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Manin’s conjecture

Let X be a smooth projective Fano variety (i.e. the anticanonical
bundle K−1

X is ample) defined over Q.

We can define the height of x ∈ X (Q) by choosing an embedding
i : X → PN

Q and setting hi (x) = max(|x0|, . . . , |xN |) when
i(x) = (x0 : · · · : xN) for x0, . . . , xn ∈ Z with no common factors. If

i∗O(d) ∼= K−eX then we say H(x) = hi (x)
d
e is the anticanonical

height.

Manin’s conjecture gives beautiful predictions for the number of
x ∈ X (Q) of height h(X ) < T , as well as the distribution of those
x in X (Qp) and X (R).

But for these predictions to come true, we must first remove a thin
set of rational points.



Thin sets and their discontents

A thin set of X (Q) is a finite union of subsets of X (Q) of the
following two types:

I Y (Q) for a subvariety Y ⊂ X of X .

I The image of Z (Q) for f : Z → X a generically finite map of
degree ≥ 2.

Using cutting-edge algebraic geometry tools, Lehmann, Sengupta,
and Tanimoto found a good thin set to remove.

But this is all very strange. To decide whether a rational point is
good or bad, you first have to go looking for bad subvarieties of
your variety, or bad coverings.

Is there a way to tell whether a rational point is good or bad by
looking at just that point?



Counting lattice points

Let’s think about a (seemingly) overly specific special case –
integer points on a variety defined by linear equations, or, in other
words, lattice points.

Let y1, . . . , yk be vectors in ZN . Let

X = {x ∈ AN | x · y1 = · · · = x · yk = 0}.

How many x ∈ ZN with ||x || < R lie in X?

This is a special case of the affine analogue of Manin’s conjecture,
with integer points instead of rational points, and ||x || playing the
role of height.

It is also a crucial step of the proof of pretty much every case of
Manin’s conjecture, starting with projective space.



Counting lattice points

How many x ∈ ZN with ||x || < R satisfy x · y1 = · · · = x · yk = 0?

Let Λ = {x ∈ ZN | x · y1 = · · · = x · yk = 0} be a lattice in the
vector space V = {x ∈ RN | x · y1 = · · · = x · yk = 0}. Let n be
the dimension of this vector space / rank of this lattice. Let Cn be
the volume of the unit ball of dimension n.

A natural guess:

#{x ∈ Λ | ||x || < R} ≈ CnR
n

vol(V /Λ)

The lattice points are evenly distributed in V , with density
1

vol(V /Λ) . Therefore, we expect the number of lattice points in any
region to be approximately proportional to the volume of that
region. The volume of the ball of radius R is CnR

n.

When is this true?



Successive minima
An answer can be provided using the successive minima of the
lattice Λ.

Let λr be the least λ such that Λ contains r linearly independent
vectors of length ≤ λ. So λ1 is the length of the shortest nonzero
vector v1, λ2 is the length of the shortest vector v2 not a multiple
of v1, etc. We call λr the rth successive minimum.

The most important one for us is λn.

I If λn/R is small then

#{x ∈ Λ | x ·, ||x || < R} ≈ CnR
n

vol(V /Λ)

is true with error term proportional to λn/R.

I If λn > R then all points in the ball of radius R lie in the
sublattice generated by v1, . . . , vn−1. A “thin set”. Moreover,
if λn/R is large then the number of integer points is much
more than predicted.



Freeness for affine varieties

Let X ⊆ AN be a smooth variety of dimension n defined by
polynomials f1, . . . , fk . Let x ∈ X (Z) be an integer point. How can
we apply this dichotomy to x ∈ X?

Take the derivative to obtain a lattice! Let

Λx = {y ∈ ZN | y · ∇f1(x) = · · · = y · ∇fk(x) = 0.}

Because X is smooth, Λx is a lattice of rank n.
We say x is free if

λn(Λx) < ||x ||1−ε.



Freeness for projective varieties
Let X ⊆ PN be a smooth variety of dimension n defined by
homogeneous polynomials f1, . . . , fk . Let x ∈ X (Q) be an rational
point with projective coordinates (x0 : · · · : xN).
Let

Λx = {y ∈ ZN/〈(x0, . . . , xn)〉 | y · ∇f1(x) = · · · = y · ∇fk(x) = 0}.

Here the norm of a vector y is the length of the projection of y to
the orthogonal complement of (x0, . . . , xn), equivalently is
min{||y + t(x0, . . . , xn)||2 | t ∈ R}.

Following Peyre, we say x is free if

λn(Λx) < max(|x0|, . . . , |xN |)1−ε.

Q (Peyre): Can removing the non-free rational points replace the
removal of the thin set in Manin’s conjecture?



Positive example: The cubic surface case

Let X ⊆ P3 be defined by a cubic equation, for concreteness
x3

0 + x3
1 + x3

2 + x3
3 = 0.

The anticanonical line bundle on X is O(1), so the height is simply
max(|x0|, |x1|, |x2|, |x3|). Manin’s conjecture predicts the number of
points of height < T is proportional to T times a power of logT .

The thin set in this case consists of at most 27 lines on the cubic
surface X , for example (x0 : x1 : x2 : x3) = (a : −a : b : −b). The
number of points of height < T on a line is proportional to T 2,
much too big.

We want to check that removing unfree points can substitute for
removing the thin set. In particular, we need to check that almost
every point on the line is not free.



Positive example: The cubic surface case
Let X ⊆ P3 be defined by x3

0 + x3
1 + x3

2 + x3
3 = 0. Let

x = (a : −a : b : −b).

Then
Λx = {(y1, y2, y3, y4) ∈ Z4/x | a2(y1 + y2) + b2(y3 + y4) = 0.} The
sublattice defined by y1 + y2 = y3 + y4 = 0 contains only one
linearly independent vector (mod x). Outside this sublattice, we
must have y1 + y2 a multiple of b2 and y3 + y4 a multiple of a2, so
the minimum length is√

a4 + b4

2
≈ max(|a|, |b|)2 > max(|a|, |b|)1−ε.

So x is not free.

The generator of this sublattice is (c : −c : d : −d) where
ad − bc = 1, which has length

λ1 =

√
2

a2 + b2
≈ max(|a|, |b|)−1.



The schematic perspective

Suppose we can spread our variety X out to a proper scheme X of
dimension n over Z. Further, fix a Riemannian metric on the real
points X (R).

A rational point x ∈ X (Q) extends to a map ix : SpecZ→ X .

The pullback i∗x TX of the tangent bundle TX of X is a vector
bundle on SpecZ, which defines a lattice Λx . Our fixed
Riemannian metric defines a metric on this lattice.

We say x is free if λn(Λx) < H(x)−ε.



The geometric perspective

There is a close analogy between rational points on varieties over
Q and rational curves on varieties over finite fields.

The set of rational curves on a varity X is not just a set, but
carries geometric structure – the moduli space of rational curves
on X . The tangent bundle of the moduli space of rational curves
on X can be calculated using the tangent bundle of X .

Using this, we can show that the smooth points of the moduli
space of rational curves on X correspond to the rational curves
that are free in Peyre’s sense. (Closely related to the concepts of a
free and very free rational curve).

So we have a geometric reason to study freeness, even if we like
the current Manin’s conjecture just fine.



Positive example: Hypersurfaces (Browning-S)

Birch: Let X be a smooth hypersurface of degree d in PN . If
N ≥ 2d(d − 1), then the number of points in X (Q) of height < T
is proportional to a constant times T . That is, Manin’s conjecture
is true, with empty thin set.

Browning-S: Let X be a smooth hypersurface of degree d in PN . If
N ≥ 3 · 2d−1(d − 1), then the number of free points in X (Q) of
height < T is proportional to the same constant times T .

Method of proof: After Birch, suffices to upper bound the number
of unfree points. If x is unfree, then there are many y ∈ Λx with
||y || < ||x ||. So it suffices to upper bound the number of solutions
(x , y) to the system of equations f (x) = 0, y · ∇f = 0, which we
do with a circle method argument, following closely the strategy of
Birch.



Negative example: Hilbert schemes of projective space (S)
Let X = Hilb2(Pn). This is a resolution of the singularities of
Sym2(Pn). Abstractly, it is the moduli space of ideal sheaves on Pn

with quotient of length 2. Concretely, it is the quotient of the
blow-up Bl∆(Pn × Pn) of the diagonal ∆ of Pn × Pn by the
involution switching the two copies of Pn.

In Manin’s conjecture for Hilb2(Pn), the thin set is the image of
Bl∆(Pn × Pn)(Q).

Can removing unfree points substitute for removing this thin set?
No! In fact, most points in this thin set are free.

Method of proof: First, following Peyre, check that most points in
(Pn × Pn)(Q) are free. Then, show that the tangent lattice Λx

doesn’t change much as we pullback along the blow-up map
Bl∆(Pn × Pn)→ Pn × Pn and then follow the degree two covering
Bl∆(Pn × Pn)→ Hilb2(Pn). Because the tangent lattice doesn’t
change much, the heights and successive minima don’t change
much.



Where does this leave freeness?

It is possible that unfree points do substitute for the special
subvarieties in Manin’s conjecture, but do not substitute for the
degree ≥ 2 covers.

Peyre has another proposal, the “all the heights” approach, which
should suffice to substitute for the degree ≥ 2 thin set.

It’s possible that combining the two gives a good alternative
formulation of Manin’s conjecture.



Open questions

(1) Can we come up with new strategies to count unfree points?
Currently known strategies include bounding the number of pairs
(x , y) with y ∈ Λx (Browning-S), and, for special varieties like
Grassmanians, giving an explicit description of Λx and using
equidistribution results for lattices (Browning-Horesh-Wilsch).

(2) Can we find any example where counting free points is easier
than counting all rational points (or all rational points outside an
explicit thin set)?

(3) What do the number and distributions of unfree points look
like numerically for some interesting examples of Fano manifolds?

(4) Are there low-dimensional examples where we can calculate the
cohomology of the moduli space of free curves on X and the
moduli space of all curves on X and see which one better
approximates the cohomology of the loop space of X?


