Random Models of Profinite Groups in Arithmetic Geometry and Topology

Mark Shusterman

Weizmann Institute

11/04/2025

The Topological Space of Small Profinite Groups

- A profinite group Γ is small if for every finite group G the set (of continuous surjective group homomorphisms) $Sur(\Gamma, G)$ is finite.
- ullet S the set of isomorphism classes of small profinite groups.
- ullet A basis for a topology on ${\mathcal S}$ is given by the sets

$$\mathcal{S}(G_i; H_i) = \{\Gamma \in \mathcal{S} : \operatorname{Sur}(\Gamma, G_i) \neq \emptyset, \ \operatorname{Sur}(\Gamma, H_i) = \emptyset, \ 1 \leq i \leq m\}$$
 where $G_1, \dots, G_m, H_1, \dots, H_m$ range over all finite groups.

- ullet ${\cal S}$ is Hausdorff, totally disconnected, but not locally compact.
- Liu–Wood computed the closure in S of the set of all profinite groups with a given deficiency, inspired by Dunfield–Thurston.
- ullet Sawin–Wood computed the closure in ${\mathcal S}$ of

$$\left\{\widehat{\pi_1(M)}: M \text{ is a closed orientable } 3\text{-dimensional manifold} \right\}.$$

 \bullet For every finite group G, Sawin–Wood are making a conjecture regarding the closure in ${\mathcal S}$ of

 $\{\operatorname{Gal}(K^{\operatorname{ur}}/K): K \text{ is a Galois extension of } \mathbb{Q} \text{ with } \operatorname{Gal}(K/\mathbb{Q}) \cong G\}.$

Closure in S of Profinite Completions of 3-manifold Groups

A profinite group $\Gamma \in \mathcal{S}$ lies in the closure of the set

$$\left\{\widehat{\pi_1(M)}: M \text{ is a closed orientable } 3\text{-dimensional manifold}\right\}$$

if and only if there exists a homomorphism of (abelian) groups

$$\tau \colon H^3(\Gamma, \mathbb{Q}/\mathbb{Z}) \to \mathbb{Q}/\mathbb{Z}$$

such that, for each simple Γ -module V (of finite dimension) over a finite field \mathbb{F} , the following four conditions are met.

- We have $\dim_{\mathbb{F}} H^1(\Gamma, V) = \dim_{\mathbb{F}} H^1(\Gamma, V^{\vee})$.
- \bullet For each $0 \neq \alpha \in H^2(\Gamma, V)$ there exists β in $H^1(\Gamma, V^\vee)$ with

$$\tau(\alpha \cup \beta) \neq 0.$$

- If V is a symplectic module and $\mathbb F$ has odd characteristic then $\dim_{\mathbb F} H^1(\Gamma,V)\equiv 0 \mod 2.$
- ullet If the characteristic of $\mathbb F$ is 2 and V is affine symplectic then

$$\dim_{\mathbb{F}} H^1(\Gamma, V) \equiv \tau(c_V) \mod 2.$$

The Measurable Space of Small Profinite Groups

- ullet S with its Borel σ -algebra is a measurable space.
- The set of finitely generated profinite groups is measurable.
- Is the set of finitely presented profinite groups measurable?
- How to specify a probability measure on a closed subset of S?
- Dunfield–Thurston considered two models of a random group.
- ullet For $u\in\mathbb{Z}$, the limit of a random group given by the presentation

$$\langle x_1,\ldots,x_n:r_1,\ldots,r_{n+u}\rangle$$

where the relations are independent Haar-random from the free profinite group on x_1, \ldots, x_n . Convergence is due to Liu–Wood.

 \bullet The limit as $g\to\infty$ of a random group given by the presentation

$$\langle x_1, y_1, \dots x_g, y_g : [x_1, y_1] \cdots [x_g, y_g], y_1, \dots, y_g, \varphi(y_1), \dots, \varphi(y_g) \rangle$$

where φ is sampled from the mapping class group of a genus g surface. Convergence is due to Sawin–Wood.

Putative Examples of Measures on (Closed Subsets of) ${\cal S}$

 The étale fundamental group of a random curve over a finite field:

$$\lim_{g \to \infty} \lim_{q \to \infty} \frac{1}{\# \mathcal{M}_g(\mathbb{F}_q)} \sum_{X \in \mathcal{M}_g(\mathbb{F}_q)} \delta(\pi_1^{\text{\'et}}(X)).$$

A distribution conjectured to exist by Boston–Ellenberg:

$$\lim_{N \to \infty} \frac{1}{\#\{p: p \text{ is a prime number, } p < N\}} \sum_{p < N} \delta(\pi_1^{\text{\'et}}(\operatorname{Spec} \mathbb{Z}[p^{-1}])).$$

 \bullet The limit as $n\to\infty$ of a random group given by the presentation

$$\langle x_1,\ldots,x_n:\varphi(x_1)=x_1,\ldots,\varphi(x_n)=x_n\rangle$$

where φ is sampled from a (coset of a) subgroup of $\operatorname{Aut}(F_n)$.

Does a Limit of Probability Measures on S Exist?

• A sequence of measures μ_n on $\mathcal S$ (weakly) converges to a measure μ on $\mathcal S$ if

$$\mu_n(\mathcal{S}(G_1,\ldots,G_m;H_1,\ldots,H_m)) \to \mu(\mathcal{S}(G_1,\ldots,G_m;H_1,\ldots,H_m))$$
 as $n\to\infty$, for all finite groups $G_1,\ldots,G_m,H_1,\ldots,H_m$.

- ullet Our measures μ_n are probability measures, and we want the limit measure μ to be a probability measure as well.
- For a finite group G, we define the G-moment of a measure μ on $\mathcal S$ to be the expectation of $\#\operatorname{Sur}(\Gamma,G)$ where Γ is a random variable on $\mathcal S$ distributed according to μ .
- The Sawin–Wood strategy consists of showing that the G-moment of μ_n converges as $n \to \infty$, and the limit does not 'grow too fast' as we vary G. They also keep track of the support of μ_n .
- What is the probability that a random profinite group (in any of our models) is finitely generated?

Moments of the Function Field Boston-Ellenberg Model

• Consider the étale fundamental group of the complement of a random irreducible divisor on the affine line over \mathbb{F}_q :

$$\lim_{n\to\infty}q^{-n}\sum_{\alpha\in\mathbb{F}_{q^n}}\delta(\pi_1^{\text{\'et}}(\mathbb{A}^1_{\mathbb{F}_q}\setminus\{\alpha,\alpha^q,\dots,\alpha^{q^{n-1}}\})).$$

- The G-moments count regular Galois G-extensions of $\mathbb{F}_q(t)$ ramified at a single place.
- Branched G-covers of $\mathbb{P}^1_{\mathbb{F}_q}$ by smooth projective geometrically connected curves correspond to \mathbb{F}_q -points of Hurwitz spaces.
- Landesman–Levy computed the homology of Hurwitz spaces.
- Joint work in progress with Ellenberg studies the twisted homology of Hurwitz spaces by representations of S_n .
- Himes-Miller-Wilson also obtain results in this direction.