ORDERING ELLIPTIC CURVES BY THEIR CONDUCTORS

Arul Shankar

Joint work with Ananth N. Shankar and Xiaoheng Wang

October 27

WHY THE CONDUCTOR?

Let \mathcal{E} be the family of all elliptic curves over \mathbb{Q}

$$
\mathcal{E}=\left\{E_{A, B}: y^{2}=x^{3}+A x+B\left|A, B \in \mathbb{Z}, p^{4}\right| A \Longrightarrow p^{6} \nmid B\right\} .
$$

Conjecture (Goldfeld,Katz-Sarnak)

50% of curves in \mathcal{E} have rank $0 ; 50 \%$ of curves in \mathcal{E} have rank 1 .
Each curve $E \in \mathcal{E}$ has an attached L-function $L(E, s)$.
These conjectures were formulated by studying the associated family $\{L(E, s): E \in \mathcal{E}\}$ of L-functions together with:

BSD : rank of $E=$ analytic rank of E.
Most natural way to order L-functions is by their conductors.

WHAT'S THE CONDUCTOR? (AWAY FROM 2 AND 3)

Let $E: y^{2}=f(x)=x^{3}+A x+B$ be an elliptic curve. Away from 2 and 3 , the discriminant of E is

$$
\Delta(E)=\Delta(f)=-4 A^{3}-27 B^{2}
$$

In particular, $p \mid \Delta(E)$ iff $f(x)$ has a multiple root $r \bmod p$.

$$
\text { We define } C_{p}(E):=\left\{\begin{array}{cl}
p & \text { if } r \text { is a double root; } \\
p^{2} & \text { if } r \text { is a triple root. }
\end{array}\right.
$$

Equivalently, $C_{p}(E)=p$ when E has multiplicative reduction at p, and $C_{p}(E)=p^{2}$ when E has additive reduction at p. We then define the conductor of E to be

$$
C(E):=\prod_{p \mid \Delta(E)} C_{p}(E)
$$

Note in particular that $C(E) \mid \Delta(E)$.

WHAT IS EXPECTED?

Ordering curves by Δ, C : we are interested in the asymptotics of

$$
\begin{aligned}
& N_{\Delta}(X, \mathcal{E}):=\#\{E \in \mathcal{E}: \Delta(E)<X\} ; \\
& N_{C}(X, \mathcal{E}):=\#\{E \in \mathcal{E}: C(E)<X\} .
\end{aligned}
$$

When elliptic curves are ordered by discriminant, we have

Conjecture (Brumer-McGuinness)

$$
\begin{aligned}
N_{\Delta}(X, \mathcal{E}) & \sim \zeta(10)^{-1} \operatorname{Vol}\left(\left\{(A, B) \in \mathbb{R}^{2}: \Delta(A, B)<X\right\}\right) \\
& \sim \frac{(\sqrt{3}+3 \sqrt{3}) \sqrt{\pi} \Gamma(7 / 6)}{5 \zeta(10) \Gamma(2 / 3)} \cdot X^{5 / 6} .
\end{aligned}
$$

Unlike when ordering by height, even finiteness of $N_{\Delta}(X, \mathcal{E})$ is not immediate. It requires some diophantine input. (For example: Siegel's theorem on finiteness of integral points on elliptic curves.)

WHAT IS EXPECTED?

To understand $N_{C}(X, \mathcal{E})$, partition \mathcal{E} as $\mathcal{E}=\cup_{n \geq 1} \mathcal{E}_{n}$, where

$$
\mathcal{E}_{n}:=\{E \in \mathcal{E}:|\Delta(E)| / C(E)=n\} .
$$

If $E \in \mathcal{E}_{n}$, then $C(E)<X \Longleftrightarrow|\Delta(E)|<n X$. Thus, we expect

$$
N_{C}(X, \mathcal{E}) \sim \sum_{n \geq 1} N_{\Delta}(n X, \mathcal{E}) \cdot \operatorname{Prob}\left(E \in \mathcal{E}_{n}\right) \asymp \sum_{n \geq 1} \frac{(n X)^{5 / 6}}{n^{2}} \asymp X^{5 / 6}
$$

Then the following conjecture is implicit in the work of Watkins.

Conjecture

We have

$$
N_{C}(X, \mathcal{E}) \sim \alpha \cdot X^{5 / 6}
$$

for some explicit constant α computed by Watkins.

Lower bounds are easy to obtain:
(1) Counting $(A, B) \in \mathbb{Z}^{2}$ of height $\ll X^{1+\epsilon}$ gives the correct lower bound for $N_{\Delta}(X, \mathcal{E})$.
(2) Then summing $N_{\Delta}(n X)$ over $n \ll X^{\epsilon}$ gives the correct lower bound for $N_{C}(X, \mathcal{E})$.
Upper bounds are much more difficult:
(1) $N_{\Delta}(X, \mathcal{E})=O(X)$ follows from work of Davenport together with works of Delone-Nagell and Siegel.
(2) $N_{C}(X, \mathcal{E})=O\left(X^{1+\epsilon}\right)$ is due to Duke-Kowalski, building on work of Brumer-Silverman.

Both upper bounds use ineffective results. The nature of those proofs make improvements very difficult.

Related conjectures and results

The above two proofs motivate the following related questions:

Open Questions

How many binary cubic forms represent 1? Equivalently, how many cubic rings are monogenic? How many cubic fields are monogenic? How does $\# E(\mathbb{Z})$ behave in families of elliptic curves?

Here are some of the known results in these directions:
(1) Alpoge-Ho: $\# E(\mathbb{Z})$ has bounded second moment.
(2) Bhargava-S.: A positive proportion of elliptic curves have rank 0, and no integral points.
(3) Akhtari-Bhargava: A positive proportion of cubic rings are not monogenic (despite no local obstructions).
(4) Alpoge-Bhargava-Shnidman: A positive proportion of cubic fields are not monogenic (despite no local obstructions).
Getting to 0\% seems difficult, needing different methods.

There are two basic difficulties in estimating $N_{C}(X, \mathcal{E})$.
(1) Hard to rule out elliptic curves with large height and small discriminant.
(2) Hard to rule out elliptic curves with large discriminant and small conductor.
Issue 2 is a non-archemedian version of Issue 1.
Indeed, the first happens when $4 A^{3}$ and $27 B^{2}$ are unusually close.
While the second happens when $4 A^{3}$ and $27 B^{2}$ are unusually close p-adically. At one prime p, or many primes p.
We will rule out the first issue, and focus on the second.

$$
\text { Define } \mathcal{E}^{\prime}:=\{E \in \mathcal{E}: j(E)<\log |\Delta(E)|\}
$$

Curves E in \mathcal{E}^{\prime} satisfy $H(E) \ll_{\epsilon}|\Delta(E)|^{1+\epsilon}$. Only Issue 2 remains.

Asymptotics for $N_{C}\left(\mathcal{E}^{\prime}, X\right)$ would follow by bounding $N_{C}\left(\mathcal{E}_{n}^{\prime}, X\right)$. More precisely, we need the bound

$$
\begin{equation*}
N_{C}\left(\mathcal{E}_{n}^{\prime}, X\right) \ll X^{5 / 6} / n^{1+5 / 6+\delta} \tag{1}
\end{equation*}
$$

for some $\delta>0$, independent of n and X.
Bounds of this type are called uniformity or tail estimates. They arise in many different contexts. For $F \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$,

$$
\#\left\{v \in \mathbb{Z}^{n}:|v|<X, p^{2} \mid F(v)\right\} \ll X^{n} / p^{1+\delta}+o\left(X^{n}\right)
$$

is enough to determine the odds that F takes a squarefree value.
S.-Tsimerman: Precise estimates on quantities analogous to $N_{C}\left(\mathcal{E}_{n}^{\prime}, X\right)$, for degree- n polynomials, implies Malle's conjecture for degree- $n S_{n}$ number fields.
In all these cases, we only need average bounds over $n \in[M, 2 M]$.

Partial results (WHEN n IS SQUAREFREE)

We prove estimate (1), on average over squarefree n :

Theorem (Shankar, S., Wang)

We have

$$
\begin{equation*}
\sum_{\substack{n>M \\ n \text { sq. free }}} N_{C}\left(\mathcal{E}_{n}^{\prime}, X\right) \ll_{\epsilon} X^{5 / 6} / M^{1 / 6-\epsilon} \tag{2}
\end{equation*}
$$

This is enough to handle the following family. Define

$$
\mathcal{E}_{\mathrm{sf}}:=\left\{E \in \mathcal{E}^{\prime}: \frac{\Delta(E)}{C(E)} \text { is squarefree }\right\} .
$$

Theorem (Shankar, S., Wang)

(a) The asymptotics of $N_{C}\left(\mathcal{E}_{\mathrm{sf}}, X\right)$ are as predicted by the heuristics.
(b) The average size of the 2-Selmer groups of curves in $\mathcal{E}_{\mathrm{sf}}$ is 3 .

Averaging the 2-SELMER GROUPS

For Part (b) we need an average tail estimate on $\widetilde{N}_{C}\left(\mathcal{E}_{n}^{\prime}, X\right)$, where the tilde indicates that the elliptic curves $E \in \mathcal{E}_{n}^{\prime}$ are weighted by the size of $\operatorname{Sel}_{2}(E)$.
Our proof yields the following uniformity estimate on the set W_{p} of integer binary quartic forms corresponding to rings that are non-maximal at p, when they are ordered by height

$$
\sum_{p>M}\left|\left\{f(x, y) \in G L_{2}(\mathbb{Z}) \backslash W_{p}: H(f)\right\}\right|<_{\epsilon} X^{5 / 6} / M^{1-\epsilon} .
$$

This is the expected optimal bound (up to X^{ϵ}), and would be useful in (for example) obtaining a secondary main term in the $\left|\operatorname{Sel}_{2}(E)\right|$ average.
The idea of the proof is to map these sets into lattices equipped with a group action, using the group action to bring the points "closer together", and then using geometry-of-numbers techniques.

Thank you!

