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Why the conductor?

Let E be the family of all elliptic curves over Q

E =
{
EA,B : y2 = x3 + Ax + B| A,B ∈ Z, p4 | A =⇒ p6 - B

}
.

Conjecture (Goldfeld,Katz–Sarnak)

50% of curves in E have rank 0; 50% of curves in E have rank 1.

Each curve E ∈ E has an attached L-function L(E , s).
These conjectures were formulated by studying the associated
family

{
L(E , s) : E ∈ E

}
of L-functions together with:

BSD : rank of E = analytic rank of E .

Most natural way to order L-functions is by their conductors.
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What’s the conductor? (away from 2 and 3)

Let E : y2 = f (x) = x3 + Ax + B be an elliptic curve. Away from
2 and 3, the discriminant of E is

∆(E ) = ∆(f ) = −4A3 − 27B2.

In particular, p | ∆(E ) iff f (x) has a multiple root r mod p.

We define Cp(E ) :=

{
p if r is a double root;
p2 if r is a triple root.

Equivalently, Cp(E ) = p when E has multiplicative reduction at p,
and Cp(E ) = p2 when E has additive reduction at p.
We then define the conductor of E to be

C (E ) :=
∏

p|∆(E)

Cp(E ).

Note in particular that C (E ) | ∆(E ).
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What is expected?

Ordering curves by ∆, C : we are interested in the asymptotics of

N∆(X , E) := #
{
E ∈ E : ∆(E ) < X

}
;

NC (X , E) := #
{
E ∈ E : C (E ) < X

}
.

When elliptic curves are ordered by discriminant, we have

Conjecture (Brumer–McGuinness)

N∆(X , E) ∼ ζ(10)−1Vol({(A,B) ∈ R2 : ∆(A,B) < X})

∼ (
√

3 + 3
√

3)
√
πΓ(7/6)

5ζ(10)Γ(2/3)
· X 5/6.

Unlike when ordering by height, even finiteness of N∆(X , E) is not
immediate. It requires some diophantine input. (For example:
Siegel’s theorem on finiteness of integral points on elliptic curves.)
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What is expected?

To understand NC (X , E), partition E as E = ∪n≥1En, where

En := {E ∈ E : |∆(E )|/C (E ) = n}.

If E ∈ En, then C (E ) < X ⇐⇒ |∆(E )| < nX .Thus, we expect

NC (X , E) ∼
∑
n≥1

N∆(nX , E) ·Prob(E ∈ En) �
∑
n≥1

(nX )5/6

n2
� X 5/6.

Then the following conjecture is implicit in the work of Watkins.

Conjecture

We have
NC (X , E) ∼ α · X 5/6

for some explicit constant α computed by Watkins.
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The best known bounds

Lower bounds are easy to obtain:

1 Counting (A,B) ∈ Z2 of height � X 1+ε gives the correct
lower bound for N∆(X , E).

2 Then summing N∆(nX ) over n� X ε gives the correct lower
bound for NC (X , E).

Upper bounds are much more difficult:

1 N∆(X , E) = O(X ) follows from work of Davenport together
with works of Delone–Nagell and Siegel.

2 NC (X , E) = O(X 1+ε) is due to Duke–Kowalski, building on
work of Brumer–Silverman.

Both upper bounds use ineffective results.The nature of those
proofs make improvements very difficult.
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Related conjectures and results

The above two proofs motivate the following related questions:

Open Questions

How many binary cubic forms represent 1? Equivalently, how many
cubic rings are monogenic? How many cubic fields are
monogenic? How does #E (Z) behave in families of elliptic curves?

Here are some of the known results in these directions:

1 Alpoge–Ho: #E (Z) has bounded second moment.

2 Bhargava–S.: A positive proportion of elliptic curves have
rank 0, and no integral points.

3 Akhtari–Bhargava: A positive proportion of cubic rings are
not monogenic (despite no local obstructions).

4 Alpoge–Bhargava–Shnidman: A positive proportion of cubic
fields are not monogenic (despite no local obstructions).

Getting to 0% seems difficult, needing different methods.
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Seperating the ∆ and C difficulties

There are two basic difficulties in estimating NC (X , E).

1 Hard to rule out elliptic curves with large height and small
discriminant.

2 Hard to rule out elliptic curves with large discriminant and
small conductor.

Issue 2 is a non-archemedian version of Issue 1.
Indeed, the first happens when 4A3 and 27B2 are unusually close.
While the second happens when 4A3 and 27B2 are unusually close
p-adically. At one prime p, or many primes p.

We will rule out the first issue, and focus on the second.

Define E ′ :=
{
E ∈ E : j(E ) < log |∆(E )|

}
Curves E in E ′ satisfy H(E )�ε |∆(E )|1+ε. Only Issue 2 remains.
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Uniformity estimates

Asymptotics for NC (E ′,X ) would follow by bounding NC (E ′n,X ).
More precisely, we need the bound

NC (E ′n,X )� X 5/6/n1+5/6+δ (1)

for some δ > 0, independent of n and X .

Bounds of this type are called uniformity or tail estimates.

They arise in many different contexts. For F ∈ Z[x1, . . . , xn],

#
{
v ∈ Zn : |v | < X , p2 | F (v)

}
� X n/p1+δ + o(X n)

is enough to determine the odds that F takes a squarefree value.

S.–Tsimerman: Precise estimates on quantities analogous to
NC (E ′n,X ), for degree-n polynomials, implies Malle’s conjecture for
degree-n Sn number fields.

In all these cases, we only need average bounds over n ∈ [M, 2M].
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Partial results (when n is squarefree)

We prove estimate (1), on average over squarefree n:

Theorem (Shankar, S., Wang)

We have ∑
n>M

n sq. free

NC (E ′n,X )�ε X
5/6/M1/6−ε. (2)

This is enough to handle the following family. Define

Esf :=
{
E ∈ E ′ :

∆(E )

C (E )
is squarefree

}
.

Theorem (Shankar, S., Wang)

(a) The asymptotics of NC (Esf ,X ) are as predicted by the
heuristics.

(b) The average size of the 2-Selmer groups of curves in Esf is 3.
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Averaging the 2-Selmer groups

For Part (b) we need an average tail estimate on ÑC (E ′n,X ), where
the tilde indicates that the elliptic curves E ∈ E ′n are weighted by
the size of Sel2(E ).

Our proof yields the following uniformity estimate on the set Wp of
integer binary quartic forms corresponding to rings that are
non-maximal at p, when they are ordered by height∑

p>M

|{f (x , y) ∈ GL2(Z)\Wp : H(f )}| �ε X
5/6/M1−ε.

This is the expected optimal bound (up to X ε), and would be
useful in (for example) obtaining a secondary main term in the
|Sel2(E )| average.
The idea of the proof is to map these sets into lattices equipped
with a group action, using the group action to bring the points
“closer together”, and then using geometry-of-numbers techniques.
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Thank you!
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