Challenges and usefulness of creating a database of groups in the LMFDB

Manami Roy Fordham University

ICERM project with Michael Bush, Lewis Combes, John Johns, Jen Paulhus, David Roe, and Sam Schiavone

VaNTAGe Seminar

December 8, 2020

Creating a database for the finite abstract groups in the L-functions and Modular Forms Database (LMFDB).

https://groups.lmfdb.xyz/Groups/Abstract/

Database for abstract groups

LMERE	∆ → Groups → Abstract Abstract groups	- Login Feedback - Hide Menu
Introduction Overview Random Universe Knowledge	Browse By arder: 1-10 20-100 101-200	Learn more about
L-functions Degree 1 Degree 2 Degree 3 Degree 4 (zeros First zeros	By nilpotency class: 1 2 3 4 A random abatract group from the database. Search	Reliability of the data Labeling convention
Hodular forms Classical Mass Hilbert Binchi Steget Enchi Explicit curves over Q(c) Gamus 2 curves over Q(c) Gamus 2 curves over Q(c) Explicit curves over Q(c) Market Seeder Explicit curves over Q(c)	Order 3 e.g. & or a range like 3.5 Exponent 2. d. 0 e.g. bit of https://discuprition.com/discupritinter/discuprition.com/discuprition.com/discuprition.com/discuprid	
Motives Hypergeometric over Q Groups Galois groups Sato-Tate groups Lattices Small groups		

- Isn't there a database for finite groups already?
- Why is it important to have a database for finite groups in the LMFDB?
- What are some of the challenges in creating this database?
- What else can we do in the future?

Isn't there a database for finite groups?

Yes! There is a page by Tim Dokchitser for small groups of order \leq 500:

http://groupnames.org

Se	arch [? for help] Go	Home	About C _n D _n S _n A _r	Degree	Lir	ear 🚺 Irr Rep:	s Characte	ins XX)	
C.	Trivial group	Groups of order 1		— d	ę 1+	Label	ID 11				
	(Groups of order 2		d	6	Label	ID	Grou	pNam	es	
C ₂	Cyclic group			2	1+	C2	2,1				
C1	Cyclic group; = A ₃ = tri	angle rotations		3	1	C3	31	Finite gr	oups of or	der ≤500, group	names, extensions,
-	, , , , , , , , , , , , , , , , , , , ,	Groups of order 4		d	6	Label	ID	presentat	ions, prop	erties and chara	icter tables.
C ₄	Cyclic group; = square r	otations		4	1	C4	4,1	Order <	50 <120	<250 <500	
C^2	Klein 4-group $V_4 = elen$	nentary abelian group of	type [2,2]; = rectangle	4		C2^2	4.2	order _		1100, 1000	
-2	symmetries			d	~	Lobal	ID	Orders w	ith >300	groups of order	n
Ce	Cyclic group: = pentago	n rotations		5	1	CS	51	n = 128,	192, 256,	288, 320, 384, 4	432, 448, 480.
- 3	cjene group; - penago	Groups of order 6		d	p	Label	ID	r			
C ₆	Cyclic group; = hexagor	n rotations		6	i	C6	6,2	Z-groups	han, Inon	soluble, supers	otubie, [non]monomiai,
S ₃	Symmetric group on 3 le non-abelian group	etters; = $D_3 = GL_2(F_2) =$	triangle symmetries = 1 st	3	2+	S 3	6,1	elementa almost si	ry, hypere mple, qua	elementary, line sisimple, ration	ar, perfect, simple, al groups.
~		Groups of order 7		d	6	Label	ID				
C7	Cyclic group	Parameter of surday 9		d	1	C/ Label	7,1				
C ₈	Cyclic group	stoups of order 8		8	ĭ	C8	8,1				
D ₄	Dihedral group; = He ₂ =	$A\Sigma L_1(F_4) = 2^{1+2}_+ = squ$	are symmetries	4	2+	D4	8,3				
Q ₈	Quaternion group; = C ₄ .	$C_2 = Dic_2 = 2^{1+2}$		8	2-	Q8	8,4				
C ³	Elementary abelian grou	up of type [2,2,2]		8		C2^3	8,5				
C ₂ ×C ₄	Abelian group of type [2	2.41		8		C2xC4	8.2				
	8	Groups of order 9		d	9	Label	ID				
C ₉	Cyclic group			9	1	C9	9,1				
C ₃ ²	Elementary abelian grou	ip of type [3,3]		9		C3^2	9,2				
0		Grou	ps of order 10					– d	6	Label	D
C10	Cyclic group							10	1	CIU	10,2
D ₅	Dihedral group; =	= pentagon symmetries						5	2+	D5	10,1
C ₁₁	Cyclic group	Grou	ups of order 11					- a 11 d	1	C11 Label	11,1 ID

• Finite groups show up at many other sections in the LMFDB. They deserve their own pages which can be referred to by other pages.

- Finite groups show up at many other sections in the LMFDB. They deserve their own pages which can be referred to by other pages.
 - Galois groups

	EP:	Δ → Galois groups → 24T8 Galois group: 24T8	Login Feedback · Hide Menu
Introduction	n	Group action invariants	Properties ①
Overview Universe L-functions Degree 1 Degree 3 ¢ zeros Modular for	Random Knowledge Degree 2 Degree 4 First zeros	Degree n: Transflive number :: G_3: C_8 Parity: Printive: I. funct nilpotent) I.M.(E/K): 24 (1,13202.7/14.19)(3.17,16.6.4.18,15.5)(9.23.21,12,10.24.22,11), (1,17.9)(2,18,10)(3.19,11)(4.20,12)(5.22,14)(6.21,15)(7.24,15)) (1,13202.7/14.19)(3.17,16.6.4.18,15.5)(9.23.21,12,10.24.22,11), (1,17.9)(2,18,10)(3.19,11)(4.20,12)(5.22,14)(6.21,15)(7.24,15)) (1,13202.7/14.19)(3.17,16.6.4.18,15.5)(9.23.21,12,10.24.22,11), (1,17.9)(2,18,10)(3.19,11)(4.20,12)(5.22,14)(6.21,15)(7.24,15)) (1,13202.7/14.19)(3.17,16.6.4.18,15.5)(9.23.21,12,10.24.22,11), (1,17.9)(2,18,10)(3.19,11)(4.20,12)(5.22,14)(6.21,15)(7.24,15)) (1,13202.7/14.19)(3.17,16.6.4.18,15.5)(9.23.21,12,10.24,22,11), (1,17.9)(2,18,10)(3.19,11)(4.20,12)(5.22,14)(6.21,15)(7.24,15)) (1,13202.7/14.19)(3.17,16.6.4.18,15.5)(9.23.21,12,10.24,22,11), (1,17.9)(2,18,10)(3.19,11)(4.20,12)(5.22,14)(6.21,15)(7.24,15))	Label 24T8 Degree 24 Order 24 Cyclic no Abelian no Solvable yes Primitive no p-group no Group: C3: C8
Classical	Maass	(8,23,16)	Learn more about
Siegel	Diaton	Low degree resolvents	Completeness of the data
Varieties		IG/NI Galois groups for stem field(s)	Source of the data Reliability of the data
Elliptic curvi Elliptic curvi Genus 2 cu Higher genu Abelian vari Belyi maps	es over \mathbb{Q} es over $\mathbb{Q}(\alpha)$ rves over \mathbb{Q} us families ietles over \mathbb{F}_q	2: C ₁ 4: C ₁ 6: S ₁ 8: C ₂ 12: C ₁ : C ₄ Resolvents shown for degrees ≤ 47	Galois group labels
Fields		Subfields	
Number field	ds	Degree 2: Co	
Represente	itions	Degree 3: Se	
Dirichlet cha Artin repres	aracters entations	Degree 4: $C_{\rm A}$	
Motives		Degree 6: 5a	
Hypergeom	etric over Q	Degree 8: C _R	
Groups		Degree 12: <u>C₃ : C₄</u>	
Galois grou Sato-Tate g	ps roups	Low degree siblings	
Lattices		There are no siblings with degree ≤ 47	
Small group	05	A number field with this Galois group has no arithmetically equivalent fields.	

- Finite groups show up at many other pages in the LMFDB. They deserve their own pages which can be referred to by other pages.
 - Galois group
 - Automorphism groups of higher genus curves
 - $\bullet~\overline{\mathbb{Q}}\text{-}\mathsf{automorphism}$ groups for genus 2 curves over \mathbb{Q}

LMER	$\label{eq:constraint} \begin{array}{l} \Delta \to Higher genus \to \mathbb{C} \to Aut \to 3 \to \mathcal{C}_4(\mathcal{L}_2 \to [0.2, 4.8] \to 3 \end{array}$ One refined passport of genus 3 with automorphism group	· Login $C_4 \wr C_2$		
Introduction Overview Random	Family Information	Properties		
Universe Knowledge L-functions Degree 1 Degree 2 Degree 3 Degree 4 C 20000 E	Genus: 3 Quotient genus: 0 Group name: C4 / C2 Group identifier: [32, 11] Signature: [0, 24, 48] Conlucacy classes for this refined passport: 4.10.14	Laber $3.02 + 10.2 + 0.3$ Genus 3 Quotient genus 0 Group $C_4 \wr C_2$ Signature [0; 2, 4, 8] Generating Vectors 1		
Vedular forme	The full automorphism group for this family is $C_2^2 \cdot C_2 \cdot C_3$ with signature [0, 2, 3, 8]	Related objects		
Classical Maass	Jacobian variety group algebra decomposition: $E \times E^2$	Full automorphism 3.96-64.0.2-3-8 Family containing this refined passport		
Siegel	Corresponding <u>character(s)</u> . 0,12	Downloads		
Varieties	Generating vector(s)	Code to Magma Code to Gap		
Elliptic curves over Q	Displaying the unique generating vector for this refined passport.	Learn more about		
Genus 2 curves over Q(a)	3.32-11.0.2-4-8.3.1	Completeness of the data		
Higher genus families Abelian varieties over F _g Belyi maps	(1,9) (2,10) (3,11) (4,12) (5,14) (6,13) (7,16) (8,15) (17,25) (18,26) (19,27) (20,28) (21,30) (22,29) (23,32) (24,31) (1,26,8,31) (2,25,7 32) (3,28,5 30) (4,27,6 29) (9,21,16,19) (10,22,15,20) (11,23,13,18) (12,24,14,17) (1,24,4,22,2,23,3,21) (5,20,8,18,6,19,7,17) (9,27,12,25,10,28,11,26) (13,32,16,30,14,31,15,29)	Source of the data Reliability of the data Labeling convention		
Fields		-		
Number fields p-adic fields				
Representations				
Dirichlet characters Artin representations				
Motives				
Hypergeometric over Q				

- Finite groups show up at many other pages in the LMFDB. They deserve their own pages which can be referred to by other pages.
 - Galois group
 - Automorphism groups of higher genus curves
 - $\bar{\mathbb{Q}}$ -automorphism groups for genus 2 curves over \mathbb{Q}
 - Monodromy groups of Belyi maps.

LMER	Δ → Belyi Maps → 9T11 → [6.3,2] → 6.2.1-3.3.3-2.2.2.2.1-0 → a Belyi map orbit 9T11-6.2.1_3.3.3_2.2.2.2.1-a	· Login Feedback · Hide Menu
Introduction Overview Random Universe Knowledge L-functions Degree 1 Degree 2	Invariants Degree: Monodromy group: C23:C6	Properties T Label 9711-8.2.1_3.3.3.2.2.2.2.1-a Group 9711 Orders [6,3,2] Genus 0 Size 1
¢ zeros First zeros	C ² ₃ : C ₆ — Transitive group 9T11, order 54, parity 1, non-abelian solvable, imprimitive <u>CHM label</u> : E(9):6=1/2[3^2:2]S(3)	Related objects Passport
Classical Maass Hilbert Blanchi Siegel	Generators (1.2.9)(3.4.5)(6.7.8), (1.2)(3.6)(4.8)(5.7), (3.4.5)(6.8.7), (1.4.7)(2.5.8)(3.6.9) Subfields	Downloads Code to Magma Code to SageMath All data to text
Varieties Elliptic curves over \mathbb{Q} Elliptic curves over $\mathbb{Q}(\alpha)$ Genus 2 curves over \mathbb{Q}	Degree 3: St Other low-degree representations	Learn more about Completeness of the data Source of the data Belyi labels
Abelian varieties over F _q Belyi maps	9T11 home page	
Fields Number fields <i>p</i> -adic fields	Genus: 0 Geometry type: Euclidean	
Representations Dirichlet characters Artin representations	Base field $\mathbb{Q}(\sqrt{-3}) : \text{Generator } \nu, \text{ with minimal polynomial } x^2 - x + 1.$	
Motives Hypergeometric over Q	Generators Order Partition	
Groups Galois groups	6 6,2,1 3 3,3,3	

- Finite groups show up at many other pages in the LMFDB. They deserve their own pages which can be referred to by other pages.
 - Galois group
 - Automorphism groups of higher genus curves
 - $\bar{\mathbb{Q}}\text{-}\mathsf{automorphism}$ groups for genus 2 curves over \mathbb{Q}
 - Monodromy groups of Belyi maps.
 - Inertia groups of *p*-adic fields.

LMER	∆ → p-adic field 5.10.10.11 <i>p</i> -adic field 5.10.10.11		- Login Feedback - Hide Menu
Introduction Overview Random Universe Knowledge	Defining polynomial $x^{10} + 5x^4 + 10x^5 + 25x^2 + 25x + 25$	Properties Label Base	5.10.10.11 Os
L-functions Degree 1 Degree 2 Degree 3 Degree 4 ζ zeros First zeros	Invariants Base field: Qa Degree d: 10 Barrificefue exposed c: 5	Degree e f c Galois group	10 5 2 10 $(C_5^2:C_4):C_2$ (as 10T17)
Modular forms Classical Maass Hilbert Bianchi Siegel Siegel	Residue field degree f: 2 Discriminant exponent c: 10 Discriminant confidit: Qa(√c) Root number: -1 Junt(K'(CP)): 1	Related objects Galois group Unramified subfi Discriminant roo	eld t field
Varieties Elliptic curves over \mathbb{Q} Elliptic curves over $\mathbb{Q}(\alpha)$ Genus 2 curves over \mathbb{Q} Hinber again familian	This field is not Galois over Q₂. Intermediate fields Q₂(√-)	Learn more ab Completeness o Source of the da Reliability of the Local field labels	out f the data tta data 3
Abelian varieties over F _g Belyi maps Fields	Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities. Unramified/totally ramified tower Unramified subfield: $Q_{5}(\sqrt{r}) \cong Q_{5}(t)$ where t is a root of $x^{2} + 2$		
Number fields p-adic fields Representations	Relative Eisenstein polynomial: $x^{5} + (5t + 15)x + 5 \in Q_{5}(t)[x]$ Invariants of the Galois closure		
Dirichlet characters Artin representations Motives Hypergeometric over Q Groups	Galois group: D ₂ : F: (as 10117) Inertia group: Intransitive group isomorphi Unramified degree: 2 Tame degree: 4 Wild skypes: [54, 54] Galois mean slope: 123/100		
Galois groups	Galois splitting model: $x^{10} - 4x^2 - 4$		

- Finite groups show up at many other pages in the LMFDB. They deserve their own pages which can be referred to by other pages.
 - Galois group
 - Automorphism groups of higher genus curves
 - $\bar{\mathbb{Q}}$ -automorphism groups for genus 2 curves over \mathbb{Q}
 - Monodromy groups of Belyi maps.
 - Inertia groups of *p*-adic fields.
- Dokchitser's group pages are loaded from a static file, whereas the LMFDB group pages are generated dynamically from a database, which allows us to update data as necessary.

https://groups.Imfdb.xyz/Groups/Abstract/

- What is the best presentation for an abstract group?
- Writing the rational and complex character tables.
- Getting a good presentation for the subgroup diagram.
- How to label subgroups and the conjugacy classes of a group?

Future plan and application

- Add more groups of larger orders including the groups GL(n, q) and SL(n, q).
- Add other groups to the page which are not there yet, like subgroups of GL(n, Z), GL(n, Q) and GL(n, C). Add groups beyond the small groups.
- Add more data on higher genus curves page using the group page.
- Include the automorphism groups of Belyi maps to the LMFDB using the group page.
- Database for algebraic tori and integral Galois representations on the LMFDB will also use some data from the group page. Specifically, it will use the finite subgroups of GL(n, ℤ) and their representations.

Future plan and application

A non-CM elliptic curve $E/\mathbb{Q}: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$.

$$E/\mathbb{Q} \longrightarrow$$
 an automorphic representation $\pi \cong \bigotimes_p \pi_p$ on $\operatorname{GL}(2, \mathbb{A}_\mathbb{Q})$

[R., 2019]: There is an explicit algorithm which computes the local representations π_p of $\operatorname{GL}(2, \mathbb{Q}_p)$ in terms the Weierstrass coefficients a_i of the E/\mathbb{Q} .

Goal: Include this data in the LMFDB with some linked to the group page.

- Where else would the data on the abstract groups page be useful?
- What data would be good addition to the abstract groups page?

Thank you!