
Old and new on the symmetry groups of K3 surfaces

Alessandra Sarti
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Automorphisms of K3 surfaces

We recall briefly the definition:

a K3 surface S is a compact complex smooth manifold of
dimension 2 such that:

I S is simply connected,

I up to scalar multiplication there exists a unique global holomorphic
two form without zeros, H0(S,Ω2

S) ∼= CωS

I we call ωS the period of S.

Here we want to study the automorphism group of S

Aut(S) = {f : S −→ S | f is biholomorphic}

i.e. we want to study the symmetries.



Quartics

Smooth quartics in P3(C) are the ”most easy” examples of K3 surfaces :

S = {f4(x0, x1, x2, x3) = 0} ⊂ P3(C), deg f4 = 4, homogeneous.

Do you want to see a K3? A picture:

1 + x4 + y4 + z4 + a(1 + x2 + y2 + z2)2 = 0, a = −0.49



K3 surfaces : André Weil
The name K3 was given by André Weil in 1958, in a report on a
research project for his research stay in Paris.

Dans la seconde partie de mon rapport, il s’agit des variétés
kählériennes dites K3, ainsi nommées en l’honneur de Kummer,
Kähler, Kodaira et de la belle montagne K2 au Cachemire.

In the second part of my report, it is about certains Kähler manifolds, called K3, so
named in honour of Kummer, Kähler, Kodaira and of the beautiful mountain K2 at
Cachemire.

André Weil (1906-1998) K2 mountain, 8611m
1st climb in 1954



The Broad Peak at Cachemire

It exists a K3 mountain in Cachemire. The name was given in
1856. It is also called Broad Peak, the 12th highest mountain in
the world, 8047m.

The first climb was ”only” in 1957, at the same time as the report
of André Weil.

The K3 mountain



Involutions on quartics

Take the Fermat quartic surface in P3(C)

F : x40 + x41 + x42 + x43 = 0

it admits an involution

(x0 : x1 : x2 : x3) 7→ (−x0 : x1 : x2 : x3),

the 2-form in the chart x3 6= 0, x2 6= 0 is

dx0 ∧ dx1
4x32

which is multiplied by −1 by the involution.



Lattices
Lattice theory is an important tool when studying K3 surfaces.

Recall that for a K3 surface S we have

H2(S,Z) = U3 ⊕ E2
8 := L, the K3 lattice

where E8 is the lattice associated to the root system with the
same name and

U =

(
Z2,

(
0 1
1 0

))
.

The K3 lattice has rank 22, signature (3, 19), it is even and
unimodular,

where even means (v, v) ∈ 2Z for all v ∈ L.

If g ∈ Aut(S) we will often consider

H2(S,Z)g
∗

= {x ∈ H2(S,Z) | g∗x = x} the invariant lattice



The problem

Study properties of automorphisms of finite order on K3 surfaces.

Some main problems: classify finite groups G that can act on a K3
surface and study their action on cohomology.

Most of the K3 surfaces have an infinite automorphism group,
only a finite number have finite automorphism group and the
Picard lattices are known by results of Nikulin and Vinberg.

If a K3 surface has rk Pic(S) = 20 then Shioda and Inose in 1977
by using the elliptic fibrations show that Aut(S) has infinite order.



A useful exact sequence

If G is a finite group acting on a K3 surface S, the group G
induces an action on the vector space H0(S,Ω2

S) ∼= CωS
Let g ∈ G then g∗ωS = α(g)ωS , α(g) ∈ C∗

We get a map:
α : G −→ C∗, g 7→ α(g)

If g has finite order n then α(g) is a nth-root of unity

Since G is finite then im(α) is a cyclic group of some mth-roots of
unity µm.

We get an exact sequence

1 −→ G0 −→ G
α−→ µm −→ 1



Symplectic automorphisms

We have an exact sequence

1 −→ G0 −→ G
α−→ µm −→ 1

where G0 are those automorphisms that act as the identity on ωS
(the symplectic automorphisms),

observe that if G0 = {id} then G is cyclic.



Non–symplectic automorphisms

An automorphism σ is said to act non–symplectically if its action
is non–trivial on the 2-form.

If σ has order n and it acts on ωS by multiplication by a primitive
nth–root of unity then one says that σ acts purely
non–symplectically.

In particular by the exact sequence

1 −→ G0 −→ G
α−→ µm −→ 1

if a group G acts purely non–symplectically then G is cyclic.



Important tools

Nikulin started the study of automorphisms in the 80’s, by using
lattice theory. His results together with Torelli’s theorem are
powerful tools in the study of automorphisms:

Theorem (Torelli Theorem)(Piatetski-Shapiro and Shafarevich,
1971)

Let S and S′ be K3 surfaces and let ϕ : H2(S,Z) −→ H2(S′,Z) be an
isometry of lattices if

1 ϕ(CωS) = CωS′ (Hodge isometry)

2 ϕ sends a Kähler class to a Kähler class (effective isometry)

then there exists a unique isomorphism f : S′ −→ S such that f∗ = ϕ.



How to attack the problem of classification

Split first the study between symplectic and (purely)
non–symplectic automorphisms,

then use the exact sequence to study G in all generality.

First questions : how big can be G, G0 and m?

1 −→ G0 −→ G
α−→ µm −→ 1



Symplectic automorphisms: finite abelian groups

In his famous paper Finite groups of automorphisms of Kählerian
surfaces of type K3 in 1976, Nikulin classifies all finite abelian groups
acting symplectically on a K3 surface. These are 14 cases (different
from the identity):

Z/nZ, 2 ≤ n ≤ 8,

(Z/mZ× Z/mZ), m = 2, 3, 4,

(Z/2Z× Z/4Z), (Z/2Z× Z/6Z),

(Z/2Z)i, i = 3, 4



Unicity of the action in cohomology

An important problem is to determine the action in cohomology,

an important result of Nikulin says that if one fixes G0 one of the
previous abelian groups, then up to conjugacy by an element in
O(L) where L is the K3 lattice, the action on L is unique.

So it is enough to compute the action for one example, then one
gets the action in general.

Morrison in 1984 computed the action for a symplectic involution:
it exchanges the two copies of E8 in the K3 lattice L and it
preserves the rest.

In several papers, Garbagnati–S. 2007–2009, we computed the
invariant sublattice of the K3 lattice for the remaining abelian
groups.



Elliptic fibrations

These are very useful in the study of automorphisms.

Take the elliptic fibration in Weierstrass equation on a K3 surface

y2 = x3 +A(t)x+B(t), A(t), B(t) ∈ C[t]

with degA(t) ≤ 8 and degB(t) ≤ 12.

For a suitable choice of A(t) and B(t) the fibration admits a
torsion section,

this section induces a symplectic automorphism of the same order.



Elliptic fibration with 3–torsion section
Assume we have a 3–torsion section,
the fibration admits 6 fibers of type I3 and 6 fibers of type I1, see
the picture :



Order 3 symplectic : the invariant lattice

Theorem (Garbagnati–S. 2007)

Let S be a K3 surface (projective or not) admitting a symplectic
automorphism σ of order three. Then

H2(S,Z)σ
∗

= U ⊕ U(3)2 ⊕A2
2, (H2(S,Z)σ

∗
)⊥ = K12(−2).

where K12 is the Coxeter–Todd lattice, a rank 12 even, lattice of
discriminant 36, which gives the densest sphere packing in
dimension 12, known sofar.

Last week on february 1st, there was a result of Garbagnati and
Prieto computing explicitely the action on H2(S,Z).



Groups of symplectic automorphisms

Remove the assumption that the groups are abelian.

An important result of Mukai in 1988 says that

Theorem (Mukai 1988)

A finite group acting symplectically on a K3 surface is a subgroup of
the Mathieu group M23.

where M23 is one of the 26 sporadic groups, recall that there are 5
Mathieu groups Mn, for n = 11, 12, 22, 23, 24.

Mukai describes 11 maximal finite groups acting symplectically on
a K3 surface and gives examples of K3 surfaces with an action of
each of these groups.

Xiao in 1996 gives then the complete list of all finite groups acting
symplectically, he gives a list of 81 groups.



The Mathieu group M20

The Mathieu group M20 = A5 n (Z/2Z)4 has order 960 and it is
the biggest of the 11 groups in Mukai’s list, it can also be
described as the stabilizer subgroup of 21 and 22 in M22.

Example of Mukai of a K3 surface with a symplectic action by
M20:

XMu : x40 + x41 + x42 + x43 + 12x0x1x2x3 = 0

We will find this example again later when studying groups of
maximum order, acting on a K3 surface (not necessarily
symplectically).

It seems that there are infinitely many K3 surfaces with a M20

action (work in progress by Comparin–Demelle 2021).



The maximum order of G

Remove the assumption that the groups act symplectically.

Recall the exact sequence:

1 −→ G0 −→ G
α−→ µm −→ 1

By Nikulin’s results all K3 surfaces with m > 1 are projective.

In 1999 Kondo shows that :

Theorem (Kondo 1999)

1 |G| ≤ 3840 = 4 · 960.

2 If |G| = 3840 then S is a Kummer surface Km(E√−1 × E√−1), where

E√−1 = C/(Z +
√
−1Z) and G is isomorphic to an extension of M20 by

Z/4Z. Moreover G and an action of G on S are unique up to
isomorphism.



Classify all maximal G

We say that a finite group G acting on a K3 surface S is maximal
if the following holds: if H is another finite group acting on S then
G is not contained in H.

Problem classify all such groups: Kondo’s result gives already the
biggest one.

But one can show that there is another exact sequence :

1 −→M20 −→ G
α−→ µ2 −→ 1

which produces also two such non–isomorphic groups and unique
K3 surfaces (Bonnafé–Sarti/Brandhorst–Hashimoto 2020)



More results

Brandhorst and Hashimoto classify in fact all pairs (S,G) where S
is a K3 surface, G ⊂ Aut(S), such that the symplectic part
G0 ⊂ G is one of the 11 maximal subgroups in Mukai’s list:

I they find 42 pairs,
I and explicit equations for S in 25 cases (maybe some more).

In 2009 Frantzen classifies the groups G0 × µ2, where G0 is one of
the 11 maximal groups of Mukai.



The degree 2 extensions of M20

Let us consider the exact sequence

1 −→M20 −→ G
α−→ µ2 −→ 1

with the previous notation we have :

Theorem (Bonnafé–Sarti 2020, Brandhorst–Hashimoto 2020)

There are two non isomorphic groups G such that the G-invariant
Picard group of the corresponding K3 surface S and its transcendental
lattice are :

1 〈4〉,
(

4 0
0 40

)
2 〈8〉,

(
8 4
4 12

)
The K3 surfaces are Kummer surfaces.



Some steps in our proof and in Kondo’s proof

Let Pic(S) denote the Picard group of a K3 surface and TS be the
transcendental lattice which is

TS = Pic(S)⊥ ∩H2(S,Z),

if g is an automorphism acting on S then recall

H2(S,Z)g
∗

= {x ∈ H2(S,Z) | g∗x = x} the invariant lattice,

if g is a symplectic automorphism by using the 2-form one can
show

TS ⊂ H2(S,Z)g
∗
, (H2(S,Z)g

∗
)⊥ ⊂ Pic(S)



Let L20 be the following lattice of signature (3, 0):

L20 =

 4 0 −2
0 4 −2
−2 −2 12


observe that L20 = L′(2) for L′ some even lattice.

If G0 = M20 acts symplectically on a K3 surface S, Kondo
computed the invariant lattice :

H2(S,Z)M20 = L20

hence rk((H2(S,Z)M20)⊥) = 19, so that the Picard group of the
K3 surface must be of rank at least 19,

again by Nikulin’s results: (H2(S,Z)M20)⊥ is a negative definite
lattice.



Since the K3 surface S is projective, this tells us that
rk Pic(S) = 20 which is the maximum possible for K3 surfaces,

observe that the K3 surface contains an M20–invariant ample class
L, with L2 = 4t for some positive integer t.

We have ZL⊕ TS ⊂ L20 with finite index, where recall:

L20 =

 4 0 −2
0 4 −2
−2 −2 12





The transcendental lattice

If v ∈ L20 then (v, v) ∈ 4Z
this means that the transcendental lattice:

TS =

(
4a 2b
2b 4c

)
with some condition on a, b, c ∈ Z≥0 by using results of
Shioda–Inose to classify K3 surfaces of Picard number 20:

Theorem (Shioda–Inose 1977)

There is a one-to-one correspondence from the set of singular (i.e.
Picard number 20) K3 surfaces to the set of equivalence classes of
positive definite even integral binary quadratic forms with respect to
SL2(Z).

Since here TS = T ′(2) with T ′ even, by a result of the same
authors one gets that S is a Kummer surface.



A Kummer surface

Let A = C2/Λ, abelian surface, Λ rank 4 lattice and let
ι : (x, y) 7→ (−x,−y) be an involution acting on it.

The quotient A/〈ι〉 has 16 singularities of type A1.

Locally the equation of such a singularity is

{z0z1 − z22 = 0} ⊂ C3

An A1 singularity



The minimal resolution Km(A) contains 16 rational curves and it
is called a Kummer surface.



Back to the proof : bounding m

Recall the exact sequence:

1 −→M20 −→ G
α−→ µm −→ 1

By Nikulin’s result the Euler’s totient function of m divides
rkTS = 2,

hence m ∈ {1, 2, 3, 4, 6} and assume m > 1 to have a genuine
extension of M20.

The group µm induces an isometry of L20 and Kondo computes

|O(L20)| = 16

so that m ∈ {2, 4}.



Extensions of M20

So we get two exact sequences

1 −→M20 −→ G
α−→ µ4 −→ 1

1 −→M20 −→ G
α−→ µ2 −→ 1

The first is the case described by Kondo,

by using Xiao’s list one sees that it is not possible to get order
bigger than 960 · 4 = 3840.

The second case is ”our” case, here the order of G is 960 · 2 = 1920.

In both cases the sequence splits, so that G = M20 o µm, m = 2, 4.



Determine the polarization and the transcendental
lattice

One has to study how a lattice ZL with L2 = 4t can be embedded
in L20 (to get the invariant ample class),

use the fact that we have an action of µ2 on L20,

one can compute the polarization and TS as in the theorem.



1 −→M20 −→ G
α−→ µ2 −→ 1

Theorem (Bonnafé–Sarti 2020, Brandhorst–Hashimoto 2020)

There are two non isomorphic groups G such that the G-invariant
Picard group of the corresponding K3 surface S and its transcendental
lattice are :

1 〈4〉,
(

4 0
0 40

)
2 〈8〉,

(
8 4
4 12

)
The K3 surfaces are Kummer surfaces.

The groups G are maximal!



The two K3 surfaces

The divisors L with L2 = 4 and 8 are G–invariant,

hence the linear system |L| allows to realize the K3 surfaces in
some projective space,

the action of G can be linearized and comes from an action on the
projective space.

This allows to find examples in P3 and P5.

The Kondo’s surface has L2 = 40 so that it lives in P21! We will
see a singular model.



An equation for XMu

In one case the ample class (i.e. the polarization) has L2 = 4 and
we get a quartic in P3.

Consider again the example of Mukai, of a quartic K3 surface with
a symplectic M20–action:

XMu : x40 + x41 + x42 + x43 + 12x0x1x2x3 = 0



one can perform a change of coordinates and write

X ′Mu : x40+x
4
1+x

4
2+x

4
3−6(x20x

2
1+x

2
0x

2
2+x

2
0x

2
3+x

2
1x

2
2+x

2
1x

2
3+x

2
2x

2
3) = 0

clearly X ′Mu is invariant by the non–symplectic involution

ι : (x0 : x1 : x2 : x3) 7→ (−x0 : x1 : x2 : x3).

The finite group GMu is generated by M20 and ι and has order
2 · 960 = 1920.

It is a complex reflection group, called G29 in Shepard–Todd
classification.



A singular deformation of X ′Mu

1 + x4 + y4 + z4 − (x2y2 + x2z2 + x2 + y2z2 + y2 + z2) = 0



An equation for XBH

In the second case the polarization has L2 = 8, so the K3 surface
is a complete intersection of three smooth quadrics in P5.

We study some central extensions of M20 to find irreducible
representations on C6,

Take GBH be the subgroup of GL6(C) generated by:

t = diag(−1, 1, 1, 1, 1, 1),

u =



i 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 −i 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 and v =



0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0

 .



The projective group PGBH is the group we were looking for, it
contains M20 with index 2.

One gets the equations for XBH (MAGMA computations):
x20 + x23 − φx24 + φx25 = 0,

x21 − φx23 + x24 − φx25 = 0,

x22 + φx23 − φx24 + x25 = 0,

with φ = (1 +
√

5)/2 the golden ratio.

This answers a question by Brandhorst–Hashimoto, about
equations for this surface.



A singular equation of XKo

Consider again the Fermat quartic surface

F : x4 + y4 + z4 + t4 = 0

take the quotient by the symplectic involution

j : (x : y : z : t) 7→ (−x : −y : z : t),

the transcendental lattice of F is

TF =

(
8 0
0 8

)
then the transcendental lattice of the minimal resolution F ′

satisfies 2TF ′ = TF (Inose 1976) which gives :

TF ′ =

(
4 0
0 4

)



Kondo showed that TXKo
= TF ′ which by Shioda-Inose result

allows us to identify S′ with XKo.

By putting z0 = z, z1 = t, z2 = x2, z3 = y2, z4 = xy we have the
equations of a singular model of XKo in the weighted projective
space P(1, 1, 2, 2, 2) :

XKo : z40 + z41 + z22 + z23 = 0, z24 = z2z3

This surface has 8 A1 singularities coming from the fixed points of
j on F .


