸ ︷
period n = 5
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Adding Dynamical Level Structure

Definition: M1
d(n) classifies maps with a marked

point of period n,

M1
d(n) =

{
(f, P ) : f : P1 deg d−−−→ P1, P period n

}
PGL2-equivalence

.

Note that these are finite covers

M1
d(n) −→M1

d, (f, P ) 7−→ f.

Fundamental Problem:

Describe the geometry of M1
d(n).
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The Geometry ofM1
d(n)

M1
d(n) =

{
(f, P ) : f : P1 deg d−−−→ P1, P period n

}
PGL2-equivalence

.

Theorem. (Blanc–Canci–Elkies)

(a) For 1 ≤ n ≤ 5,M1
2(n) is a rational surface.

(b)M1
2(6) is a surface of general type.

Conjecture.

M1
2(n) is a surface of general type for all n ≥ 6.

Conjecture. Let d ≥ 2. There is an n0(d) such that

M1
d(n) is a variety of general type for all n ≥ n0(d).
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A Brief Foray into Number Theory
We recall a weak form of Mazur’s theorem.

Uniformity Theorem. (Mazur) There is a C such
that for all elliptic curves E/Q and all torsion points
P ∈ E(Q), Order(P ) ≤ C.

An alternative formulation, fundamental for the proof:

Y1(n)(Q) = ∅ for all n > C.

Here is a (special case of a) dynamical analogue.

Uniform Boundedness Conjecture. (Morton–
Silverman) There is a C(d) so that for all degree d maps
f : P1

Q→ P1
Q and all f -periodic points P ∈ P1(Q),

Periodf (P ) ≤ C(d).

The moduli-theoretic formulation says:

M1
d(n)(Q) = ∅ for all n > C(d).
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Portrait Level Structure / Multiplicities

Instead of marking one periodic point, we can mark lots
of points and specify what their orbits look like. This is
done using a portrait, which is a bunch of points and
arrows. A typical example:

• uu • //• //• LL•
��

• //•
~~•
OO • //•

��•
OO

•oo

•
  

•
  • //• //• //•

This portrait has points of period 1, 2, 3, and 4, a point
of tail length 2, and 6 points with no specified periodicity.
It is often useful to assign weights (multiplicities) to the
vertices. A weighted portrait is a 4-tuple

P = (V ,W ,Φ, ω)

V = finite set of vertices,

W = a subset of V ,

Φ = a function Φ :W → V ,

ω = a weight function ω :W → N.
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Portrait Moduli Spaces

For f : P1 → P1 and P ∈ P1, we denote the multi-
plicity (ramification index) by ef (P ).

Let P = (V ,W ,Φ, ω) be a portrait, say with n = #V .

Goal: Classify maps f and points P1, . . . , Pn ∈ P1 so
that

(f, P1, . . . , Pn) “looks like P .”

We can make this precise by looking at pairs

(f, ι) with f : P1 deg d−−−→ P1 and ι : V ↪−→ P1

satisfying

W ι−→ P1

Φ

y f

y
V ι−→ P1

and ef
(
ι(v)
)
≥ ω(v) for all v ∈ W .
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Portrait Moduli Spaces

As usual, we want to classify pairs (f, ι) up to equiva-
lence:

(f, ι) ∼ (fφ, φ−1 ◦ ι) for φ ∈ PGL2.

Theorem. (Doyle–Silverman) Let P be a portrait.
There is a moduli space M1

d[P ] that classifies equiv-
alence classes of pairs (f, ι) consisting of a degree d
map f : P1→ P1 and an f -model ι for P .

More precisely, the space M1
d[P ] exists as a geometric

quotient scheme over Z, in the sense of geometric invari-
ant theory, with the caveat that if P has non-periodic
points, some care is needed in the choice of an ample
line bundle on P2d+1 × (P1)n.

Problem: Describe the geometry ofM1
d[P ].
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Moving to Higher Dimension

More generally, we look at morphisms

f : PN −→ PN , f = [F0, . . . , FN ], where

F0, . . . , FN ∈ K[X0, . . . , XN ]

have degree d and no common roots in PN .

The coefficients of F0, . . . , FN determine a point

ξf ∈ PM with M = (N + 1)
(N+d

d

)
− 1.

The requirement that f be a morphism gives a Zariski
open subset

EndNd :=
{
ξf ∈ PM :

Macauley resultant︷ ︸︸ ︷
Res(f ) 6= 0

}
.

The conjugation action of φ ∈ PGLN+1 on PN induces

an action on f ∈ EndNd via

ξ
φ
f = ξfφ = ξφ−1◦f◦φ.
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Dynamical Moduli Spaces for Maps of PN

The proof is somewhat more elaborate, but the result is
the same:

Theorem. (Petsche–Szpiro–Tepper, Levy) The quo-
tient space MN

d = EndNd /PGLN+1 exists as a GIT
geometric quotient scheme.

More generally, we can extend the definition of models of
a portrait to maps PN → PN and sets of points in PN .

Theorem. (Doyle–Silverman) Let P be a portrait.
Then mutatis mutandis, the quotient spaceMN

d [P ] =

EndNd [P ]/PGLN+1 exists as a GIT geometric quotient
scheme.

Problem: Describe the geometry ofMN
d [P ].



Moving to Higher Dimension 22

The Dynamical Uniform Boundedness Conjecture

Conjecture. (Morton–Silverman) FixD ≥ 1, N ≥ 1,
and d ≥ 2. There is a constant C(D,N, d) so that for
all number fields K/Q of degree at most D and for all
morphisms f : PNK → PNK of degree d,

#
{
P ∈ PN (K) : P is f -preperiodic

}
≤ C(D,N, d).

In moduli-theoretic language, for all [K : Q] ≤ D,

#(vertices of P) ≥ C(D,N, d) =⇒ MN
d [P ](K) = ∅.

Trivial Result:

(D,N, d) = (1, 1, 4) implies Mazur’s #E(Q)tors ≤ C.

Theorem. (Fakhruddin) The Dynamical Uniform
Boundedness Conjecture implies

#A(K)tors ≤ C
(
[K : Q], dim(A)

)
.
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